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CHAOS ARISING NEAR A TOPOLOGICALLY
TRANSVERSAL HOMOCLINIC SET

Flaviano Battelli — Michal Fečkan

Abstract. A diffeomorphism on a C1-smooth manifold is studied pos-

sessing a hyperbolic fixed point. If the stable and unstable manifolds of
the hyperbolic fixed point have a nontrivial local topological crossing then

a chaotic behaviour of the diffeomorphism is shown. A perturbed prob-
lem is also studied by showing the relationship between a corresponding

Melnikov function and the nontriviality of a local topological crossing of

invariant manifolds for the perturbed diffeomorphism.

1. Introduction

LetM be a C1-smooth manifold without boundary. Consider a C1-smooth
diffeomorphism f :M → M possessing a hyperbolic fixed point p and let W sp ,
Wup be the global stable and unstable manifolds of p, respectively. Let W̃

s
p , W̃

u
p

be open subsets of W sp , W
u
p , respectively, which are submanifolds ofM, that is

the immersed and induced topologies on W̃ sp and W̃
u
p , respectively, coincide. We

assume that W̃ sp ∩ W̃up \ {p} 6= ∅, i.e. there is a point q homoclinic to p. We also
suppose the existence of a compact component K 3 q of the set W̃ sp ∩ W̃up , that
is a compact subset K ⊂ W̃ sp ∩ W̃up \ {p} such that q ∈ K and there exists an
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open bounded subset U ⊂ U ⊂ M \ {p} satisfying U ∩ W̃ sp ∩ W̃up = K. Since
K is compact there is an m0 such that fm0(K) is in a local chart Up of p. By

shrinking U , we can assume in addition that W̃ s(u)p ∩ U = W̃
s(u)
p ∩ U and as

well as fm0(U) ⊂ Up, and consequently, U is orientable. Moreover, since U is
bounded and open, W̃ s(u)p ∩U are also submanifolds ofM and there is an N0 > 0
such that W̃ s(u)p ∩ U ⊂ f∓N0(W s(u)p,loc) \ {p}. Hence W̃

s(u)
p ∩U are also orientable.

Then we can define the local intersection number #
(
W̃ sp ∩ U, W̃up ∩ U

)
of the

manifolds W̃ sp ∩ U and W̃up ∩ U inM (see [5]).
Let E = {0, 1}Z be the set of doubly infinite sequences of 0 and 1 endowed

with the metric

d({en}, {e′n}) =
∑
n∈Z

|en − e′n|
2|n|+1

.

On E it is defined the so called shift map σ: E → E by σ({ej}j∈Z) = {ej+1}j∈Z.
The main purpose of this note is to prove the following result.

Theorem 1.1. If #(W̃ sp ∩ U, W̃up ∩ U) 6= 0 then there exists ω0 ∈ N such
that for any N 3 ω ≥ ω0 there is a set Λω ⊂M and a mapping πω: Λω → E such
that

(i) f2ω(Λω) = Λω,
(ii) πω is continuous, one to one and onto,
(iii) πω ◦ f2ω = σ ◦ πω, where σ: E → E is the shift map.

Note that we do not know whether π−1ω is continuous. Thus we cannot say, in
general, that Λω is homeomorphic to E . However, if q is a transversal homoclinic
point, πω is a homeomorphism, since in the considerations that follow we can
use the implicit function theorem instead of the Brouwer degree theory, getting
the standard Smale horseshoe (see [7]).
Results similar to Theorem 1.1 have been proved by other authors. For ex-

ample, a semiconjugacy to the shift σ on E of some power of a given map is
proved in [6] provided an isolating neighbourhood of the map satisfies some con-
ditions on the Conley indices of its subsets. On the other hand, Lefschetz Fixed
Point Theorem and Topological Principle of Ważewski is applied in [8] to prove
the existence of a compact invariant set for the Poincaré map of a time-periodic
vector field on which the same map is semiconjugated to the shift σ on E and
the counterimage (by the semiconjugacy) of any periodic point of σ contains
a periodic point of the Poincaré map. The notion of periodic isolating segments
is an essential tool for the proofs in [8]. Finally, the same situation as in this
paper is studied in [3] (that motivated the present work). By using geometric
and homological methods, it is proved in [3] that, under the conditions of The-
orem 1.1, there is an invariant set of some power of f on which the same power
of f is semiconjugated to the shift σ on E . In all these papers by semiconjugacy
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it is meant that the associated map between the invariant set and the symbolic
set (in our paper it is the map πω) is shown to be continuous and onto. Hence
the semiconjugacy does not directly imply the existence of infinitely many peri-
odic orbits of a given map (apart from the result in [8]), but it implies positive
topological entropy of the map. Our approach instead, which is based on an idea
in [1], namely on the notion of exponential dichotomies of difference equations,
allow us to prove that πω is one to one, a result that was not stated in [3], [6], [8].
Consequently, f has infinitely many periodic orbits as well as quasiperiodic ones
(this fact has not been proved earlier). Moreover, we are able to identify the
periodic points of the map as solutions of a particular equation.

Next, checking the topological transversality of stable and unstable manifold,
is not an easy task. This is the reason why in Section 4 we study the case
whereW sp andW

u
p intersect on a homoclinic manifold and consider a C

2-smooth
perturbation of f (again, this point was not considered in [3], [6], [8]). Associated
to such a perturbation there is a Melnikov function. Then we obtain the following
result:

Theorem 4.4. Let f(x, ε) be a C2-map in its arguments, and assume there
exist open, connected, bounded subsets Ω ⊂ Ω ⊂ UΩ ⊂ Rµ and C2-smooth map-
pings xn(α), α ∈ UΩ, such that the following hold:

(i) xn+1(α) = f(xn(α), 0), n ∈ Z, limn→±∞ xn(α) = p uniformly with
respect to α ∈ UΩ for a hyperbolic fixed point p of the mapping f(x, 0),

(ii) {∂xn/∂αi(α), i = 1, . . . , µ} are linearly independent and they form a
basis for the space of bounded solutions of the equation

vn+1 = fx(xn(α), 0)vn

on Z for any α ∈ UΩ. Moreover, the mapping x0:UΩ → RN is one to
one.

Assume, moreover, that the Melnikov function associated to the perturbation
satisfies the following conditions:

(H1) M(α) 6= 0 on ∂Ω,
(H2) deg(M,Ω, 0) 6= 0.

Then there exists ε0 > 0 such that for 0 < |ε| ≤ ε0, it is nonzero the local
intersection number of the stable and unstable manifolds of the hyperbolic fixed
point of the map xn+1 = f(xn, ε) which is located near the fixed point p of the
map xn+1 = f(xn, 0).

Thus when a map satisfies the conditions of Theorem 4.4, we obtain, thanks
to Theorem 1.1, a kind of chaotic behaviour of the perturbed diffeomorphism
f(x, ε), when ε 6= 0.
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Finally, at the end of the paper, we make some remarks about certain exten-
sions and consequences of our results.

2. Preliminary results

To avoid the use of either the tangent vector bundle of M or local charts
ofM, we assume for simplicity in this section thatM = RN . This restriction is
only technical. Next, for any ξ ∈ W̃ sp ∩ U and η ∈ W̃up ∩ U we set ξn = fn(ξ),
n ∈ Z+, ηn = fn(η), n ∈ Z−, where Z+ = {0, 1, . . . } and Z− = {. . . ,−1, 0}.
Then the linear systems

vn+1 = Df(ξn)vn, n ∈ Z+,(2.1)

wn+1 = Df(ηn)wn, n ∈ Z−, n 6= 0,(2.2)

have exponential dichotomies on Z+ and Z−, respectively, i.e. there are posi-
tive constants L ≥ 1, δ ∈ (0, 1) and orthogonal projections Pξ:RN → TξW̃

s
p ,

Qη:RN → TηW̃
u
p such that the fundamental solutions Vξ(n) and Wη(n) of (2.1)

and (2.2) respectively, satisfy the following conditions:

(2.3)
‖Vξ(n)PξVξ(m)−1‖ ≤ Lδn−m, m ≤ n, m, n ∈ Z+,

‖Vξ(n)(I − Pξ)Vξ(m)−1‖ ≤ Lδm−n, n ≤ m, m, n ∈ Z+,

and

(2.4)
‖Wη(n)(I −Qη)Wη(m)−1‖ ≤ Lδn−m, m ≤ n, m, n ∈ Z−,

‖Wη(n)QηWη(m)−1‖ ≤ Lδm−n, n ≤ m, m, n ∈ Z−,

respectively (see [7]). We note that L and δ can be chosen to be independent
of ξ ∈ W̃ sp ∩ U and η ∈ W̃up ∩ U . In fact, let ξ ∈ W̃ sp ∩ U , then fn(ξ) → p as
n→∞. From the roughness of exponential dichotomies ([7]), it follows that Lξ,
δξ exist such that vn+1 = f ′(ξn)vn has an exponential dichotomy on Z+ with
constants Lξ and δξ. Again from the roughness of exponential dichotomies, given
any ξ ∈ W̃ sp ∩ U there exists rξ > 0 such that when |ξ̃ − ξ| < rξ, ξ̃ ∈ W̃ sp ∩ U ,
vn+1 = f ′(ξ̃n)vn has an exponential dichotomy on Z+ with constants 2Lξ and
(1 + δξ)/2. Covering W̃up ∩ U with a finite number of balls centered at ξ and
of radius rξ the result follows as far as the dichotomy on Z+ is concerned. A
similar argument applies for the dichotomy on Z−.
Note that any projection having the same range as Pξ, (resp. Qη) satisfies

condition (2.3) (resp. (2.4)). Thus, it is the additional requirement that Pξ and
Qη are orthogonal that makes them unique. This uniqueness also implies that
Pξ and Qη are continuous in ξ, η, respectively.
In fact let us prove this for Pξ. Since W̃ sp is C

1, we get that TξW̃ sp depends

continuously on ξ and the same holds for its orthogonal complement (TξW̃ sp )
⊥

in Rn. So, if {v1(ξ), . . . , vd(ξ)} is a (local) orthonormal basis of TξW̃ sp that
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depends continuously on ξ in a neighbourhood of some ξ0 ∈ W̃ sp , we have Pξv =∑d
j=1〈v, vj(ξ)〉vj(ξ) and then Pξ is continuous in ξ. Note that the uniqueness of

Pξ implies that Pξv does not depend on the choice of the basis {v1(ξ), . . . , vd(ξ)}.
A similar argument holds for Qη. Moreover, note that, when M is a Cr-

manifold and f is a Cr-diffeomorphism, Pξ and Qη are of class Cr−1.
Now we fix ω ∈ N large and put

Jω = {−ω, . . . , ω},
J−ω = {−ω, . . . , 0}, I−ω = {−ω, . . . ,−1},
J+ω = {0, . . . , ω}, I+ω = {0, . . . , ω − 1}.

Arguing as in Lemma 2 of [1], we can prove the following results. In this paper,
RL and NL denote, respectively, the range and the kernel of a linear operator L.

Lemma 2.1. There exist ω0 ∈ N and a constant c > 0 such that given any
ω ∈ N, ω ≥ ω0, (ξ, η) ∈ (W̃ sp ∩ U) × (W̃up ∩ U), and b, hn ∈ RN , n ∈ Jω,
φ ∈ RPξ, ψ ∈ RQη, there exist unique solutions {vn}n∈J+ω and {wn}n∈J−ω of the
linear systems

vn+1 = Df(ξn)vn + hn, n ∈ I+ω ,
wn+1 = Df(ηn)wn + hn, n ∈ I−ω ,

respectively, together with the boundary value conditions

Pξv0 = φ, Qηw0 = ψ, vω − w−ω = b.

Moreover, such solutions are linear in (b, h, φ, ψ), h = {hn}n∈Jω and satisfy

max
n∈J+ω

|vn|, max
n∈J−ω

|wn| ≤ c(max
n∈J±ω

|hn|+ |b|+ |φ|+ |ψ|).

Lemma 2.2. For any (ξ, η) ∈ (W̃ sp ∩ U) × (W̃up ∩ U), φ ∈ RPξ, ψ ∈ RQη,
and for any bounded sequence {hn}n∈Z, there exist unique solutions {vn}n≥0 and
{wn}n≤0 of the linear systems

vn+1 = Df(ξn)vn + hn, n ≥ 0,
wn+1 = Df(ηn)wn + hn, n ≤ −1,

respectively, together with the boundary value conditions: Pξv0 = φ, Qηw0 = ψ.
Moreover, such solutions are linear in (h±, φ, ψ), h+ = {hn}n≥0, h− = {hn}n≤0,
and there exists a constant c > 0, independent of (h±, φ, ψ), such that

sup
n≥0
|vn| ≤ c(sup

n≥0
|hn|+ |φ|), sup

n≤0
|wn| ≤ c(sup

n≤0
|hn|+ |ψ|).
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Now we study the nonlinear system

(2.5) xn+1 = f(xn)

near {ξn}n∈J+ω and {ηn}n∈J−ω . By arguing as in [1, Theorem 1] we obtain the
following result.

Theorem 2.3. There exist ω0 ∈ N and a constant c > 0 such that, for
any ω ∈ N, ω ≥ ω0, and (ξ, η) ∈ (W̃ sp ∩ U) × (W̃up ∩ U), there exist unique
{x+n (ω, ξ, η)}n∈J+ω and {x

−
n (ω, ξ, η)}n∈J−ω which satisfy (2.5) separately on I

+
ω

and I−ω such that

Pξx
+
0 (ω, ξ, η) = Pξξ, Qηx

−
0 (ω, ξ, η) = Qηη,

x+ω (ω, ξ, η) = x
−
−ω(ω, ξ, η),

together with

max
n∈J+ω

|x+n (ω, ξ, η)− ξn| ≤ cδω, max
n∈J−ω

|x−n (ω, ξ, η)− ηn| ≤ cδω.

Moreover, x±n (ω, ξ, η) are continuous with respect to ξ and η, more precisely they
are Cr−1 whenM is a Cr-manifold and f is a Cr-diffeomorphism.

Proof. Putting x+n = ξn + vn, n ∈ J+ω and x−n = ηn + wn, n ∈ J−ω . We get
the systems

(2.6) vn+1 = Df(ξn)vn+ f(ξn+ vn)− f(ξn)−Df(ξn)vn = Df(ξn)vn+ o(|vn|),

for n ∈ I+ω , and

wn+1 = Df(ηn)wn + f(ηn + wn)− f(ηn)−Df(ηn)wn(2.7)

= Df(ηn)wn + o(|wn|),

for n ∈ I−ω . Since we are looking for solutions of equation (2.5) such that
x+ω = x

−
−ω, we add the boundary value conditions:

(2.8) vω − w−ω = η−ω − ξω = O(δω), Pξv0 = 0, Qηw0 = 0.

Let v = (v0, . . . , vω) ∈ RN(ω+1), w = (w−ω, . . . , w0) ∈ RN(ω+1). To solve
equations (2.6)–(2.8), we take the mapping

Γω: (W̃ sp ∩ U)× W̃up ∩ U)× R2N(ω+1) → R2N(ω+1)

defined by

Γω(ξ, η, v, w) =


(vn+1 − f(ξn + vn) + f(ξn))n∈I+ω
(wn+1 − f(ηn + wn) + f(ηn))n∈I−ω

vω − w−ω − (η−ω − ξω)
Pξv0
Qηw0

 .
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where
(
Pξv0
Qηw0

)
has to be meant as a vector in RN = RPξ × RQη. We have

already observed that Pξ and Qη are continuous. Thus, for any fixed ω ≥ ω0, Γω
is continuous in (ξ, η, u, v) as well as its derivatives with respect to (v, w) when we
take on R2N(ω+1) the maximum norm maxi{|vi|, |wi|}. We have Γω(ξ, η, 0, 0) =
O(δω) uniformly with respect to (ξ, η) and the linearized map D(v,w)Γω(ξ, η, 0, 0)
has the form

D(v,w)Γω(ξ, η, 0, 0)
(
v

w

)
=


(vn+1 −Df(ξn)vn)n∈I+ω
(wn+1 −Df(ηn)wn)n∈I−ω

vω − w−ω
Pξv0
Qηw0

 .
Lemma 2.1 implies that the map D(v,w)Γω(ξ, η, 0, 0) is invertible and that its
inverse is bounded uniformly with respect to (ξ, η). Hence from the implicit
function theorem we get that c > 0 and ω0 � 1 exist such that for ω ≥ ω0, the
equation Γω(ξ, η, v, w) = 0 can be solved uniquely for (v, w) in a neighbourhood
of (0, 0) in terms of (ξ, η, ω). Moreover, maxi{|vi|, |wi|} < cδω, and the solution
is continuous in (ξ, η), for any fixed ω ≥ ω0. �

We note that if f and M are Cr-smooth, r ≥ 1, then x±0 (ω, ξ, η) is Cr−1

with respect to (ξ, η) for any fixed ω ≥ ω0.

3. Chaotic iterations

In this section we prove Theorem 1.1. Let V ⊂ M be an open subset such
that K ⊂ V ⊂ V ⊂ U and ω0 be as in Theorem 2.3. We also assume that ω0
is large enough that cδω0 is less than the distance of V from ∂U and for any
ξ ∈ W̃ sp ∩ V , η ∈ W̃up ∩ V and n ≥ ω0 we have |ξn − p|, |ηn − p| ≤ Cδn where

C can be chosen independent of ξ, η because of the compactness of W̃ sp ∩ V
and W̃up ∩ V . Of course, here we assume that ξn, ηn, p are in the local chart
Up of p, for any n ≥ ω0 so that we can consider their differences. Note that
the solutions {x±n (ω, ξ, η)}n∈J±ω are defined for (ξ, η) ∈ W̃

s
p ∩ V × W̃up ∩ V , and

#
(
W̃ sp ∩V, W̃up ∩V

)
= #
(
W̃ sp ∩U, W̃up ∩U

)
because K ⊂ V implies K ∩∂V = ∅.

The first step is to show that, for ω ≥ ω0, the map xn+1 = f(xn) has enough
periodic orbits. We recall that fm0(U) ⊂ Up for some m0, and then we can
assume that U is embedded in RN , i.e. U ↪→ RN . Let h, k be non negative
integers. For any finite sequence E = {ej}kj=−h, ej ∈ {0, 1} such that e0 = 1, we
set

{j1, . . . , jiE} = {j | ej = 1},
where −h ≤ j1 < j2 < . . . < jiE ≤ k. Note that, being e0 = 1, we have
j1 ≤ 0 ≤ jiE . Then we set

(3.1) j0 = jiE − h− k − 1, jiE+1 = h+ k + 1 + j1.
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Note that j0 ≤ −h− 1 < j1 and jiE+1 ≥ k + 1 > jiE . Moreover,

(3.2) jiE+1 − jiE = j1 − j0.

Next, for ω ∈ N fixed and large (that is greater than ω0), we define

FE : ((W̃ sp ∩ V )× (W̃up ∩ V ))iE → RNiE , FE = (FE1 , . . . , F
E
iE )

where

FEr (ξ
1, η1, . . . , ξiE , ηiE ) = x−0 ((jr−jr−1)ω, ξr, ηr)−x

+
0 ((jr+1−jr)ω, ξr+1, ηr+1),

and

(3.3) ξiE+1 = ξ1, ηiE+1 = η1,

and x±0 ((jr − jr−1)ω, ξr, ηr) are derived as in Theorem 2.3.
We note that x+0 ((jr − jr−1)ω, ξr, ηr) is at a distance from ξr ∈ W̃ sp ∩ V ⊂

U ↪→ RN less than cδω and that the same holds for x−0 ((jr − jr−1)ω, ξr, ηr) and
ηr ∈ W̃up ∩ V ⊂ U ↪→ RN . Consequently, x±0 ((jr − jr−1)ω, ξr, ηr) ∈ U and we
can consider the above differences in the definition of FE .
Let us now give a brief motivation for such a definition. Assume that the

equation FEr (ξ
1, η1, . . . , ξiE , ηiE ) = 0 has a solution (ξ1, η1, . . . , ξiE , ηiE ). Then,

starting from

x−0 ((jr − jr−1)ω, ξr, ηr) = x
+
0 ((jr+1 − jr)ω, ξr+1, ηr+1)

and using

x+(jr+1−jr)ω((jr+1 − jr)ω, ξ
r+1, ηr+1) = x−−(jr+1−jr)ω((jr+1 − jr)ω, ξ

r+1, ηr+1)

we obtain

f2(jr+1,−jr)ωx−0 ((jr − jr−1)ω, ξr, ηr)
= f2(jr+1−jr)ωx+0 ((jr+1 − jr)ω, ξr+1, ηr+1)
= f (jr+1−jr)ωx+(jr+1−jr)ω((jr+1 − jr)ω, ξ

r+1, ηr+1)

= f (jr+1−jr)ωx−−(jr+1−jr)ω((jr+1 − jr)ω, ξ
r+1, ηr+1)

= x−0 ((jr+1 − jr)ω, ξr+1, ηr+1),

and then, using the induction,

(3.4) f2(js−jr)ωx−0 ((jr − jr−1)ω, ξr, ηr) = x
−
0 ((js − js−1)ω, ξs, ηs),

for any 0 ≤ r ≤ s ≤ jiE+1. Now, from e0 = 1 we see that ι ∈ {1, . . . , iE} exists
such that jι = 0. Then we define

(3.5) x0(ω,E) = x−0 (−jι−1ω, ξι, ηι) = x
−
0 ((jι − jι−1)ω, ξι, ηι)

= x+0 ((jι+1 − jι)ω, ξι+1, ηι+1) = x
+
0 (jι+1ω, ξ

ι+1, ηι+1),
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and note that from (3.1), (3.2) and (3.4) we obtain

f2(h+k+1)ωx0(ω,E) = f2(jiE+1−j1)ωx0(ω,E)

= f2(jι−j1)ω[f2(jiE+1−jι)ωx−0 ((jι − jι−1)ω, ξι, ηι)]
= f2(jι−j1)ωx−0 ((j1 − j0)ω, ξ1, η1)
= x−0 ((jι − jι−1)ω, ξι, ηι) = x0(ω,E),

that is x0(ω,E) is a 2(h+k+1)ω-periodic point of the map xn+1 = f(xn). Next,
using (3.4), for any r ∈ {1, . . . , jiE} we have

f2jrωx0(ω,E) = f2(jr−jι)ωx−0 ((jι − jι−1)ω, ξι, ηι)
= x−0 ((jr − jr−1)ω, ξr, ηr) = x

+
0 ((jr+1 − jr)ω, ξr+1, ηr+1),

and then Theorem 2.3 implies that

‖f2jrωx0(ω,E)− ηr‖ ≤ cδ(jr−jr−1)ω ≤ cδω,
‖f2jrωx0(ω,E)− ξr+1‖ ≤ cδ(jr−jr−1)ω ≤ cδω,

that is f2jrωx0(ω,E) belongs to a (small when ω > ω0 is sufficiently large)
neighbourhood of K for any r = 1, . . . , iE . Moreover, for any j ∈ N such that
0 < j < jr+1 − jr, we have

f2(jr+j)ωx0(ω,E) = f2jωx+0 ((jr+1 − jr)ω, ξr+1, ηr+1)
= x+jω((jr+1 − jr)ω, ξ

r+1, ηr+1),

and then, again from Theorem 2.3,

‖f2(jr+j)ωx0(ω,E)− p‖ ≤ ‖f2(jr+j)ωx0(ω,E)− ξr+1jω ‖+ ‖ξ
r+1
jω − p‖ ≤ 2cδ

ω.

Thus the map FE is constructed so that if FE(ξ1, η1, . . . , ξiE , ηiE ) = 0, then the
diffeomorphism f has a periodic orbit attracting and repelling several times by
the hyperbolic fixed point p. More precisely, if the initial point of this periodic
orbit is given by (3.5), the point f2jωx0(ω,E) is near the set K if ej = 1 and it
is near the fixed point p if ej = 0. Using this it is easy to see that starting from
different E we get different periodic orbits. To solve FE = 0, we take the simple
homotopy

HE : ((W̃ sp ∩ V )× (W̃up ∩ V ))iE × [0, 1]→ RNiE ,

HE = (HE1 , . . . , H
E
iE )

given by

HEr (ξ
1, η1, . . . , ξiE , ηiE , λ) = λFEr (ξ

1, η1, . . . , ξiE , ηiE ) + (1− λ)(ηr − ξr+1),

for 0 ≤ λ ≤ 1. Theorem 2.3 gives

|FEr
(
ξ1, η1, . . . , ξiE , ηiE )− ηr + ξr+1| ≤ 2cδω,



204 F. Battelli — M. Fečkan

where the constant c is the same as in Theorem 2.3. Hence we get

|HEr (ξ1, η1, . . . , ξiE , ηiE , λ)− ηr + ξr+1| ≤ 2cδω.

Consequently HE( · , λ) 6= 0 on the boundary ∂((W̃ sp ∩V )× (W̃up ∩V ))iE for any
0 ≤ λ ≤ 1. This gives for the Brouwer degree

deg(FE , ((W̃ sp ∩ V )× (W̃up ∩ V ))iE , 0) = ±#(W̃ sp ∩ V, W̃up ∩ V )iE 6= 0.

Summarizing, we see that, under the assumptions of Theorem 1.1, the equation
FE = 0 is always solvable in the set ((W̃ sp ∩ V )× (W̃up ∩ V ))iE for any sequence
E = {ej}kj=1 ∈ {0, 1}k, e1 = 1 and any k ∈ N for a fixed large (i.e. greater than
ω0) ω ∈ N. Thus we have seen that the map f has enough periodic orbits. Now
let ∼ be the equivalence relation on the set E = {0, 1}Z defined as follows:

let E,E′ ∈ E . We say that E ∼ E′ if n0 ∈ Z exists such that E =
σn0(E′).

Then we choose a unique element for any equivalence class in E/∼ and form a
metric subspace E∼. Without loss of generality we can also assume that E∼ ⊂
E1 := {E = {ej}j∈Z ∈ E : ej = 0 for any j ∈ Z or e0 = 1}. We obtain in this
way a subspace E∼ ⊂ E1 such that if E1, E2 ∈ E∼, then either E1 = E2 or
E1 6= σn(E2) for any n ∈ Z.
Now we define a map E 7→ OE from E1 in the space of orbits of f as follows.

If ej = 0, for all j ∈ Z then we put OE = {p} the fixed point orbit of f . On the
other hand, if e0 = 1, we have the following two possibilities: either E is periodic
with the minimal period m, i.e. σm(E) = E and σk(E) 6= E for 1 ≤ k < m, or
E is nonperiodic, that is there is no m ∈ N such that σm(E) = E.
In the first case we apply the above procedure to the finite sequence {ej}m−1j=0

(m being the minimal period of E). We obtain then a 2mω-periodic orbit OE
such that f2jω(x0) is either near the set K or the point p according to ej = 1 or
ej = 0, respectively.
In the second case we consider, for any m ∈ N, the finite sequence Em =

{emj }mj=−m := {ej}mj=−m, m ∈ N, to obtain a periodic orbit OEm of xn+1 = f(xn)
with the same oscillation property between K and p as above.
We set OEm = {xmn }n∈Z. Then take a convergent subsequence x

mi
0 of x

m
0 and

let x0 be its limit as i→∞. Note that, OEm being an orbit of xn+1 = f(xn), we
have xmj = f

j(xm0 ) for any j ∈ Z. Thus xmij converges to f j(x0). Hence we set
OE = {f j(x0)}j∈Z. Note that OE is an orbit of the map f such that f2jω(x0) is
either near the set K or the point p according to ej = 1 or ej = 0, respectively.
In fact, for any given j ∈ Z, there exists m0 ∈ N such that emj = ej for any
m ≥ m0. Thus the conclusion follows because it is satisfied by f2jω(xmi0 ) for any
i sufficiently large. Observe also that if E is not periodic (that is σn(E) 6= E

for any n ∈ Z) then OE is also a non periodic orbit of f because of the stated
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oscillation properties. Moreover, if OE = OE′ then E = E′, that is the map
E 7→ OE is one to one. Finally, for OE = {f i(x0)}i∈Z we set

(3.6) f2jω(OE) = {f2jω+i(x0)}i∈Z.

At this point we would like that the following holds: Oσn(E) = f2ωn(OE) when
E and σn(E) belong to E1. However this is not generally true even if it is
true that Oσn(E) and f2ωn(OE) have the same oscillating properties between K
and p. The point is that in order to define the orbit OE we actually use the
axiom of choice to choose a convergent subsequence xmi0 of x

m
0 . Thus, in general

Oσ(E) 6= f2ω(OE), because we can perhaps choose convergent subsequences of
xm0 and x

m
1 such that their limits do not satisfy the equality x1 = f(x0) (of

course, when the sequence xm0 is itself convergent this does not happen). For
this reason, in order to extend the map E 7→ OE to E we have to pass through E∼.
Let E = {en}n∈Z ∈ E be a doubly infinite sequence of 0 and 1. If ej = 0 for

any j ∈ Z we set Jω(E) = {p}, the fixed point orbit of f . If j ∈ Z exists such
that ej = 1, a unique E′ ∈ E∼ exists such that E = σn0(E′) for some n0 ∈ Z.
Such a n0 is unique when E is nonperiodic and is defined up to a multiple of the
least period, when E is periodic. Then we set

(3.7) Jω(E) = f2ωn0(OE′).

This definition does not depend on n0. We only have to prove this in the case
where E is periodic with least period, say, m. We have:

f2ω(km+n0)(OE′) = f2ωn0(f2ωkm(OE′)) = f2ωn0(OE′),

for any k ∈ Z, sinceOE′ is 2ωm-periodic. Thus the definition (3.7) is independent
of n0. Moreover, if E = σn0(E′), E′ ∈ E∼, then σ(E) = σn0+1(E′) and

Jω(σ(E)) = f2ω(n0+1)(OE′) = f2ω(Jω(E))

that is

(3.8) Jω ◦ σ = f2ω ◦ Jω.

Now we prove that Jω is one to one. Because of the oscillating prop-
erty, it follows immediately that Jω(E) 6= {p} when E is not the identically
zero sequence. Now, let E1, E2 ∈ E be two, non identically zero, sequences
such that Jω(E1) = Jω(E2). Write E1 = σn1(E′1) and E2 = σn2(E′2), with
E′1 = {e′

(1)
n }, E′2 = {e′

(2)
n } ∈ E∼. Then Jω(E1) = Jω(E2) implies OE′1 =

f2ω(n2−n1)(OE′2). From this equation and the oscillating property we see that
e′
(2)
(n2−n1) = 1, that is σ

n2−n1(E′2) ∈ E1. Moreover, as we have already ob-
served, f2ω(n2−n1)(OE′2) has the same oscillating properties between K and p as
Oσ(n2−n1)(E′2). Thus E

′
1 and σ

(n2−n1)(E′2) are two elements of E1 such that OE′1
and Oσ(n2−n1)(E′2) have the same oscillating properties between K an p. But this
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means that E′1 = σ
(n2−n1)(E′2) from which we get immediately E1 = E2. So Jω

is one to one and satisfies (3.8).
Now we consider the map P: Jω(E) → RN given by P(Jω(E)) = x0, where

Jω(E) = {xj}j∈Z. We set Λω = P(Jω(E)), we define Q: Λω → Jω(E) as Q(x0) =
{f j(x0)}j∈Z.
Finally, we define πω: Λω → E as πω(x0) = J−1ω

(
Q(x0)

)
.

Now we state some of the properties of πω:

(i) πω is one to one. This easily follows from the fact that different initial
points give different orbits (that is Q is one to one).

(ii) πω is continuous. To show this, let x00, {xi0}i∈N ⊂ Λω and xi0 → x00 as
i → ∞. Then f j(xi0) → f j(x00) as i → ∞ for any j ∈ Z. Hence for
any N0 ∈ N, and |j| ≤ N0, the points f2jω(xi0) of the orbit Q(xi0) =
Jω(Ei) ∈ Jω(E) and f2jω(x00) of the orbit Q(x00) = Jω(E0) ∈ Jω(E)
have, for i large, the same kind of oscillation between K and p. Conse-
quently, the sequences Ei and E0, for i large, have the same elements
in the first j, |j| ≤ N0 places. This implies that Ei → E0 as i→∞.

(iii) σ(πω(x0)) = πω(f2ω(x0)). In fact, we know that Jω(σ(E))=f2ω(Jω(E))
for any E ∈ E . Thus if E = πω(x0) we have Jω(E) = Q(x0) =
{f j(x0)}j∈Z, then

Jω(σ(πω(x0))) = Jω(σ(E)) = f2ω(Jω(E)) = {f j(f2ω(x0))}j∈Z = Q(f2ω(x0)).

Thus σ(πω(x0)) = πω(f2ω(x0)) for any x0 ∈ Λω.
Summarizing, πω is continuous, one to one and πω ◦ f2ω = σ ◦ πω. By the

construction it is also clear that πω is onto. This result proves the statement of
Theorem 1.1.

4. Topological transversality and Melnikov function

In this section, we consider a C2-smooth perturbation of f on M = RN

given by f(x, ε), f(x, 0) = f(x) for ε ∈ R. Moreover, we suppose that f has
an µ-parametric nondegenerate family of orbits homoclinic to a hyperbolic fixed
point p, that is there exist open, connected and bounded subsets Ω ⊂ Ω ⊂ UΩ ⊂
Rµ and C2-smooth mappings xn(α), α ∈ UΩ, n ∈ Z, such that
(i) xn+1(α) = f(xn(α)), n ∈ Z, limn→±∞ xn(α) = p uniformly with respect
to α ∈ UΩ,

(ii) {(∂xn/∂αi)(α), i = 1, . . . , µ} are linearly independent and they form
a basis for the space of bounded solutions of the equation vn+1 =
Df(xn(α))vn on Z for any α ∈ UΩ. Moreover, the mapping x0:UΩ →
RN is one to one.

We note that x0(α) ∈ W sp ∩Wup , for any α ∈ UΩ. In the next constructions of
this section, the set Ω is fixed but the neighbourhood UΩ of Ω could be shrunk
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by keeping its connectedness. Let U ⊂ RN be an open and bounded subset such
that

(4.1) HΩ = {x0(α) | α ∈ UΩ} = U ∩ W̃ sp ∩ W̃up ,

where again W̃ sp and W̃
u
p are open subsets of W

s
p and W

u
p , respectively, which

are submanifolds of RN .
Let Pξ and Qη be the projections of Section 2 for the open subset U , which

are now C1-smooth in ξ and η, respectively. Arguing as in Section 2 (see also
[1, Theorem 1]), we get the following result.

Theorem 4.1. There exist ε0 > 0 and ρ > 0 such that for any |ε| < ε0 and
ξ ∈ W̃ sp ∩ U , η ∈ W̃up ∩ U the equations

x+n+1(ε, ξ) = f(x
+
n (ε, ξ), ε), Pξx

+
0 (ε, ξ) = Pξξ

for n ≥ 0, and

x−n+1(ε, η) = f(x
−
n (ε, η), ε), Qηx

−
0 (ε, η) = Qηη

for n ≤ −1, have unique solutions {x+n (ε, ξ)}n≥0 and {x−n (ε, η)}n≤0 respectively,
such that

(4.2) sup
n≥0
|x+n (ε, ξ)− ξn| ≤ ρ, sup

n≤0
|x−n (ε, η)− ηn| ≤ ρ.

Moreover, {x+n (ε, ξ)}n≥0 and {x−n (ε, η)}n≤0 are C1-smooth in their arguments
and

(4.3) lim
ε→0
sup
n≥0
|x+n (ε, ξ)− ξn| = 0, lim

ε→0
sup
n≤0
|x−n (ε, η)− ηn| = 0.

Proof. We give the proof for n ≥ 0 the case n ≤ 0 being handled similarly.
Let ξ ∈ W̃ sp ∩ U , and xn = ξn + vn. Then {vn}n≥0 satisfies the system

(4.4)

{
vn+1 − f ′(ξn)vn = {f(ξn + vn, ε)− f(ξn)− f ′(ξn)vn},
Pξv0 = 0.

We are looking for solutions of (4.4) such that supn≥0 |vn| → 0 as ε → 0. Let
ρ > 0 be fixed. From Lemma 2.2 it follows that the map

Γ∞(v) =
(
{vn+1 − f ′(ξn)vn}n≥0

Pξv0

)
has a bounded inverse. So, for any {vn}n≥0 such that supn≥0 |vn| < ρ we define
{v̂n}n≥0 as the unique solution of

Γ∞({v̂n}n≥0) =
(
{f(ξn + vn, ε)− f(ξn)− f ′(ξn)vn}n≥0

0

)
.
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From Lemma 2.2 it follows that

sup
n≥0
|v̂n| ≤ c sup

n≥0
|f(ξn + vn, ε)− f(ξn)− f ′(ξn)vn| ≤ c{∆(ρ) sup

n≥0
|vn|+O(ε)}

where ∆(ρ) → 0 as ρ → 0. Thus it is easy to see that the map {vn}n≥0 7→
{v̂n}n≥0 is a contraction on the ball {{vn}n≥0 : supn≥0 |vn| < ρ} provided ρ
and ε0 are sufficiently small. As a consequence there exists a unique fixed point
{vn(ε, ξ)}n≥0 that gives rise to the solution xn(ε, ξ) = ξn + vn(ε, ξ). From the
smoothness of the map {vn}n≥0 7→ {f(ξn + vn, ε) − f(ξn) − f ′(ξn)vn}n≥0, we
obtain that xn(ε, ξ) is smooth and that (4.2), (4.3) hold. �

Now we consider the function H: W̃ sp ∩U × W̃up ∩U × (−ε0, ε0)→ RN given
by

H(ξ, η, ε) = x+0 (ε, ξ)− x
−
0 (ε, η).

Note that, because of the hyperbolicity of p, the map xn+1 = f(xn, ε) has, for
small |ε|, a unique hyperbolic fixed point p(ε) such that p(ε) → p as ε → 0.
Such a fixed point is C2-smooth in ε and the solutions of H(ξ, η, ε) = 0 give rise
to orbits {xn(ε)}n∈Z of the map xn+1 = f(xn, ε) that are homoclinic to p(ε).
Moreover, if U1 ⊂ U1 ⊂ U is an open, connected subset of U , the functions
x+0 (ε, ξ), ξ ∈ W̃ sp ∩ U1 and x

−
0 (ε, η), η ∈ W̃up ∩ U1, describe open subsets of the

stable and unstable manifolds W sp(ε) and W
u
p(ε) of p(ε) that are also immersed

submanifolds in Rn. So, denoting with W̃ sp(ε) and W̃
u
p(ε) these submanifolds of

RN , we see that the intersection number #(W̃ sp(ε)∩U1, W̃
u
p(ε)∩U1) can be studied

by looking at the Brouwer degree deg(H(ξ, η, ε), (W̃ sp ∩ U1)× (W̃up ∩ U1), 0).
Thus, let ds = dim W̃ sp , and du = dim W̃

u
p . From the hyperbolicity of p we

get ds+du = N , hence we can write RN =Wµ⊕Ws⊕Wu⊕Vµ where dimWµ =
dimVµ = µ, V ⊥µ =Wµ⊕Ws⊕Wu, dimWs = ds−µ, dimWu = du−µ, and UΩ is
an open subset of Wµ. Then, replacing U and UΩ with smaller, open, connected
and bounded subsets of Rn and Rµ respectively, so that (4.1) and Ω ⊂ UΩ are
still satisfied, we can find open and convex subsets Os ⊂Ws, Ou ⊂Wu, O∗ ⊂ Vµ,
containing 0, and a C1-diffeomorphism Φ:UΩ ⊕Os ⊕Ou ⊕O∗ → U ⊂ RN such
that the following holds:

Φ(α) = x0(α), for any α ∈ UΩ,
Φ(UΩ ⊕Os) = W̃ sp ∩ U,

Φ(UΩ ⊕Ou) = W̃up ∩ U.

Let ξ̃, η̃ be the coordinates onWµ⊕Ws andWµ⊕Wu respectively. Then possibly
shrinking UΩ, Os and Ou we consider, the function

H̃: (UΩ ⊕Os)× (UΩ ⊕Ou)→ RN
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given by

H̃(ξ̃, η̃, ε) := Φ−1(x+0 (ε,Φ(ξ̃)))− Φ−1(x
−
0 (ε,Φ(η̃))).

Obviously, H̃(ξ̃, η̃, ε) = 0 if and only if H(ξ, η, ε) = 0, and then

deg (H(ξ, η, ε), (W̃ sp ∩ U)× (W̃up ∩ U), 0)

= ±deg(H̃(ξ̃, η̃, ε), (UΩ ⊕Os)× (UΩ ⊕Ou), 0).

Theorem 4.1 implies that H̃(ξ̃, η̃, 0) = ξ̃ − η̃ from which we get H̃(α, α, 0) = 0
and

H̃(ξ̃, η̃, ε)

= ξ̃ − η̃ + ε
{
[Φ′(ξ̃)]−1

∂x+0
∂ε
(0,Φ(ξ̃))− [Φ′(η̃)]−1 ∂x

−
0

∂ε
(0,Φ(η̃))

}
+ r(ξ̃, η̃, ε),

where ‖r(ξ̃, η̃, ε)‖ = o(ε) uniformly in (ξ̃, η̃) ∈ (UΩ ⊕Os)× (UΩ ⊕Ou).
Let L: (Wµ⊕Ws)× (Wµ⊕Wu)→ RN be the linear map defined as L(ξ̃, η̃) =

ξ̃− η̃. We have L(ξ̃, η̃) = 0 if and only if ξ̃ = η̃ ∈Wµ and RL =Wµ⊕Ws⊕Wu,
so we can write RN = RL ⊕ Vµ. Next, let W⊥µ be a fixed subspace of (Wµ ⊕
Ws)× (Wµ ⊕Wu) transversal to NL = {(ξ̃, ξ̃) : ξ̃ ∈Wµ}. Then, there exists an
open convex set O1 ⊂ W⊥µ such that 0 ∈ O1 and for any (ξ̂, η̂) ∈ O1 and α ∈ Ω
the point (ξ̃, η̃) = (α+ ξ̂, α+ η̂) belongs to (UΩ ⊕Os)× (UΩ ⊕Ou). We define a
map Ĥ:O1 × Ω→ RN as

Ĥ(ξ̂, η̂, α, ε) := H̃(α+ ξ̂, α+ η̂, ε) .

Let Q:RN → RN be the projection that corresponds to the splitting RN =
RL⊕ Vµ that is such that NQ = Vµ and RQ = RL, and set r̂ = r̂(ξ̂, η̂, α, ε) =
ε−1r(α+ ξ̂, α+ η̂, ε) = o(1). We write Ĥ(ξ̂, η̂, α, ε) as

Ĥ(ξ̂, η̂, α, ε) = ξ̂ − η̂ + εĤ1(ξ̂, η̂, α, ε) + εĤ2(ξ̂, η̂, α, ε)

where

Ĥ1(ξ̂, η̂, α, ε) =Q
{
[Φ′(α+ ξ̂)]−1

∂x+0
∂ε
(0,Φ(α+ ξ̂))

− [Φ′(α+ η̂)]−1 ∂x
−
0

∂ε
(0,Φ(α+ η̂)) + r̂

}
,

Ĥ2(ξ̂, η̂, α, ε) = (I−Q)
{
[Φ′(α+ ξ̂)]−1

∂x+0
∂ε
(0,Φ(α+ ξ̂))

− [Φ′(α+ η̂)]−1 ∂x
−
0

∂ε
(0,Φ(α+ η̂)) + r̂

}
.

Note that Ĥ1(ξ̂, η̂, α, ε) ∈ RQ and Ĥ2(ξ̂, η̂, α, ε) ∈ NQ. Thus Ĥ(ξ̂, η̂, α, ε) = 0
if and only if ξ̂ − η̂ + εĤ1 = 0 and Ĥ2 = 0. Next we introduce the Melnikov
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function M : Ω→ NQ:

M(α) = (I−Q)Φ′(α)−1
[
∂x+0
∂ε
(0, x0(α))−

∂x−0
∂ε
(0, x0(α))

]
,

whose components with respect to a fixed orthonormal basis {e1, . . . , eµ} of Vµ
are:

Mj(α) = e∗jΦ
′(α)−1

[
∂x+0
∂ε
(0, x0(α))−

∂x−0
∂ε
(0, x0(α))

]
=
[
(Φ′(α)−1)∗ej

]∗[
∂x+0
∂ε
(0, x0(α))−

∂x−0
∂ε
(0, x0(α))

]
=ψj(α)∗

[
∂x+0
∂ε
(0, x0(α))−

∂x−0
∂ε
(0, x0(α))

]
where ψj(α) are defined by the equality. Note that for any v ∈ Tx0(α)W̃ sp we have
ψj(α)∗v = e∗jΦ

′(α)−1v = 0 because V ⊥µ =Wµ⊕Ws⊕Wu and Φ′(α)(Wµ⊕Ws) =
Tx0(α)W̃

s
p . Similarly ψj(α)

∗w = 0 for any w ∈ Tx0(α)W̃up . Thus the vectors ψj(α)
are exactly the initial conditions to assign to the adjoint of the variational system
vn+1 = f ′(xn(α))vn to obtain solutions that are bounded on Z. ThusM(α) is the
usual Melnikov function associated to the system xn+1 = f(xn, ε) (see [1], [4]).
We assume that

(H1) M(α) 6= 0 on ∂Ω,
(H2) deg(M,Ω, 0) 6= 0.

From the smoothness of the functions x+0 (ε, ξ), x
−
0 (ε, η), r(ξ, η, ε), x0(α) and

possibly changing O1, we see that

∂x+0
∂ε
(0, ξ̂ + x0(α))−

∂x−0
∂ε
(0, η̂ + x0(α)) + r̂(ξ̂, η̂, α, ε)

is bounded on O1 × Ω × [−ε0, ε0]. Then we plug Ĥ(ξ̂, η̂, α, ε) in the homotopy
Ĥ(ξ̂, η̂, α, ε, t), 0 ≤ t ≤ 1 given by

Ĥ(ξ̂, η̂, ε, α, t) = ξ̂ − η̂ + εtĤ1(ξ̂, η̂, ε, α) + kε(t)Ĥ2(tξ̂, tη̂, ε, α)

where kε(t) = εt + 1 − t for ε ≥ 0 and kε(t) = εt − 1 + t for ε < 0. Note that
|kε(t)| ≥ |ε| and then kε(t) 6= 0 for ε 6= 0.
We have the following

Lemma 4.2. Assume (H1) holds. Then, if the neighbourhood O1 is chosen
sufficiently small there is an ε0 > 0 such that Ĥ(ξ̂, η̂, α, ε, t) 6= 0 for any 0 ≤
t ≤ 1, 0 < |ε| < ε0 and (ξ̂, η̂, α) ∈ ∂(O1 × Ω).

Proof. We have already seen that Ĥ(ξ̂, η̂, α, ε, t) = 0 if and only if ξ̂ − η̂ +
εtĤ1(ξ̂, η̂, ε, α) = 0 and kε(t)Ĥ2(tξ̂, tη̂, ε, α) = 0. Now, if (ξ̂, η̂, α) ∈ ∂(O1 × Ω)
then either (ξ̂, η̂) ∈ ∂O1 or α ∈ ∂Ω.
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If (ξ̂, η̂) ∈ ∂O1, we have ξ̂ 6= η̂ and then ξ̂ − η̂ + εtĤ1(ξ̂, η̂, ε, α) 6= 0 for ε0
sufficiently small, because of the boundedness of

∂x−0
∂ε
(0, ξ̂ + x0(α))−

∂x+0
∂ε
(0, η̂ + x0(α)) + r̂(ξ̂, η̂, α, ε)

on O1 × Ω× [−ε0, ε0]. If α ∈ ∂Ω then M(α) 6= 0. Since |kε(t)| ≥ |ε|, we get

kε(t)Ĥ2(tξ̂, tη̂, ε, α) 6= 0

provided O1 and |ε| 6= 0 are sufficiently small. So again H(ξ̂, η̂, α, ε, t) 6= 0 and
the proof is finished. �

Lemma 4.2 gives the next result.

Theorem 4.3. Let O1 be as in Lemma 4.2. Assume (H1), (H2). Then it
follows that deg (Ĥ(ξ̂, η̂, α, ε), O1 × Ω, 0) 6= 0, for any ε 6= 0 sufficiently small.

Proof. Lemma 4.2 implies

deg (Ĥ(ξ̂, η̂, α, ε, 1), O1 × Ω, 0) = deg (Ĥ(ξ̂, η̂, α, ε, 0), O1 × Ω, 0).

Now

Ĥ(ξ̂, η̂, ε, α, 0) =
(

L(ξ̂, η̂)
sgn εM(α)

)
and L:W⊥µ → RL is invertible. Thus

deg (Ĥ(ξ̂, η̂, α, ε, 0), O1 × Ω, 0) = ±deg (M,Ω, 0) 6= 0. �

Possibly shrinking UΩ, Os and Ou and using similar arguments like in the
proof of Lemma 4.2 along with assumption (H1), we get H̃(ξ̃, η̃, ε) 6= 0 for any
ε 6= 0 sufficiently small and (ξ̃, η̃) ∈ (UΩ ⊕Os)× (UΩ ⊕Ou) \ {(α + ξ̂, α + η̂) |
α ∈ Ω, (ξ̂, η̂) ∈ O1}. Then, because of definition and the connectedness of UΩ,
we have

(4.5) #
(
W̃ sp(ε) ∩ U, W̃

u
p(ε) ∩ U

)
= deg (H(ξ, η, ε), (W̃ sp ∩ U)× (W̃up ∩ U), 0)

= ±deg(H̃(ξ̃, η̃, ε), (UΩ ⊕Os)× (UΩ ⊕Ou), 0)
= ±deg (Ĥ(ξ̂, η̂, α, ε), O1 × Ω, 0) 6= 0.

From (4.5) and Theorem 4.3 we finally obtain:

Theorem 4.4. Assume (i), (ii), (H1) and (H2). Then there exists ε0 > 0
such that for 0 < |ε| ≤ ε0, it is nonzero the local intersection number of the stable
and unstable manifolds of the hyperbolic fixed point of the map xn+1 = f(xn, ε)
which is located near the fixed point p of the map xn+1 = f(xn, 0).

Consequently, Theorem 1.1 together with the assumptions (i), (ii), (H1) and
(H2) imply chaos for f(x, ε) with ε 6= 0 small.
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Finally, when f and xn(α), n ∈ Z are all C3-smooth, we note that from the
implicit function theorem we usually get that the existence of a simple root α0
of M(α) (i.e. M(α0) = 0 and Mα(α0) is invertible), implies the solvability of
H(ξ, η, ε) = 0 for ε 6= 0 small. So we get a transversal homoclinic orbit of f(x, ε)
for ε 6= 0 small. Indeed, equating to zero the projection onto RQ of Ĥ(ξ̂, η̂, α, ε)
we obtain the equation

ξ̂ − η̂ + εĤ1(ξ̂, η̂, α, ε) = 0

which can be solved by means of the implicit function theorem and gives unique
C1-smooth functions ξ̂(α, ε), η̂(α, ε). Note that, because of uniqueness, we have
ξ̂(α, 0) = η̂(α, 0) = 0. Plugging these solutions in the projection onto NQ of
Ĥ(ξ̂, η̂, α, ε) we obtain the so called bifurcation function B: Ω× (−ε0, ε0)→ Rµ,
(α, ε) 7→ B(α, ε), whose components Bj(α, ε) are:

Bj(α, ε) =ψj(α)∗
[
∂x−0
∂ε
(0,Φ(α+ ξ̂(α, ε))

− ∂x+0
∂ε
(0,Φ(α+ η̂(α, ε)) + r(ξ̂(α, ε), η̂(α, ε), α, ε)

]
.

Now, it is not difficult to see that, for ε → 0, B(α, ε) → M(α), uniformly on
compact sets. We conclude this section noting that the condition thatM(α) has
a simple zero at some α0 is equivalent to the fact that the function

M̃(α) :=
(
ψj(α0)∗

[
∂x+0
∂ε
(0, x0(α))−

∂x−0
∂ε
(0, x0(α))

])
j=1,... ,µ

has α0 as a simple zero. In fact both M(α0) = 0 and M̃(α0) = 0 mean
that (∂x−0 /∂ε)(0,Φ(α0)) = (∂x

+
0 /∂ε)(0,Φ(α0)) and then the equality Mα(α0) =

M̃α(α0) easily follows from Φ(α) = x0(α).

5. Concluding remarks

Remark 5.1. The diffeomorphism f of Theorem 1.1 has positive topological
entropy. This follows from [3, Lemma 1.3].

Remark 5.2. Consider a C1-smooth diffeomorphism f :M→M possessing
two hyperbolic fixed points p1 and p2, p1 6= p2. If W sp1 and W

u
p2 , and W

s
p2 and

Wup1 , are topologically transversal, respectively, then we can prove a similar result
for f like in Theorem 1.1.

Remark 5.3. LetM be a smooth symplectic surface, i.e., dimM = 2, with
the symplectic area form ω. Let f :M → M be a smooth area-preserving dif-
feomorphism homotopic to identity and exactly symplectic, i.e. f∗(α) = α+ dS
for some smooth function S:M→ R and α is a differential one-form such that
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dα = ω. Time-one-maps of 1-periodic Hamiltonian systems are such diffeomor-
phisms (see [9]). We note that any exactly symplectic map is also symplectic. If
M is exactly symplectic, i.e. ω = dα, and simply connected then any symplectic
map is also exactly symplectic. Assume that f has two hyperbolic fixed points
p1, p2, p1 6= p2. Let us suppose that W sp1 ∩W

u
p2 6= ∅ and W

s
p2 ∩W

u
p1 6= ∅. If

W sp1 6= Wup2 and W
s
p2 6= Wup1 , and S(p1) = S(p2), then we can prove as in [9,

Theorem 2.1] thatW sp1 andW
u
p2 , andW

s
p2 andW

u
p1 , are topologically transversal,

respectively. Hence Remark 5.2 gives a chaotic behaviour of f .
This remark can be applied to the results of [2, Section 5, p. 703]. More

precisely, let us consider the equation

(5.1) ü+W (u, t) = 0,

where W :R× R→ R is C1-smooth and 1-periodic in t. Suppose that (5.1) has
two different hyperbolic periodic solutions u1 and u2. Let φ:R2 × R → R2 be
the flow of u̇ = v, v̇ = −W (u, t). Then f(x, y) = φ(x, y, 1) is exactly symplectic
by taking

ω = dx ∧ dy, α = −y dx, S(x, y) = −
∫ 1
0
L(φ(x, y, s)) ds,

where L is the Lagrangian of (5.1) given by L(φ) = φ22/2−G(φ1, t), φ = (φ1, φ2),
∂G/∂u =W . Clearly the periodic solutions u1, u2 induce hyperbolic fixed points
(u1(0), u̇1(0)) = w1 and (u2(0), u̇2(0)) = w2 of f . Then S(w1) = S(w2) is a part
of the condition (1) of [2, Definition 2.1]. Hence w1 and w2 are on the same
action level for f in the terminology of [9, Theorem 8.1]. S is naturally related
to the action functional over H11 = {u ∈ H1loc(R) : u(t + 1) = u(t) a.e. in R}
defined as u 7→

∫ 1
0 (u̇(s)

2/2−G(u(s), s)) ds on [2, p. 679].
Hence the assumptions of Section 5 of [2] imply the validity of Theorem 1.1,

which is stronger than the results of Section 5 of [2]. On the other hand, the
main results of [2] deal with equations like (5.1) under assumptions on u1 and
u2 weaker than in this paper, namely u1 and u2 are not hyperbolic but they are
the so-called consecutive minimizers, see [2, Definition 2.1]. Using variational
methods, chaotic bumping solutions are shown to exist in [2]. Finally we note
that for a C1-smooth 1-periodic Hamiltonian system

(5.2) ẋ = −∂H
∂y
(x, y, t), ẏ =

∂H

∂x
(x, y, t),

the time-one map is exactly symplectic with

ω = dx ∧ dy, α = x dy,

S(x, y) =
∫ 1
0
(ψ1(x, y, t)ψ̇2(x, y, t)−H(ψ(x, y, t))) dt,
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where ψ = (ψ1, ψ2) is the flow of (5.2). The action functional for (5.2) over H11
is given by

(x, y) 7→
∫ 1
0
x(t)ẏ(t)−H(x(t), y(t), t) dt =

∫ 1
0

1
2
〈Ju̇(t), u(t)〉 −H(u(t), t) dt,

where J =
(
0 1
−1 0

)
, u = (x, y) and 〈 · , · 〉 is the usual inner product on R2.

Remark 5.4. Consider the second order equation ẍ = g(x) + εq(t), where
x ∈ R, g, q are C2-smooth and q is 1-periodic. Suppose that the equation ẋ = y,
ẏ = g(x) has a homoclinic solution (p(t), ṗ(t)) to a hyperbolic fixed point. Then
the Melnikov function has the form M(α) =

∫∞
−∞ q(t + α)ṗ(t) dt, see [1]. M(α)

is 1-periodic and
∫ 1
0 M(α) dα = 0. Hence if M 6= 0 then it changes the sign on

[0, 1] and Theorem 4.4 can be applied.

Remark 5.5. We claim that periodic points of f are dense in the set Λω.
Let x0 ∈ Λω. Then there is an E ∈ E such that P(Jω(E)) = x0 where Jω(E) =
{xj}j∈Z. Let E = {ej}j∈Z. If E is periodic then x0 is a periodic point of f . Let E
be non-periodic. There are unique E′ ∈ E∼ and n0 ∈ Z such that E = σn0(E′).
Now E′ is also non-periodic. We have Jω(E′) = f−2n0ω(Jω(E)). The point
x′0 = P(Jω(E′)) can be approximated by the proof of Theorem 1.1 with periodic
points of f from Λω. Of course the same hold for the point x0 = f2n0ω(x′0).
This gives the claim. We also get that the only isolated points of the set Λω
could be periodic points of f and f depends sensitively on the set Λ′ω of all
non-isolated points of Λω, that is there is a constant d > 0 such that in any
neighbourhood of x0 ∈ Λ′ω there are x′0 ∈ Λω and n′0 ∈ N such that the distance
between fn

′
0(x0) and fn

′
0(x′0) is greater than d. We do not know whether the

periodic points of f in Λω are non-isolated or not. On the other-hand, let either
Υω = Λω or Υω = Λ′ω. We extend the map πω on the closure Υω of Υω. So Υω
is compact but we do not know whether the unique continuous extension of πω
is one-to-one or not. The extension is made as follows: For any x0 ∈ Υω \Υω, we
take a sequence {xj}j∈N ⊂ Υω such that xj → x0. Hence f2ωk(xj)→ f2ωk(x0).
Consequently, for any N ∈ N, the orbits {f2ωk(xj)}k=Nk=−N and {f2ωk(x0)}k=Nk=−N
have the same oscillating properties between set K and point p for j large. This
implies the existence of the limit limj→∞ πω(xj) := πω(x0), which is independent
of {xj}j∈N. The continuity of πω follows as in the proof of Theorem 1.1. Clearly
the extension πω is onto E for the case Υω = Λω. If Υω = Λ′ω then πω(Υω)
is dense in E and πω(Υω) is compact in E . This implies πω(Υω) = E also for
this case. The property πω ◦ f2ω = σ ◦ πω follows from the limit procedure
xj → x0. Of course, Υω is invariant for f2ω. For the case Υω = Λω, we again
have infinitely many periodic points of f which are dense in Υω. For the case
Υω = Λ′ω, we have that any point x0 ∈ Λ′ω is an accumulating point of periodic
points of f with periods tending to infinity. Iterations of those periodic points
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oscillate differently between the set K and the point p. Consequently, the map
f is sensitive on Λ′ω in the following sense: there is a constant d > 0 such that in
any neighbourhood of x0 ∈ Λ′ω there are x′0 and n′0 ∈ N such that the distance
between fn

′
0(x0) and fn

′
0(x′0) is greater than d.
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