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UPPER AND LOWER SOLUTIONS FOR PROBLEMS
WITH SINGULAR SIGN CHANGING NONLINEARITIES

AND WITH NONLINEAR BOUNDARY DATA

Donal O’Regan

Dedicated to Andrzej Granas with admiration

Abstract. An upper and lower solution approach is presented for singular

boundary value problems. In particular our nonlinearity may be singular

in its dependent variable and is allowed to change sign.

1. Introduction

The boundary value problem y′′ +
(

t2

32y2
− λ2

8

)
= 0 0 < t < 1,

y(0) = 0, 2y′(1)− (1 + v)y(1) = 0 0 < v < 1 and λ > 0,

arises in nonlinear mechanics. The problem models the large deflection mem-
brane response of a spherical cap [3], [6]. Here Sr = y/t is the radial stress at
points on the membrane, d(ρSr)/dρ is the circumferential stress (ρ = t2), λ is a
load geometry parameter and v is the Poisson ratio.

Motivated by the above example this paper discusses the more general boun-
dary value problem{

y′′ + q(t)f(t, y) = 0 for 0 < t < 1,

y(0) = y′(1) + ψ(y(1)) = 0,
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where our nonlinearity f is allowed to change sign. Notice that f may not be a
Carathéodory function [2], [4] because of the singular behaviour of the y variable
i.e. f may be singular at y = 0. Examples are

f(t, y) = t−1e
1
y − (1− t)−1 and f(t, y) =

g(t)
yσ

− h(t), σ > 0

which correspond to Emden–Fowler equations; here g(t) > 0 for t ∈ (0, 1) and
h(t) may change sign. There are two main approaches in the literature to es-
tablishing existence for singular problems. The first approach is based on an
argument initiated by Habets and Zanolin [5], and the second approach is based
on ideas presented by Agarwal, O’Regan and Lakshmikantham [1]. In this pa-
per we combine both approaches to obtain a very general existence theory. The
results presented are easy to state and apply in practice. However the proofs
involved are quite technical. It is also worth remarking here that other types
of boundary data and other types of singular problems could be discussed using
the ideas in this paper. To illustrate this we also discuss the problem

1
p
(py′)′ + q(t)f(t, y) = 0 for 0 < t < 1,

lim
t→0+

p(t)y′(t) = y(1) = 0,

in this paper. Here p ∈ C[0, 1]∩C1(0, 1) with p > 0 on (0, 1). We do not assume∫ 1

0
(1/p(s)) ds <∞ but rather

∫ 1

0
(1/p(s))

∫ s

0
p(x)q(x) dx ds <∞.

2. Existence theory

In this section we first discuss the boundary value problem

(1)

{
y′′ + q(t)f(t, y) = 0 for 0 < t < 1,

y(0) = y′(1) + ψ(y(1)) = 0,

where our nonlinearity f may change sign. We begin with our main result.

Theorem 2.1. Let n0 ∈ {1, 2, . . . } be fixed and suppose the following condi-
tions are satisfied:

f : [0, 1]× (0,∞) → R is continuous,(2)

q ∈ C(0, 1) with q > 0 on (0, 1) and tq ∈ L1[0, 1],(3)

ψ: R → R is continuous(4) 
let n ∈ {n0, n0 + 1, . . . } and associated with each nwe have

a constant ρn such that {ρn} is a nonincreasing sequence

with limn→∞ ρn = 0 and such that

for 1/2n+1 ≤ t ≤ 1 we have q(t)f(t, ρn) ≥ 0,

(5)
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there exists a function α ∈ C[0, 1] ∩ C1(0, 1] ∩ C2(0, 1)

with α(0) = 0, α′(1) + ψ(α(1)) ≤ 0, α > 0 on (0, 1]

such that q(t)f(t, α(t)) + α′′(t) ≥ 0 for t ∈ (0, 1),

(6)

and

(7)


there exists a function β ∈ C[0, 1] ∩ C1(0, 1] ∩ C2(0, 1)

with β(t) ≥ α(t) and β(t) ≥ ρn0 for t ∈ [0, 1],

β′(1) + ψ(β(1)) ≥ 0 with q(t)f(t, β(t)) + β′′(t) ≤ 0 for t ∈ (0, 1)

and q(t)f(1/2n0+1, β(t)) + β′′(t) ≤ 0 for t ∈ (0, 1/2n0+1).

Then (1) has a solution y ∈ C[0, 1] ∩ C1(0, 1] ∩ C2(0, 1) with y(t) ≥ α(t) for
t ∈ [0, 1].

Proof. For n = n0, n0 + 1, . . . let

en =
[

1
2n+1

, 1
]

and θn(t) = max
{

1
2n+1

, t

}
, 0 ≤ t ≤ 1

and

fn(t, x) = max{f(θn(t), x), f(t, x)}.

Next we define inductively

gn0(t, x) = fn0(t, x),

gn(t, x) = min{fn0(t, x), . . . , fn(t, x)}, n = n0 + 1, n0 + 2, . . .

Notice

f(t, x) ≤ . . . ≤ gn+1(t, x) ≤ gn(t, x) ≤ . . . ≤ gn0(t, x)

for (t, x) ∈ (0, 1)× (0,∞) and

gn(t, x) = f(t, x) for (t, x) ∈ en × (0,∞).

Without loss of generality assume ρn0 ≤ mint∈[1/3,1] α(t). Fix n ∈ {n0, n0 +
1, . . . }. Let tn ∈ [0, 1/3] be such that

α(tn) = ρn and α(t) ≤ ρn for t ∈ [0, tn].

Define

αn(t) =

{
ρn if t ∈ [0, tn],

α(t) if t ∈ (tn, 1].

We begin with the boundary value problem

(8)

{
y′′ + q(t)g∗n0

(t, y) = 0 for 0 < t < 1,

y(0) = ρn0 , y
′(1) + ψ∗n0

(y(1)) = 0,
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where

g∗n0
(t, y) =


gn0(t, αn0(t)) + r(αn0(t)− y) y ≤ αn0(t),

gn0(t, y) αn0(t) ≤ y ≤ β(t),

gn0(t, β(t)) + r(β(t)− y) y ≥ β(t),

with

ψ∗n0
(z) =


ψ(β(1)) z > β(1),

ψ(z) αn0(1) = α(1) ≤ z ≤ β(1),

ψ(α(1)) z < αn0(1) = α(1)
and r: R → [−1, 1] the radial retraction defined by

r(u) =

{
u for |u| ≤ 1,

u/|u| for |u| > 1.

From Schauder’s fixed point theorem we know [1] that (8) has a solution yn0 ∈
C[0, 1] ∩ C1(0, 1] ∩ C2(0, 1). We first show

(9) yn0(t) ≥ αn0(t), t ∈ [0, 1].

Suppose (9) is not true. Then yn0 − αn0 has a negative absolute minimum at
τ ∈ (0, 1]. Now since yn0(0)− αn0(0) = 0 there exists τ0 ∈ [0, τ) with

(10) yn0(τ0)− αn0(τ0) = 0 and yn0(t)− αn0(t) < 0, t ∈ (τ0, τ).

Now either

(11) yn0(t)− αn0(t) < 0, t ∈ (τ0, 1]

or

(12)

{
∃τ1 > τ with yn0(t)− αn0(t) < 0 for t ∈ (τ0, τ1)

and yn0(τ1)− αn0(τ1) = 0.

(note (11) occurs if τ = 1).
Case 1. Suppose (12) occurs. Then

yn0(τ0)− αn0(τ0) = yn0(τ1)− αn0(τ1) = 0

and
yn0(t)− αn0(t) < 0, t ∈ (τ0, τ1).

We now claim

(13) (yn0 − αn0)
′′(t) < 0 for a.e. t ∈ (τ0, τ1).

If (13) is true then

yn0(t)− αn0(t) = −
∫ τ1

τ0

G(t, s)[y′′n0
(s)− α′′n0

(s)] ds for t ∈ (τ0, τ1)
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with

G(t, s) =


(s− τ0)(τ1 − t)

τ1 − τ0
for τ0 ≤ s ≤ t,

(t− τ0)(τ1 − s)
τ1 − τ0

for t ≤ s ≤ τ1,

so we have
yn0(t)− αn0(t) > 0 for t ∈ (τ0, τ1),

a contradiction. As a result if we show that (13) is true then we obtain a
contradiction in this case. To see (13) we will show

(yn0 − αn0)
′′(t) < 0 for t ∈ (τ0, τ1) provided t 6= tn0 .

Fix t ∈ (τ0, τ1) and assume t 6= tn0 . Then

(yn0−αn0)
′′(t) = −[q(t){gn0(t, yn0(t)) + r(αn0(t)− yn0(t))}+ α′′n0

(t)]

=

{
−[q(t){gn0(t, α(t)) + r(α(t)− yn0(t))}+ α′′(t)] if t ∈ (tn0 , 1),

−[q(t){gn0(t, ρn0) + r(ρn0 − yn0(t))}] if t ∈ (0, tn0).

(a) t ≥ 1/2n0+1. Then since gn0(t, x) = f(t, x) for x ∈ (0,∞), from (5)
and (6), we have

(yn0−αn0)
′′(t)

=

{
−[q(t){f(t, α(t)) + r(α(t)− yn0(t))}+ α′′(t)] if t ∈ (tn0 , 1),

−[q(t){f(t, ρn0) + r(ρn0 − yn0(t))}] if t ∈ (0, tn0),

< 0.

(b) t ∈ (0, 1/2n0+1). Then since

gn0(t, x) = max
{
f

(
1

2n0+1
, x

)
, f(t, x)

}
we have gn0(t, x) ≥ f(t, x) and gn0(t, x) ≥ f(1/2n0+1, x) for x ∈ (0,∞). From
(5) and (6) we have

(yn0−αn0)
′′(t)

≤

{
−[q(t){f(t, α(t)) + r(α(t)− yn0(t))}+ α′′(t)] if t ∈ (tn0 , 1),

−[q(t){f(1/2n0+1, ρn0) + r(ρn0 − yn0(t))}] if t ∈ (0, tn0),

< 0.

Now subcase (a) and (b) guarantee that (13) holds, so we obtain a contradiction.
Case 2. Suppose (11) occurs. Then

yn0(τ0)− αn0(τ0) = 0 and yn0(t)− αn0(t) < 0, t ∈ (τ0, 1].

Essentially the same reasoning as in Case 1 guarantees that

(14) (yn0 − αn0)
′′(t) < 0 for t ∈ (τ0, τ1) provided t 6= tn0 .
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Notice (14) implies αn0 − yn0 is convex on (τ0, 1); to see this we need only note
that (αn0 − yn0)

′
−(tn0) ≤ (αn0 − yn0)

′
+(tn0) since α′(tn0) ≥ 0 (note if α′(tn0) < 0

then there exists δ > 0 with α(t) > α(tn0) = ρn0 for t ∈ [tn0 − δ, tn0), a
contradiction). Thus

α′n0
(1)− y′n0

(1) ≥ [αn0(1)− yn0(1)]− [αn0(τ0)− yn0(τ0)]
1− τ0

≥ αn0(1)− yn0(1) = α(1)− yn0(1).

This inequality could also be obtained using the mean value theorem for integrals
on [tn0 , 1] and [τ0, tn0 ] if tn0 ∈ (τ0, 1) (again noting that (αn0 − yn0)

′
−(tn0) ≤

(αn0 − yn0)
′
+(tn0)). Now since yn0(1) < αn0(1) we have

0 < αn0(1)− yn0(1) ≤ α′n0
(1)− y′n0

(1) = α′(1) + ψ∗n0
(yn0(1))

≤ −ψ(α(1)) + ψ∗n0
(yn0(1)) = −ψ(α(1)) + ψ(α(1)) = 0,

a contradiction.
So in both Cases 1 and 2 we have a contradiction. Thus (9) holds. In addition

since α(t) ≤ αn0(t) for t ∈ [0, 1] we have

(15) α(t) ≤ αn0(t) ≤ yn0(t) for t ∈ [0, 1].

Next we show

(16) yn0(t) ≤ β(t) for t ∈ [0, 1].

If (16) is not true then yn0 − β would have a positive absolute maximum at
say τ0 ∈ (0, 1]. We first discuss the case τ0 ∈ (0, 1), so (yn0 − β)′(τ0) = 0 and
(yn0 − β)′′(τ0) ≤ 0. There are two cases to consider, namely τ0 ∈ [1/2n0+1, 1)
and τ0 ∈ (0, 1/2n0+1).

(a) τ0 ∈ [1/2n0+1, 1). Then yn0(τ0) > β(τ0) together with gn0(τ0, x) =
f(τ0, x) for x ∈ (0,∞) gives

(yn0 − β)′′(τ0) = − q(τ0)[gn0(τ0, β(τ0)) + r(β(τ0)− yn0(τ0))]− β′′(τ0)

= − q(τ0)[f(τ0, β(τ0)) + r(β(τ0)− yn0(τ0))]− β′′(τ0) > 0

from (7), a contradiction.
(b) τ0 ∈ (0, 1/2n0+1). Then yn0(τ0) > β(τ0) together with

gn0(τ0, x) = max
{
f

(
1

2n0+1
, x

)
, f(τ0, x)

}
for x ∈ (0,∞) gives

(yn0 − β)′′(τ0) = − q(τ0)
[

max
{
f

(
1

2n0+1
, β(τ0)

)
, f(τ0, β(τ0))

}
+ r(β(τ0)− yn0(τ0))

]
− β′′(τ0) > 0
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from (7), a contradiction.
It remains to discuss the case τ0 = 1. If τ0 = 1 there exists δ, 0 ≤ δ < 1 with

yn0(t)− β(t) > 0 for t ∈ (δ, 1] and yn0(δ)− β(δ) = 0. Now for t ∈ (δ, 1) we have

(yn0 − β)′′(t) = −q(t)[gn0(t, β(t)) + r(β(t)− yn0(t))]− β′′(t).

Fix t ∈ (δ, 1). If t ∈ (0, 1/2n0+1) then

(yn0 − β)′′(t) = − q(t)
[

max
{
f

(
1

2n0+1
, β(t)

)
, f(t, β(t))

}
+ r(β(t)− yn0(t))

]
− β′′(t) > 0,

whereas, if t ∈ [1/2n0+1, 1), then

(yn0 − β)′′(t) = −q(t)[f(t, β(t)) + r(β(t)− yn0(t))]− β′′(t) > 0.

Thus
(yn0 − β)′′(t) > 0 for t ∈ (δ, 1),

so yn0 −β is convex on (δ, 1). As a result y′n0
(1)−β′(1) ≥ yn0(1)−β(1) and this

together with β′(1) ≥ −ψ(β(1)) gives

0 < yn0(1)− β(1) ≤ y′n0
(1)− β′(1) = −ψ∗n0

(yn0(1))− β′(1)

≤ −ψ∗n0
(yn0(1)) + ψ(β(1)) = −ψ(β(1)) + ψ(β(1)) = 0,

a contradiction. Thus (16) holds, so we have

(17) α(t) ≤ αn0(t) ≤ yn0(t) ≤ βn0(t) for t ∈ [0, 1].

Also notice that ψ∗n0
(yn0(1)) = ψ(yn0(1)). Next we consider the boundary value

problem

(18)

{
y′′ + q(t)g∗n0+1(t, y) = 0 for 0 < t < 1,

y(0) = ρn0+1, y
′(1) + ψ∗n0+1(y(1)) = 0,

here

g∗n0+1(t, y) =


gn0+1(t, αn0+1(t)) + r(αn0+1(t)− y), y ≤ αn0+1(t),

gn0+1(t, y), αn0+1(t) ≤ y ≤ yn0(t),

gn0+1(t, yn0(t)) + r(yn0(t)− y), y ≥ yn0(t),

and

ψ∗n0+1(z) =


ψ(yn0(1)), z > yn0(1),

ψ(z), αn0+1(1) = α(1) ≤ z ≤ yn0(1),

ψ(α(1)), z < αn0+1(1) = α(1).
Now Schauder’s fixed point theorem guarantees that (18) has a solution yn0+1 ∈
C[0, 1] ∩ C1(0, 1] ∩ C2(0, 1). We first show

(19) yn0+1(t) ≥ αn0+1(t), t ∈ [0, 1].
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Suppose (19) is not true. Then yn0+1−αn0+1 has a negative absolute minimum
at τ ∈ (0, 1]. There exists τ0 ∈ [0, τ) with

yn0+1(τ0)− αn0+1(τ0) = 0 and yn0+1(t)− αn0+1(t) < 0, t ∈ (τ0, τ).

Now either

(20) yn0+1(t)− αn0+1(t) < 0, t ∈ (τ0, 1]

or

(21)

{
∃τ1 > τ with yn0+1(t)− αn0+1(t) < 0 for t ∈ (τ0, τ1)

and yn0+1(τ1)− αn0+1(τ1) = 0.

Case 1. Suppose (21) occurs. If we show

(yn0+1 − αn0+1)′′(t) < 0 for a.e. t ∈ (τ0, τ1),

then as before we obtain a contradiction. Fix t ∈ (τ0, τ1) and assume t 6= tn0+1.
Then

(yn0+1 − αn0+1)′′(t)

=

{
−[q(t){gn0+1(t, α(t)) + r(α(t)− yn0+1(t))}+ α′′(t)] if t ∈ (tn0+1, 1),

−[q(t){gn0+1(t, ρn0+1) + r(ρn0+1 − yn0+1(t))}] if t ∈ (0, tn0+1).

(a) t ≥ 1/2n0+2. Then since gn0+1(t, x) = f(t, x) for x ∈ (0,∞), from (5)
and (6), we have

(yn0+1 − αn0+1)′′(t)

=


−[q(t){f(t, α(t)) + r(α(t)− yn0+1(t))}+ α′′(t)] if t ∈ (tn0+1, 1),

−[q(t){f(t, ρn0+1) + r(ρn0+1 − yn0+1(t))}]
if t ∈ (0, tn0+1),

< 0.

(b) t ∈ (0, 1/2n0+2). Then since gn0+1(t, x) equals

min
{

max
{
f

(
1

2n0+1
, x

)
, f(t, x)

}
,max

{
f

(
1

2n0+2
, x

)
, f(t, x)

}}
we have gn0+1(t, x) ≥ f(t, x) and

gn0+1(t, x) ≥ min
{
f

(
1

2n0+1
, x

)
, f

(
1

2n0+2
, x

)}
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for x ∈ (0,∞). Thus we have

(yn0+1 − αn0+1)′′(t)

≤


−[q(t){f(t, α(t)) + r(α(t)− yn0+1(t))}+ α′′(t)] if t ∈ (tn0+1, 1),

−[q(t){min{f(1/2n0+1, ρn0+1), f(1/2n0+2, ρn0+1)}
+r(ρn0+1 − yn0+1(t))}] if t ∈ (0, tn0+1),

< 0,

from (5) and (6) (note f(1/2n0+1, ρn0+1) ≥ 0 since f(t, ρn0+1) ≥ 0 for t ∈
[1/2n0+2, 1] and 1/2n0+1 ∈ (1/2n0+2, 1)).

Now subcase (a) and (b) guarantee that we have a contradiction.
Case 2. Suppose (20) occurs. Then

yn0+1(τ0)− αn0+1(τ0) = 0 and yn0+1(t)− αn0+1(t) < 0, t ∈ (τ0, 1].

Essentially the same reasoning as in Case 1 guarantees that

(yn0+1 − αn0+1)′′(t) < 0 for t ∈ (τ0, τ1) provided t 6= tn0+1.

As a result αn0+1−yn0+1 is convex on (τ0, 1), so α′n0+1(1)−y′n0+1(1) ≥ αn0+1(1)−
yn0+1(1). Thus

0 < αn0+1(1)− yn0+1(1) ≤ α′n0+1(1)− y′n0+1(1)

= α′(1) + ψ∗n0+1(yn0+1(1)) ≤ −ψ(α(1)) + ψ(α(1)) = 0,

a contradiction.
So in both Cases 1 and 2 we have a contradiction. Thus (19) holds, so

(22) α(t) ≤ αn0+1(t) ≤ yn0+1(t) for t ∈ [0, 1].

Next we show

(23) yn0+1(t) ≤ yn0(t) for t ∈ [0, 1].

If (23) is not true then yn0+1 − yn0 would have a positive absolute maximum at
say τ0 ∈ (0, 1]. Suppose first τ0 ∈ (0, 1), so

(yn0+1 − yn0)
′(τ0) = 0 and (yn0+1 − yn0)

′′(τ0) ≤ 0.

Then yn0+1(τ0) > yn0(τ0) together with gn0(τ0, x) ≥ gn0+1(τ0, x) for x ∈ (0,∞)
gives

(yn0+1− yn0)
′′(τ0)

= − q(τ0)[gn0+1(τ0, yn0(τ0)) + r(yn0(τ0)− yn0+1(τ0))]− y′′n0
(τ0)

≥ − q(τ0)[gn0(τ0, yn0(τ0)) + r(yn0(τ0)− yn0+1(τ0))]− y′′n0
(τ0)

= − q(τ0)[r(yn0(τ0)− yn0+1(τ0))] > 0,
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a contradiction. It remains to discuss the case τ0 = 1. If τ0 = 1 then there exists
δ, 0 ≤ δ < 1 with yn0+1(t)− yn0(t) > 0 for t ∈ (δ, 1] and yn0+1(δ)− yn0(δ) = 0.
Now for t ∈ (δ, 1) we have

(yn0+1 − yn0)
′′(t) = − q(t)[gn0+1(t, yn0(t)) + r(yn0(t)− yn0+1(t))]− y′′n0

(t)

≥ − q(t)[gn0(t, yn0(t)) + r(yn0(t)− yn0+1(t))]− y′′n0
(t)

= − q(t)[r(yn0(t)− yn0+1(t))] > 0.

Thus yn0+1− yn0 is convex on (δ, 1). As a result y′n0+1(1)− y′n0
(1) ≥ yn0+1(1)−

yn0(1) and so

0 < yn0+1(1)− yn0(1) ≤ y′n0+1(1)− y′n0
(1)

= −ψ∗n0+1(yn0+1(1)) + ψ(yn0(1)) = −ψ(yn0(1)) + ψ(yn0(1)) = 0,

a contradiction. Thus (23) holds.
Now proceed inductively to construct yn0+2, yn0+3, . . . . as follows. Suppose

we have yk for some k ∈ {n0 + 1, n0 + 2, . . . } with αk(t) ≤ yk(t) ≤ yk−1(t) for
t ∈ [0, 1]. Then consider the boundary value problem

(24)

{
y′′ + q(t)g∗k+1(t, y) = 0, 0 < t < 1,

y(0) = ρk+1, y
′(1) + ψ∗k+1(y(1)) = 0;

here

g∗k+1(t, y) =


gk+1(t, αk+1(t)) + r(αk+1(t)− y) y ≤ αk+1(t),

gk+1(t, y) αk+1(t) ≤ y ≤ yk(t),

gk+1(t, yk(t)) + r(yk(t)− y) y ≥ yk(t),

and

ψ∗k+1(z) =


ψ(yk(1)) z > yk(1),

ψ(z) αk+1(1) = α(1) ≤ z ≤ yk(1),

ψ(α(1)) z < αk+1(1) = α(1).
Now Schauder’s fixed point theorem guarantees that (24) has a solution yk+1 ∈
C[0, 1] ∩ C1(0, 1] ∩ C2(0, 1), and essentially the same reasoning as above yields

(25) α(t) ≤ αk+1(t) ≤ yk+1(t) ≤ yk(t) for t ∈ [0, 1].

Thus for each n ∈ {n0, n0 + 1, . . . .} we have

(26) α(t) ≤ yn(t) ≤ yn−1(t) ≤ . . . ≤ yn0(t) ≤ β(t) for t ∈ [0, 1].

Lets look at the interval [1/2n0+1, 1]. Let

Rn0 = sup{|q(x)f(x, y)| : x ∈ [1/2n0+1, 1] and α(x) ≤ y ≤ yn0(x)}.

Now, since y′n(1) = −ψ∗n(yn(1)), we have

|y′n(1)| ≤ sup
z∈[α(1),β(1)]

|ψ(z)| ≡ K0
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and so

|y′n(t)| ≤ K0 +Rn0

∫ 1

1/2n0+1
q(x) dx for t ∈ [1/2n0+1, 1].

As a result

(27) {yn}∞n=n0+1 is a bounded, equicontinuous family on [1/2n0+1, 1].

The Arzela–Ascoli theorem guarantees the existence of a subsequence Nn0 of
integers and a function zn0 ∈ C[1/2n0+1, 1] with yn converging uniformly to zn0

on [1/2n0+1, 1] as n→∞ through Nn0 . Similarly

{yn}∞n=n0+1 is a bounded, equicontinuous family on [1/2n0+2, 1],

so there is a subsequence Nn0+1 of Nn0 and a function zn0+1 ∈ C[1/2n0+2, 1]
with yn converging uniformly to zn0+1 on [1/2n0+2, 1] as n→∞ through Nn0+1.
Note zn0+1 = zn0 on [1/2n0+1, 1] since Nn0+1 ⊆ Nn0 . Proceed inductively to
obtain subsequences of integers

Nn0 ⊇ Nn0+1 ⊇ . . . ⊇ Nk ⊇ . . .

and functions zk ∈ C[1/2k+1, 1] with yn converging uniformly to zk on [1/2k+1, 1]
as n→∞ through Nk, and zk = zk−1 on [1/2k, 1].

Define a function y: [0, 1] → [0,∞) by y(x) = zk(x) on [1/2k+1, 1] and y(0) =
0. Notice y is well defined and α(t) ≤ y(t) ≤ yn0(t)(≤ β(t)) for t ∈ (0, 1). Next
fix t ∈ (0, 1) and let m ∈ {n0, n0 + 1, . . . } be such that 1/2m+1 < t < 1. Let
N∗

m = {n ∈ Nm : n ≥ m}. Now yn, n ∈ N∗
m, satisfies the integral equation

yn(t) = yn(1) + ψ(yn(1))(1− t)−
∫ 1

t

(x− t)q(x)f(x, yn(x)) dx.

Let n→∞ through N∗
m to obtain

zm(t) = zm(1) + ψ(zm(1))(1− t)−
∫ 1

t

(x− t)q(x)f(x, zm(x)) dx.

That is

y(t) = y(1) + ψ(y(1))(1− t)−
∫ 1

t

(x− t)q(x)f(x, y(x)) dx.

We can do this argument for each t ∈ (0, 1), so y′′(t) + q(t)f(t, y(t)) = 0 for
t ∈ (0, 1) and y′(1) = −ψ(y(1)). It remains to show y is continuous at 0. Let
ε > 0 be given. Now since limn→∞ yn(0) = 0 there exists n1 ∈ {n0, n0 + 1, . . . }
with yn1(0) < ε/2. Since yn1 ∈ C[0, 1] there exists δn1 > 0 with

yn1(t) < ε/2 for t ∈ [0, δn1 ].

Now for n ≥ n1 we have, since {yn(t)} is nonincreasing for each t ∈ [0, 1],

α(t) ≤ yn(t) ≤ yn1(t) < ε/2 for t ∈ [0, δn1 ].
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Consequently

α(t) ≤ y(t) ≤ ε/2 < ε for t ∈ (0, δn1 ]

and so y is continuous at 0. �

Suppose (2)–(6) hold and in addition asume the following conditions are
satisfied:

(28) q(t)f(t, y) + α′′(t) > 0 for (t, y) ∈ (0, 1)× {y ∈ (0,∞) : y < α(t)}

and

(29)


there exists a function β ∈ C[0, 1] ∩ C1(0, 1] ∩ C2(0, 1)

with β(t) ≥ ρn0 for t ∈ [0, 1], β′(1) + ψ(β(1)) ≥ 0

with q(t)f(t, β(t)) + β′′(t) ≤ 0 for t ∈ (0, 1) and

q(t)f(1/2n0+1, β(t)) + β′′(t) ≤ 0 for t ∈ (0, 1/2n0+1).

Also assume either

(30a) β(t) ≥ α(1)

or

(30b) if x > 0, y > 0 with x− y ≤ ψ(y)− ψ(x), then x− y ≤ 0

occur. Then the result in Theorem 2.1 is again true. This follows immediately
from Theorem 2.1 once we show (7) holds i.e. once we show β(t) ≥ α(t) for
t ∈ [0, 1]. Suppose it is false. Then α − β would have a positive absolute
maximum at say τ0 ∈ (0, 1) (if (30a) occurs) or τ0 ∈ (0, 1] (if (30b) occurs).
Suppose τ0 ∈ (0, 1) for the moment, so (α − β)′(τ0) = 0 and (α − β)′′(τ0) ≤ 0.
Now α(τ0) > β(τ0) and (28) implies

q(τ0)f(τ0, β(τ0)) + α′′(τ0) > 0.

This together with (29) yields

(α− β)′′(τ0) = α′′(τ0)− β′′(τ0) ≥ α′′(τ0) + q(τ0)f(τ0, β(τ0)) > 0,

a contradiction. It remains to discuss τ0 = 1 (only if (30b) occurs). In this case
there exists δ, 0 ≤ δ < 1, with α(t)− β(t) > 0 for t ∈ (δ, 1] and α(δ)− β(δ) = 0.
In addition for t ∈ (δ, 1) we have (as above), (α− β)′′(t) ≥ 0 so α− β is convex
on (δ, 1). As a result α′(1)− β′(1) ≥ α(1)− β(1) so

0 < α(1)− β(1) ≤ α′(1)− β′(1) ≤ −ψ(α(1)) + ψ(β(1)).

From (30b) we have α(1)− β(1) ≤ 0, a contradiction.
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Corollary 2.2. Let n0 ∈ {1, 2, . . . .} be fixed and suppose (2)–(6), (28) and
(29) hold. Also assume either (30a) or (30b) occurs. Then (1) has a solution
y ∈ C[0, 1] ∩ C1(0, 1] ∩ C2(0, 1) with y(t) ≥ α(t) for t ∈ [0, 1].

Remark 2.1. Assumption (30b) will play a crucial role when we discuss the
membrane response of a spherical cap. For example if ψ(x) = −a0x for a0 < 1,
then clearly (30b) holds.

Remark 2.2. In (5) one could replace 1/2n+1 ≤ t ≤ 1 with

(a) 0 ≤ t ≤ 1− 1/2n+1,
(b) 1/2n+1 ≤ t ≤ 1− 1/2n+1, or
(c) 0 ≤ t ≤ 1,

provided (7) is appropriately adjusted. For example if case (b) occurs then (7)
is replaced by

there exists a function β ∈ C[0, 1] ∩ C1(0, 1] ∩ C2(0, 1)

with β(t) ≥ α(t) and β(t) ≥ ρn0 for t ∈ [0, 1],

β′(1) + ψ(β(1)) ≥ 0 with q(t)f(t, β(t)) + β′′(t) ≤ 0 for t ∈ (0, 1)

and q(t)f(1/2n0+1, β(t)) + β′′(t) ≤ 0 for t ∈ (0, 1/2n0+1)

and q(t)f(1− 1/2n0+1, β(t)) + β′′(t) ≤ 0 for t ∈ (1− 1/2n0+1, 1).

Next we discuss how to construct the lower solution α in (6) and (28). Sup-
pose the following conditions are satisfied:

(31)



let n ∈ {n0, n0 + 1, . . . } and associated with each n

we have a constant ρn such that {ρn} is a decreasing sequence

with limn→∞ ρn = 0 and there exists aconstant k0 > 0

such that for 1/2n+1 ≤ t ≤ 1 and 0 < y ≤ ρn

we have q(t)f(t, y) ≥ k0,

and

(32)

{
ψ(u) = −a0u, 0 ≤ a0 < 1, and there exists τ ∈ (0, 1)

with f(t, y) > 0 for t ∈ [τ, 1) and 0 < y ≤ ρn0/1− a0(1− τ).

Then the result in O’Regan ([7]) guarantees that there exists a α satisfying (6)
and (28) with α(t) ≤ ρn0 for t ∈ [0, 1].

Combining the above with Corollary 2.2 gives the following existence result.

Corollary 2.3. Let n0 ∈ {1, 2, . . . .} be fixed and suppose (2)–(4), (29),
(31) and (32) hold. Then (1) has a solution y ∈ C[0, 1]∩C1(0, 1]∩C2(0, 1) with
y(t) > 0 for t ∈ (0, 1].

Next we present an example which illustrates how easily the theory can be
applied in practice.
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Example (Membrane response of a spherical cap). The boundary value
problem

(33)


y′′ +

(
t2

32y2
− λ2

8

)
= 0 for 0 < t < 1,

y(0) = 0, y′(1)− (1 + v)
2

y(1) = 0 for 0 < v < 1, λ > 0,

has a solution y ∈ C[0, 1] ∩ C1(0, 1] ∩ C2(0, 1) with y(t) > 0 for t ∈ (0, 1].
To see this we will apply Corollary 2.3 with

q ≡ 1, ψ(z) =
−(1 + v)z

2
and a0 =

(1 + v)
2

.

Choose and fix n0 ∈ {1, 2, . . . } with

(34)
1

2n0/2
≤ (1− v)(8 + λ2)1/2

2λ(1 + v)
and

1
2n0+2

≤ 4λ2

8 + λ2
.

Let

ρn =
1

2n+2(8 + λ2)1/2
and k0 = 1.

Clearly (2), (3) and (4) hold. Also notice for n ∈ {1, 2, . . . }, 1/2n+1 ≤ t ≤ 1 and
0 < y ≤ ρn that we have

q(t)f(t, y) ≥ 1
(32)22n+2y2

− λ2

8
≥ 1

(32)22n+2ρ2
n

− λ2

8
=

(8 + λ2)
8

− λ2

8
= 1,

so (31) is satisfied. Now let

β(t) =
t

2λ
+ 2(n0+4)/2ρn0 =

t

2λ
+

1
2n0/2(8 + λ2)1/2

.

Clearly β(t) ≥ ρn0 , for t ∈ [0, 1], and

β′(1) + ψ(β(1)) =
1
2λ

− (1 + v)
2

(
1
2λ

+
1

2n0/2(8 + λ2)1/2

)
=

(1− v)
4λ

− (1 + v)
2

1
2n0/2(8 + λ2)1/2

≥ 0

from (34). Also for t ∈ (0, 1) we have

β′′(t) + q(t)f(t, β(t)) =
t2

32
(
t

2λ
+

1
2n0/2(8 + λ2)1/2

)2 −
λ2

8

≤ t2(4λ2)
32t2

− λ2

8
= 0,
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whereas, for t ∈ (0, 1/2n0+1), we have

β′′(t) + q(t)f
(

1
2n0+1

, β(t)
)

=
t2

(32)22n0+2

(
t

2λ
+

1
2n0/2(8 + λ2)1/2

)2 −
λ2

8

≤ (8 + λ2)
(32)2n0+2

− λ2

8
≤ 0

from (34). Thus (29) holds. It remains to check (32). Let τ = 1/(1− a0). Now
if t ∈ [τ, 1) and 0 < y ≤ ρn0/1− a0(1− τ) then we have

f(t, y) ≥ τ2

32y2
− λ2

8
≥ τ2

32
[1− a0(1− τ)]2

ρ2
n0

− λ2

8

≥ τ2(1− a0)2

32ρ2
n0

− λ2

8
=
τ2(1− a0)2(8 + λ2)22n0+4

32
− λ2

8

≥ τ2(1− a0)2
(

1 +
λ2

8

)
− λ2

8
=

(
1 +

λ2

8

)
− λ2

8
= 1.

Thus (29) holds. Existence of a solution to (33) is now guaranteed from Corol-
lary 2.3.

Many other types of boundary data and other types of singular problems
could be discussed using the ideas in this paper. To illustrate this we consider
the boundary value problem

(35)

{
(1/p)(py′)′ + q(t)f(t, y) = 0 0 < t < 1,

limt→0+ p(t)y′(t) = y(1) = 0.

A slight modification of the arguments in Theorem 2.1 together with the ideas in
Theorem 3.1 of [1] yields the following result. The details are left to the reader.

Theorem 2.4. Let n0 ∈ {1, 2, . . . } be fixed and suppose the following condi-
tions are satisfied:

f : [0, 1]× (0,∞) → R is continuous,(36)

p ∈ C[0, 1] ∩ C1(0, 1) with p > 0 on (0, 1),(37)

q ∈ C(0, 1) with q > 0 on (0, 1),(38) ∫ 1

0

p(s)q(s) ds <∞ and
∫ 1

0

1
p(t)

∫ t

0

p(s)q(s) ds <∞,(39)

(40)


let n ∈ {n0, n0 + 1, . . . } and associated with each n

we have a constant ρn such that {ρn} is a nonincreasing

sequence with limn→∞ ρn = 0 and such that

for 1/2n+1 ≤ t ≤ 1 we have p(t)q(t)f(t, ρn) ≥ 0,
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(41)


∃ a function α ∈ C[0, 1] ∩ C2(0, 1) with pα′ ∈ AC[0, 1],

limt→0+ p(t)α′(t) ≥ 0, α(1) = 0, α > 0 on [0, 1)

such that p(t)q(t)f(t, α(t)) + (p(t)α′(t))′ ≥ 0 for t ∈ (0, 1),

and

(42)



there exists a function β ∈ C[0, 1] ∩ C2(0, 1), pβ′ ∈ AC[0, 1],

with β(t) ≥ α(t) and β(t) ≥ ρn0 for t ∈ [0, 1],

limt→0+ p(t)β′(t) ≤ 0 with p(t)q(t)f(t, β(t)) + (p(t)β′(t))′ ≤ 0

for t ∈ (0, 1) and p(t)q(t)f(1/2n0+1, β(t)) + (p(t)β′(t))′ ≤ 0

for t ∈ (0, 1/2n0+1).

Then (35) has a solution y ∈ C[0, 1]∩C2(0, 1) with py′ ∈ AC[0, 1] and y(t) ≥ α(t)
for t ∈ [0, 1].
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