
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 20, 2002, 25–42

CONFIGURATION SPACES ON PUNCTURED MANIFOLDS
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Dedicated to our colleague and good friend Andrzej Granas

Abstract. The object here is to study the following question in the ho-

motopy theory of configuration spaces of a general manifold M : When is
the fibration Fk+1(M) → Fr(M), r < k + 1, fiber homotopically trivial?

The answer to this question for the special cases when M is a sphere or

euclidean space is given in [4]. The key to the solution of the problem for
compact manifolds M is the study of an associated question for the punc-

tured manifold M−q, where q is a point of M . The fact that M−q admits

a nonzero vector field plays a crucial role. Also required are investigations
into the Lie algebra π∗(Fk+1(M)), with special attention to the punctured

case π∗(Fk(M − q)). This includes the so-called Yang–Baxter equations in
homotopy, taking into account the homotopy group elements of M itself as

well as the classical braid elements.

1. Introduction

Let M be a smooth simply connected manifold of dimension n+1 and denote
by Fk+1(M) the configuration space of (k + 1)-tuples in M . Recall that

Fk+1(M) = {(x1, . . . , xk+1) | xi 6= xj} ⊂M×(k+1).

Configuration spaces play a crucial role in Analysis, primarily in problems of
“(k + 1)-body type” ([3], [6], [7]). In the Fadell–Husseini monograph ([4]),
we studied the homotopy and homology theory of the special cases Fk+1(M)
where M is a (punctured) euclidean space or a sphere. Our recent studies of
configuration spaces of general manifolds indicate that knowledge of Fk+1(M)

2000 Mathematics Subject Classification. 20F36, 55R10, 58B05, 58E05, 70G10.

Key words and phrases. Configuration spaces, manifolds, fiberwise homotopy trivial.

c©2002 Juliusz Schauder Center for Nonlinear Studies

25



26 E. Fadell — S. Husseini

relies heavily upon the punctured configuration space Fk+1(M − q1) where q1 is
a point in M . For example, suppose that Qr = {q1, . . . , qr}, r ≥ 1, is a set of r
distinct points in M . Then, because M − Q1 admits a non-zero vector field it
follows readily that

π∗(Fk(M −Q1)) ∼=
k⊕

r=1

π∗(Mr)

where Mr stands for M −Qr. Then the fibration

Fk(M1)→ Fk+1(M)→M

illustrates the dependence of Fk+1(M) on Fk(M1).
In this note we study, after some preliminaries, the graded Lie algebra

π∗(Fk+1(M)) with special attention to π∗(Fk(M1)). This includes the so-called
Yang–Baxter equations in homotopy, taking into account the homotopy group
elements of M itself as well as the classical braid elements. As an application,
we consider the question: When is the fibration

Fk−r(Mr+1)→ Fk(M1)→ Fr(M1), r < k,

fiber homotopically trivial? We then employ the results to answer the same
question for the fibration

Fk−r+1(M1)→ Fk+1(M)→ Fr(M), r < k + 1.

2. Preliminaries

Our general assumption throughout (unless otherwise indicated) will be that
the manifold M is smooth, simply connected (and connected) and of dimension
n+ 1 ≥ 3. However, most of the results will only require topological manifolds,
but assuming smoothness simplifies the exposition. The case of dimension 2,
i.e. surfaces, may also be studied by the methods in this note and in the Fadell–
Husseini monograph ([4]), but also requires special attention because of the lack
of simple connectivity and will appear in another work ([5]).

Let D denote a closed (n+ 1)-ball in M and denote by V its interior. Iden-
tify V with euclidean space Rn+1. Keeping the notation from [4], let e denote
the unit vector (1, 0, . . . , 0) ∈ Rn+1 = V , put

q1 = (0, . . . , 0), qi = q1 + 4(i− 1)e, for 1 ≤ i ≤ k + 1,

and let
Qi = {q1, . . . , qi}, i ≥ 1, Q0 = ∅, for 1 ≤ i ≤ k.

For 1 ≤ s 6= r ≤ k + 1, define α′rs:S
n → Fk+1(M) to be the map

ξ ∈ Sn 7→ (q1, . . . , qr−1, qs + ξ, qr, . . . , qk−1, qk),
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denote by Srs the image of α′rs, and by αrs ∈ πn(Fk+1(M) its homotopy class.
Note here that Srs ⊂ Fk+1(M). Define

Fk+1−r,r(M) = {(x1, . . . , xk+1) | xi = qi, for all i ≤ r}.

which we may identify with Fk+1−r(M − Qr). Furthermore, note that Srs ⊂
Fk+1−t(Mt), t ≤ r − 1, where Mt = M − Qt. Consider next the fundamental
fiber sequence diagram

Fk+1(M) :

Fk+1,0 ←− . . . ←− Fk+1−r,r ←− Fk−r,r+1 ←− . . .y y y
M0 . . . Mr Mr+1 . . .

with 0 ≤ r < k, where the vertical maps pr: Fk+1−r,r(M) → Mr, r ≥ 1 are the
projections such that (q1, . . . , qr, xr+1, . . . , xk+1) 7→ xr+1. The vertical maps
are fibrations. Those after the first stage admit sections using the fact that open
manifolds admit non-zero vector fields. The last term in the sequence is the
single space Mk = M −Qk.

3. The spaces Mr

We will need to identify the homotopy type of the the punctured space
Mr+1 = M − Qr+1. When r = 0 it clear that M1 has the homotopy type
of M − V . For r + 1 ≥ 2 we have the following proposition.

Proposition 3.1. Let M be a manifold of dimension n+1 ≥ 2, and Q ⊂M
a discrete subset of r + 1 elements such that Q ⊂ V ⊂ D ⊂ M . Then there is
a homotopy equivalence

(M − V ) ∨ (S1 ∨ . . . ∨ Sr)→ (M −Q),

where S1, . . . , Sr are n-dimensional spheres.

Proof. We give only a sketch of the proof. We may assume that one of the
points q ∈ Q is at the center of the ball D and the remaining r points are in
the annular region between the ball D′ of radius 1/2 and the boundary ∂D (see
Figure 1). Then if Q′ = Q− q put

Xr = D − intD′ −Q′.

It is easy to see that a deformation of the region A in Figure 1 induces
a deformation retraction of Xr onto the subspace ∂D union the boundaries of the
balls Bj in Figure 1. Furthermore, since the latter deformation is fixed on ∂D, it
extends to a deformation of (M−Q) onto the subspace (M−V )∪∂B1∪. . .∪∂Br.�
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Figure 1. Deformation of Xr

Corollary 3.1. Assume that M is simply connected and n > 1. Then the
space Fk+1−r,r(M) is simply connected, where 0 ≤ r ≤ k.

Proof. First one proves that each Mr is simply connected for all r ≥ 1: as
n+1 ≥ 3, this follows easily for dimensional reasons. Next one proves the desired
assertion, using the long exact sequences of the fibrations of diagram Fk(M). �

In terms of the spheres Srs associated with the braid elements αrs, Proposi-
tion 3.1 takes the following form.

Colloraly 3.2. For each r > 1 there is a homotopy equivalence

Mr 'M1 ∨ (Sr+1,2) ∨ . . . ∨ (Sr+1,r).

Using the homotopy long exact sequence of a fibration, and by virtue of
the existence of sections, we have the following decomposition of π∗(Fk(M1)) in
terms of the π∗(Mr).

Colloraly 3.3. Assume that dimM = n + 1 > 2. Then there is an iso-
morphism

π∗(Fk(M1)) ∼=
k⊕

r=1

π∗(Mr).

One would like to describe πn(Mr) in terms of πn(Sr∗) and πn(M1), where
Sr∗ = Sr2 ∨ . . . ∨ Sn

rr−1. In order to achieve that we need describe the relative
cellular structure of (M × Sr∗,M ∨ Sr∗).

Theorem 3.1. Assume that dimM = n+ 1 > 2. Then there is an isomor-
phism

πn(Fk(M1)) ∼= π(M1)⊕
k⊕

r=2

(πn(M1))⊕ (πn(Sr+1∗)),

where Sr+1∗ stands for Sr+1,2 ∨ . . . ∨ Sr+1,r.
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Proof. Observe that because M1 is simply connected, it follows that M1 '
K, where K is a CW complex of which the 2-skeleton K(2) is a bouquet of two
dimensional spheres. Hence

M1 × Sr∗ ' (K ∨ Sr∗) ∪
⋃
i

en+2
i ∪ . . .

where en+2
i ranges over the (n+2)-dimensional cells of K(2)×Sr∗. Consequently,

πi(M1 × Sr∗,M1 ∨ Sr∗) = 0,

for 1 ≤ i ≤ (n+1) and therefore πn(M1∨Sr∗)→ πn(M1×Sr∗) is an isomorphism.
The latter clearly implies the theorem. �

Note the following distribution of the braid elements αrs in the above the-
orem. α21 is in the first term πn(M1). However, beyond that, in the general
term (πn(M1) ⊕ (πn(Sr+1∗)), we see that αr+1,1 is in πn(M1), while αr+1,s ∈
(πn(Sr+1∗)), 2 ≤ s ≤ r. We now describe how homotopy elements δ ∈ πm(M1)
contribute to πn(Fk(M1)). Let δ′:Sm →M1 denote a map representing δ.

Definition 3.1. Denote by δr, the homotopy class in πm(Fk(M1)) of the
map

ξ 7→ (q1, . . . , qr−1, δ
′(ξ), qr+1, . . . , qk) ∈ (Fk(M1))

where 2 ≤ r ≤ k + 1.

Thus one may think of δr as the element δ ∈ πm(Fk(M1)) inserted at the
r-th level. In a similar fashion, an element δ ∈ πm(M) determines elements δr,
1 ≤ r ≤ k + 1, in πm(Fk+1(M)).

Theorem 1.2 implies the following theorem.

Theorem 3.2. The elements

{αrs | 1 ≤ s < r ≤ k + 1} ∪ {δr | 2 ≤ r ≤ k + 1, δ ∈ πn(M1)}

generate the group πn(Fk(M1)).

4. Invariance under permutations

The symmetric group Σk+1 acts freely on Fk+1(M) by permuting the coor-
dinate indices (1, . . . , k + 1). This action induces an action on the homotopy
groups π∗(Fk+1(M)).

Proposition 4.1. The braid elements αrs satisfy the following relations
relative to the action of Σk+1. If 1 ≤ s 6= r ≤ k + 1, then

αsr = (−1)n+1αrs and πn(σ)(αrs) = ασrσs.
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Proof. These relations are verified in [4] for M = Rn+1. However, the
inclusion map Rn+1 → V ⊂ M induces a homomorphism which carries these
relations into πn(Fk+1(M)). �

Adapting the above relations to the punctured manifold M1 will require
certain modifications because a typical point of Fk(M1) has the form (q1, x2, . . . ,

xk+1) and the permutation group is restricted to Σk based on the indices (2, . . . ,
k + 1). Σk+1 is not allowed to act on the elements αr1, . . . , αk+1,1. However,
each αr1 may be considered as a δ in πn(Fk(M1)).

Definition 4.1. Set δr1 = αr1, for 2 ≤ r ≤ k + 1, in πn(Fk(M1)).

We now consider relations satisfied by elements of πn(Fk(M1)) under the
action of Σk. The first part of the following proposition is an immediate conse-
quence of the above proposition. While the latter part is a simple exercise.

Proposition 4.2. The generating elements of πn(Fk(M1)) satisfy the fol-
lowing under the action of Σk.

(i) If 2 ≤ s 6= r ≤ k + 1, then αsr = (−1)n+1αrs and πn(σ)(αrs) = ασrσs.

(ii) If δ ∈ πn(M1) with corresponding δr ∈ πn(Fk(M1)), 2 ≤ r ≤ k+1, then
πn(σ)(δr) = δσr. In particular, πn(σ)(δr1) = δσr,1.

5. The Yang–Baxter relations

The following theorem is useful when computing Whitehead products. We
state it for the general case π∗(Fk+1(M)).

Theorem 5.1. For all σ ∈ Σk+1, the following (Yang–Baxter) relations hold
in π∗(Fk+1(M)):

(i) [ασ2σ1, ασ3σ1 + ασ3σ2] = 0, for k + 1 ≥ 3,

and

(ii) [ασ2σ1, ασ4σ3] = 0, for k + 1 ≥ 4,

in π∗(Fk(M∞)).

Proof. The proof of Proposition 4.1 applies here. �

In order to establish the Yang–Baxter relations for the punctured mani-
fold M1, we observe that the following relations are valid in π∗(Fk+1(Rn+1)).

(i) [α21, α31 + α32] = 0,
(ii) [α31, α21 + (−1)n+1α32] = 0,
(iii) [α21, α43] = 0,
(iv) [α32, α42 + α43] = 0,
(v) [α42, α32 + (−1)n+1α43] = 0,
(vi) [α32, α54] = 0.
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These relations remain valid in π∗(Fk(Rn+1 − 0)) since since the latter injects
into π∗(Fk+1(Rn+1)). The inclusion map (Rn+1)− 0→ (V −Q1) ⊂M1 induces
a homomorphism which carries these relations into π∗(Fk(M1). Applying Σk

based on the indices {2, . . . , k + 1} and recalling that δr1 = αr1, we have the
following theorem.

Theorem 5.2. The Yang–Baxter relations in π∗(Fk(M1)) for the punctured
manifold M1 are given below, where σ belongs to the permutation group Σk based
on the indices {2, . . . , k + 1}.

(i) [δσ2,1, δσ3,1 + ασ3,σ2] = 0,
(ii) [δσ3,1, δσ2,1 + (−1)n+1ασ3,σ2] = 0,
(iii) [δσ2,1, ασ4,σ3] = 0,
(iv) [ασ3,σ2, ασ4,σ2 + ασ4,σ3] = 0,
(v) [ασ4,σ2, ασ3,σ2 + (−1)n+1ασ4,σ3] = 0,
(vi) [ασ3,σ2, ασ5,σ4] = 0.

Before stating Whitehead product relations involving the elements δr, we
recall one the basic tools for recognizing when Whitehead products are zero in
π∗(Fk+1(M)).

Let α ∈ πm(Fk+1(M)) and let α′: (Sm, ∗) → (Fk+1(M, ∗) denote a based
map representing α. If α′ = (α′1, . . . , α

′
k+1) has the property that α′j is constant

except for i 6= j, we say that α′ is concentrated in the i-th coordinate.

Proposition 5.1. Let α ∈ πm(Fk+1(M)) and β ∈ πn(Fk+1(M)) with rep-
resentatives α′ and β′ concentrated in the i-th and j-th coordinates, i 6= j. Then,
[α, β] = 0.

An immediate application of this proposition yields the following relation.

Proposition 5.2. Let δ ∈ πm(M1). Then,

[δσ2, ασ4σ3] = 0 for all σ ∈ Σk.

To prove our next relation we need some preparation and we will not distin-
guish here between the notation for a map and its homotopy class. Proceeding
as in [4, Chapter III, Section 5], denote by pδ:E(δ) → Sm the pull-back of the
tangent bundle T (M1) of M1 by a map δ:Sm →M1.

The tangent bundle T (M1) admits a nonzero section, v:M1 → T (M1) and
hence it is equivalent to ξ ⊕ o1, where the trivial bundle corresponds to the
nonzero tangent vector field v. The pull-back bundle has an induced splitting and
the charateristic map for the bundle has the form η:Sm−1 → O(n). Let SE(δ)
and ST (M1) denote the associated sphere bundles. Then the homotopy type of
SE(δ) is given by (Sm

v ∨Sn)∪µ (Dn+m), where µ is given by [im, in]+J(η), where
J is the “J-homomorphism”. Here Sm

v is the image of the cross section in SE(δ)
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and im and in are generators in πm(Sm
v ) and πn(Sn), respectively (see [11], [10]

and [13]). We will also make use of the exponential map: expW →M1, where W
is a suitable neigbourhood of the 0-section of the tangent bundle T (M1).

Theorem 5.3. Let δ ∈ πm(M1)). For 2 ≤ r < k, there is a map φ:SE(δ)→
Fk(M1), k ≥ 3, which implies the relation

[δr+1 + δr+2, αr+2,r+1] + ζ = 0

in π∗Fk(M1), where ζ is the image of J(η) induced by φ. Furthermore, when the
fibration p: Fk(M1) → Fr(M1) is fiber homotopically trivial, ζ = 0. In this case
the relation becomes

[δσ(r+1) + δσ(r+2), ασ(r+2)σ(r+1)] = 0,

σ ∈ Σk−r+1, based on r + 1, . . . , k + 1.

Proof. Denote a point of SE(δ) by (ξ1, ξ2) with ξ1 ∈ Sm, ξ2 ∈ STδ(ξ1)(M).
Define a map ψ:SE(δ)→ Fr+2(M1) by

ψ((ξ1, ξ2)) = (q2, . . . , qr, δ(ξ1), expδ(ξ1)(ξ2)).

where we are assuming, without loss of generality, that (ξ1, ξ2) is in W . A simple
calculation shows that

π∗(ψ)([im, in]) = [δr+1 + δr+2, αr+2,r+1]

and by definition ζ = π∗(ψ)(J(η)). Hence,

[δr+1 + δr+2, αr+2,r+1] + ζ = 0.

Now, to obtain the map φ, let s denote a cross section of the bundle Fk(M1)→
Fr+1(M1) induced by the vector field v. The desired map φ is given by the compo-
sition φ = s◦ψ. Next, let δ:Sm → Fr(M1) be given by δ(ξ1) = (q2, . . . , qr, δ(ξ1)).
Furthermore, let p∗: F∗k(M1)→ Sm denote the pull-back of p: Fk(M1)→ Fr(M1).
Then we have the diagram

SE(δ)
φ∗−→ F∗k(M1)

δ∗−→ Fk(M1)y y y
Sm −→

id
Sm −→

δ
Fr(M1)

Note that φ∗((ξ1, ξ2)) = ((ξ1, φ((ξ1, ξ2)) and φ = δ∗◦φ∗. Note also that there
is a characteristic map ξ∗ from Sm−1 into the space of homotopy equivalences
of the fiber Fk−r(Mr+1). Therefore, if Fk(M1)→ Fr(M1) is fiber homotopically
trival we see that

ζ = π(φ)(J(η)) = π(δ∗ ◦ φ∗)(J(η)) = π(δ∗)(J(ξ∗)) = 0.

This suffices to prove the second part of the theorem. �
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When the manifold M itself admits a nonzero vector field, an analogue of
Theorem 5.3 obtains with M replacing M1 and other appropriate notational
changes. In particular, SE(δ) → Sm is the pull-back of the sphere tangent
bundle T (M) of M by a map δ:Sm → M and η is the characteristic map
of SE(δ)→ Sm.

Theorem 5.4. Suppose M admits a nonzero vector field and δ ∈ πm(M)).
For 2 ≤ r < k+1, there is a map φ:SE(δ)→ Fk+1(M), k+1 ≥ 3, which implies
the relation

[δr + δr+1, αr+1,r] + ζ = 0

in π∗(Fk+1(M)), where ζ is the image of J(η) induced by φ. Furthermore, when
the fibration p: Fk+1(M) → Fr(M) is fiber homotopically trivial, ζ = 0. In this
case the relation becomes

[δσr + δσ(r+1), ασ(r+1),σr] = 0, σ ∈ Σk−r.

6. Wedge representations

In the consideration of our main application in the next section, we will need
to describe a space over (E/G) ∨ Y as a suitable bouquet, where p:E → B is
a principal G-bundle and G is a topological group. We will restrict our attention
to the special case when E has the form E = G ∗ G ∗ . . . ∗ G ∗ . . . , the Milnor
join ([12]) of n copies of G, where n may be infinite and B = E/G. A more
general result will be found in [5]. We will work in the category of spaces whose
topology is compactly generated.

Observe that p× id:E × Y → B× Y is again a principal G-bundle, where Y
is a pointed space. Denote by p:Ew → B ∨ Y the principal bundle induced by
the inclusion map B ∨ Y → B × Y . Our objective is the homotopy type of Ew.

Fix g0
2 in G and consider the subset of G ∗G in E, given by

{(1− t)g1 + tg0
2 | g1 ∈ G, 0 ≤ t ≤ 1}

which represents a cone cG = G × I/G × 1 This cone has the property that
its projection is a suspension S1 ∧ G ⊂ B. Choose as base point b1 in B, the
projection of the base of the cone in E.

Theorem 6.1. There is a homotopy equivalence φ:Ew → E ∨ (G ∧ Y ) ∨ Y .

Proof. Let y0 denote a base point of Y and let p((cG,G)) = (S1 ∧ G, b1).
Observe that

Ew = (E × {y0}) ∪ (G× Y ), G = (E × {y0}) ∩ (G× Y ).

Put
K = (E × {y0}), L = (cG× {y0}) ∪ (G× Y ).
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Observe that K ∪ L = Ew and K ∩ L = cG× {y0}.
As cG is contractible, it follows readily that the natural projections

(K ∪ L)→ (K ∪ L)/cG× y0,
K → K/cG× y0,
L→ L/cG× y0,

are homotopy equivalences. Note that (K∪L)/cG×y0 = (K/cG×y0)∨(L/cG×
y0). Also note that

L/cG× y0 = (G× Y )/G× y0 ' (G ∧ Y ) ∨ Y.

Thus Ew = (E × {y0}) ∪ (G× Y ) is homotopy equivalent to E ∨ (G ∧ Y ) ∨ Y .�

The induced map pw ◦ φ−1: (G ∧ Y ) → B ∨ Y , where φ−1 is a homotopy
inverse for φ, brings into play the Whitehead product. Let α ∈ πm−1(G). Then
the suspension of α may be regarded as a map into B since S1 ∧ G ⊂ B. We
refer to it as the suspension of α in B

Corollary 6.1. Let s1(α) ∈ πm(B) be the suspension (in B) of α ∈
πm−1(G). Then, π∗(pw) is injective and

πn+m−1(p ◦ φ−1)(α ∧ β) = [s1(α), β] ∈ πn+m−1(B ∨ Y )),

where β ∈ πn(Y ).

Proof. First observe that the fiber G remains contractible in Ew which
implies that π∗(pw) is injective. Next, consider the composite map

ψ: (Dm, Sm−1)× Sn −→ (cG,G)× Sm ⊂−→ (E,Ew × Sn) −→ (E,Ew × Y )

induced by α, β and the natural imbeddings. Observe that it takes the subspaces
(Dm × {e0} and (Sm−1 × Sn) to Ew. Note that

Dm × Sn = ((Sm−1 × Sn) ∪Dm × {e0} ∪ν D
n+m = L ∪ν D

n+m,

where the attaching map

ν: (Dm × ∂Dn+m) ∪ (∂Dm ×Dn+m)→ (Dm × {e0}) ∪ (Sm−1 × Sn)

is the identity on Dm and collapses ∂Dm+n to {e0}. Thus we see that the
obstruction to deforming ψ into Ew is exactly the homotopy class of ν. Therefore
p takes ν to the obstruction of deforming p(Dm, Sm−1) × Y onto B ∨ Y . But
the latter is the Whitehead product [s1(α), β]. �
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7. When is Fk(M1) → Fr(M1) trivial?

In [4] we determined when the projection

projkr: Fk(M1)→ Fr(M1)

is fiber homotopically trivial (abbreviated f.h.t.) in the case when M = Rn+1 or
Sn+1 . Below, we consider the more general case. In our first result we assume
that M is any 1-connected (as usual), smooth manifold (not necessarily closed)
of dimension n+ 1.

Theorem 7.1. A necessary condition that the fibration

projkr: Fk(M1)→ Fr(M1), (x1, . . . , xk) 7→ (x1, . . . , xr), r ≥ 2,

is fiber homotropically trivial is that n = 3 or 7, and r = 2.

Proof. Assume that projkr: Fk(M1)→ Fr(M1) is f.h.t. We first show that
n = 3 or 7.

Let {αst | 2 ≤ t < s ≤ k+1}∪{δs1 | 2 ≤ s ≤ k+1}∪{δs | 2 ≤ k+1} denote the
generators of π∗(Fk(M1)). Regard the subset {αst | 2 ≤ t < s ≤ r + 1} ∪ {δs1 |
2 ≤ s ≤ r + 1} ∪ {δs | 2 ≤ s ≤ r + 1} as the generators of π∗(Fr(M1)). In
both cases, the set involving the elements δsj may be incorporated into the set
containing the elements δs.

Let α′r+1,2:S
n → Fr(M1) be the representative of αr+1,2, and denote its

image by Sr+1,2. Denote the restriction of projk,r: Fk(M1) → Fr(M1) to Sr+1,2

by proj∗: F∗k(M1)→ Sr+1,2. It is a fibration with Fk−r(Mr+1) as fiber. Suppose
that

Sr+1,2 × Fk−r(Mr+1)
φ−→ F∗k(M1)

p

y yprojk,r

Sr+1,2 −→
id

Sr+1,2

is a homotopy equivalence over Sr+1,2. Note that φ can be adjusted, if nec-
essary, so that φ|Fk−r(Mr+1): Fk−r(Mr+1) → Fk−r(Mr+1) is the identity. As
the configuration spaces here are all simply connected, we have the direct sum
decomposition

(1) πn(F∗k(M1)) ∼= πn((Sr+1,2)⊕
( k+1⊕

s=r+2

πn(M1 ∨
( s−1∨

t=2

Sst

))
.

The morphism πn(φ) takes αr+1,2 to an element of the form

αr+1,2 +
k+1∑

s=r+1

(βs∗ + δs),
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where each βs∗ ∈ πn(Ss2∨. . .∨Sss−1) and δs ∈ πn(M1). Since [αk+1,2, αr+1,2] = 0
in π2n−1(Sr+1,2×Fk−r(Mr+1), and because π∗(φ) preserves Whitehead products,
it follows that

φ∗[αk+1,2, αr+1,2] = [αk+1,2, αr+1,2](2)

+
k+1∑

s=r+2

[αk+1,2, βs∗] +
k+1∑

s=r+2

[αk+1,2, δs] = 0.

The Yang–Baxter relations of Theorem 5.2 and the second relation of Theo-
rem 5.3 imply that the elements [αk+1,2, αr+1,2], [αk+2,2, βs∗] and [αk+1,2, δs] are
in π2n−1(M1 ∨ (Sk+1,2 ∨ . . . ∨ Sk+1,k)) . Applying the obvious retraction ρ from
Mk = M1 ∨ (Sk+1,2 ∨ . . .∨Sk+1,k) to (Sk+1,2 ∨ . . .∨Sk+1,k), let βk+1 denote the
image of

k+1∑
s=r+2

[αk+1,2, βs∗] +
k+1∑

s=r+2

[αk+1,2, δs]

under π2n−1(ρ). βk+1 has the form

βk+1 =
k∑

t=2

ck+1,tαk+1,t

with ck+1,t ∈ Z. Therefore (2) becomes

(3) [αk+1,2, αr+1,2] + ck+1,2[αk+1,2, αk+1,2] + . . .+ ck+1,k[αk+1,2, αk+1,k] = 0.

Now, employ the Yang–Baxter relation

[αk+1,2, αr+1,2 + (−1)n+1αk+1,3] = 0

and replace [αk+1,2, αr+1,2] by its value in terms of the Whitehead product
[αk+1,2, αk+1,3] to obtain the following version of (3)

(4) ck+1,2[αk+1,2, αk+1,2] + (ck+1,3 − (−1)n+1)[αk+1,2, αk+1,3]

+
r+1∑
t=4

ck+1,t[αk+1,2, αk+1,t] = 0.

Note that the preceding formula (4) is valid in the Lie subalgebra π∗((Sk+1,2∨
. . . ∨ Sk+1,k)).

Next, recall that Hilton’s theorem ([9]) gives, for each s such that (r + 2) ≤
s ≤ k + 1, the direct sum decomposition

π2n−1(Sk+1,2 ∨ . . . ∨ Sk+1,k) ∼=
( k⊕

i=2

π2n−1(Sk+1,i)
)
⊕

( ⊕
w

π2n−1(Sw)
)
,

where w ranges over all Whitehead products of weight 2 on the set of symbols
{αk+1,s | 2 ≤ s < k + 1} ([13]). Observe that the various Whitehead products
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in (4) belong to different summands in the Hilton formula. Thus we obtain the
equations

(5)


(i) ck+1,2[αk+1,2, αk+1,2] = 0,

(ii) (ck+1,3 − (−1)n+1)[αk+1,2, αk+1,3] = 0,

(iii) ck+1,t[αk+1,2, αk+1,t] = 0,

where t > 3 in (iii) above. Now, note that w = [αk+1,2, αk+1,3] ∈ π2n−1(Sw) is
a basic product. Therefore, it defines a summand in the Hilton Theorem. Also
note that it is of infinite order. This clearly implies that ck+1,3 = (−1)n+1.

Next, starting with the fact [αk+1,3, αr+1,2] = 0 ∈ π2n−1(Sn
r+1,2×Fk−r,r(M1)),

apply the same argument as that given above using the Yang–Baxter relation
[αk+1,3, αr+1,2 + αk+1,2] = 0 to obtain (1 + ck+1,2)[αk+1,3, αk+1,2] = 0. The
Hilton Theorem again applies and ck+1,2 = −1. Hence, (i) of (5) implies that
[αk+1,2, αk+1,2] = 0 and for a generator ιn of Sn [ιn, ιn] = [αr+2,2, αr+2,2]. There-
fore, [ιn, ιn] = 0 and Sn is an H-space. An appication of the celebrated theorem
of J. F. Adams ([1], [2]) shows that n = 3 or n = 7.

We next prove that r = 2, assuming now that n = 3 or n = 7. In particular,
n + 1 is even. Suppose to the contrary that r > 2 and consider equations (5).
The basic product w = [αr+2,2, αr+2,t], t > 3, generates the infinite cyclic group
π2n−1(Sw). This implies that its coefficient cr+1,t is zero and, therefore,

αr+1,2 + βk+1 = αr+1,3 − αk+1,2 + αk+1,3.

Since r > 2, we have k + 1 ≥ 5, so that we have available the elements αk+1,t,
t = 2, 3, 4. Observe that, since [αr+1,2, αk+1,4] = 0, we have

[αr+1,2 − αk+1,2 + αk+1,3, αk+1,4] = 0.

Then,
(−1)[αk+1,2, αk+1,4] + [αk+1,3, αk+1,4] = 0.

Finally, since the two summands above represent distinct basic elements of
weight 2, each must be zero, which is a contradiction and r = 2. �

Our next necessary condition involves the homomotopy groups of M1.

Theorem 7.2. A necessary condition that the fibration

pk,r: Fk(M1)→ F2(M1),

is fiber homotropically trivial is equivalent to that the homotopy groups πq(M1) =
0 for q < n.

Proof. If we deny the conclusion, let m denote the minimum value of m
for which πm(M1) 6= 0, 2 ≤ m < n. Furthermore, let π = πm(M1) Using
the classical method for killing homotopy groups by adding cells (see e.g. [8]),
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there is a K(π,m) space X and an inclusion map j:M1 → X which induces an
isomorphism πm(j):πm(M1)→ πm(X).

Suppose that δ 6= 0 ∈ πm(M1). Denote by δt ∈ πm(M1) the insertion of δ in
the t-th coordinates of Fk(M1). Employing Proposition 5.3, since pk,r: Fk(M1)→
F2(M1) is f.h.t., we have at our disposal the relation [δ2 + δ3, α32] = 0. Applying
the permutation (43), we obtain [δ2 + δ4, α42] = 0. Again using f.h.t., [δ2, α42] =
0, which in turn implies that [δ4, α42] = 0. We complete the proof by showing
that [δ4, α42] 6= 0, thereby arriving at a contradiction.

Since M3 has the form M3 = M1∨S42∨S43, there is a map f which takes M3

to K(π,m) ∨ Sn with πm(f) taking δ4 to δ in π and α42 to ιn, the fundamental
class of Sn.

Next, consider the principal G-bundle p:E → B, where G is a topological
group with the homotopy type of the loop space Ω(K(π,m)), L(π,m) is the
infinite join of copies of G and B is the orbit space in the Milnor construction
which is a K(π,m). Then by Theorem 6.1 there is a fiber homotopy equivalence

Ew
φ−→ (L(π,m) ∨ (K(π,m− 1) ∧ Sn) ∨ Sny y

K(π,m) ∨ Sn −→
id

K(π,m) ∨ Sn

Let
s∗:πm(K(π,m− 1))→ πm−1(K(π,m))

denote the suspension isomorphism and let δ = (s∗)−1(δ). Observe that δ ∧ ιn
is in πn+m−1(K(π,m − 1) ∧ Sn), where ιn is the fundamental class of Sn. The
class δ ∧ ιn is nontrivial because the spherical class δ ∧ ιn ∈ Hn+m−1(K(π,m−
1) ∨ (Sn,Z) is nontrivial. The morphism

πw(p):πn+m−1(Ew)→ πn+m−1(K(m,Z) ∨ Sn)

takes δ ∧ ιn to the Whitehead product [δ, ιn] ∈ πn+m−1(K(π,m) ∨ Sn). (See
Corollary 6.1.) Since πn(f)([δ4, α42]) = [δ, ιn] 6= 0, we see that [δ4, α4,2] 6= 0
which contradicts the fact that [δ4, α43] = 0.

Corollary 7.1. Let M denote a closed manifold. Then a necessary condi-
tion that the fibration

projkr: Fk(M1)→ F2(M1),

is fiber homotropically trivial is equivalent to that M1 is contractible.

Proof. The previous theorem implies that the homotopy groups of M1 van-
ish in dimensions up to and including n − 1. Poincare Duality in M forces
πn(M1) = 0 and πn+1(M1) = 0 because Hn+1(M1) = 0. Thus M1 is con-
tractible. �
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The above Theorem 7.2 may be stated in terms of the unpunctured mani-
fold M itself with some notational changes in the proof

Theorem 7.3. We assume that the tangent bundle of M admits a nonzero
vector field . A necessary condition that the fibration

pk+1,r: Fk+1(M)→ F2(M),

is fiber homotropically trivial is equivalent that the homotopy groups πq(M) = 0
for 0 < q < n. If M is closed we may also conclude that M1 is contractible.

The proof is based upon Proposition 5.4 and then proceeds as in the proof
of Theorem 7.2 with only notational changes. �

8. When is Fk(M)→ Fr(M) fiber homotropically trivial? M closed

We now apply the previous results to illustrate how results on the punctured
manifold M1 apply to the question when the fibration

projk+1,r: Fk+1(M)→ Fr(M)

is fiber homotropically trivial, where M is a closed manifold. The situation here
is different from the punctured manifold case because of the lack of cross sections.
First, however, we make the following observations before restricting ourselves
to closed manifolds.

Proposition 8.1. If the fibration

projk+1,r: Fk+1(M)→ Fr(M), k + 1 > r, r ≥ 2.

is fiber homotropically trivial then the fibration

projk,r−1: Fk(M1)→ Fr−1(M1),

is also fiber homotropically trivial.

Proof. Identify the fiber of the projection projr,1: Fr(M)→M at the point
q1, with Fr−1(M1). Observe that the preimage of Fr−1(M1) under projk+1,r is
Fk(M1). The conclusion of the proposition is then immediate. �

Theorem 8.1. Let M denote a manifold (closed or open) of dimension
n+ 1 ≥ 3. Then a necessary condition that

projk+1,r: Fk+1(M)→ Fr(M), k + 1 ≥ 4, r ≥ 3

is fiber homotropically trivial is equivalent to that n+ 1 is 4 or 8, r ≤ 3, and the
homotopy groups πq(M) = 0 for q < n.

Proof. Apply Propositions 8.1, 7.1 and 7.2. �
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We now return to the case of closed manifolds and consider first the odd
dimensional case. We will make use of the following special case for spheres
from [4].

Theorem 8.2. Suppose that (n+ 1) is odd. Then, the fibration

projk+1,r: Fk+1(Sn+1)→ Fr(Sn+1), k + 1 ≥ 3, r ≥ 1,

is fiber homotropically trivial if and only if r ≤ 2 and (n+ 1) is 3 or 7.

We extend this theorem as follows.

Theorem 8.3. Suppose that M is a closed manifold of odd dimension n +
1 ≥ 4. Then the fibration

projk+1,r: Fk+1(M)→ Fr(M), k + 1 ≥ 3, r ≥ 2,

is fiber homotropically trivial if and only if r = 2, and M is homeomorphic to
the sphere S7.

Proof. We need only prove the necessity because of Theorem 8.2. Assume
that

projk+1,r: Fk+1(M)→ Fr(M)

is f.h.t. Suppose r ≥ 3. Then, by Proposition 8.1, the fibration

projk,r−1: Fk(M1)→ Fr−1(M1)

is also f.h.t. and by Theorem 7.1, n+ 1 is 4 or 8 which contradicts n+ 1 being
odd. Therefore, r = 2. Now that we know that r = 2, we apply Theorem 7.3 to
conclude that M1 is contractible and hence M has the homotopy type of Sn+1.
The validity of the Poincaré conjecture in dimensions n+ 1 ≥ 4 implies that M
is homeomorphic to Sn+1. Applying Theorem 8.1, if n+1 ≥ 4, then n+1 = 7.�

Since the Poincaré conjecture in dimension 3 remains open, we can only state
the following for dimension 3.

Proposition 8.2. Suppose that M is a closed (simply connected) 3-mani-
fold. Then, if the fibration

projk+1,r: Fk+1(M)→ Fr(M), k + 1 ≥ 3, r ≥ 2,

is fiber homotropically trivial, then r = 2.

We now take up the even dimensional case.
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Theorem 8.4. Suppose that M is a closed manifold of even dimension
n+ 1 ≥ 4. Then, a necessary condition that the fibration

projk+1,r: Fk+1(M)→ Fr(M), r ≥ 3,

is f.h.t. is equivalent to that r = 3 and M is S4 or S8.

Proof. Suppose that r ≥ 3. Then, by Proposition 8.1, the fibration

projk,r−1: Fk(M1)→ Fr−1(M1), r − 1 ≥ 2,

is also f.h.t. and, by Theorem 7.1, n+1 = 4, 8, r− 1 = 2 and M1 is contractible.
This forces M to be a homotopy sphere and consequently a sphere. �

The question whether

projk+1,3: Fk+1(M)→ F3(M)

is fiber homotopically trivial when M is a sphere and n = 3 or 7 remains open.
We add the following additional information in the case of even dimensional

manifolds.

Theorem 8.5. Suppose that M is a closed manifold of even dimension
n+ 1 ≥ 4 which admits a nonzero vector field. Then,

projk+1,2: Fk+1(M)→ F2(M),

is never fiber homotropically trivial.

Proof. Suppose the contrary. Then, by Theorem 7.3, M1 is contractible
and conseqently M is a sphere. Since k+1 ≥ 3, we easily obtain a cross section in
the fibration F3(M)→M by employing a cross section from F2(M) to Fk+1(M)
followed by a projection to F3(M). However, the latter is fiber homotopic to the
tangent sphere bundle of M . This would imply a nonzero vector field on an even
sphere which is a contradiction. �

Finally, the question as to necessary conditions that

projk+1: Fk+1(M)→M,

(i.e. the case r = 1) is f.h.t., requires study and is complicated by the fact that
this fibration is f.h.t. whenever M is a compact topological group.
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