Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 20, 2002, 25-42
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ABSTRACT. The object here is to study the following question in the ho-
motopy theory of configuration spaces of a general manifold M: When is
the fibration Fy41(M) — F,.(M), r < k + 1, fiber homotopically trivial?
The answer to this question for the special cases when M is a sphere or
euclidean space is given in [4]. The key to the solution of the problem for
compact manifolds M is the study of an associated question for the punc-
tured manifold M — g, where ¢ is a point of M. The fact that M — g admits
a nonzero vector field plays a crucial role. Also required are investigations
into the Lie algebra m«(Fg41(M)), with special attention to the punctured
case m«(Fr(M — q)). This includes the so-called Yang—Baxter equations in
homotopy, taking into account the homotopy group elements of M itself as
well as the classical braid elements.

1. Introduction

Let M be a smooth simply connected manifold of dimension n+1 and denote
by Frt1(M) the configuration space of (k + 1)-tuples in M. Recall that

Fryr (M) = {(x1,. .., xp41) | 2 # 25} € M¥HEFD,

Configuration spaces play a crucial role in Analysis, primarily in problems of
“(k + 1)-body type” ([3], [6], [7]). In the Fadell-Husseini monograph ([4]),
we studied the homotopy and homology theory of the special cases Fy1(M)
where M is a (punctured) euclidean space or a sphere. Our recent studies of
configuration spaces of general manifolds indicate that knowledge of Fy 1 (M)
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26 E. FADELL S. HUSSEINI

relies heavily upon the punctured configuration space Fr1(M — q1) where ¢ is
a point in M. For example, suppose that Q, = {q1,... ,¢-}, 7 > 1, is a set of r
distinct points in M. Then, because M — @1 admits a non-zero vector field it
follows readily that

k
7T*<]Fk:(M - Ql)) = @W*(Mr)
r=1
where M,. stands for M — @,. Then the fibration
Fr(My) = Frpa (M) - M

illustrates the dependence of Fy1(M) on Fy(My).

In this note we study, after some preliminaries, the graded Lie algebra
7 (Fre1(M)) with special attention to 7. (Fx(M;)). This includes the so-called
Yang—Baxter equations in homotopy, taking into account the homotopy group
elements of M itself as well as the classical braid elements. As an application,
we consider the question: When is the fibration

}kar(MrJrl) - Fk(Ml) - Fr(Ml)a r< k7

fiber homotopically trivial? We then employ the results to answer the same
question for the fibration

Fr—ri1(M1) = Frp1 (M) = F.(M), r<k+1

2. Preliminaries

Our general assumption throughout (unless otherwise indicated) will be that
the manifold M is smooth, simply connected (and connected) and of dimension
n+ 1 > 3. However, most of the results will only require topological manifolds,
but assuming smoothness simplifies the exposition. The case of dimension 2,
i.e. surfaces, may also be studied by the methods in this note and in the Fadell-
Husseini monograph ([4]), but also requires special attention because of the lack
of simple connectivity and will appear in another work ([5]).

Let D denote a closed (n + 1)-ball in M and denote by V its interior. Iden-
tify V with euclidean space R™*1. Keeping the notation from [4], let e denote
the unit vector (1,0,...,0) € R"™ =V put

g1 =1(0,...,0), g=q+4(i—1e, forl1<i<k+1,

and let
Qi:{q17~~~aqi}7 221, Q():@, fOI'].SZSk
For 1 < s#r <k+1, define a.,: S — F11(M) to be the map

5 c STL — (QIv"' ydr—1,4s +§7q’ra"' 7%—17%)7
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/

denote by S, the image of .., and by a,s € 7, (Fg1(M) its homotopy class.
Note here that S, C Fgy1(M). Define

Fes1—rr(M) ={(21,... ,2k41) | T = ¢, for all i <r}.

which we may identify with Fy1_.(M — Q). Furthermore, note that S,s C
Fri1-¢(My), t <7 —1, where M; = M — Q. Consider next the fundamental
fiber sequence diagram

Fri10 «— oo — Fryirr — Froprpr —
on | ]
M, . M, My

with 0 < r < k, where the vertical maps py:Fry1_r (M) — M,, r > 1 are the
projections such that (¢1,...,¢r,Tr41,... ,Tkt1) — Trp1. The vertical maps
are fibrations. Those after the first stage admit sections using the fact that open
manifolds admit non-zero vector fields. The last term in the sequence is the
single space My = M — Q.

3. The spaces M,

We will need to identify the homotopy type of the the punctured space
M,y = M — Qr41. When r = 0 it clear that M; has the homotopy type
of M — V. For r + 1 > 2 we have the following proposition.

PROPOSITION 3.1. Let M be a manifold of dimensionn+1> 2, and Q C M
a discrete subset of r + 1 elements such that Q C'V C D C M. Then there is
a homotopy equivalence

(M—-V)V(S1V...VS)—(M-Q),
where S1,...,S, are n-dimensional spheres.

PrOOF. We give only a sketch of the proof. We may assume that one of the
points ¢ € @ is at the center of the ball D and the remaining r points are in
the annular region between the ball D’ of radius 1/2 and the boundary 9D (see
Figure 1). Then if @' = @ — ¢q put

X,=D—intD — Q.

It is easy to see that a deformation of the region A in Figure 1 induces
a deformation retraction of X, onto the subspace 9D union the boundaries of the
balls B; in Figure 1. Furthermore, since the latter deformation is fixed on 0D, it
extends to a deformation of (M —@) onto the subspace (M —V)UOB;U...UdB,.O]
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FIGURE 1. Deformation of X,

COROLLARY 3.1. Assume that M is simply connected and n > 1. Then the
space Fri1_r (M) is simply connected, where 0 < r < k.

PROOF. First one proves that each M,. is simply connected for all r > 1: as
n+1 > 3, this follows easily for dimensional reasons. Next one proves the desired
assertion, using the long exact sequences of the fibrations of diagram Fy(M).O

In terms of the spheres S,.; associated with the braid elements .5, Proposi-
tion 3.1 takes the following form.

COLLORALY 3.2. For each r > 1 there is a homotopy equivalence
MT >~ M1 \Y (Sr+1’2) V...V (SrJrl’r).

Using the homotopy long exact sequence of a fibration, and by virtue of
the existence of sections, we have the following decomposition of 7, (Fy(M7)) in
terms of the m.(M,.).

COLLORALY 3.3. Assume that dimM = n +1 > 2. Then there is an iso-
morphism

k
T (Fi(My)) = @ . (M,).
r=1
One would like to describe 7, (M) in terms of 7, (Sy«) and m,(M;), where
Srsx = Spra V...V S _;. In order to achieve that we need describe the relative

cellular structure of (M X Sy, M V Sp.i).

THEOREM 3.1. Assume that dim M = n + 1 > 2. Then there is an isomor-

phism
k
o (Fi(M1)) = 7w(My) & P70 (M1)) @ (w0 (Sr412)),
r=2
where Syy1x stands for Spi12V ...V Spiqr.
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PROOF. Observe that because M is simply connected, it follows that My ~
K, where K is a CW complex of which the 2-skeleton K is a bouquet of two
dimensional spheres. Hence

My % Spu = (K V Sp) U ep U

+2

where e} " ranges over the (n+2)-dimensional cells of K ) x §,.,. Consequently,

7ri(M1 X Sr*7M1 \ Sr*) = Oa

for 1 <4 < (n+1) and therefore m, (M1 V.Sy.) — 7 (M1 X Sys) is an isomorphism.
The latter clearly implies the theorem. O

Note the following distribution of the braid elements «,.s in the above the-
orem. o1 is in the first term 7, (M;). However, beyond that, in the general
term (7, (M1) ® (mn(Sr414)), wWe see that ay41,1 is in m,(My), while o, yq 5 €
(mn(Sr414)), 2 < s < r. We now describe how homotopy elements ¢ € m,, (M)
contribute to m, (Fx(M7)). Let 6': S™ — M denote a map representing 0.

DEFINITION 3.1. Denote by 4., the homotopy class in m,, (F;(My)) of the

map

S'_’ (qla e 7qr—175,(£)5q7’+17~ .. »Qk) € (Fk(Ml))
where 2 <r <k +1.

Thus one may think of §, as the element § € 7, (Fr(M;)) inserted at the
r-th level. In a similar fashion, an element § € 7,,(M) determines elements &,.,
1<r<k+1,in mp(Frpi(M)).

Theorem 1.2 implies the following theorem.

THEOREM 3.2. The elements
{aps |1 <s<r<k4+1}U{6. |2<r<k+1, §em (M)}

generate the group m,(Fr(M)).

4. Invariance under permutations

The symmetric group X1 acts freely on Fi 1 (M) by permuting the coor-
dinate indices (1,...,k + 1). This action induces an action on the homotopy

groups 7y (Fr11(M)).

PROPOSITION 4.1. The braid elements «,s satisfy the following relations
relative to the action of Yg11. If 1 <s#r <k+1, then

Agpr = (_1)n+1ars and 7"-71(0-)(057‘5) = Ogros-



30 E. FADELL S. HUSSEINI

PROOF. These relations are verified in [4] for M = R"*!. However, the
inclusion map R"*! — V C M induces a homomorphism which carries these
relations into 7, (Fr41(M)). O

Adapting the above relations to the punctured manifold M; will require
certain modifications because a typical point of Fy (M) has the form (¢1,x2,. .. ,
Zk+1) and the permutation group is restricted to Xy based on the indices (2, ... ,
k+1). Xkt is not allowed to act on the elements ayq,...,ag+1,1. However,
each a,; may be considered as a 0 in 7, (Fy(M1)).

DEFINITION 4.1. Set 0,1 = a1, for 2 <r < k41, in 7, (Fx(M)).

We now consider relations satisfied by elements of m,(Fy(M7)) under the
action of ¥i. The first part of the following proposition is an immediate conse-
quence of the above proposition. While the latter part is a simple exercise.

PROPOSITION 4.2. The generating elements of m,(Fr(M;)) satisfy the fol-
lowing under the action of Y.
() If2<s#r<k+1, then ag = (=1)" la,s and m,(0)(rs) = Qoros-
(i) If§ € mp(My) with corresponding 6, € m,(Fr(M1)), 2 <r < k+1, then
T (0)(6r) = dr. In particular, m,(0)(6r1) = dor1.

5. The Yang—Baxter relations

The following theorem is useful when computing Whitehead products. We
state it for the general case 7. (Fr11(M)).

THEOREM 5.1. For all 0 € Yiy1, the following ( Yang—Baxter) relations hold
in i (F1(M)):
(i) [o201, Qo301 + Ag302) =0, for k+12> 3,
and
(i) (o201, Qs3] =0, fork+1 >4,
in T (Fr(Mxo))-

ProOOF. The proof of Proposition 4.1 applies here. 0

In order to establish the Yang-Baxter relations for the punctured mani-
fold M, we observe that the following relations are valid in 7, (Fp 1 (R"1)).

(i) [a21, 31 + ag2] =0,
(11 31, 21 —+ (_1)n+1a32] = 0,
i) [o21,u3] =0,

[
[
(iii) [
(32, g + 3] = 0,
[
[

)
)
(iv)
(v)

)

(vi

a2, a3z + (—1)"ays] = 0,

a3z, as4] = 0.
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These relations remain valid in ., (Fj(R"T! — 0)) since since the latter injects
into 7, (F41(R"™1)). The inclusion map (R"*1) —0 — (V — Q1) C M; induces
a homomorphism which carries these relations into m.(Fy(M;). Applying X
based on the indices {2,... ,k + 1} and recalling that 6,1 = a1, we have the
following theorem.

THEOREM 5.2. The Yang—Baaxter relations in w.(Fr(My)) for the punctured
manifold My are given below, where o belongs to the permutation group X) based
on the indices {2,... ,k+1}.

(i
(ii

(iii

) [002,1,003,1 + Q53.02] =0,

) 1003,1,002,1 + (—1)" M ags,02] =0,

) 02,1, Q0a,03] =0,

(iv) [@es,02, Q4,02 + Qraes] =0,

(V) [ot,02y Qo302 + (—1)" gy 03] =0,
) |

(Vi Q53.02, Ngh 0'4] 0.

Before stating Whitehead product relations involving the elements 4., we
recall one the basic tools for recognizing when Whitehead products are zero in
T (Fry1(M)).

Let a € mp(Frg1(M)) and let o': (S™, %) — (Fr41(M,*) denote a based
map representing a. If o' = (af,... , ) has the property that o is constant
except for i # j, we say that o’ is concentrated in the i-th coordinate.

PROPOSITION 5.1. Let a € mp(Fry1(M)) and 8 € mp(Fry1(M)) with rep-
resentatives o and 8’ concentrated in the i-th and j-th coordinates, i # j. Then,

[, 8] = 0.
An immediate application of this proposition yields the following relation.
PROPOSITION 5.2. Let § € 7, (My). Then,
[02, @pa03] =0 for all o € .

To prove our next relation we need some preparation and we will not distin-
guish here between the notation for a map and its homotopy class. Proceeding
as in [4, Chapter III, Section 5], denote by ps: F(§) — S™ the pull-back of the
tangent bundle T'(My) of M; by a map 6: S™ — Mj.

The tangent bundle T'(M;) admits a nonzero section, v: My — T(M;) and
hence it is equivalent to € @ o', where the trivial bundle corresponds to the
nonzero tangent vector field v. The pull-back bundle has an induced splitting and
the charateristic map for the bundle has the form n: S™~1 — O(n). Let SE(4)
and ST (M) denote the associated sphere bundles. Then the homotopy type of
SE(8) is given by (SI'V.S™)U, (D™™), where p is given by [, i,]+J (1), where
J is the “J-homomorphism”. Here S!" is the image of the cross section in SE(J)
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and i,, and 4, are generators in 7,,(S) and 7, (S™), respectively (see [11], [10]
and [13]). We will also make use of the exponential map: exp W — Mj, where W
is a suitable neighbourhood of the 0-section of the tangent bundle T'(My).

THEOREM 5.3. Letd € m,,(My)). For2 <r <k, there is a map ¢: SE(§) —
Fi(My), k > 3, which implies the relation

[57‘+1 + 6T+27 OCT+277“+1] +¢=0

in m.Fr (M), where  is the image of J(n) induced by ¢. Furthermore, when the
fibration p: (M) — F.(My) is fiber homotopically trivial, ¢ = 0. In this case
the relation becomes

[5o(r+1) + 5a(r+2)7 acr(r+2)o(r+1)] = 07
0 € Xk_ry1, based onr+1,... Jk+1.

PROOF. Denote a point of SE(0) by (£1,&2) with & € S™, & € STy(e,)(M).
Define a map 9: SE(6) — F,.2(M7) by

Y((€1,€2)) = (g2, -+, @r, 6(&1), exPs(e) (62))-

where we are assuming, without loss of generality, that (£1,&2) is in W. A simple
calculation shows that

T (V) ([ in]) = [0r41 + Ort2, Qg ri]

and by definition ¢ = 7.(¢)(J(n)). Hence,

[5r+1 + 6r+2; ar+2,r+1] + C = O

Now, to obtain the map ¢, let s denote a cross section of the bundle Fy(M;) —
F,4+1(M;) induced by the vector field v. The desired map ¢ is given by the compo-
sition ¢ = soyp. Next, let 6: S™ — F,.(M;) be given by §(¢1) = (g2, - - - , @, (£1)).
Furthermore, let p*: Fy (M;) — S™ denote the pull-back of p: F(M;) — F,.(M;).
Then we have the diagram

SE@) 25 Fi(My) 5 Fy(My)

l l |

gm _ gm . ]Fr(Ml)
id 5
Note that ¢*((£1,&2)) = ((&1, &((£1,€2)) and ¢ = 6* 0 @*. Note also that there
is a characteristic map ¢* from S™~! into the space of homotopy equivalences
of the fiber Fj,_,(M;4+1). Therefore, if Fy(M;) — F,.(M;) is fiber homotopically

trival we see that

C=m(g)(J(n) =m(6"0¢")(J(n) =n(6")(J(£")) = 0.
This suffices to prove the second part of the theorem. O
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When the manifold M itself admits a nonzero vector field, an analogue of
Theorem 5.3 obtains with M replacing M; and other appropriate notational
changes. In particular, SE(§) — S™ is the pull-back of the sphere tangent
bundle T(M) of M by a map 6:5™ — M and 7 is the characteristic map
of SE(§) — S™.

THEOREM 5.4. Suppose M admits a nonzero vector field and 0 € m,,(M)).
For2 <r <k+1, there is a map ¢: SE(0) — Frp1(M),k+1 > 3, which implies
the relation

[0r + Opt1, Oér+1,r] +¢=0
in Tx(Fr11(M)), where € is the image of J(n) induced by ¢. Furthermore, when
the fibration p:Frp1 (M) — F,.(M) is fiber homotopically trivial, { = 0. In this
case the relation becomes

[507“ + 60’(7‘—1—1)7 aU(T+1)7UT] = Oa S,

6. Wedge representations

In the consideration of our main application in the next section, we will need
to describe a space over (E/G) VY as a suitable bouquet, where p: E — B is
a principal G-bundle and G is a topological group. We will restrict our attention
to the special case when E has the form £ = G*x G x...*x G % ..., the Milnor
join ([12]) of n copies of G, where n may be infinite and B = E/G. A more
general result will be found in [5]. We will work in the category of spaces whose
topology is compactly generated.

Observe that p xid: E XY — B X Y is again a principal G-bundle, where Y
is a pointed space. Denote by p: E,, — B VY the principal bundle induced by
the inclusion map BVY — B x Y. Our objective is the homotopy type of F,,.

Fix ¢ in G and consider the subset of G * G in E, given by

{(1—t)g1 +tg5 | g1 €G, 0<t <1}

which represents a cone ¢G = G x I/G x 1 This cone has the property that
its projection is a suspension S' A G C B. Choose as base point b; in B, the
projection of the base of the cone in F.

THEOREM 6.1. There is a homotopy equivalence ¢: E,, — EV (GAY)VY.

PROOF. Let yo denote a base point of Y and let p((cG, G)) = (S* A G, by).
Observe that

Bu=(Ex{ph)UGxY), G=(Ex{yp})n(GxY)

Put
K =(Ex {y}), L=(cGx{y})U(GxY).
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Observe that K UL =E,, and K N L = c¢G x {yo}.

As ¢G is contractible, it follows readily that the natural projections

(KUL) - (KUL)/cG X yo,
K — K/CG X Yo,
L — L/cG X yo,

are homotopy equivalences. Note that (KUL)/cG %y = (K/cG X yo)V (L/cG x
Yo). Also note that

L/cGxy=(GxY)/Gxy ~(GAY)VY.
Thus E,, = (E x {yo}) U (G x Y) is homotopy equivalent to EV (GAY)VY.O

The induced map p, 0o ¢~ (GAY) — BVY, where ¢! is a homotopy
inverse for ¢, brings into play the Whitehead product. Let « € m,,—1(G). Then
the suspension of & may be regarded as a map into B since S' AG C B. We
refer to it as the suspension of o in B

COROLLARY 6.1. Let s'(a) € m,(B) be the suspension (in B) of a €
Tm—1(G). Then, m.(p,,) is injective and

Tnsm-1(p o ¢~ )(a A B) = [s'(a), B] € Tnim—1(BVY)),
where § € m,(Y).

PRrROOF. First observe that the fiber G remains contractible in F,, which
implies that m.(p,,) is injective. Next, consider the composite map

Y (D™, SN x ST — (¢G,G) X 8™ - (E,Ey x S") — (E,E, xY)

induced by «, § and the natural imbeddings. Observe that it takes the subspaces
(D™ x {ep} and (S™~! x S") to E,. Note that

D™ x 8" = ((S™! x S")U D™ x {ep} U, D"™™ = LU, D"T™
where the attaching map
v: (D™ x dD™T™) U (OD™ x D) — (D™ x {ep}) U (S™ ! x S™)

is the identity on D™ and collapses 9D™"™ to {eg}. Thus we see that the
obstruction to deforming 1 into E,, is exactly the homotopy class of v. Therefore
p takes v to the obstruction of deforming p(D™,S™ ') x Y onto BV Y. But
the latter is the Whitehead product [s!(a), 3]. O



CONFIGURATION SPACES ON PUNCTURED MANIFOLDS 35

7. When is Fy(M;) — F,.(M;) trivial?

In [4] we determined when the projection
projy,,: Fi(My) — Fy.(M)

is fiber homotopically trivial (abbreviated f.h.t.) in the case when M = R"*! or
Snt+1 | Below, we consider the more general case. In our first result we assume
that M is any 1-connected (as usual), smooth manifold (not necessarily closed)
of dimension n 4 1.

THEOREM 7.1. A necessary condition that the fibration
proj,: Frp(My) — Fpo(My), (z1,...,25) — (T1,... , ), T > 2,
is fiber homotropically trivial is that n =3 or 7, and r = 2.

PROOF. Assume that proj,.:Frp(M;) — F,.(M;) is fh.t. We first show that
n=3or7.

Let {ase |2 <t < s <Ek+1}U{ds1 |2 < s <k+1}U{ds | 2 < k+1} denote the
generators of m,(Fy(M7)). Regard the subset {ag |2 <t <s<r+1}U{ds |
2<s<r4+1}U{ds | 2 <s < r+ 1} as the generators of m.(F,.(M;)). In
both cases, the set involving the elements §,; may be incorporated into the set
containing the elements d.

Let aj,q9:S™ — F.(M;) be the representative of .2, and denote its
image by S,112. Denote the restriction of proj, ,.: Fr(M1) — F,.(M1) to Syq12
by proj*:Fy(Mi) — Sry1,2. It is a fibration with Fy_,(M,41) as fiber. Suppose

that s
Sr+1,2 X Fk—r(Mr+1) I ]F]t(Ml)

;Dl lprojfm

Sr+1,2 'd} r+1,2
i

is a homotopy equivalence over S,1i2. Note that ¢ can be adjusted, if nec-
essary, so that ¢|Fy_.(My11):Fr_r(Myy1) — Fr_(M,41) is the identity. As
the configuration spaces here are all simply connected, we have the direct sum
decomposition

W m(ﬁ(Mﬁ)%wn«er,z)@( P (i, (\_/s))

s=r+2
The morphism m,(¢) takes a,11,2 to an element of the form

k+1

Qry12 + Z (55* +5s)7

s=r+1
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where each (s, € m,(Ss2V...VSss_1) and 05 € m,(M7). Since [ag41,2, 0r112] =0
in wop_1(Sr4+1,2XFr—r(My41), and because 7, (¢) preserves Whitehead products,
it follows that

(2) Gulot1,2, rg1,2] =[t1,2, Org1,2]
k1 k1
+ > (g1, Be] + Y [@hgr,2,64] = 0.
s=r+2 s=r+2

The Yang-Baxter relations of Theorem 5.2 and the second relation of Theo-
rem 5.3 imply that the elements [ag41,2, r41,2)s [Qk+2,2, Bs+] and [ag41,2,05] are
in mop—1(M1V (Sk+1,2 V...V Skt1k)) - Applying the obvious retraction p from
My =MV (Sk+172 V...V Sk+1,k) to (Sk+1,2 V...V SkJrLk), let BkJrl denote the
image of

k+1 k+1
D lawsre, Bl + ) lani2, 64
s=r+2 s=r+2

under 7a,,—1(p). Bj41 has the form

K
Brp1 = D Chi1aQhiie
t=2

with ¢xy1,+ € Z. Therefore (2) becomes

(3) [Oék+1,27 Oér+1,2] + Ck+1,2[04k+1,27 ak+1,2] +...+ Ck+1,k[04k+1,27 ak+1,k] = 0.

Now, employ the Yang—Baxter relation

_1\n+1 _
34 3 3
[@kt1,2, Qrp12 + (1) gy1,3) =0

and replace [ag+41,2,Qry1.2] by its value in terms of the Whitehead product
[@k+1,2, k+1,3] to obtain the following version of (3)

(4)  cry1olariio, arsiol + (crrrs — (=)™ agr1 2, kit 3]
r+1

+ E Cht1,t[Ok+1,2, Apt1¢] = 0.
=4

Note that the preceding formula (4) is valid in the Lie subalgebra 7. ((Sk+1,2V

.V Sk—i—l,k))-
Next, recall that Hilton’s theorem ([9]) gives, for each s such that (r 4+ 2) <
s < k+ 1, the direct sum decomposition

k
T2n—1(Skt12 V...V Sky1x) & (@W2n1(5k+1,i)> ® (@W2n1(5w)),
=2 w

where w ranges over all Whitehead products of weight 2 on the set of symbols
{agt1,s | 2 < s < k+1} ([13]). Observe that the various Whitehead products
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in (4) belong to different summands in the Hilton formula. Thus we obtain the
equations

(1) ert12(artre, kt12] =0,
(5) (i) (cwy1,3 — (=1)" ) [owy1,2, thr1,3] =0,
(il) g1 [art1,2, ht1e] =0,
where ¢ > 3 in (iii) above. Now, note that w = [ag+1,2, @k+1,3] € Tan—1(S"Y) is
a basic product. Therefore, it defines a summand in the Hilton Theorem. Also
note that it is of infinite order. This clearly implies that cp41.3 = (—1)"T1.
Next, starting with the fact [ag 1,3, ary1,2] =0 € Tap 1 (S o XFr o (M7)),
apply the same argument as that given above using the Yang-Baxter relation
[Qk+1,3, ry1,2 + Qgg1,2) = 0 to obtain (1 + cpi1,2)[k+1,3, kt1,2] = 0. The
Hilton Theorem again applies and c¢xy1.2 = —1. Hence, (i) of (5) implies that
[@k+1,2, ak+1,2] = 0 and for a generator ¢y, of S™ [y, tn] = [@r42.2, @r122]. There-
fore, [in,tn] = 0 and S™ is an H-space. An appication of the celebrated theorem
of J. F. Adams ([1], [2]) shows that n =3 or n = 7.
We next prove that r = 2, assuming now that n = 3 or n = 7. In particular,
n + 1 is even. Suppose to the contrary that r > 2 and consider equations (5).
The basic product w = [a,42.2, @42, t > 3, generates the infinite cyclic group
Ton—1(Sw). This implies that its coeficient ¢, 41 ¢ is zero and, therefore,

Qrg12+ B = 01,3 — Q1,2 + Qg3
Since r > 2, we have k + 1 > 5, so that we have available the elements aj.1 .,
t =2,3,4. Observe that, since [ 41,2, k+1,4] = 0, we have
[Qri12 — Qpg1,2 + Qky1,3, Akp1,4] = 0.

Then,

(—1)[okt1.2; ¥kt1,4] + [Qht1.3, ¥kr1,4] = 0.
Finally, since the two summands above represent distinct basic elements of
weight 2, each must be zero, which is a contradiction and r = 2. O

Our next necessary condition involves the homomotopy groups of Mj.
THEOREM 7.2. A necessary condition that the fibration
P Fr(M1) — Fa(M),

is fiber homotropically trivial is equivalent to that the homotopy groups wy (M) =
0 for g <n.

ProoF. If we deny the conclusion, let m denote the minimum value of m
for which 7, (M;) # 0,2 < m < n. Furthermore, let 7 = m,,(M;) Using
the classical method for killing homotopy groups by adding cells (see e.g. [8]),
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there is a K(m, m) space X and an inclusion map j: M; — X which induces an
isomorphism 7., (7): wm (M1) — T (X).

Suppose that § # 0 € 7,,(M7). Denote by 6; € m,,(M;) the insertion of ¢ in
the t-th coordinates of F (1M ). Employing Proposition 5.3, since py, ,.: Fx(M;) —
Fy(My) is f.h.t., we have at our disposal the relation [d2 + d3, age] = 0. Applying
the permutation (43), we obtain [0z + 04, ag2] = 0. Again using f.h.t., [02, ass] =
0, which in turn implies that [04, c42] = 0. We complete the proof by showing
that [04, aga] # 0, thereby arriving at a contradiction.

Since M3 has the form M3 = M7V S42V Sy3, there is a map f which takes M3
to K(m,m)V 8™ with 7, (f) taking d4 to 0 in 7w and a2 to ¢y, the fundamental
class of S™.

Next, consider the principal G-bundle p: E — B, where G is a topological
group with the homotopy type of the loop space Q(K(w,m)), L(mw,m) is the
infinite join of copies of G and B is the orbit space in the Milnor construction
which is a K (7, m). Then by Theorem 6.1 there is a fiber homotopy equivalence

By 5 (L(m,m) V (K (m,m — 1) A S") v §"
K(r,m)vS" — K(m,m)Vv S"

id
Let
S T (K (m,m — 1)) — wp—1 (K (7, m))
denote the suspension isomorphism and let & = (s,)~'(d). Observe that & A ¢,
is in Tpqm—1 (K (m,m — 1) A S™), where ¢, is the fundamental class of S™. The
class A ¢, is nontrivial because the spherical class § A ¢,, € Hypm—1(K(m,m —
1) vV (S™,Z) is nontrivial. The morphism

Tw(P): Tntm—1(Ew) = Tnym—1(K(m, Z) vV S™)

takes & A ¢, to the Whitehead product [d,t,] € Tpym—1(K(m,m) vV S™). (See
Corollary 6.1.) Since 7, (f)([04, €a2]) = [0,tn] # 0, we see that [0, 2] # 0
which contradicts the fact that [04, ays] = 0.

COROLLARY 7.1. Let M denote a closed manifold. Then a necessary condi-
tion that the fibration
projs,.: Fr(My) — Fo (M),

is fiber homotropically trivial is equivalent to that My is contractible.

PRroOF. The previous theorem implies that the homotopy groups of M; van-
ish in dimensions up to and including n — 1. Poincare Duality in M forces
mn(My) = 0 and 7,41 (M) = 0 because Hy41(My) = 0. Thus M; is con-
tractible. O
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The above Theorem 7.2 may be stated in terms of the unpunctured mani-
fold M itself with some notational changes in the proof

THEOREM 7.3. We assume that the tangent bundle of M admits a nonzero
vector field . A necessary condition that the fibration

Pt 1,0t Frp1 (M) — Fo (M),

is fiber homotropically trivial is equivalent that the homotopy groups mq(M) =0
for 0 < g <mn. If M is closed we may also conclude that My is contractible.

The proof is based upon Proposition 5.4 and then proceeds as in the proof
of Theorem 7.2 with only notational changes. g
8. When is Fy(M) — F,.(M) fiber homotropically trivial? M closed

We now apply the previous results to illustrate how results on the punctured
manifold M; apply to the question when the fibration

Projy i1, Frp1 (M) — Fr.(M)

is fiber homotropically trivial, where M is a closed manifold. The situation here
is different from the punctured manifold case because of the lack of cross sections.
First, however, we make the following observations before restricting ourselves
to closed manifolds.

ProprosITION 8.1. If the fibration
Projii1 i Frp1 (M) — Fo(M), k+1>r r>2.
is fiber homotropically trivial then the fibration
PrOjk,rq:Fk(Ml) — Fro1 (M),
is also fiber homotropically trivial.

PRrOOF. Identify the fiber of the projection proj, :F,.(M) — M at the point
q1, with F._1(My). Observe that the preimage of F,._; (M;) under PrOjj 41, 18
Fi(M;). The conclusion of the proposition is then immediate. O

THEOREM 8.1. Let M denote a manifold (closed or open) of dimension
n+ 12> 3. Then a necessary condition that

projy i1, Frp1 (M) —» Fo(M), k+1>4,7r>3

is fiber homotropically trivial is equivalent to thatn+1 is 4 or 8, r < 3, and the
homotopy groups wy(M) =0 for ¢ < n.

PRrROOF. Apply Propositions 8.1, 7.1 and 7.2. 0
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We now return to the case of closed manifolds and consider first the odd
dimensional case. We will make use of the following special case for spheres
from [4].

THEOREM 8.2. Suppose that (n+ 1) is odd. Then, the fibration
projk+1,r5Fk+1(5n+l) —F. (5", k+1>3, r>1,
is fiber homotropically trivial if and only if r <2 and (n+1) is 3 or 7.
We extend this theorem as follows.

THEOREM 8.3. Suppose that M is a closed manifold of odd dimension n +
1> 4. Then the fibration

projy i1, Frp1 (M) —» Fr(M), k+12>3, r>2

is fiber homotropically trivial if and only if r = 2, and M is homeomorphic to
the sphere S”.

PrOOF. We need only prove the necessity because of Theorem 8.2. Assume
that

Projg 1, Frr (M) — Fr (M)
is f.h.t. Suppose r > 3. Then, by Proposition 8.1, the fibration

projy, ,—1: Fr(M1) — Fr_1 (M)

is also f.h.t. and by Theorem 7.1, n 4+ 1 is 4 or 8 which contradicts n + 1 being
odd. Therefore, r = 2. Now that we know that » = 2, we apply Theorem 7.3 to
conclude that M; is contractible and hence M has the homotopy type of S™T1.
The validity of the Poincaré conjecture in dimensions n + 1 > 4 implies that M
is homeomorphic to S"*!. Applying Theorem 8.1, if n+1 > 4, then n+1 = 7.0J

Since the Poincaré conjecture in dimension 3 remains open, we can only state
the following for dimension 3.

PROPOSITION 8.2. Suppose that M is a closed (simply connected) 3-mani-
fold. Then, if the fibration

projyyq i Frpi (M) = Fp. (M), k+12>3, r>2,

is fiber homotropically trivial, then r = 2.

We now take up the even dimensional case.
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THEOREM 8.4. Suppose that M is a closed manifold of even dimension
n+1>4. Then, a necessary condition that the fibration

proj 1 i Frsa (M) — F, (M), 7> 3,
is f.h.t. is equivalent to that r = 3 and M is S* or S8.
PROOF. Suppose that r > 3. Then, by Proposition 8.1, the fibration
projy ,_1:Fp(My) — Fry(My), r—12>2,

is also f.h.t. and, by Theorem 7.1, n+1=4,8, »r—1 = 2 and M, is contractible.
This forces M to be a homotopy sphere and consequently a sphere. O

The question whether
PrOjj 41 3° Fri1(M) — Fs(M)

is fiber homotopically trivial when M is a sphere and n = 3 or 7 remains open.
We add the following additional information in the case of even dimensional
manifolds.

THEOREM 8.5. Suppose that M is a closed manifold of even dimension
n+ 1> 4 which admits a nonzero vector field. Then,

pfojk+1,21Fk+1(M) — Fa (M),
is mever fiber homotropically trivial.

PROOF. Suppose the contrary. Then, by Theorem 7.3, M; is contractible
and conseqently M is a sphere. Since k+1 > 3, we easily obtain a cross section in
the fibration F3(M) — M by employing a cross section from Fo (M) to Fj11 (M)
followed by a projection to F3(M). However, the latter is fiber homotopic to the
tangent sphere bundle of M. This would imply a nonzero vector field on an even
sphere which is a contradiction. O

Finally, the question as to necessary conditions that
projyy1: Fry1 (M) — M,

(i.e. the case r = 1) is f.h.t., requires study and is complicated by the fact that
this fibration is f.h.t. whenever M is a compact topological group.

REFERENCES

[1] J. F. Apawms, Vector fields on spheres, Ann. of Math. 75 (1962), 603—-632.
2] , Vector fields on spheres, Topology 1 (1962), 63-65.

[3] A. BaHRI AND P. H. RABINOWITZ, Periodic solutions of Hamiltonian systems of 3-body
type, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), 561-649.




42

E. FADELL S. HUSSEINI

E. FADELL AND S. HUSSEINI, Geometry and Topology of Configuration Spaces, Springer—
Verlag, New York, 2001.

, Geometry and Topology of Configuration Spaces II, In progress.

, Infinite cup length in free loop spaces with an application to a problem of
N-body type, Ann. Inst. H. Poincaré, Anal. Nonlinéaire 9 (1992), 305-319.

E. FADELL, S. HUSSEINI AND P. RABINOWITZ, Borsuk—Ulam Theorems for arbitrary St
actions and applications, Trans. Amer. Math. Soc. 274 (1982), 345-360.

B. GrAY, Homotopy Theory, Academic Press, New York, 1975.

P. J. HILTON, On the homotopy groups of the union of spheres, J. London Math. Soc.
30 (1955 154-172.).

I. M. JAMES, The Topology of Stiefel manifolds, London Math. Soc. Lecture Notes 24
(1976), Cambridge University Press.

I. M. JAMES AND J. H. C. WHITEHEAD, On the homotopy theory of sphere-bundles
over spheres, I, II, Proc. London Math. Soc. 4 (1954), 196-218; 5 (1955), 148-166.

J. W. MILNOR, Construction of universal bundles I, II, Ann. of Math. 63 (1956), 272—
284, 430-435.

G. W. WHITEHEAD, Elements of Homotopy Theory, Springer—Verlag, New York, 1978.

Manuscript received January 29, 2002

EDWARD FADELL AND SUFIAN HUSSEINI
Department of Mathematics

University of Wisconsin

Madison, WI 53705, USA

E-mail address: fadell@math.wisc.edu, husseini@math.wisc.edu

TMNA : VOLUME 20 — 2002 — N° 1



