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STATIONARY STATES
FOR DISCRETE DYNAMICAL SYSTEMS IN THE PLANE

Jorge Aarao — Mario Martelli

Abstract. The existence of a fixed point for maps of the form Identity
+ Contraction acting on R2 is established under quite general conditions.

A counterexample is given in R3.

1. Introduction

A result due to Sharkovskĭı ([11]) implies that a continuous map f of an
interval I into R which has a periodic orbit of any period p > 1, must have
a fixed point. In fact, Sharkovskĭı established the following theorem.

Theorem 1.1. Let f : I → R be continuous. Assume that f has a periodic
orbit of period p. Then f has a periodic orbit of any period q which follows p in
the ordering,

3 < 5 < 7 < 9 < . . . < 6 < 10 < 14 < . . . < 12 < 20 < 28 < . . . < 22 < 2 < 1.

Notice that if f has a periodic orbit of period 3 then it has a periodic or-
bit of every period. This result was later rediscovered by Li–Yorke ([7]) who
were unaware of Sharkovskĭı’s theorem. They also proved the existence of an
uncountable set S such that for every point x0 ∈ S the orbit O(x0) is aperiodic
and unstable. This property of f motivated the title of their paper Period three
implies chaos.
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It is easily seen that in the case when a real-valued map F is of the form
Identity + Contraction, F (x) = x + K(x), where |K(x)−K(y)| ≤ r|x− y|, with
r ∈ (0, 1), then F has at most one fixed point and no periodic orbit with period
p > 1. Moreover, if F does not have a fixed point, then every orbit of F is
unbounded.

The purpose of this paper is to analyze the behavior of maps of the form
Identity+Contraction in R2 and in higher dimension with respect to the problem
of determining what conditions will insure the presence of fixed points.

The problem is not completely new. In fact, at the beginning of last century,
Brower ([3]) proved his famous Lemma on Translation Arcs (see below). His
result generated several papers (see [2], [6], [12]–[14]) in which different and/or
simpler proof of the lemma were provided. In 1984 M. Brown ([4]) gave an
elegant and short proof of Brower’s Lemma and in a successive paper [5] he
observed that one version of Brower’s Lemma is that each orientation preserving
homeomorphism of the plane with a periodic orbit must have a fixed point.

We shall show later that Identity + Contraction is orientation preserving.
Hence, the presence of a periodic orbit of any period p > 4 (it cannot be 4 or
less) implies the existence of a fixed point. However, given the particular form
of this class of orientation preserving maps, we were able to obtain a stronger
theorem.

2. Notations, definitions and preliminary results

2.1. Orientation preserving diffeomorphisms. Given a diffeomorphism
F : R2 → R2 we say that F is orientation preserving if det(F ′(x)) > 0 for ev-
ery x ∈ R2. In the case when F is only a homeomorphism we say that F is
orientation preserving if we can find a circle C of radius r > 0 centered at the
origin, C = {x ∈ R2 : ‖x‖ = r}, such that a counterclockwise parametrization
γ(t) = r(cos(t), sin(t)) of C is mapped to a counterclockwise parametrization of
its image under F : β(t) = F (γ(t)). It is easy to see that an orientation preserv-
ing diffeomorphism is an orientation preserving homeomorphism. In fact, more
is true, since the following result holds (see [10]).

Theorem 2.1. Any orientation preserving diffeomorphism of F of R2 is
smoothly isotopic to the identity.

In other words, there exists a smooth homotopy H: R2 × [0, 1] → R2 such
that H(x, 0) = x, H(x, 1) = F (x) and H( · , t) maps R2 diffeomorphically onto
R2 for every t ∈ (0, 1).

A fixed point of F is a point x such that F (x) = x. We say that a maps is
fixed point free if F (x) 6= x for every x ∈ R2. An arc α starting at x and ending
at y is a translation arc for F provided that F (x) = y and F (α) ∩ α = y. The
following result is due to Brower ([3]).
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Theorem 2.2. Let F be a fixed point free orientation preserving homeomor-
phim of R2 and let α be a translation arc of F . Then for each integer n ≥ 2 we
have Fn(α) ∩ α = ∅.

It is clear from the above formulation that an orientation preserving home-
morphism with a periodic point cannot be fixed point free.

2.2. Identity + contraction. A map of the form F (x) = x + K(x) where
K is a contraction, is an orientation preserving homeomorphism. In fact, it is
easy to check that F is one-to-one and onto, and there exists r > 0 such that
for every ‖x‖ ≥ r we have ‖K(x)‖ < ‖x‖ (see [9]). Therefore, the homotopy
h(x, s) = x + sK(x) never vanishes on the circle C = {x ∈ R2 : ‖x‖ = r} and
the parametrizations γ(t) = r(cos(t), sin(t)) and β(t) = γ(t)+ sK(γ(t)) are both
counterclockwise.

2.3. Winding number. We say that Γ is a closed, simple, oriented Jordan
arc if there exists an injective continuous map c: [α, β) → R2 such that c is
uniformly continuous in [α, β) and c(α) = c(β) when c is extended in a continuous
manner to the closed interval [α, β] and the image of c is the curve Γ. Clearly Γ
can be regarded as the equivalence class of all parametrizations, provided that
the equivalence relation is limited to those parametrizations for which the change
of variable is increasing. Γ is said to be positively oriented if the bounded region
surrounded by Γ lies on the left hand side when Γ is traversed according to c.
Given a continuous, nowhere vanishing planar vector field w: Γ → R2, w(x) =
(u(x), v(x)) along Γ we can define the angle function

θw(x) = arctang
(

v(x)
u(x)

)
if u(x) 6= 0,

θw(x) = arctang
(

u(x)
v(x)

)
if v(x) 6= 0,

together with the additional condition θw(x) ∈ [0, 2π). Given any initial point
x0 ∈ Γ we call the winding number of the vector field w along Γ the growth,
divided by 2π, of the angle function θw(x) as x moves from the position x0 back
to it along Γ. It can be shown that the number obtained is an integer and it is
independent of the initial point x0. For more details the interested reader may
consult Amann ([1]).

A closed polygonal path P in the plane is a family of vertices V = {V1, . . . ,

Vn+1} and segments S = {s1, . . . , sn} such that Vn+1 = V1 and si joins Vi with
Vi+1, i = 1, . . . , n. We also require that no other points are shared by any pair of
segments except the vertices, with each vertex belonging only to two consecutive
segments. P is said to be positively oriented if walking along P according to its
orientation we leave the region bounded by P on our left. For each vertex Vi of
P we consider the exterior angle θi ∈ (−π, π) between the vectors Vi−1Vi and
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ViVi+1. The angle is positive (negative) if Vi+1 is to the left (right) of the half
line starting at Vi−1 and going through Vi when we walk along P following its
positive orientation.

3. Results

Before proving our result on the existence of fixed points for maps of the
form Identity+Contraction we would like to recall that Marotto ([8]) established
a result analogous to the theorem of Li–Yorke for discrete dynamical systems
in dimension higher than 1. Moreover, we would like to present an example of
a continuous map of the plane into itself with a periodic orbit of period 3 and no
periodic orbits of any other period or fixed points. First, we discuss the result
of Marotto.

A hyperbolic fixed point x0 of a differentiable map F : Rq → Rq is said to be
a snap-back repeller if there exists a point z0 in the unstable manifold of x0 and
a positive integer m such that

Fm(z0) = x0 and det(Fm
x (z0) 6= 0

For differentiable maps F of Rq into itself having a snap-back repeller, Maro-
tto established the existence of uncountably many aperiodic and unstable orbits
and of infinitely many periodic orbits of different period.

We now provide an example of a continuous map of R2 into itself which has
a periodic orbit of period 3 and no fixed points or periodic orbits of any other
period.

Example 3.1. Recall that there exists exactly one value of a ∈ (3, 4) such
that the quadratic map f(x, a) = ax(1−x) has one and only one periodic orbit of
period 3. Let us denote this value with r and let {x1, x2, x3} be the corresponding
periodic orbit of period 3. Recall that xi ∈ (0, 1), i = 1, 2, 3 and f(x, r) = x

implies that either xs1 = 0 or xs2 = 1 − 1/r. Notice that both fixed points are
in the interval [0, 1]. Define

F (x, y) = (f(x, r), |(x− x1)(x− x2)(x− x3)| exp(f(x, r)− x) + exp(y)− 1).

First, notice that the orbit (x1, 0), (x2, 0), (x3, 0) is periodic of period 3. It
is easy to check that F does not have any fixed point. In fact, since the first
component must equal either xs1 or xs2 the second component must satisfy the
equality s + exp(y) − 1 = y with s ∈ (0, 1). The equation does not have any
solution. Moreover, F does not have any periodic orbit of period different from 3.
In fact, the presence of such an orbit would require the existence of a value y

such that t+exp(y)− 1 < y with t > 0. Since this inequality cannot be satisfied
we conclude that F does not have any periodic orbit of period different from 3.

We are now ready to discuss the main theoretical result of this paper.
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Lemma 3.2. Let P be a closed polygonal path and assume that P is positively
oriented. Then the sum of its interior angles is 2π.

Proof. The result is obviously true if the polygonal path is a triangle. For
polygonal paths with more vertices the conclusion is obtained using an induc-
tion argument together with the property that the sum of the interior angles of
a triangle is π. �

Theorem 3.3. Let V1, . . . , Vn+1 be n+1 points in the plane forming a closed
polygonal path P . Let vi = ViVi+1, i = 1, . . . , n. Define the vector field
W : [0, 2n] → R2 as follows

(i) when t ∈ (2i− 2, 2i− 1) set W (t) = vi,
(ii) when t ∈ (2i− 1, 2i) set W (t) = (t− 2i + 1)vi+1 + (2i− t)vi.

Then the winding number of W with respect to P is ∓1.

Proof. Notice that W follows the direction of the edges and at each vertex
turns the corner. Clearly W (t) 6= 0 for every t ∈ [0, 2n]. Moreover, by Lemma 3.2
the algebraic sum of the angles described by W (t) as t ranges from 0 to 2n is
∓2π. Hence, the winding number of W is ∓1. �

The proof of the main result of this paper is based on two additional lemmas
of a technical nature.

Lemma 3.4. Assume that the line segment [y, y + K(y)] intersect the line
segment [x, x + K(x)]. Then the angle θ between the two oriented segments is
acute.

Proof. Let t, s > 0 be such that x + tK(x) = y + sK(y). Since

‖K(y)−K(x)‖2 = ‖K(x)‖2 + ‖K(y)‖2 − 2K(x) ·K(y)

and

‖K(x)−K(y)‖2 ≤ r2‖x− y‖2 = r2(t2‖K(x)‖2 + s2‖K(y)‖2 − 2stK(x) ·K(y)

we obtain

2K(x) ·K(y)(1− r2st) ≥ (1− r2t2)‖K(x)‖2 + (1− r2s2)‖K(y)‖2 > 0.

Therefore, the angle is acute. �

Lemma 3.5. Assume that ‖w − x‖ ≤
√

1− r2‖K(x)‖. Then for every z in
the line segment [w, x+K(x)] the angle between K(z) and x+K(x)−w is acute.

Proof. Without loss of generality we can assume that x = 0. Then z =
(1− t)w + tK(0). We have

‖K(0)− w −K(z)‖2 = ‖K(0)− w‖2 + ‖K(z)‖2 − 2K(z) · (K(0)− w).
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Moreover,

‖K(0)− w −K(z)‖2 = ‖K(0)−K(z)‖2 + ‖w‖2 − 2(K(0)−K(z)) · w
≤ r2‖z‖2 + ‖w‖2 − 2(K(0)−K(z)) · w.

Therefore

2K(z)·(K(0)−w) ≥ ‖K(0)−w‖2+‖K(z)‖2−r2‖z‖2−‖w‖2+2(K(0)−K(z))·w.

Thus, it is enough to show that

‖K(0)− w‖2 + ‖K(z)‖2 > r2‖z‖2 + ‖w‖2 + 2(K(z)−K(0)) · w.

Since ‖K(0)− w‖2 = ‖K(0)‖2 + ‖w‖2 − 2K(0) · w we must prove that

‖K(0)‖2 + ‖K(z)‖2 > r2‖z‖2 + 2K(z) · w.

From z = (1− t)w + tK(0) we derive

r2‖z‖2 = r2(1− t)2‖w‖2 + r2t2‖K(0)‖2 + 2r2t(1− t)w ·K(0)

≤ r2‖K(0)‖2
(

t2 +
(1− t)2

4
+ t(1− t)

)
.

Hence, it is enough to have

‖K(0)‖2
(

1− r2

(
t2

4
+ (1− t)2 + t(1− t)

)
+ ‖K(z)‖

)2

> 2‖K(z)‖‖w‖.

Adding to both sides ‖w‖2 we obtain

‖K(0)‖2
(

1− r2

(
t2

4
+ (1− t)2 + t(1− t)

)
+ ‖K(z)‖ − ‖w‖

)2

> ‖w‖2.

Since

‖K(0)‖2
(

1− r2

(
t2

4
+ (1− t)2 + t(1− t)

))
≥ ‖K(0)‖2(1− r2)

we conclude that the angle is acute. �

We are now in a position of proving the existence of stationary states of
dynamical systems governed by functions F such that F − I is a contraction.

Theorem 3.6. Let K be a contraction with constant k ∈ (0, 1) in an open
set U of the plane containing a finite sequence of states {x1, . . . , xn+1} of the
system F (x) = x + K(x), together with the line segments joining each state with
the next. Then there exists a point y in the convex hull of the sequence such that
K(y) = 0 provided that one of the following conditions is verified:

(i) xn+1 = x1, i.e. the sequence of states is a periodic orbit of the system,
(ii) the segment [xn, xn+1] intersects (at w) the segment [x1, x2],
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(iii) there is w ∈ [xn, xn+1] such that the segment [w, x2] ⊂ U and

‖w − x1‖ ≤
√

1− k2‖K(x1)‖.

Proof. The proof uses the winding number of the vector field K(x) along
with the following closed polygonal paths:

(j) the one made of the segments [x2, x3], . . . , [xn, xn+1 = x1], [x1, x2] in
case (i).

(jj) the one made of the segments [x2, x3], . . . , [xn, w], [w, x2] in cases (ii)
and (iii).

To make the proof simpler let us rename the vertices of the paths in the
following way:

z1 = x2, . . . , zn−1 = xn, zn = xn+1, in case (j),

z1 = x2, . . . , zn−1 = xn, zn = w, in case (jj),

and set vi = zi+1−zi, i = 1, . . . , n−1, vn = z1−zn. Define the parametrization
γ: [0, 2n] → R2 by

(1) γ(0) = γ(2n) = z1,
(2) for i = 1, . . . , n and t ∈ (2i− 2, 2i− 1) set γ(t) = zi + tvi,
(3) for i = 1, . . . , n and t ∈ (2i− 1, 2i) set γ(t) = zi.

Notice that γ describes the paths with velocity vi along the i-th edge, and stops
at each corner for exactly one unit of time.

Consider the vector fields V (t) + K(γ(t)) and W : [0, 2n] → R2 defined as in
Theorem 3.3. The homotopy F (s, t) = sV (t) + (1 − s)W (t) never vanishes. In
fact, if F (s, t) = 0 for some (s, t) then V (t) and W (t) must be opposite. This can
never happen along the edges since, by Lemmas 3.4 and 3.5, vi ·K(xi + τvi) > 0
for every τ ∈ (0, 1). It cannot happen at any vertex vi since

K(xi) · ((t− 2i + 1)vi+1 + (2i− t)vi) = (2i− t)‖vi‖2 + (t− 2i + 1)vi · vi+1 > 0.

Since F (0, t) = W (t) and F (1, t) = V (t) we conclude that V and W have the
same winding number. Consequently, the vector field V (t) must vanish in at
least one point belonging to the convex hull of the sequence {x0, . . . , xn}. �

We suspect that the inequality ‖w − x1‖ ≤
√

1− k2‖K(x1)‖ is optimal.
However, we have not been able to find examples with orbits as close as desired
to the inequality. For the map of Example 3.7 below we located orbits for which
‖w − x1‖ if about twice as large as

√
1− k2‖K(x1)‖.

Example 3.7. Let u = (x, y) and

F (u) = u + K(u) = (x + M(r(1.58− arctan(x), ry − arctan(y))
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where r ∈ (0, 1), M is a counterclockwise rotation of an angle of t radians with
t selected to achieve the desired result. The dynamical system governed by F

does not have any stationary states. In fact, the existence of such a state (x, y)
would imply

r(1.58− arctan(x)) cos(t)− (ry − arctan(y)) sin(t) = 0,

r(1.58− arctan(x)) sin(t)− (ry − arctan(y)) cos(t) = 0.

Squaring and adding the two equalities we obtain

r2(1.58− arctan(x))2 + (ry − arctan(y))2 = 0

which is clearly false.

From Theorem 3.6 we derive that all orbits of a fixed point free map F : R2 →
R2 of the form F (x) = x + K(x) where K is a contraction must be unbounded,
mimicking the analogous result we found in R. Example 1.3 below shows that
in dimension d ≥ 3 this is no longer true.

Example 3.8. Let u = (x, y) and

g(x, y, z) = (1− x2 − y2)(2 + arctan(z)), x2 + y2 ≤ 1,

g(x, y, z) = 0, x2 + y2 > 1.

Define F (u) = u + K(u) = (x, y, z) + r(M(x, y), g(x, y, z)), where M is the
rotation of Example 3.7 with t = arccos(−r/2). It can be shown that K is
a contraction if r < 0.2. Take r = 2 cos(11π/21). Then the orbit of the point
(1, 0, 0) is periodic of period 42.

Since for x2 + y2 > 0 the first two coordinates of F (u) are not fixed, all
potential fixed points must be on the z-axis. But z + g(x, y, z) = z implies
arctan(z) = −2, which is clearly impossible. For example, the orbit starting at
(0.8, 0, 2) goes to ∞ while remaining on the cylinder x2 + y2 = 0.64.

We conclude the paper with a result showing that for maps of the form
F = I +K, F (x) = x+K(x) such that K(x0) 6= 0 the orbit starting from x0 can
never reach a fixed point in finitely many steps. In other words the map does
not have eventually stationary orbits which are not stationary. Thus, in every
dimension, a map of this type cannot have a snap-back repeller.

Lemma 3.9. Assume that K(x0) 6= 0 and x is any point of the segment
joining x0 with x0 + K(x0). Then

K(x) ·K(x0) ≤
1
2
((1− k2)‖K(x0)‖2 + ‖K(x)‖2).

Proof. Obviously ‖x − x0‖2 ≤ ‖K(x0)‖2 and ‖K(x) −K(x0)‖2 ≤ k2‖x −
x0‖2. Therefore ‖K(x)−K(x0)‖2 ≤ k2‖K(x0)‖2. The claimed result follows. �
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Theorem 3.10. Assume that K(x0) 6= 0. Then the orbit starting from x0

will never reach a stationary state in finitely many steps.

Proof. From Lemma 3.5 we obtain K(x1) 6= 0 where x1 = x0 + K(x0).
Keep going. �
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