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A STRONGLY NONLINEAR NEUMANN PROBLEM
AT RESONANCE WITH RESTRICTIONS

ON THE NONLINEARITY JUST IN ONE DIRECTION

Jean Mawhin — David Ruiz

Dedicated to Andrzej Granas

Abstract. Using topological degree techniques, we state and prove new
sufficient conditions for the existence of a solution of the Neumann bound-

ary value problem

(|x′|p−2x′)′ + f(t, x) + h(t, x) = 0, x′(0) = x′(1) = 0,

when h is bounded, f satisfies a one-sided growth condition, f + h some

sign condition, and the solutions of some associated homogeneous problem

are not oscillatory. A generalization of Lyapunov inequality is proved for
a p-Laplacian equation. Similar results are given for the periodic problem.

1. Introduction

It is well known (see [4], [6]) that, if the L1-Caratheodory function f is such
that, for some µ+, µ− ∈ R,

(1.1) lim
x→∞

f(t, x)
x

= µ+, lim
x→−∞

f(t, x)
x

= µ−
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then, using topological degree, one can reduce the existence of a solution of
the Neumann problem

x′′ + f(t, x) = 0,(1.2)

x′(0) = x′(1) = 0,(1.3)

to the nonexistence of nonzero solutions of the “limit” problem

x′′ + µ+x+(t)− µ−x−(t) = 0,(1.4)

x′(0) = x′(1) = 0,(1.5)

which is related with the Fučik spectrum (see [6], [4]). Even if the limits (1.1)
are not constants, but L1-functions, it is possible to state a similar result in
the same way. Note that condition (1.1) fixes the behaviour of the function f

at ∞ and −∞. A number of papers, for example [11], [15], [3], have considered
the case in which one has restrictions only in one direction. The aim of this
paper is to give some new results and generalizations in this type of problems.
In addition we work in the more general setting of perturbations the p-Laplacian.

The hypothesis we assume may be separated into two groups: conditions of
change of sign for f (i.e. the nonlinearity crosses the zero level, which is resonant
with Neumann boundary condition), and growth restrictions in one direction.
The first type of conditions will be explained in Section 2, when we state our
main result. Notice that these conditions are weaker than those imposed in [3],
[15] or [11] (in this last paper, periodic boundary conditions are considered).
The growth restrictions generalize those given in [3]:

(1) There exists q ∈ L1(0, 1), q ≥ 0, r > 0, such that

(1.6)
f(t, x)
|x|p−2x

≤ q(t) for all x ≤ −r.

(2) The solutions of the initial value problems

(1.7)
(|x′|p−2x′)′ + q(t)|x|p−2x = 0,

x(0) = −1, x′(0) = 0 (resp. x(1) = −1, x′(1) = 0)

have no zeros in [0, 1].

The main tool used in the proof is a classical argument of continuation of
solutions based upon topological degree. Some ideas of integral conditions related
with hypothesis (1.7) are also used (see for example [10]).

It is not difficult to show (see [3, Section 2]) that if the function q is such that
the solution x of the initial value problem (1.7) vanishes in one point in (0, 1),
then our problem may have no solutions. But until now it was not known, even
when p = 2, what happens in the critical case (that is, for instance, x(1) = 0,
x(t) > 0 if t < 1). Although the paper [3] seems to deal also with this situation,
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its arguments do not work in this case. In Section 3 we prove the existence of
solution in this last case.

In Section 4 we discuss condition (1.7), trying to make it more explicit in
terms of conditions upon the function q.

2. The main result

In this section we state and prove our main result. Let us consider the
Neumann boundary value problem

(|x′|p−2x′)′ + f(t, x) + h(t, x) = 0,(2.1)

x′(0) = x′(1) = 0,(2.2)

where p ≥ 2, f, h: (0, 1)×R → R are L1-Caratheodory functions, and there exists
h ∈ L1 such that

|h(t, x)| ≤ h(t) for a.e. t ∈ (0, 1).

We write
g(t, x) = f(t, x) + h(t, x).

Theorem 2.1. Suppose that conditions (1.6), (1.7) are verified, and assume
also that the following hypotheses hold.

(1) There exists r > 0 such that

(2.3)
∫ 1

0

g(t, x1(t)) dt ≥ 0 ≥
∫ 1

0

g(t, x2(t)) dt

whenever x1, x2 ∈ W 1,p(0, 1), satisfy boundary condition (2.2), and
x1(t) > r > −r > x2(t) for all t ∈ [0, 1].

(2) There exists a nonnegative function j ∈ L1(0, 1), such that

(2.4)
∫ 1

0

j(t) dt ≤ 1 and
f(t, x)
|x|p−2x

≥ −j(t)

for all x > r.

Then, problem (2.1) has at least one solution.

Proof. Obviously, we can suppose throughout the proof that the nonneg-
ative functions q, j are not identically zero. Using the Leray–Schauder princi-
ple ([9]), we only need to prove that the solutions of the following problem

(|x′|(p−2)x′)′ + λq(t)|x|p−2x + (1− λ)g(t, x) = 0, λ ∈ [0, 1],(2.5)

x′(0) = x′(1) = 0,(2.6)

are bounded in the norm of W 1,p. By contradiction, suppose that xn is an
unbounded sequence in W 1,p of solutions of (2.5), (2.6) for λ = λn, and let
yn = xn/||xn||. Taking a convenient subsequence, we can suppose that yn ⇀ y0
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in W 1,p, yn → y0 uniformly and λn → λ0. We denote the norm if f in W 1,p

by ||f || and the uniform norm by |f |.
We define

fn(t, x) = λnq(t)|x|p−2x + (1− λn)f(t, x),

gn(t, x) = fn(t, x) + (1− λn)h(t, x) = λnq(t)|x|p−2x + (1− λn)g(t, x).

Dividing (2.5) by ‖xn‖ we see that the functions yn are solutions of the problem

(2.7)
(|y′n|p−2y′n)′ + ||xn||1−pgn(t, xn(t)) = 0,

y′n(0) = y′n(1) = 0.

Let us prove now some inequalities which will be useful later. Integrating the
differential equation in (2.7), we obtain

(2.8)
∫ 1

0

gn(t, xn(t)) dt = 0.

Multiplying the differential equation in (2.7) by yn and integrating over (0, 1)
gives

(2.9) ||xn||1−p

∫ 1

0

gn(t, xn(t))yn(t) dt =
∫ 1

0

|y′n(t)|p dt.

From (2.8), we can write

0 =
∫

xn>r

gn(t, xn(t)) dt +
∫

xn<−r

gn(t, xn(t)) dt +
∫
|xn|≤r

gn(t, xn(t)) dt.

Hence∫
xn>r

gn(t, xn(t)) dt ≤ C +
∫

xn<−r

gn(t, xn(t)) dt

≤
∫

xn<−r

|fn(t, xn(t))| dt + C ′ ≤
∫

xn<−r

q(t)|xn(t)|p1 dt + C ′.

Thus, we finally have that

(2.10)
∫

xn>r

fn(t, xn(t)) dt ≤ C ′′ +
∫ 1

0

q(t)|x−n (t)|p−1 dt.

For clarity in the exposition, the rest of the proof is divided in three steps.
Step 1. There exists tn ∈ (0, 1) such that |xn(tn)| ≤ r.
Suppose that xn(t) > r for all t ∈ (0, 1). Integrating (2.5) over (0, 1), we

have

λn

∫ 1

0

q(t)|xn(t)|p−2xn(t) dt + (1− λn)
∫ 1

0

g(t, xn(t)) dt = 0,

where λn ∈ (0, 1), q ≥ 0 and q 6≡ 0. This is a contradiction with our hypothe-
sis (2.3). If xn(t) < −r, we can argue in an analogous manner.

Observe that, in particular, we can assure the existence of a point t0 ∈ [0, 1]
such that y0(t0) = 0. This will be useful in the following.
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Step 2. y−0 6= 0.
Suppose that y−0 = 0. Recall that yn ⇀ y0 in W 1,p(0, 1) and yn → y0

uniformly. Then, from the weak lower semicontinuity of the norm, we know that

lim inf
n→∞

∫ 1

0

|y′n(t)|p dt ≥
∫ 1

0

|y′0(t)|p dt.

Taking into account formula (2.9), we have∫ 1

0

|y′n(t)|p dt = ||xn||1−p

∫ 1

0

gn(t, xn(t))yn(t) dt

≤ ||xn||1−p

{ ∫ 1

0

fn(t, xn(t))yn(t) dt + C

}
≤ ||xn||1−p

{ ∫
xn>r

fn(t, xn(t))yn(t) dt +
∫

xn<−r

fn(t, xn(t))yn(t) dt

}
+ o(1)

≤ ||xn||1−p

∫
xn>r

fn(t, xn(t))yn(t) dt +
∫

xn<−r

fn(t, xn(t))
|xn(t)|p−1

|y−n (t)|p dt + o(1).

Since fn(t, xn(t))/|xn(t)|p−1 ≤ q(t) when xn < −r, and y−n → 0, we get that the
second term of the above expression tends to zero. Thus,∫ 1

0

|y′n(t)|p dt ≤ ||xn||1−p

∫
xn>r

fn(t, xn(t))yn(t) dt + o(1)

≤ ||xn||1−p

∫
xn>r

[fn(t, xn(t))]+yn(t) dt + o(1)

≤ ||xn||1−p|yn|
∫

xn>r

[fn(t, xn(t))]+ dt + o(1) = (∗).

Notice that we have been able to consider only the positive part of fn(t, xn(t))
provided that yn(t) = xn(t)/||xn|| > r/||xn|| > 0. Now we apply the general
equality f+ = f + f− in our equation, and use formula (2.10)

(∗) = ||xn||1−p|yn|
∫

xn>r

[fn(t, xn(t))] dt +
∫

xn>r

[fn(t, xn(t))]− dt + o(1)

≤ |yn|
{ ∫ 1

0

q(t)
(x−n (t))p−1

||xn||p−1
dt + ||xn||1−p

∫
xn>r

[fn(t, xn(t))]− dt

}
+ o(1)

≤ ||xn||1−p|yn|
∫

xn>r

[fn(t, xn(t))]− dt + o(1) = (∗∗).

From (2.4), we know that if xn(t) > r, then fn(t, xn(t))/|xn(t)|p−1 ≥ −j(t),
which implies [fn(t, xn(t))]−/|xn(t)|p−1 ≤ j(t). Then

(∗∗) = |yn|
∫

xn>r

[fn(t, xn(t))]−

(xn(t))p−1
(yn(t))p−1 dt + o(1)

≤ |yn|
∫

xn>r

j(t)(yn(t))p−1 dt + o(1).



6 J. Mawhin — D. Ruiz

If now n →∞, we get

(2.11)
∫ 1

0

|y′0(t)|p dt ≤ |y0|
∫ 1

0

j(t)(y0(t))p−1 dt.

First, y0 cannot be identically zero because, if y0 is zero, the previous arguments
show that limn→∞

∫ 1

0
|y′n(t)|p dt = 0. Moreover, yn → 0 uniformly, but, by

definition, ||yn|| = 1.
From (2.11) it follows that

(2.12)
∫ 1

0

|y′0(t)|p dt ≤ |y0|p
∫ 1

0

j(t) dt,

and if the equality is verified then y0(t) = ||y0|| when t ∈ A = {t ∈ [0, 1] :
j(t) 6= 0}, which is a set with positive measure.

But, applying Hölder inequality and the mean value theorem, we obtain the
other inequality ∫ 1

0

|y′0(t)|p dt ≥
( ∫ 1

0

|y′0(t)| dt

)p

≥ |y0|p

and the equality is verified if y′0 is constant. So, we arrive again to a contradiction,
which proves that y−0 6= 0.

Step 3. End of the proof of Theorem 2.1.
If we multiply equation (2.7) by y−n , integrate, and recall the definition of gn,

we have

(2.13)
∫ 1

0

|(y−n )′(t)|p dt−
∫ 1

0

λnq(t)|y−n (t)|p + (1− λn)
g(t, xn(t))
||xn||p−1

y−n (t) dt = 0.

The idea is to pass to the limit when n →∞. Since yn ⇀ y0 in W 1,p
0 (0, 1), then

y−n ⇀ y−0 , and because of the weak lower semicontinuity of the norm, we have:

(2.14) lim inf
n→∞

∫ 1

0

|(y−n )′(t)|p dt ≥
∫ 1

0

|(y−0 )′(t)|p dt.

Now, we consider the second term of (2.13). For simplicity, we write

In(t) = λnq(t)|y−n (t)|p + (1− λn)
g(t, xn(t))
||xn||p−1

y−n (t).

We define also

An = {t ∈ (0, 1) : xn(t) ∈ [−r, 0]}, Bn = {t ∈ (0, 1) : xn(t) < −r}.

Then the second term in (2.13) can be written as follows∫ 1

0

In(t) dt =
∫

An

In(t) dt +
∫

Bn

In(t) dt = (∗∗∗).
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The first term in the above equation tends to zero as n tends to ∞. Then, we
can write

(∗∗∗) =
∫

Bn

[
λnq(t) + (1− λn)

f(t, xn(t))
|xn(t)|p−2xn(t)

]
|y−n (t)|p dt + o(1)

≤
∫ 1

0

q(t)|y−n (t)|p dt + o(1).

In conclusion, in this last step we have proved that

(2.15)
∫ 1

0

|(y−0 )′(t)|p dt ≤
∫ 1

0

q(t)|y−0 (t)|p dt.

Hypothesis (1.7) is equivalent to the following one (see [10])

(2.16)
∫ 1

0

|y′(t)|p dt ≥
∫ 1

0

q(t)|y(t)|p dt

for all y ∈ W 1,p such that y vanishes at some point, and equality holds if and
only if y = 0. Thus, we arrive to a contradiction, which ends the proof. �

Remarks. (1) The same arguments work if we have periodic instead of
Neumann boundary conditions (see [3], [11]). In this case, the hypothesis (1.7)
has to be replaced by the following one:

For each t0 ∈ [0, 1], the solutions of the initial value problem

(2.17)
(|x′|p−2x′)′ + q(t)|x|p−2x = 0,

x(t0) = 0, x′(t0) = 1,

have no zero in (t0, t0 + 1].
(We extend the function q to [0, 2] by defining q(t + 1) = q(t)).
(2) If q is a constant, then it is easily checked that hypothesis (1.7) is equiv-

alent to q < (πp/2)p (see for example [8] for the description of the spectrum of
the p-Laplacian and the definition of πp). In Section 3 we will show that, with
slightly stronger hypothesis, we can also take q = (πp/2)p.

(3) All these reasonings can be applied in the PDE case, in a bounded domain,
if p > n (that condition is necessary to assure continuity of solutions, which is
essential in the proof). In that case we should replace hypothesis (1.7) on q by
the integral condition (2.16).

3. The critical case

We now consider the following problem

(|x′(t)|p−2x′(t))′ + f(t, x(t)) = 0,(3.1)

x′(0) = x′(1) = 0,(3.2)
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where f is a L1-Caratheodory function verifying the following properties:

(1) There exists r > 0 such that

(3.3) f(t, x)x ≥ 0 if |x| ≥ r.

(2) There exists q ∈ L1(0, 1), q ≥ 0, r > 0, such that

(3.4)
f(t, x)
|x|p−2x

≤ q(t) for all x ≤ −r.

(3) The solutions of the initial value problems

(3.5)
(|x′|p−2x′)′ + q(t)|x|p−2x = 0,

x(0) = −1, x′(0) = 0 (resp. x(1) = −1, x′(1) = 0)

have no zero in [0, 1) (resp. in (0, 1]).

The condition (3.3) is slightly stronger than hypothesis (2.3), (2.4), but they
keep the same idea: the function f changes of sign in some sense. The last
condition (3.5) is equivalent to the following integral condition:

(3.6)
∫ 1

0

|y′(t)|p dt ≥
∫ 1

0

q(t)|y(t)|p dt

for all y ∈ W 1,p such that y is zero in some point, and equality holds if and only
if y is proportional to a solution of (3.5) verifying y(0)y(1) = 0.

Theorem 3.1. If the above hypotheses hold, problem (3.1), (3.2) has at least
one solution.

Proof. The idea is to come back to the functions xn and to prove that
they must be uniformly bounded from above; from this fact it is easy to obtain
a contradiction.

If we follow the arguments showed in Section 1, we get that y0 is a positive
multiple of a solution of (3.5), and verifies y0(0)y0(1) = 0. Suppose, for instance,
that y0(1) = 0. No contradiction follows now, at least, not immediately.

According to Step 1 in Section 2, we can take tn ∈ (0, 1) to be the first point
such that xn(tn) = −r. Clearly, tn → 1. Choose mn > 0 conveniently such
that mny0(tn) = −r. It is easy to show, from (3.4), that mny0(t) ≤ xn(t) for all
t ∈ [0, tn], and observe that both functions are convex in this interval. It follows
also that

(3.7) x′n(tn) ≤ mny′0(tn).

Since f is a L1-Caratheodory function, there exists C > 0 not depending on n

such that ∣∣∣∣ ∫
|xn|≤r

f(t, xn(t)) dt

∣∣∣∣ < C.
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Denote by sn > tn the first point such that x′n(sn) = 0 (observe that xn ∈
C1(0, 1) and that, by assumption, x′n(1) = 0) .

In order to obtain bounds on the function xn, let us study its derivative. If
we take t ∈ (tn, sn) arbitrary, we have

|x′n(t)|p−2x′n(t)− |x′n(tn)|p−2x′n(tn)

=
∫ t

tn

(|x′n(s)|p−2x′n(s))′ dt = −
∫ t

tn

f(s, xn(s)) ds

= −
∫
|xn(t)|≤r, t∈(tn,t)

f(s, xn(s)) dt−
∫

xn(t)>r, t∈(tn,t)

f(s, xn(s)) dt ≤ C.

From (3.7), the following inequality is then verified

x′n(t) ≤ [(mny′0(tn))p−1 + C]1/(p−1), t ∈ (tn, sn).

Since xn(tn) = −r < 0, we have that xn(t) ≤ dn(t) for all t ∈ [tn, sn], where dn

is defined as follows

dn(t) = [(mny′0(tn))p−1 + C]1/(p−1)(t− tn).

Recall that our aim is to get an upper bound (independent of n) of the
functions xn. To do that, it suffices to get a bound of the sequence:

[(mny′0(tn))p−1 + C]1/(p−1)(1− tn).

Recall that mn = −r/y0(tn); we can write the above expression as[(
−ry′0(tn)(1− tn)

y0(tn)

)p−1

+ C(1− tn)p−1

]1/(p−1)

.

Since the function y0 is convex, we have that

−y′0(tn)(1− tn)
y0(tn)

≤ 1.

Then, the functions xn are uniformly bounded from above and let H > 0 be
such a bound. We can write

0 =
∫ sn

0

f(t, xn(t)) dt =
∫ tn

0

f(t, xn(t)) dt +
∫ sn

tn

f(t, xn(t)) dt,

0 = −|x′n(tn)|p−1 +
∫ sn

tn

f(t, xn(t)) dt.

When t ∈ (tn, sn), xn(t) is always in the interval (−r, H); then, the second term
in the above expression is bounded when n → ∞. But xn is also convex in
(0, tn), and then we arrive to a contradiction

x′n(tn) ≥ xn(tn)− xn(0)
tn

=
−r − xn(0)

tn
→∞. �
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4. Non-oscillation conditions

In the previous section we have proved the existence of solution for (2.1)
and (2.2). As we have already said, we made assumptions on the change of sign
of the nonlinearity and on the boundedness of the function f when x < −r.
The aim of this section is to discuss this last condition. Actually, we are now
interested in the functions q ∈ L1(0, 1) verifying the following property:

The solution of the initial value problem

(4.1)
(|x′|p−2x′)′ + q(t)|x|p−2x = 0,

x(0) = 1, x′(0) = 0,

has no zero in [0, 1].
When p = 2, this problem has been studied since a long time ago. For more

information about this classical problem and its relations with stability, see [5],
[12]–[14], [16].

We denote A = {q ∈ L1(0, 1), q ≥ 0 : (4.1) is verified}. We are interested
in studying necessary or sufficient conditions on q to belong to A. The first
proposition is an adaptation of Theorem 5.1, of [7, Chapter XI], and is, in some
sense, a generalization of Lyapunov inequality ([2]).

Proposition 4.1. Suppose that q ∈ L1(0, 1) is nonnegative and verifies the
inequality

(4.2)
∫ 1

0

q(t)(1− t) dt ≤ 1.

Then, q ∈ A.

Proof. Given q verifying the above assumptions, take one solution x of
equation (4.1). Suppose that there exists t ∈ (0, 1] such that x(t) = 0, x(s) > 0,
for all s < t. By integrating equation (4.1), we obtain:

|x′(t)|p−2x′(t) = −
∫ t

0

q(s)|x(s)|p−2x(s) ds,

and hence

0 = x(t) = 1−
∫ t

0

[ ∫ s

0

q(r)|x(r)|p−2x(r) dr

]1/(p−1)

ds.

We apply Hölder inequality and Fubini’s theorem, to get

0 ≥ 1−
[ ∫ t

0

∫ s

0

q(r)|x(r)|p−2x(r) dr ds

]1/(p−1)

(4.3)

= 1−
[ ∫ t

0

∫ t

r

q(r)|x(r)|p−2x(r) ds dr

]1/(p−1)
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= 1−
[ ∫ t

0

q(r)|x(r)|p−2x(r)(t− r) dr

]1/(p−1)

≥ 1−
[ ∫ 1

0

q(r)(1− r) dr

]1/(p−1)

.

In the last inequality, we used the fact that x is a decreasing function and,
therefore, x(t) ≤ 1. Moreover, the equality x(t) = 1 can only hold in an interval
containing zero if q(t) = 0 in this interval. If q is not identically zero, then the
strict inequality holds in (4.3). If q = 0 the thesis (4.1) is clearly verified. �

In Proposition 4.1, we have given a sufficient condition on q to belong to A.
Now, we want to give necessary conditions, as well as to study the boundedness
of the set A. In order to do that, we define the functional

Ψr,t:A → R, q 7→
∫ t

0

|q(s)|r ds,

where t, r ∈ (0, 1]. Our approach is to find out the values of r, t for which the
range of the functional Ψr,t is bounded or not.

It seems clear that considering different values of r could be interesting; it
will give us an idea of “how much unbounded” is the set A. It is less clear why
it is interesting to consider different values of t and not only t = 1. As we shall
see, there is a qualitative difference between the values t0 ∈ (0, 1) and t0 = 1.
Namely, functions in A are allowed to have stronger singularities in t0 = 1 than
in any other point. This is suggested by intuition and by Proposition 4.1.

Proposition 4.2. Suppose that t < 1. Then, if r ≤ 1, Ψr,t is bounded.
Suppose that t = 1. Then

(1) if r < 1/3(p− 1), Ψr,t is bounded,
(2) if r ≥ 1/p, Ψr,t is not bounded.

Proof. First, we prove (1). Let t ∈ (0, 1), q ∈ A, x one solution of (4.1).
Then, q(s) can be written:

q(s) = − (|x′(s)|p−2x′(s))′

|x(s)|p−2x(s)
,

for all s ≤ t, and hence∫ t

0

|q(s)| ds = −
∫ t

0

(|x′(s)|p−2x′(s))′

|x(s)|p−2x(s)
ds.

Since the function x is concave, it is easy to prove that x(s) ≥ 1 − s for all
s ∈ [0, 1]. We substitute in the above expression and get∫ t

0

|q(s)| ds ≤ − 1
|x(t)|p−2x(t)

∫ t

0

(|x′(s)|p−2x′(s))′ ds =
|x′(t)|p−1

(1− t)p−1
.
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Using again that the function x is concave, we have

0 > x′(t) ≥ x(1)− x(t)
1− t

≥ −x(t)
1− t

≥ −1
1− t

.

Thus, we finally get a bound for the norm L1 of q, namely∫ t

0

|q(s)| ds ≤ 1
(1− t)2p−2

.

To prove (2), we recall from the proof of (4.1) that if q ∈ A and x is a solution
of (4.1) then

0 < x(1) = 1−
∫ t

0

[ ∫ s

0

q(r)|x(r)|p−2x(r) dr

]1/(p−1)

ds.

Applying again Hölder inequality and Fubini’s theorem, we get

0 < 1−
∫ t

0

∫ 1

0

q(r)1/(p−1)x(r) dr ds =
∫ 1

0

q(r)1/(p−1)x(r)(1− r) dr.

As x(r) ≥ 1− r, we have∫ 1

0

(1− r)2q(r)1/(p−1) dr < 1.

Now we apply the reverse Hölder inequality in the above expression (see [1]).
We take u ∈ (0, 1/3), v = u/(u− 1) > −1/2, and obtain

1 >

∫ 1

0

(1− r)2q(r)1/(p−1) dr ≥
( ∫ 1

0

(q(r))u/(p−1) dr

)1/u( ∫ 1

0

(1− r)2v dr

)1/v

=
( ∫ 1

0

(q(r))u/(p−1) dr

)1/u(
1

2v + 1

)1/v

.

Then, for each w ∈ (0, 1/3(p− 1)), we have( ∫ 1

0

(q(r))w dr

)1/w

< (2α + 1)(p−1)/α,

where α = w(p− 1)/(w(p− 1)− 1) > −1/2.
Finally, we will see that the functional Ψr,1 is not bounded when r = 1/p.

Let x: [0, 1] → R be a continuous function such that C∞[0, 1) and

(1) x is concave,
(2) x(0) = 1, x′(0) = 0,
(3) x(t) = (1− t)a for all t > 1/2, where a ∈ (0, 1).

We get

[|x′(t)|p−2x′(t)]′ = ap−1(a− 1)(p− 1)(1− t)(a−1)(p−1)−1,
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for all t ∈ (1/2, 1). For ε > 0, we define

(4.4) qε(t) =

 − (|x′(t)|p−2x′(t))′

|x(t)|p−2x(t)
for t ∈ [0, 1− ε],

0 for t ∈ (1− ε, 1].

It is clear, by the definition of x, that qε ∈ L1(0, 1), qε ≥ 0. Note also that if we
call xε the solution of the problem

(4.5)
(|x′|p−2x′)′ + qε(t)|x|p−2x = 0,

x(0) = 1, x′(0) = 0,

then xε(t) = x(t) for all t ∈ [0, 1 − ε], and, since x is concave, xε(t) ≥ x(t) for
all t > 1− ε. It follows that qε ∈ A and∫ 1

0

|qε(t)|1/p dt ≥
∫ 1−ε

1/2

|qε(t)|1/p dt = K

∫ 1−ε

1/2

(1− t)−1 dt →∞

when ε → 0. Here K stands for a positive constant, and, in this last step of the
proof, we have used the concrete expression of x(t) when t > 1/2. �

Remark. In the remaining cases, we think that the functional should remain
bounded, but we have not been able to prove it.

Acknowledgements. The second author visited the Department of Math-
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