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A NONSTANDARD DESCRIPTION
OF RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS

Thomas Elsken

Abstract. We develop a nonstandard description of Retarded Functional

Differential Equations which consist of a formally finite iteration of vec-

tors. We present two applications where the new description gives explicit
formulae. The classical approach in these cases only offers a method to

construct the solution.

1. Introduction

Differential equations where the derivative at a time t depends on the state
before that time, so called Functional Differential Equations, and the important
special case of Retarded Functional Differential Equations (RFDE), play an im-
portant role in modeling (for some examples see e.g. [7]). The theory of RFDE’s
is much more complicated than the theory of ODE’s. This is due to the fact, that
the initial value lies in a functional space, so solving RFDE becomes an infinite
dimensional problem.

We will show, how using methods from Nonstandard Analysis it is possible to
transform this infinite dimensional problem into a formally finite one. (For those
not familiar with Nonstandard Analysis see, for example, [1] or [8]. A very good
introduction is the German book by Landers and Rogge [9].) Formally finite in
this context means hyper-finite, that is finite in the nonstandard sense. The key

2000 Mathematics Subject Classification. 34K05, 26E35.

Key words and phrases. Retarded functional differential equations, nonstandard analysis.
Partially supported by the Universidad de los Andes, Bogotá, Colombia.
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idea is to sample continuous functions at infinitesimal time steps. A function
is thus represented by a hyper-finite vector, and solving the RFDE becomes
an iteration of hyper-finite vectors.

The description one gets this way is an elegant and very intuitive one. More
important still, it opens the theory of RFDE’s to applications of many classical
results. In particular, the characteristic equation for a linear autonomous RFDE
becomes a polynomial.

The aim of this paper is a first presentation and development of the non-
standard approach. We shall show how to transform an RFDE, and that this
technique works for a quite general class of RFDE. We develop the linear theory
more in detail, in particular with respect to eigenvalues and eigenfunctions. Al-
though the aim of this paper is the presentation of the new approach, rather than
applications thereof, we have included two examples of new standard results.
Namely explicit formulas for the decomposition with respect to eigenfunctions,
and for exchanging eigenvalues. Both are straightforward applications of our
description.

To our knowledge Nonstandard Analysis has not been applied to RFDE be-
fore. But the idea of discretizing functions to represent them by hyper-finite
vectors is not new. Ben El Mamoune, Benoit and Lobry looked at these rep-
resentations in [2]. Discretizations of PDE have also been used. In [5] Delfini
and Lobry discretize the space variable to obtain a hyper-finite system of ODE
describing a PDE.

The paper is organized as follows: in Section 2 we develop the nonstandard
description for the general nonlinear case. In Section 3 we contemplate the linear
case, followed by the linear autonomous case in Section 4. The one-dimensional
linear autonomous case and the conclusion come last in Sections 5, respectively 6.

For those not accustomed with Nonstandard Analysis, we will very briefly
mention the notation we use, and the most basic features.

To practically every mathematical object and property there is a correspond-
ing one in the nonstandard universe. Typically they have the same name pre-
ceded by a “∗”. For example [a, b[, R, N, f :D → S become ∗[a, b[, which is
contained in ∗R, ∗N and a function ∗f : ∗D → ∗S, respectively. (Apart from cer-
tain identifications the ∗-version can be thought of as the equivalence class with
respect to an ultra-filter of a sequence of the object in question.) The ∗-version
of a set contains the set itself, so N ⊂ ∗N and R ⊂ ∗R. Both ∗N and ∗R are
bigger than their counterparts: they contain infinite elements, and ∗R also in-
finitesimals. If the difference between two numbers a, b ∈ ∗R is infinitesimal, we
say a is infinitely close to b, and write a ≈ b. If the number a is finite, there
is exactly one real number c ∈ R which is infinitely close to a, it is called the
standard part of a: c = ◦a.
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The ∗-versions of properties are defined transferring the standard defini-
tions to the nonstandard setting. For example, a function f is ∗-continuous
at a point x0, if and only if for all 0 < ε ∈ ∗R there is a 0 < δ ∈ ∗R, such that
|x − x0| < δ implies |f(x) − f(x0)| < ε (it should be ∗| · | and ∗ <, but usually
one does not put the “∗” in these cases). Another example is finite. It becomes
∗-finite, or, as it is also called, hyper-finite: a set S is hyper-finite, if and only
if there is an internal bijection between S and {1, . . . , N}, for an N ∈ ∗N. “In-
ternal” is a somewhat more technical term. It assures the nonstandard objects
behave “well”, that is similar to standard objects. We don’t have the space to de-
fine “internal” properly, but as a rule of thumb everything is internal, which does
not depend on one of the following in its definition: finite, infinite, infinitesimal,
an infinite standard set seen as a subset of a nonstandard set. If an object is not
internal, it is called external. A few examples are: N = {n ∈ ∗N : n is finite},
{x ≈ 0}, [0, 1] ⊂ ∗R (as opposed to ∗[0, 1]) are all external sets.

Internal objects behave similar to standard ones, because we can apply trans-
fer to them. Transfer means, that a formal sentence is true in the standard uni-
verse if and only if its starred version is true in the nonstandard one. To make
this precise, we would have to define the formal language and the starred ver-
sion of a formula in this language, which is not possible within the scope of this
article. Most standard results can be transfered. For example, ∗R is an ordered
field (but not complete), ∗RM , M ∈ ∗N, is a ∗-finite vector-space, endowed with
the obvious nonstandard versions of the normal rules and operations of a finite
dimensional vector-space. Another example are combinatorial formulas over N,
which are valid in a natural sense in ∗N.

Applying transfer to internal sets we get some useful rules. For example, an
internal ∗-bounded set A ⊂ ∗R has a supremum, a hyper-finite set B ⊂ ∗R con-
tains its maximum, and if an internal set contains arbitrarily large finite numbers,
it also contains an infinite number. The latter is called overflow. There is an ana-
log of it called underflow, which says, that if an internal set contains arbitrarily
small infinite positive numbers, it also contains a finite one. Similar rules hold for
infinitesimal/finite numbers. A common mistake is to apply these rules to exter-
nal sets, where they don’t hold (e.g. {x ≈ 0} is bounded but has no supremum).

Before we start with the nonstandard description, let us introduce a few
notations we will be using throughout the paper.

r > 0 will be a fixed real number. For I a real interval let C(I, Rd), d ∈ N \
{0}, denote the space of continuous functions from I into Rd with the supremum
norm. If I = [−r, 0] we just write C = C([−r, 0], Rd). For a continuous function
x ∈ C([−r, T ], Rd), xt ∈ C denotes the restriction to [t − r, t] of x(t), xt(θ) =
x(t + θ): [−r, 0] → Rd, for 0 ≤ t ≤ T .
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Let Tf > 0 and Ω ⊂ C be open. For any continuous f : [0, Tf [×Ω → Rd and
Φ ∈ Ω we contemplate the RFDE

(1) x′(t) = f(t, xt), t > 0, x0 = Φ.

Note, that we do not assume f to be Lipschitzian in its second argument, so we
do not have in general uniqueness of the solution of (1).

Finally, for the nonstandard description, M,N ∈ ∗N \N will be fixed hyper-
finite natural numbers with M/N ≈ r.

2. The general case

We want to represent continuous functions by hyper-finite vectors in order
to be able to describe the solution of equation (1) by a formally finite iteration
of vectors. We start by specifying what we mean by representing a function:

Definition 1. Let I ⊂ R be an interval with endpoints a < b. Fix two
hyper-finite natural numbers M̃, Ñ ∈ ∗N \ N with M̃/Ñ ≈ b − a. For any
x = (x1, . . . , xd)t ∈ C(I, Rd) and internal Y = (y0, . . . , y−fM+1

)t ∈ ∗RdfM , we

say Y represents x, and write Y
∧= x, if the following holds:

if j ∈ {0, . . . ,−M̃ + 1} is such, that b + ◦(j/Ñ) ∈ I, then yj =
(yj,1, . . . , yj,d)t satisfies yj ≈ x(b + ◦(j/Ñ)), i.e. yj,l ≈ xl(b + ◦(j/Ñ))
for all l = 1, . . . , d .

We have chosen the unusual notation Y = (y0, y−1, . . . , y−fM+1
)t because we

think of the index as (infinitesimal) time steps.
It is clear, that we can represent complex-valued functions in the same way,

and also functions defined on an infinite interval. Only that in the latter case
one has to choose another “starting point” if b = ∞.

Note also, that every continuous function can be represented this way, for
example by yj = ∗x(b + j/Ñ), since x is continuous if and only if ∗x(t) ≈ x(t0)
for all t ≈ t0. But not all vectors Y ∈ RdfM represent continuous functions.
A necessary and sufficient condition is the following:

If j, l ∈ {0, . . . ,−M̃ + 1}, j/Ñ ≈ l/Ñ and b + ◦(j/Ñ) ∈ I, then yj ≈ yl.
It is easy to see, that this condition is necessary. It is sufficient, because

yj ≈ yl for j/Ñ ≈ l/Ñ allows to define a function by x(t) := ◦(yj), for j/Ñ ≈
b− t ∈ I.

We want to solve a differential equation, and derivatives can be approximated
by ∆x/∆t, where we can use as an infinitesimal time step 1/N . This quotient
can give an iterative way to construct approximations yn to the solution (as
in the numerical Euler method). So, if we started with a vector Y ∈ ∗RdM

representing a function xt ∈ C, we could linearly join the points (t + j/N, yj),
j = 0, . . . ,−M + 1 to get a ∗continuous function, apply ∗f to it, to get the
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new approximation, which would be the first component of a new vector, the
others just being shifted copies of the old one. Thus we would get an iteration
of vectors, where each one would represent the solution xt ∈ C of equation (1)
for a certain time t. Only that this method is to restrictive. We can change ∗f

slightly and still the resulting vectors represent the solution. This freedom of
choosing a (internal) G “infinitely close to” f will be important later on. In this
context “infinitely close to” means the following:

Definition 2. Let f , M , N as above and

S = {Y ∈ ∗RdM : there exists Φ ∈ Ω, Y
∧= Φ}.

G: {n/N : n ∈ ∗N} × ∗RdM → ∗Rd is called infinitely close to f if and only if it
is internal and

◦G(n/N, Y ) = f(◦(n/N),Φ)

for all ◦(n/N) ∈ [0, Tf [ and Y ∈ S representing Φ ∈ Ω.

Now we are able to state how solving the RFDE (1) can be transformed into
an iteration by representing functions by hyper-finite vectors:

Proposition 1. Let Φ ∈ Ω ⊂ C, Ω open, r, Tf > 0, f : [0, Tf [ × Ω → Rd

continuous, M,N ∈ ∗N \ N, M/N ≈ r, and G: {n/N : n ∈ ∗N} × ∗RdM → ∗Rd

infinitely close to f . Assume Y0 = (y0, . . . , y−M+1)t ∧= Φ ∈ Ω. Then Yn =
(yn, . . . , yn−M+1)t ∈ ∗RdM defined by:

yn = yn−1 +
1
N

G

(
n− 1

N
, (yn−1, . . . , yn−M )t

)
,

or equivalently, with Y ′
n = (yn, . . . , yn−M+2)t ∈ ∗Rd(M−1)

Yn =
(

yn−1 + 1
N G((n− 1)/N, Yn−1)

Y ′
n−1

)
is well defined for 0 < n < Nβ, where β > 0 is a real number. For 0 ≤ t =
◦(n/N) < β, Yn represents a function xt ∈ C. The function x ∈ C([−r, β[, Rd)
we get this way is a solution of the RFDE (1) on [0, β[.

Proof. We will proceed in three steps: in the first one we show yn to be
defined for n big enough, in the second we prove that yn represents a continuous
function xt, and in the last one, that the resulting function x(t) solves the equa-
tion (1). The proof we get is at the same time an existence prove for equation (1).

For the first step we use a simple a priori estimate, valid (at least) for
n/N ≈ 0, i.e. for infinitesimal times, to show existence of yn for these n. Then
an overflow argument extends the existence up to a real time β > 0.

We claim that for (fixed) n/N ≈ 0: (a) yn is defined and (b)

(2) ‖yn − yn−1‖∞ ≤ 1 + ‖f(0,Φ)‖∞
N

.
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We prove this by induction over n, which is allowed since all entities involved (Y0,

G, (a) and (b)) are internal. Indeed (a) and (b) hold for n = 1, and assuming
them for 0 < j ≤ n we see, that yn ≈ y0 ≈ Φ(0), hence Yn

∧= Φ, so G(n/N, Yn)
is defined and ◦G(n/N, Yn) = f(0,Φ). This gives the existence of yn+1, and

‖yn+1 − yn‖∞ =
∥∥∥∥ 1

N
G

(
n

N
, Yn

)∥∥∥∥
∞

<
1
N

(‖f(0,Φ)‖∞ + 1)

and (b) holds for n + 1 too.
The claim has been proven, and (a) and (b) hold for all n/N ≈ 0. But the

set of all n, for which yn exists and (2) holds, is internal, hence by overflow there
is a real β > 0, such that yn exists and satisfies (2) for all 0 < n < Nβ.

To prove the second step is easy. (2) implies yn ≈ yl for all n/N ≈ l/N ,
n, l < Nβ. Thus Yn represents a function xt. It is really the restriction xt of
a real function x(t), as defined before, because there is a shift in the definition
of Yn with respect to Yn−1.

For the third step – namely x(t) is a solution of the RFDE (1) for 0 < t < β

– let 0 < n and t = ◦(n/N) < β.We have

x(t) ≈ yn = yn−1 +
1
N

G

(
n− 1

N
,Yn−1

)
= y0 +

1
N

n−1∑
j=0

G

(
j

N
, Yj

)
≈ y0 +

1
N

n−1∑
j=0

∗f

(
j

N
, ∗xj/N

)

≈ Φ(0) +
∫ t

0

f(s, xs) ds,

where in the second but last step we used that G is infinitely close to f , so that

G

(
j

N
, Yj

)
≈ f

( ◦( j

N

)
, x◦(j/N)

)
≈ ∗f

( ◦( j

N

)
, x◦(j/N)

)
≈ ∗f

(
j

N
, ∗xj/N

)
and {‖G(j/N, Yj)− ∗f(j/N, xj/N )‖∞ : 0 ≤ j ≤ n− 1} as a hyper-finite internal
set assumes its maximum.

Since in the above expression we have reals on both sides we have equality:

x(t) = Φ(0) +
∫ t

0

f(s, xs) ds.

x(t) is a solution of (1) follows immediately. �

The proof of Proposition 1 is very elementary. For a more restricted class
of RFDE’s, one could prove this proposition simply by transfer. Indeed, the
iteration describing the RFDE is nothing more than the numerical Euler-method
for solving differential equations with an infinitesimal step width. Hence, if this
method converges, by transfer the points yn lie infinitely close to the solution.
(For more details on the Euler method see for example [4].)
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Our Proposition 1 resembles the Stroboscopy Theorem of Benoit in [1], which
has been formulated for ODE’s and which, roughly stated, says the following.
Given a sampling (tn, yn), 0 ≤ n ≤ n0, where the time steps are infinitesimal
(tn − tn−1 ≈ 0), and (yn − yn−1)/(tn − tn−1) ≈ f(yn−1), then (yn0 , . . . , y0)
represents a function x(t) which is a solution of the ODE ẋ = f(x).

Proposition 1 gives only a local solution. Of course, if Yn represents a function
in Ω for all 0 < n < Nβ, i.e. if xβ ∈ Ω, then one can apply Proposition 1 again
to extend the interval of existence.

We will always assume β in Proposition 1 to be maximal, i.e. there is no
continuation of the solution x(t) on any interval containing [0, β[ (β = ∞ is
allowed).

Example 1. (i) If f(t, xt) = g(
∫ 0

−r
xt(θ) dθ), g a continuous function, then

it is possible to choose G(n/N, Y ) = ∗g((1/N)
∑M−1

j=0 y−j). Indeed, if Y =
(y0, . . . , y−M+1)t represents a continuous function Φ, then the sum is infinitely
close to the integral over Φ, hence g being continuous, this G is infinitely close
to f .

(ii) If τ1, . . . , τm ∈ [−r, 0] are fixed numbers, g is continuous, and f(t, xt) =
g(xt(τ1), . . . , xt(τm)), then it is possible to choose

G(n/N, Yn) = ∗g(yn1 , . . . , ynm),

where ni/N ≈ τi for all i.

3. The linear case

In this section we will assume f to be defined on R× C and to be linear, so
we get the equation

(3) x′(t) = L(t)xt =
∫ 0

−r

d[η(t, θ)]x(t + θ), t > 0,

where the d × d matrix function η(t, θ) is measurable and of bounded variation
in θ on [−r, 0] for each t ≥ 0. Furthermore, we assume there is a function
m: R+ → R, Lebesgue integrable on each compact set, such that

Var[−r,0]η(t, · ) ≤ m(t).

We then have a global unique solution x: [−r,∞[ → Rd of equation (3) (see e.g.
[7, Theorem 1.1, Chapter 6]).

With the remark after Proposition 1, we can assume Yn defined in this propo-
sition to exist for all n ∈ ∗N, and to represent xt, if n/N ≈ t is finite. Note,
however, that we assume the existence of a solution on the whole of R only for
convenience, everything works also for a function f defined only for t ∈ [0, Tf [.
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We are going to have a closer look at the properties of the iteration describing
an RFDE introduced in Proposition 1 in the special case of a linear f .

Of course, we want the map G mentioned in the proposition to share this
linearity. So we start by defining a special linear Gf . Subsequently we will give
sufficient conditions for how one can change a linear G describing the solution
of equation (3) without loosing this property.

To any Y = (y0, . . . , y−M+1)t ∈ ∗RdM we want to assign a ∗continuous
function P (Y ): ∗[− r, 0] → ∗Rd. We do this by joining linearly in ∗R× ∗Rd the
points (j/N, yj), for all −r ≤ j/N ≤ 0, and (−r, y−M+1). Given a similar set
of points in R × Rd and joining them linearly, we get a graph of a continuous
function. Hence in our case we get a ∗-continuous function defined on ∗[−r, 0],
to which we can apply ∗f .

Define Gf by

(4) Gf (n/N, Y ) := ∗f(n/N,P (Y )).

If Y
∧= Φ ∈ C, then P (Y )(θ) ≈ ∗Φ(θ) for all θ ∈ ∗[−r, 0], and the continuity of f

implies ∗f(n/N,P (Y )) ≈ f(◦(n/N),Φ) for n/N ≈ t ∈ R. Hence Gf is infinitely
close to f , and we can apply Proposition 1.

For fixed n ∈ N the linear yn 7→ (yn + (1/N)G(n/N, yn), yn . . . , yn−M+2)t

can be represented by a matrix, say Af,n ∈ ∗RdM×dM . If 0, Ed, Lj,n ∈ ∗Rd×d,
0 ≤ j ≤ M − 1, 0 and Ed are the 0-matrix and the unit-matrix, respectively, we
can write

(5) Af,n =


Ed + 1

N Lf,0,n
1
N Lf,1,n

1
N Lf,2,n · · · 1

N Lf,M−1,n

Ed 0 0 · · · 0
0 Ed 0 · · · 0
...

...
...

. . .
...

0 0 0 Ed 0


dM×dM

We summarize what we just did in.

Proposition 2. Let f be as in equation (3), Gf and Af,n be as in (4),
resp. (5). Then for any Φ ∈ C, Φ ∧= Y0 ∈ ∗RdM the iteration

Yn = Af,n−1Yn−1, n > 0

solves equation (3) in the sense, that for n/N ≈ t ∈ R we have Yn
∧= xt,

and x ∈ C([−r,∞[, Rd) is a solution of (3). We will call any An for which
above iteration solves (3) (in the sense of Proposition 1) a describing matrix of
equation (3), and say that the corresponding iteration describes this RFDE. If
Kt = ‖f(t, · )‖∞, then for n/N ≈ t, Lf,j,n = (Lf,j,n,k,l)1≤k,l≤d,

(6)
◦(

max
1≤k≤d

M−1∑
j=0

d∑
l=1

|Lf,j,n,k,l|
)
≤ lim sup

τ→t
Kτ .
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Furthermore, if An ∈ ∗RdM×dM is an arbitrary describing matrix of (3), then
it has the same form as Af,n, namely as in (5) with matrix-coefficients Lj,n =
(Lj,n,k,l)1≤k,l≤d, 0 ≤ j ≤ M − 1. These coefficients satisfy for n/N ≈ t

(7)
◦(

max
1≤k≤d

M−1∑
j=0

d∑
l=1

|Lj,n,k,l|
)
≥ Kt.

Also
∑M−1

j=0 ‖Lj,n‖∞ is finite for these n.

Proof. We have already shown everything but the inequality (6) and the
conclusions concerning An. To show (6) fix n ∈ ∗N, n/N ≈ t ∈ R, then

max
1≤k≤d

M−1∑
j=0

d∑
l=1

|Lf,j,n,k,l| = ‖Gf (n/N, · )‖∞ ≤ ‖∗f(n/N, · )‖∞ · ‖P‖∞

and ◦‖∗f(n/N, · )‖∞ ≤ lim supτ→t Kτ implies (6).
If An corresponds to a G(n/N, · ) in Proposition 1, then Yn+1 − Yn =

(1/N)G(n/N, Yn)e1 and An is as in (5).∑M−1
j=0 ‖Lj,n‖∞ has to be finite. Otherwise, let y−j ∈ ∗Rd be such, that

‖y−j‖∞ = 1, ‖Lj,ny−j‖∞ = ‖Lj,n‖∞.
∑M−1

j=0 ‖Lj,n‖∞ infinite implies, there is

a k0 ∈ {1, . . . , d}, such that
∑M−1

j=0 |
∑d

l=1 Lj,n,k0,ly−j,l| is infinite. Choosing the
right sign of y−j we see, that

M−1∑
j=0

∣∣∣∣ d∑
l=1

Lj,n,k0,ly−j,l

∣∣∣∣ =
M−1∑
j=0

d∑
l=1

Lj,n,k0,ly−j,l

is infinite, and

Ỹ =
1∑M−1

j=0

∑d
l=1 Lj,n,k0,ly−j,l

(y0, . . . , y−M+1)

satisfies: Ỹ
∧= Φ ≡ 0 and G(n/N, Ỹ ) 6≈ 0. This is a contradiction to G being

infinitely close to f .
To show the inequality (7), let 1 > ε > 0 (in R) and choose an x ∈ C such that

‖x‖∞ = 1 and ‖f(t, x)‖∞ ≥ (1− ε)‖f(t, · )‖∞. With Y
∧= x and n/N ≈ t we get

◦‖G(n/N, Y )‖∞ = ‖f(t, x)‖∞ ≥ (1− ε)‖f(t, · )‖∞ = (1− ε)Kt

and (7) follows immediately. �

In the last inequality of Proposition 2 we can have a strict greater. Indeed,
the next lemma will make clear, that

∑M−1
j=0 ‖Lj,n‖∞ can be arbitrarily large

in R.
We now come to the question of how a describing matrix An can be changed.

Lemma 1 gives two ways to change the Lj,n, later (see Lemma 6) we will give
a necessary and sufficient condition for two describing matrices of the same
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autonomous RFDE, which involves the behavior of the describing matrix A on
a certain set.

Lemma 1. For Ln = (L0,n, . . . , LM−1,n) ∈ ∗Rd×dM , n ∈ ∗N, such that the
resulting G is internal, let An(Ln) denote the matrix as in (5). Let Y0 = Ỹ0

∧=
Φ ∈ C and construct for Ln, L̃n sequences

Yn+1 = An(Ln)Yn, Ỹn+1 = An(L̃n)Ỹn for n ∈ ∗N.

If for arbitrary finite n0/N , there is a Kn0 ∈ R, such that for all 0 ≤ n ≤ n0 we
have

∑M−1
j=0 ‖Lj,n‖∞ ≤ Kn0 , and if L̃n satisfies one of the following conditions:

(i)
∑M−1

j=0 ‖L̃j,n − Lj,n‖∞ = Cn ≈ 0, for all finite n/N ,
(ii) for each n, n/N finite, there are a θ = θ(n) ∈ [−r, 0] and finitely many

0 ≤ j1 < . . . < jm ≤ M − 1, ◦(jl/N) = θ, for all 1 ≤ l ≤ m = m(n),
L̃j,n = Lj,n for j ∈ {0, . . . , M − 1} \ {j1, . . . , jm}, L̃j,n − Lj,n is finite
for j ∈ {j1, . . . , jm} and

M−1∑
j=0

L̃j,n − Lj,n =
m∑

l=1

L̃jl,n − Ljl,n ≈ 0,

then Ỹn ≈ Yn for finite n/N . In particular, if in this case Yn represents a solu-
tion xt, then Ỹn represents xt too.

Roughly stated Lemma 1 says: one can change (for a fixed time n) all coeffi-
cients Lj,n by infinitesimal amounts, if the sum of the absolute changes remains
infinitesimal. Or one can change a finite number of coefficients which correspond
to a fixed real time (all j such that j/N ≈ θ ∈ [−r, 0]) by finite amounts, pro-
vided the sum of the changes (including signs) is infinitesimal. Of course, both
techniques can be combined and applied any finite number of times.

Proof. We show, that Yn ≈ ỸN for all 0 ≤ n ≤ n0, for any fixed n0, n0/N

finite.
Let δj,n = L̃j,n − Lj,n, for 0 ≤ n ≤ n0, and n0/N ≈ t0 ∈ R.

Ỹn+1 = An(L̃n)Ỹn

=

An(Ln) +
1
N


δ0,n · · · δM−1,n

0 · · · 0
...

. . .
...

0 · · · 0


 (Yn + (Ỹn − Yn))

= Yn+1 + An(Ln)(Ỹn − Yn) +
1
N

M−1∑
j=0

δj,nỹn−je1.

Note, that
∑M−1

j=0 ‖Lj,n‖∞ ≤ Kn0 implies ‖An‖∞ ≤ 1 + Kn0/N . Note also, that
wlog we can assume Kn0 > 0.
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Proof that condition (i) is sufficient. The set {Cn : 0 ≤ n ≤ n0} is hyper-
finite, hence it has a maximal element, say C, and C ≈ 0.

‖Ỹn+1 − Yn+1‖∞ ≤ 1
N

M−1∑
j=0

‖δj,nỹn−j‖∞ +
(

1 +
Kn0

N

)
‖Ỹn − Yn‖∞

≤ Cn

N
‖Ỹn‖∞ +

(
1 +

Kn0

N

)
‖Ỹn − Yn‖∞

≤ C

N
‖Yn‖∞ +

(
1 +

C + Kn0

N

)
‖Ỹn − Yn‖∞

≤ 2
C

N
max

−r≤t≤t0
‖x(t)‖∞︸ ︷︷ ︸

=:δ/N

+
(

1 +
C + Kn0

N

)
‖Ỹn − Yn‖∞

≤ δ

N

n0∑
n=0

(
1 +

C + Kn0

N

)n

=
δ

N

1− ((1 + (C + Kn0)/N)N )(n0+1)/N

1− (1 + (C + Kn0)/N)
≤ δ(eK0t0 − 1)

C + Kn0

.

Since δ ≈ 0 we have Ỹn+1 ≈ Yn+1.
Proof that condition (ii) is sufficient. Let δn := max{‖δj,n‖∞ : 0 ≤ j ≤

M − 1} (exists, because Ln and L̃n are internal), and j(n) ∈ {0, . . . ,−M + 1}
such that j(n)/N ≈ θ(n), and the set {j(n) : 0 ≤ n ≤ n0} is internal. We have

‖Ỹn+1 − Yn+1‖∞ ≤ 1
N

∥∥∥∥ M−1∑
j=0

δj,nỹn−j

∥∥∥∥
∞

+
(

1 +
Kn0

N

)
‖Ỹn − Yn‖∞

≤ 1
N

∥∥∥∥ m∑
l=1

δjl,nyn−j(n)

∥∥∥∥
∞

+
1
N

∥∥∥∥ m∑
l=1

δjl,n(yn−jl
− yn−j(n))

∥∥∥∥
∞

+
1
N

∥∥∥∥ m∑
l=1

δjl,n(ỹn−jl
− yn−jl

)
∥∥∥∥
∞

+
(

1 +
Kn0

N

)
‖Ỹn − Yn‖∞.

Since all objects involved are internal, the following maxima exist:

jmax = max{|jl − j(n)| : 1 ≤ l ≤ m(n), 0 ≤ n ≤ n0}

δ(1) =2 max
−r≤t≤t0

‖x(t)‖∞ max
0≤n≤n0

∥∥∥∥ m(n)∑
l=1

δjl,n

∥∥∥∥
∞

,

δ(2) = max
0≤n≤n0

{ m(n)∑
l=1

‖δjl,n‖∞
}

·max{‖yl1 − yl2‖∞ : |l1 − l2| ≤ jmax, −M + 1 ≤ l1, l2 ≤ n0},



164 T. Elsken

δ(3) = max
0≤n≤n0

{ m(n)∑
l=1

‖δjl,n‖∞
}

.

We get

‖Ỹn+1 − Yn+1‖∞ ≤ δ(1) + δ(2)

N
+

(
1 +

δ(3) + Kn0

N

)
‖Ỹn − Yn‖∞,

and keeping in mind δ(1) ≈ 0 ≈ δ(2), δ(3) finite, we can conclude the proof as in
the former case. �

An easy example to illustrate Lemma 1 is the following:

Example 2. Each of the following M × M matrices describes the same
RFDE x′(t) = x(t− 1), t > 0:

1 0 · · · 0 1
N

1 0 · · · · · · 0
0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0

 ,


1 0 · · · 0 2

N
−1
N

1 0 · · · · · · · · · 0
0 1 0 · · · · · · 0
...

...
. . . . . . . . .

...
0 · · · 0 1 0

 ,


1 + 1

N2
1

N2 · · · 1
N2

1
N + 1

N2

1 0 · · · · · · 0
0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0

 .

4. The linear autonomous case

In this section we assume the same conditions on f as in the former section,
with additionally L being independent on t. That is we contemplate the linear
autonomous RFDE

(8) x′(t) = Lxt =
∫ 0

−r

d[η(θ)]x(t + θ) for t > 0.

Proposition 2 states that in this case there is a matrix

(9) A =


E + L0

N
L1
N · · · · · · LM−1

N

E 0 · · · · · · 0
0 E 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 E 0

 ∈ ∗RdM×dM

which generates the describing sequence Yn = AnY0, n > 0, for initial value
Y0

∧= Φ ∈ C. As a comment, note that A is not compact as defined in [2],
although we shall see later, that it behaves very well.
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By Proposition 2 we have

(10)
M−1∑
j=0

‖Lj‖∞ ≤ K ∈ R.

Let henceforth K denote this bound (but note that K depends on Lj , not only
on the RFDE (8)).

The iteration Yn = AnY0 can be completely described if one knows the eigen-
values and (generalized) eigenvectors of A. The special form of A in (9) allows
an explicit formula for the characteristic polynomial as well as the (generalized)
eigenvectors:

Lemma 2. Let A ∈ ∗RdM×dM be as in (9). For λ ∈ ∗C define

(11) B(λ) := (λM − λM−1)E − 1
N

M−1∑
j=0

λM−1−jLj ∈ ∗Cd×d

and let B′(λ) denote the component wise derivative of B(λ). The characteristic
polynomial of A is

(12) p(λ) = det (B(λ)).

v0 = v0(λ0) is eigenvector to an eigenvalue λ0 ∈ ∗C if and only if it has the form

(13) v0 =


λM−1

0 w0

λM−2
0 w0

...
λ0w0

w0

 ∈ ∗CdM .

v1 = v1(λ0) is a generalized eigenvector of order 1 if and only if it has the form

v1 =



(M − 1)λM−2
0 w0

(M − 2)λM−3
0 w0

...
2λ0w0

w0

0


+


λM−1

0 w1

λM−2
0 w1

...
λ0w1

w1

 ∈ ∗CdM ,

where 0 6= w0, w1 ∈ ∗Cd satisfy B(λ0)w0 = 0 = B′(λ0)w0 + B(λ0)w1.

Proof. A straightforward computation shows: (A − λE)v0 = 0 ⇒ v0 is as
stated in (13). In particular, if λ0 is an eigenvalue, p(λ) defined in (12) has a root
at λ0.
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A similar computation shows, that (A − λ0E)v1 = v0, v0 as in (13), v1 =
(v1,M−1, . . . , v1,0)t ∈ ∗CdM , implies

v1,j = jλj−1
0 w0 + λj

0v1,0, 1 ≤ j ≤ M − 1,

w0λ
M−1
0 = v1,M−1(1− λ0) +

1
N

M−1∑
j=0

Ljv1,M−1−j .

Both equations together give

v1 =



(M − 1)λM−2
0 w0

(M − 2)λM−3
0 w0

...
2λ0w0

w0

0


+


λM−1

0 v1,0

λM−2
0 v1,0

...
λ0v1,0

v1,0


and

B′(λ0)w0 = −B(λ0)v1,0

which proves v1 to have the desired form.
Now assume for a moment, that there are only simple eigenvalues, i.e. there

are dM distinct eigenvalues. Then p(λ) defined above has dM roots, and being
a normalized polynomial of degree dM it has to be the characteristic polynomial
of A. By continuity this remains true if we no longer have simple eigenvalues.
Thus p(λ) is the characteristic polynomial and the proof is complete. �

Note, that it is possible to derive a formula for the case of generalized eigen-
vectors of order m too, but since this is tedious and we don’t need it we have
not done it.

Henceforth we will denote with p(λ), B(λ) and v = v(λ) always the char-
acteristic polynomial and matrix of A, and its eigenvectors, respectively. We
will also say this not only with respect to to A but to the RFDE (8) they de-
scribe. But note, that in the latter case neither p(λ) nor B(λ) nor v are uniquely
determined. We will show later how they might differ (see Lemmas 5 and 6).

Yn = AnY0 can be described explicitly depending only on n, the eigenvalues
and generalized eigenvectors of A, if one has a formula for the coefficients in the
representation of Y0 with respect to a basis of generalized eigenvectors. This can
be done if there is a basis of eigenvectors. But this we can assume to be the case
(using Lemma 1).

Lemma 3. Let λ1, . . . , λdM be the eigenvalues of A with corresponding eigen-
vectors v1, . . . , vdM ∈ ∗CdM , w1, . . . , wdM ∈ ∗Cd as in (13). Assume, that
the eigenvectors form a basis of ∗CdM . Let B(λ) be as in (11), and define
bj ∈ ∗Cd×d by B(λ) =

∑M
j=0 λM−jbj. Then for each 1 ≤ j ≤ dM , there is
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a w̃t
j ∈ ∗Cd, such that w̃jB

′(λj)wj 6= 0 and w̃j ⊥ B(λj)(∗Cd). Given such w̃j,
any Y = (y0, . . . , y−M+1)t ∈ ∗CdM has a unique representation

Y =
dM∑
j=1

αjvj ,

where for j = 1, . . . , dM

(14) αj =
w̃jK(Y, λj)
w̃jB′(λj)wj

=
w̃j

∑M−1
l=0

∑l
k=0 bkλl−k

j y−l

w̃jB′(λj)wj

=
w̃j(y0 +

∑M−1
l=1 (λl

j − λl−1
j )y−l − (1/N)

∑M−1
l=1

∑l−1
k=0 λl−1−k

j Lky−l)
w̃jB′(λj)wj

.

Proof. First we show, that such vectors w̃t
j ∈ ∗Cd exist. For this it is

sufficient to show, that B′(λj)wj 6∈ B(λj)(∗Cd).
If this were not true, i.e. there were a w ∈ ∗Cd, B(λj)w = B′(λj)wj , then

Lemma 2 would imply the existence of a generalized eigenvector of order 1 to
the eigenvalue λj , hence we could not have a basis of eigenvectors of A.

To prove formula (14) for the coefficients it is sufficient to show w̃j0K(vj , λj0)
= 0 for j0 6= j, and K(vj , λj) = B′(λj)wj , j0, j = 1, . . . , dM . Indeed, for j0 6= j,

w̃j0K(vj , λj0) = w̃j0

M−1∑
k=0

M−1∑
l=k

bkλl−k
j0

λM−1−l
j wj

=
w̃j0

λj − λj0

M−1∑
k=0

bk(λM−k
j − λM−k

j0
)wj

=
w̃j0

λj − λj0

(B(λj)−B(λj0))wj = 0

and

K(vj , λj) =
M−1∑
k=0

bk(M − k)λM−1−k
j wj = B′(λj)wj . �

Remark 1. Every w̃j of Lemma 3 is an eigenvector to the eigenvalue 0 of
Bt(λj). If λj is a simple root, then any eigenvector 0 6= w̃j of Bt(λj) to the
eigenvalue 0 suffices in Lemma 3.

Proof. We only have to show w̃jB
′(λj)wj 6= 0, if λj is a simple root of p(λ).

So assume wlog w̃ and w to be eigenvectors to the eigenvalue 0 of Bt(λ) and B(λ),
respectively. We can write ∗Cd = lin {w̃t, ṽ2, . . . , ṽd}, where lin {ṽ2, . . . , ṽd} =
B(λ)(∗C), i.e. there are independent v2, . . . , vd, such that ṽl = B(λ)vl. There
are numbers α1, . . . , αd, such that B′(λ)w = α1w̃

t +
∑d

l=2 αlṽl.
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Now, if w̃B′(λ)w = 0, then

0 = w̃B′(λ)w − w̃B(λ)
d∑

l=2

αlvl = w̃α1w̃
t

and α1 = 0 follows. Hence in this case 0 = B′(λ)w + B(λ)(−
∑d

l=2 αlvl), and
with Lemma 2 λ is an eigenvalue of order at least two, where we assumed it to
be a simple one. �

Now, changing the Lj slightly, we can assume to have a basis of eigenvectors
and decompose ∗CdM as in Lemma 3. It would be nice if eigenvectors would
represent functions, but this cannot be expected because we have too many
of them. Indeed, if for example λ = 0 is an eigenvalue, the corresponding
eigenvector is (0, . . . , 0, w)t ∈ ∗RdM , w ∈ ∗Rd, which does not represent any real
function. On the other hand, any contribution due to this eigenvector decays
very rapidly. The next lemma shows that this is typical in the sense, that either
an eigenvector represents a function or decays very fast.

Lemma 4. Let λ0 = (1 + ε0/N)eiϕ0/N , ε0, ϕ0 ∈ ∗R, ϕ0/N ∈ [−π, π], be
a root of p(λ) with ε0 positive or finite. Then N(λ0 − 1) is finite and ◦ε0 ≤ K,
where K is the bound in (10). The corresponding eigenvector v0 defined in (13)
represents a function:

v0
∧= eµ0(θ+r)ξ0: [−r, 0] → Cd,

where w0 ≈ ξ0 ∈ Cd, and N(λ0 − 1) ≈ µ0, or equivalently ε0 + iϕ0 ≈ µ0.

Proof. First note, that if ε0 and ϕ0 finite, then for n/N ≈ t ∈ R:

λn
0 = ((1 + ε0/N)N )n/Neiϕ0n/N ≈ eε0teiϕ0t.

Hence in this case v0 = (λM−1
0 w0, . . . , λ0w0, w0)t ∈ ∗CdM represents eµ0(θ+r)ξ0.

Using a diagonal matrix D ∈ ∗RdM with entries E, cE, c2E, . . . , cM−1E,
E ∈ Rd×d the unit-matrix, and applying Gershgorin’s Principle to D−1AD,
we find, that all eigenvalues λ satisfy at least one of the following inequalities
(Lj = (Lj,l,k)1≤l,k≤d):∣∣∣∣λ− 1− 1

N
L0,l0,l0

∣∣∣∣ ≤ 1
N

d∑
k=1

M−1∑
j=1

|cjLj,l0,k|+
1
N

d∑
k=1
k 6=l0

|L0,l0,k|, 1 ≤ l0 ≤ d,

|λ| ≤ c−1.

For c = 1, we get |λ| ≤ 1 or

|λ− 1| ≤ 1
N

d∑
k=1

M−1∑
j=0

|Lj,l0,k| ≤
1
N

M−1∑
j=0

‖Lj‖∞ ≤ K

N
,
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and N(|λ0| − 1) = ε0 ≤ K follows. For c = (1 − m/N)−1, m ∈ N, we get
|λ| ≤ 1−m/N or

|λ− 1| ≤ 1
N

d∑
k=1

M−1∑
j=0

(
1− m

N

)−j

|Lj,l0,k| ≤
K

N

(
1− m

N

)−M+1

=
K

N
(erm + infinitesimal),

and for ε0 finite follows, N(λ− 1) is finite too. �

We are interested in the standard solutions of RFDE. The next lemma links
eigenfunctions of the RFDE (8) with the nonstandard description:

Lemma 5. Let µ ∈ C, ξ ∈ Cd \ {0} and

Sµ = {λ = (1 + ε/N)eiϕ/N ∈ ∗C : ◦ε = Re µ, ◦ϕ = Im µ}.

The following are equivalent:

(i) z(t) = eµ(t+r)ξ is a solution of equation (8),
(ii) there are λ ∈ Sµ, w ≈ ξ such that B(λ)w = 0,
(iii) for all λ ∈ Sµ, w ≈ ξ : NB(λ)w ≈ 0,
(iv) there are λ ∈ Sµ, w ≈ ξ : NB(λ)w ≈ 0,
(v) for every λ0 ∈ Sµ, w ≈ ξ, there exist ∆j ∈ ∗Cd×d, j = 0, . . . ,M − 1,∑M−1

j=0 ‖∆j‖∞ ≈ 0, such that using L̃j = Lj + ∆j to define an internal
B̃(λ), we have B̃(λ0)w = 0.

Proof. (ii)⇒(iv) is trivial.
(iv)⇒(v). Let λ1, w1 be as in (iv) and fix λ0 ∈ Sµ, w0 ≈ ξ. We will

change only LM−1. That is we set ∆0 = . . . = ∆M−2 = 0, and will find
a ∆M−1 = ∆M−1(λ0, w0), ‖∆M−1‖∞ ≈ 0, such that B̃(λ0)w0 = 0.

Now if NB(λ0)w0 ≈ 0, then letting i0 such that |w0,i0 | = max{|w0,j | : j =
1, . . . , d}, and setting ∆M−1 equal to the matrix, consisting of zeros and only
the i0-th column equal to

− N

w0,i0

B(λ0)w0 ∈ ∗Cd,

we get (∆M−1/N)w0 = −B(λ0)w0, and thus B̃(λ0)w0 = 0. Also

‖∆M−1‖∞ =
N

|w0,i0 |
‖B(λ0)w0‖∞ ≈ 0.

So we only have to show NB(λ0)w0 ≈ 0. But

NB(λ0)w0 = N(B(λ0)−B(λ1))w0 + NB(λ1)(w0 − w1) + NB(λ1)w1
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and, for B(λ) = (bi,j(λ))1≤i,j≤d, λ ∈ Sµ,

|b′i,j(λ)| ≤ |MλM−1 − (M − 1)λM−2|δij +
1
N

M−1∑
l=0

(M − 1− l)|λM−2−l‖Ll,i,j |

≤ |λM−2|
(

N |λ− 1|M
N

+ 1
)

δi,j +
M

N
(1 + |λ|M )

M−1∑
l=0

|Ll,i,j |

≤ (1 + erRe µ)(|µ|r + 2)δij + r(2 + erRe µ)
M−1∑
l=0

|Ll,i,j |,

thus

N‖B(λ0)−B(λ1)‖∞

≤ dN |λ0 − λ1|
[
(1 + erRe µ)(|µ|r + 2) + r(2 + erRe µ)

M−1∑
l=0

‖Ll‖∞
]

= infinitesimal · finite.

Similarly one can show N‖B(λ1)‖∞ to be finite, and we have NB(λ1)(w0−w1) ≈
0. This together with the condition on λ1 and w1 show indeed NB(λ0)w0 ≈ 0.

(v)⇒(i) follows immediate from Lemma 4.
(i)⇒(iii). Let λ0 ∈ Sµ, w0 ≈ ξ and z(t) as in (i). Then z0

∧= v0 =
(λM−1

0 w0, . . . , λ0w0, w0)t. We set Y0 := v0. An easy induction shows

λn
0 v0 −AnY0 =

n−1∑
j=0

λj
0A

n−1−j


B(λ0)w0

0
...
0

 , n ≥ 1.

Since λn
0 v0

∧= zt
∧= Yn = AnY0, for n/N ≈ t ∈ R, we get

(15) 0 ≈
n−1∑
j=0

λj
0A

n−1−j


B(λ0)w0

0
...
0

 .

Let proj : ∗CdM → ∗Cd denote the projection onto the first d coordinates.
Then

∑M−1
j=0 ‖Lj‖∞ ≤ K implies for any Y ∈ ∗CdM and 0 ≤ j ≤ n− 1:

‖λjproj (An−1−jY − Y )‖∞

≤ |λ|j
n−1−j∑

l=1

‖proj (A(Al−1Y )−Al−1Y )‖∞ ≤ |λ|j
n−1−j∑

l=1

K

N
‖Al−1Y ‖∞

≤ |λ|j K

N

n−1−j∑
l=1

(
1 +

K

N

)l−1

‖Y ‖∞ ≤ |λ|j
((

1 +
K

N

)n−j

− 1
)
‖Y ‖∞.
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There is a n1 ∈ ∗N, n1/N 6≈ 0, such that

‖λj
0proj (An−1−jY − Y )‖∞ ≤ 1

2
‖Y ‖∞ for all 0 ≤ j ≤ n− 1 ≤ n1.

Eventually decreasing n1 slightly, we can assume Re λj
0 > 2/3 for all 0 ≤ j ≤ n1.

Using this in (15) we have

0 ≈ proj


n1−1∑
j=0

λj
0A

n1−1−j


B(λ0)w0

0
...
0




=
n1−1∑
j=0

λj
0proj

An1−1−j


B(λ0)w0

0
...
0

−


B(λ0)w0

0
...
0


 +

n1−1∑
j=0

λj
0B(λ0)w0

=
n1

2
X + n1C1B(λ0)w0,

where X ∈ ∗Cd, ‖X‖∞ ≤ ‖B(λ0)w0‖∞ and C1 ∈ ∗C, |C1| ≥ 2/3.
Now we get easily ‖B(λ0)w0‖∞ ≤ infinitesimal/n1 and n1/N 6≈ 0 yields (iii).
(iii)⇒(ii). If LM−1 gets changed to LM−1 + ∆, then let B(λ, ∆), λj(∆) and

wj(∆) be defined accordingly. Fix λ0 ∈ Sµ, w0 ≈ ξ. As in the proof of (iv)⇒(v),
there is a ∆ ≈ 0 such that B(λ0,∆)w0 = 0.

Now assume, that for no λ ∈ Sµ, w ≈ ξ we have B(λ)w = 0. Then there
is an internal path Γ(t) joining ∆ and 0 ∈ ∗Cd×d, which induces continuous
λ(t), B(λ, Γ(t)), w(t), |w(t)| ≡ |w0|, satisfying B(λ(t), Γ(t))w(t) = 0 for all
0 ≤ t ≤ 1, and λ(0) = λ0, B(λ, Γ(0)) = B(λ, ∆), w(0) = w0. Since by
assumption we can’t have λ(1) ∈ Sµ together with w(1) ≈ ξ, the path (λ(t), w(t))
leaves Sµ × {w : w ≈ ξ}.

We already know that (ii) implies (i), which applied to this situation gives
us an infinite number of µ̃, ξ̃ forming solutions of equation (8) as in (i). These
µ̃ and ξ̃ are in a neighbourhood of µ, resp. ξ, which cannot be. �

We can now use Lemma 5 to give a necessary and sufficient condition for
two matrices B(λ) as defined in Lemma 2 to belong to the same RFDE. At the
same time we show, that if

∑M−1
j=0 ‖Lj‖∞ finite, then A (and B(λ)) describes

an RFDE. Since, by Proposition 2, this sum is bounded if A describes an RFDE,
we have an equivalence:

∑M−1
j=0 ‖Lj‖∞ is finite, if and only if A describes a linear

autonomous RFDE.

Lemma 6. Let

B(λ) = (λM − λM−1)E − 1
N

M−1∑
j=0

λM−1−jLj ∈ ∗Rd×d
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be internal and assume
∑M−1

j=0 ‖Lj‖∞ ≤ K ∈ R. Then B(λ) induces a bounded
linear operator L:C → Rd,

LΦ =
∫ 0

−r

d[η(θ)]Φ(θ),

where η(θ), defined in (16) below is of bounded variation. B(λ) is the charac-
teristic matrix defined in Lemma 2 for the equation x′(t) = Lxt, L as above.
Moreover, if there are two matrices B1, B2 as described above, then there are
equivalent:

(i) B1(λ) and B2(λ) are characteristic matrices to the same (linear au-
tonomous) RFDE: x′(t) = Lxt, t ≥ 0,

(ii) if λ ∈ S := {z ∈ ∗C : z = (1 + ε/N)eiϕ/N , ε, ϕ finite}, then

M−1∑
j=0

λM−1−jL1,j ≈
M−1∑
j=0

λM−1−jL2,j .

Proof. We could prove in an abstract way that B(λ) defines a linear bounded
operator, but we prefer to construct η(θ) explicitly. For −r ≤ θ ≤ 0 define η(θ)
by

(16) η(θ) =



0 θ ≥ 0,

−
◦( n∑

j=0

Lj

)
where n/N ≤ −θ is maximal, − r < θ < 0,

−
◦( M−1∑

j=0

Lj

)
θ ≤ −r.

η(θ) is of bounded variation:
Let −r = θ0 < . . . < θn = 0 with corresponding 0 < nn−1 < . . . < n0 =

M − 1, nn := −1. Then
n∑

l=1

‖η(θl)− η(θl−1)‖∞ =
n∑

l=1

∥∥∥∥ ◦( nl−1∑
j=nl+1

Lj

)∥∥∥∥
∞
≤

◦( M−1∑
j=0

‖Lj‖∞
)
≤ K.

So we have a linear bounded operator L:C → Rd, LΦ =
∫ 0

−r
d[η(θ)]Φ(θ).

To show, that B(λ), respectively the corresponding matrix A as in [9], describes
the RFDE, let C 3 Φ ∧= Y ∈ ∗RdM . Also let ε > 0 (in R) and take a division
−r = θ0 < . . . < θn = 0 such that∥∥∥∥∫ 0

−r

d[η(θ)]Φ(θ)−
n∑

j=1

(η(θj)− η(θj−1))Φ(θj)
∥∥∥∥
∞

<
ε

2

and (assume without loss of generality K > 0)

‖Φ(t)− Φ(s)‖∞ <
ε

2K
for all t, s ∈ [θj−1, θj ], j = 1, . . . , n.
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Choosing nj in (16) to match θj (nn = −1)∥∥∥∥∫ 0

−r

d[η(θ)]Φ(θ)−
M−1∑
j=1

Ljy−j

∥∥∥∥
∞
≤ ε

2
+

∥∥∥∥ n∑
j=1

nj−1∑
l=nj+1

LlΦ(θj)−
M−1∑
j=0

Ljy−l

∥∥∥∥
∞

≤ ε

2
+

n∑
j=1

nj−1∑
l=nj+1

‖Ll‖∞‖Φ(θj)− y−l‖∞

≤ ε

2
+

ε

2K

M−1∑
j=0

‖Lj‖∞ ≤ ε

and A indeed describes the RFDE.
Now we prove the equivalence (i)⇒(ii). Assume there is a λ0 ∈ S, such that∑M−1

l=0 (L1,l − L2,l)λM−1−l
0 6≈ 0. An easy calculation shows: N‖B1(λ0)‖∞ is

finite if Im λ0 = 0, then Im B1(λ0) = 0 and if λ0 ≈ 0, then Im B1(λ0)/Im Λ0 is
finite. Hence there are finite ∆1,∆2 ∈ ∗Rd×d such that λ0∆1 + ∆2 = NB1(λ0).

Define B̃j(λ) = Bj(λ)− (λ∆1 + ∆2)/N , j = 1, 2, then both B̃j(λ) arise from
the equation

(17) x′(t) = Lxt + ◦(∆1 + ∆2)x(t− r).

But B̃1(λ0) = 0, NB̃2(λ0) = −
∑M−1

j=0 (L1,j − L2,j)λ
M−1−j
0 6≈ 0, and with

Lemma 5 the first equation implies eµ0θξ is a solution of (17) for arbitrary
ξ ∈ Cd, the latter that there is a ξ ∈ Cd, such that eµ0θξ is not a solution.
This contradiction proves our claim.

(ii)⇒(i). B1 and B2 define two bounded linear operators L1, L2:C → Rd.
The condition in (ii) implies L1(eµθξ) = L2(eµθξ) for all µ ∈ C, ξ ∈ Rd. But
lin {ξeµθ : µ ∈ R, ξ ∈ Rd} is dense in C, so L1 and L2 have to be equal on the
whole of C. �

We know, that if an eigenvalue is “big”, then the eigenvector represents
a function, and if it is “small”, the contribution due to this eigenvector decays
rapidly. In principle we could have an infinite number of eigenvalues very close
to each other, or we could have infinite coefficients, or the contribution of all
eigenvectors to eigenvalues having an absolute value less than a given constant
would give something big, and in each of this cases the respective partial sums
would not represent a function. We want the possibility to decompose C with
respect to functions which are represented by eigenvectors, so we need to know
if above mentioned cases really occur. Lemma 5 essentially says, that we need
not worry. The contribution due to all eigenvalues having an absolute value less
than a given constant 1 + ε/N , ε finite, is bounded by the exponential eεt (with
a finite coefficient). And the sum over all contributions coming from eigenvalues
which correspond to the same exponent µ ∈ C, grows less rapidly than e(Re µ+ε)t,
ε > 0 an arbitrary real number. There can still be infinite coefficients, even in
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the case of “big” eigenvalues, but they cancel each other to give something finite
(see also Lemma 9 in the one-dimensional case).

We need a technical lemma before stating mentioned results in Lemma 8.

Lemma 7. Let Γ ⊂ ∗C be a closed simple positively oriented curve. Assume
that no eigenvalue of A lies on Γ and that in its interior lie only simple roots
of p(λ), say λ1, . . . , λm. Assume there is a basis of eigenvectors v1, . . . , vdM

of A with corresponding eigenvalues λ1, . . . , λdM . Hence Y0 ∈ ∗CdM has a rep-
resentation Y0 =

∑dM
j=1 αjvj, αj as in (14). Then, for n ∈ ∗N,

(18)
1

2πi

∫
Γ

λnB−1(λ)K(Y0, λ)dλ =
m∑

j=1

αjλ
n
j wj .

Proof. It is sufficient to show (18) for m = 1, i.e. there is only one simple
root λ1 in the interior of Γ. w1 and w̃1 are eigenvectors to the eigenvalue 0 of
B(λ1) respectively Bt(λ1), so we can extend them to form a basis w1, . . . , wd,
resp. w̃1, . . . , w̃d, such that w̃1

...
w̃d

 B(λ)(w1 . . . wd) = W̃B(λ)W =

 d1,1(λ) · · · d1,d(λ)
...

. . .
...

dd,1(λ) · · · dd,d(λ)

 = D(λ),

and for λ → λ1 D(λ) tends to the Jordan normal form of B(λ1), i.e. dj,j(λ) →
dj,j(λ1) 6= 0, j = 2, . . . , d, dj,j+1(λ) → dj,j+1(λ1) ∈ {0, 1}, j = 2, . . . , d− 1, and
all other entries di,j(λ) tend to 0. Indeed, λ1 being a simple root of det (B(λ))
implies 0 being a simple eigenvalue of B(λ1), and d1,1(λ1) has a simple root
at λ1.

For λ 6= λ1 on Γ or in its interior, D−1(λ) = (ci,j(λ)) exists. Taking into
account, that all ci,j(λ) are meromorphic functions, it is straightforward to show,
that c1,1(λ) has a simple pole at λ1 and all other ci,j(λ) are holomorphic at λ1.
Moreover, c1,1(λ)d1,1(λ) → 1 (λ → λ1), hence resλ1c1,1(λ) = (d′1,1(λ1))−1. Now

1
2πi

∫
Γ

λnB−1(λ)K(Y0, λ) dλ =
1

2πi

∫
Γ

λnWD−1(λ)W̃K(Y0, λ) dλ

= λn
1W


(d′1,1(λ1))−1 0 · · · 0

0 0 · · · 0
...

. . .
...

0 · · · · · · 0

 W̃K(Y0, λ1)

=
λ1

n

d′1,1(λ1)
(w̃1K(Y0, λ1))w1.

On the other hand, D′(λ) = W̃B′(λ)W implies d′1,1(λ) = w̃1B
′(λ1)w1 and (18)

follows immediately with (14). �
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Lemma 8. Assume p(λ) to have only simple roots λ1, . . . , λdM , so that we have
a basis of eigenvectors v1, . . . , vdM ∈ ∗CdM with corresponding w1, . . . , wdM ∈
∗Cd as in (13). Let λ̃ = (1 + ε̃/N)eieϕ/N ∈ ∗C, ε̃, ϕ̃ finite, and Y0 ∈ ∗CdM be
a vector. Write Y0 =

∑dM
j=1 αjvj as in Lemma 3.

(i) For 0 < ρ1 ∈ R small enough

ỹn :=
dM∑
j=0

N(λj−eλ)≈0

αjλ
M−1+n
j wj =

dM∑
j=0

N |λj−eλ|<ρ1

αjλ
M−1+n
j wj

satisfies for −M + 1 ≤ n, n/N finite,

(19) ‖ỹn‖∞ ≤ C̃

(
1 +

ε̃ + ρ1

N

)n

‖Y0‖∞

for a C̃ ∈ R. In particular, ỹn is finite for these n, if Y0 has finite
components.

(ii) Let ρ2 ∈ R. Assume there are no roots of p(λ) with N(|λ| − 1) ≈ ρ2.
Then

ŷn :=
dM∑
j=0

|λj |<1+ρ2/N

αjλ
M−1+n
j wj

satisfies for −M + 1 ≤ n, n/N finite

(20) ‖ŷn‖∞ ≤ Ĉ

(
1 +

ρ2

N

)n

‖Y0‖∞

for a Ĉ ∈ R. In particular, ŷn is finite for these n, if Y0 has finite
components.

Proof. We will show (i) and (ii) by contour-integration. Let K be as the
bound in (10) and assume wlog K > 0. If Γ ⊂ ∗C is a closed simple positively
oriented curve which does not contain any roots of p(λ) we have by Lemma 7,
for n ∈ ∗N, ∑

j:λj in interior of Γ

αjλ
n
j wj =

1
2πi

∫
Γ

λnB−1(λ)K(Y0, λ) dλ.

We shall bound the contour-integral to show (19) and (20), with Γ a suitable
circle.

Proof of part (i). First note, that by Lemma 5 there cannot be eigenvalues
λ with 0 6= ◦(N(λ − λ̃)) arbitrarily small, hence for 0 < ρ1 ∈ R small enough:
N |λj − λ̃| < ρ1 ⇔ N(λj − λ̃) ≈ 0, and both sums in (i) are equal. In particular,
we can choose Γ to be the circle |λ− λ̃| = ρ1/(2N), and for all λ ∈ Γ, 0 6= ξ ∈ Cd

we have NB(λ)ξ 6≈ 0. Let

δ1 := min{‖B(λ)w‖∞ : λ ∈ Γ, w ∈ ∗Cd, ‖w‖∞ = 1},
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then Nδ1 6≈ 0 and ‖B1(λ)‖∞ ≤ 1/δ1.
To bound K(Y0, λ), note that for λ ∈ Γ

‖K(Y0, λ)‖∞ =
∥∥∥∥ M−1∑

l=0

(λl − λl−1)y−l −
1
N

M−1∑
l=1

l∑
k=1

Lk−1λ
l−ky−l

∥∥∥∥
∞

≤ M(1 + |λ|M−1)|λ− 1|‖Y0‖∞ +
1
N

(1 + |λ|M−2)(M − 1)‖Y0‖∞K

≤ C1‖Y0‖∞

for a constant C1 ∈ R. Now we get the estimate on ỹn:

‖ỹn‖∞ =
∥∥∥∥ dM∑

j=0

N |λj−eλ|<ρ1

αjλ
M−1+n
j wj

∥∥∥∥
∞

=
1
2π

∥∥∥∥∫
|λ−eλ|=ρ1/(2N)

λM−1+n
j B−1(λ)K(Y0, λ) dλ

∥∥∥∥
∞

≤ ρ1

2N

(
1 +

ε̃

N
+

ρ1

2N

)M−1+n 1
δ1

C1‖Y0‖∞

and Nδ1 6≈ 0 gives (19).
Proof of part (ii). It is sufficient to show (20) for ‖Y0‖ = 1, which we will

assume for the rest of this proof. First we prove (20) for −M + 1 ≤ n ≤ 2M

using part (i) of this lemma. There are only finitely many eigenvalues µ of the
RFDE (8) with Re µ ≥ ρ2. For each of them

dM∑
j=0

N(λj−1)≈µ

αjvj

is finite by part (i). Hence

dM∑
j=0

Re N(λj−1)≥ρ2

αjλ
M−1+n
j wj , ŷn = yn −

dM∑
j=0

Re N(λj−1)≥ρ2

αjλ
M−1+n
j wj

are finite too, for −M + 1 ≤ n ≤ 0, and thus also Ŷn = An(ŷ0, . . . , ŷ−M+1)t, for
0 ≤ n ≤ 2M . This shows, together with ‖Y0‖∞ = 1, that (20) holds for these n.

For the rest of the proof let n0 ∈ ∗N be fixed, n0/N finite and n0 > 2M .
Let Γ be the circle |λ| = 1 + ρ2/N . We can use the same technique as in the
first part only on part of Γ, so divide the circle into Γ1, the part from eiϕ1 to
ei(2π−ϕ1), and Γ2 the part from e−iϕ1 to eiϕ1 , where

ϕ1 =
4dK

N
max

{
1,

(
1 +

ρ2

N

)−M+1}
.
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Note for later use, that 0 6≈ Nϕ1 is finite and, for ϕ1 ≤ ϕ ≤ π,

(21)
∣∣∣∣(1 +

ρ2

N

)
eiϕ − 1

∣∣∣∣ ≥ ϕ1

2
= 2

dK

N
max

{
1,

(
1 +

ρ2

N

)−M+1}
.

To prove (20) we need to show

(22)
∥∥∥∥∫

Γj

λM−1+n0B−1(λ)K(Y0, λ) dλ

∥∥∥∥
∞
≤ Ĉj

(
1 +

ρ2

N

)n0

for j = 1, 2. We start with Γ2. As in part (i) we can define

δ2 := min{‖B(λ)w‖∞ : λ ∈ Γ2, w ∈ ∗Cd, ‖w‖∞ = 1}

and by choice of ϕ1 and ρ2, we can apply Lemma 5 to Γ2 to find Nδ2 6≈ 0, and
‖B−1(λ)‖ ≤ 1/δ2.

Also as in (i), there is a constant C2 ∈ R such that ‖K(Y0, λ)‖∞ ≤ C2‖Y0‖∞
for all λ ∈ Γ2. Thus∥∥∥∥∫

Γ2

λM−1+n0B−1(λ)K(Y0, λ) dλ

∥∥∥∥
∞

≤ 2ϕ1

(
1 +

ρ2

N

)M+n0 1
δ2

C2 ≤ C3

(
1 +

ρ2

N

)n0

for a constant C3 ∈ R. To prove (22) for Γ1 we need a lot more technical stuff.
The reason is, that we have to take into account the cancelation which happens
while integrating on the circle far away from 1 + ρ2/N .

A first step is an estimate on B−1(λ). For λ ∈ Γ1, arg (λ) ≤ π and w ∈ ∗Cd

we have

‖B(λ)w‖∞ = max
1≤j≤d

{∣∣∣∣λM−1(λ− 1)wj −
1
N

d∑
k=1

M−1∑
l=0

λM−1−lLl,j,kwk

∣∣∣∣}
≥ max

1≤j≤d

{
|λ|M−1|λ− 1||wj | −

d

N
max{1, |λ|M−1}K‖w‖∞

}
≥ 1

2
|λ|M−1|λ− 1|‖w‖∞

using (21). Hence for these λ

(23) ‖B−1(λ)‖∞ ≤ 2|λ|−M+1|λ− 1|−1.

In a second step we reduce integration over an interval of length 2π/(n+1−M)
to one over half of the interval. This is the cancelation we mentioned earlier,
which happens for (n−M)/N 6≈ 0. Assume n > M satisfies this condition, n/N
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finite, and ϕ1 ≤ ϕ2 < ϕ2 + 2π/(n + 1−M) ≤ π, then

(24)
∫

|λ|=1+ρ2/N

ϕ2≤arg(λ)≤ϕ2+2π/(n+1−M)

λnB−1(λ) dλ

= i

∫ ϕ2+2π/(n+1−M)

ϕ2

(
1 +

ρ2

N

)n+1

eiϕ(n+1)B−1

((
1 +

ρ2

N

)
eiϕ

)
dϕ

= i

(
1 +

ρ2

N

)n+1 ∫ ϕ2+π/(n+1−M)

ϕ2

(
eiϕ(n+1)B−1

((
1 +

ρ2

N

)
eiϕ

)
+ ei(n+1)(ϕ+π/(n+1−M))B−1

((
1 +

ρ2

N

)
ei(ϕ+π/(n+1−M))

))
dϕ

= i

(
1 +

ρ2

N

)n+1 ∫ ϕ2+π/(n+1−M)

ϕ2

B−1

((
1 +

ρ2

N

)
ei(ϕ+π/(n+1−M))

)
· (∗) ·B−1

((
1 +

ρ2

N

)
eiϕ

)
dϕ

where

(25) (∗) = eiϕ(n+1)B

((
1 +

ρ2

N

)
ei(ϕ+π/(n+1−M))

)
+ ei(n+1)(ϕ+π/(n+1−M))B

((
1 +

ρ2

N

)
eiϕ

)
=

(
1 +

ρ2

N

)M

ei(n+1+M)ϕeiMπ/(n+1−M)(1 + eiπ)E

−
(

1 +
ρ2

N

)M−1

ei(n+M)ϕ

· ei(M−1)π/(n+1−M)(1 + ei(n+2−M)π/(n+1−M))E

− 1
N

M−1∑
j=0

Lj

(
1 +

ρ2

N

)M−1−j

ei(n+M−j)ϕ

· (ei(M−1−j)π/(n+1−M) + ei(n+1)π/(n+1−M))

= −
(

1 +
ρ2

N

)M−1

ei(n+M)ϕei(M−1)π/(n+1−M)(1− eiπ/(n+1−M))E

− 1
N

M−1∑
j=0

Lj

(
1 +

ρ2

N

)M−1−j

ei(n+M−j)ϕ

· (ei(M−1−j)π/(n+1−M) + ei(n+1)π/(n+1−M)).

Now, using (23) and putting (25) back into (24), we have∥∥∥∥∫
|λ|=1+ρ2/N

ϕ2≤arg (λ)≤ϕ2+2π/(n+1−M)

λnB−1(λ) dλ

∥∥∥∥
∞

≤ 4
(

1 +
ρ2

N

)n+1 ∫ ϕ2+π/(n+1−M)

ϕ2

(
1 +

ρ2

N

)−2M+2
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· (1 + ρ2/N)M−1|1− eiπ/(n+1−M)|+ (2K/N) max{1, (1 + ρ2/N)M−1}
|(1 + ρ2/N)ei(ϕ+π/(n+1−M)) − 1||(1 + ρ2/N)eiϕ − 1|

dϕ

≤
(

1 +
ρ2

N

)n+1 ∫ ϕ2+π/(n+1−M)

ϕ2

C4

N

·
[(

1 +
(

1 +
ρ2

N

)2

− 2
(

1 +
ρ2

N

)
cos

(
ϕ +

π

n + 1−M

))
·
(

1 +
(

1 +
ρ2

N

)2

− 2
(

1 +
ρ2

N

)
cos(ϕ)

)]−1/2

dϕ

≤
(

1 +
ρ2

N

)n+1
C4

N

·
∫ ϕ2+π/(n+1−M)

ϕ2

(
1

1 + (1 + ρ2/N)2 − 2(1 + ρ2/N) cos(ϕ + π/(n + 1−M))

+
1

1 + (1 + ρ2/N)2 − 2(1 + ρ2/N) cos(ϕ)

)
dϕ

for a C4 ∈ R, where in the second but last step we used (n−M)/N 6≈ 0.
We apply this technique to a contour-integral over Γ1. To be able to do this,

let j1 = j1(n) be the number of intervals of length 2π/(n+1−M) in the interval
[ϕ1, π], i.e. the maximal hyper-finite number satisfying j1 ≤ (π − ϕ1)(n + 1 −
M)/2π. Then∥∥∥∥∫

Γ1

λnB−1(λ) dλ

∥∥∥∥
∞

=2
∥∥∥∥Im

∫
|λ|=1+ρ2/N

ϕ1≤arg (λ)≤π

λnB−1(λ) dλ

∥∥∥∥
∞

≤ 2
j1∑

j=0

∥∥∥∥∫
|λ|=1+ρ2/N

ϕ1+j2π/(n+1−M)≤arg (λ)≤ϕ1+(j+1)2π/(n+1−M)

λnB−1(λ) dλ

∥∥∥∥
∞

+ 2
∥∥∥∥∫

|λ|=1+ρ2/N

π−2π/(n+1−M)≤arg (λ)≤π

λnB−1(λ) dλ

∥∥∥∥
∞

≤ 2
j1∑

j=0

(
1 +

ρ2

N

)n+1
C4

N

·
∫ ϕ1+(2j+1)π/(n+1−M)

ϕ1+j2π/(n+1−M)

(
1

1 + (1 + ρ2/N)2−2(1 + ρ2/N) cos(ϕ + π/(n + 1−M))

+
1

1 + (1 + ρ2/N)2 − 2(1 + ρ2/N) cos(ϕ)

)
dϕ +

8π

n + 1−M

(
1 +

ρ2

N

)n+2−M

≤ 4
(

1 +
ρ2

N

)n+1
C4

N

∫ π+π/(n+1−M)

ϕ1

dϕ

1 + (1 + ρ2/N)2 − 2(1 + ρ2/N) cos(ϕ)

+
8π(1 + ρ2/N)n+2−M

n + 1−M
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≤ 4
(

1 +
ρ2

N

)n+1
C4

N

{
2πN/ρ2 if ρ2 6= 0,

cos(ϕ1/2) + 1 if ρ2 = 0,

}
+

8π(1 + ρ2/N)n+2−M

n + 1−M

≤C5

(
1 +

ρ2

N

)n

,

where, keeping in mind Nϕ1 is finite but not infinitesimal, C5 ∈ R. Since
Yn = AnY0 =

∑dM
j=1 αjλ

n
j vj , we have αj(YM−1) = λM−1

j αj(Y0). We now prove
the inequality (22):∥∥∥∥∫

Γ1

λM−1+n0B−1(λ)K(Y0, λ) dλ

∥∥∥∥
∞

=
∥∥∥∥∫

Γ1

λn0B−1(λ)K(YM−1λ) dλ

∥∥∥∥
∞

=
∥∥∥∥∫

Γ1

λn0B−1(λ)
( M−1∑

l=0

λlyM−1−l −
M−1∑
l=1

λl−1yM−1−l

− 1
N

M−1∑
k=1

Lk−1

M−1∑
l=k

λl−kyM−1−l

)
dλ

∥∥∥∥
∞

≤
M−2∑
l=0

∥∥∥∥∫
Γ1

λn0+lB−1(λ)(yM−1−l − yM−2−l) dλ

∥∥∥∥
∞

+
∥∥∥∥∫

Γ1

λM−1+n0B1(λ)y0 dλ

∥∥∥∥
∞

+
1
N

M−1∑
k=1

M−1∑
l=k

∥∥∥∥∫
Γ1

λn0+l−kB−1(λ)
∥∥∥∥
∞
‖Lk−1‖∞‖YM−1‖∞

≤
M−2∑
l=0

C6

(
1 +

ρ2

N

)n0+l

max
1≤j≤M−1

{‖yj − yj−1‖∞}

+ C7

(
1 +

ρ2

N

)M−1+n0

‖Y0‖∞

+
C5

N

M−1∑
k=1

‖Lk−1‖∞
M−1∑
l=k

(
1 +

ρ2

N

)n0+l−k

‖YM−1‖∞

≤ [C8M max
1≤j≤M−1

{‖yj − yj−1‖∞}+ C9 + C10‖YM−1‖∞]
(

1 +
ρ2

N

)n0

,

where all C6, . . . , C10 ∈ R.
For j ≥ 1 we have ‖yj − yj−1‖∞ ≤ (K/N)‖(yj−1, . . . , yj−M )‖∞, hence also

max
1≤j≤M−1

‖yj − yj−1‖∞ ≤ K

N
(‖YM−1‖∞ + ‖Y0‖∞)

and ‖YM−1‖∞ ≤ (1 + K/N)M−1‖y0‖∞ being finite implies (22). �
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5 The one-dimensional case

In this section we contemplate a linear autonomous RFDE in one dimension,
that is equation (8) with d = 1:

(26) x′(t) = Lxt =
∫ 0

−r

x(t + θ) dη(θ).

In this case the iteration becomes Yn = AYn−1 ∈ ∗CM , where

(27) A =


1 + L0

N
L1
N · · · · · · LM−1

N

1 0 · · · · · · 0

0
. . . . . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 1 0

 ∈ ∗RM×M

Lj ∈ ∗R and by Proposition 2
∑M−1

j=0 |Lj | ≤ K ∈ R as before. The characteristic
polynomial is

p(λ) = λM − λM−1 − 1
N

M−1∑
j=0

Ljλ
M−1−j

and the eigenvectors are of the form

v = v(λ) =


λM−1

...
λ

1

 ∈ ∗CM .

If we assume λ1, . . . , λM to be the pairwise distinct eigenvalues of A with cor-
responding eigenvectors v1, . . . , vM , then Y = (y0, . . . , y−M+1)t =

∑M
j=1 αjvj is

equivalent to

(28) αj =
K(Y, λj)
p′(λj)

=

∑M−1
l=0

∑l
k=0 bkλl−k

j y−l

p′(λj)
, j = 1, . . . , M,

where p(λ) =
∑M

k=0 bkλM−k. (28) is just formula (14) for the one-dimensional
case, with w̃j = wj = 1. A straightforward calculation shows, for a multiple
root λ0 of order m0 we have generalized eigenvectors

v0,m =



(
M−1

m

)
λM−1−m

0(
M−2

m

)
λM−2−m

0

...(
1
m

)
λ1−m

0(
0
m

)
λ−m

0

 ∈ ∗CM , 0 ≤ m ≤ m0 − 1,
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and, for n ∈ ∗N,

Anv0,m =



(
n+M−1

m

)
λn+M−1−m

0(
n+M−2

m

)
λn+M−2−m

0

...(
n+1
m

)
λn+1−m

0(
n
m

)
λn−m

0

 ∈ ∗CM , 0 ≤ m ≤ m0 − 1.

It is also easy to see that for N(λ0 − 1) ≈ µ0 ∈ C (⇔ λ0 ∈ Sµ0 as defined in
Lemma 5)

1
Nm

(
n

m

)
λn−m

0 ≈ tm

m!
eµ0t, t =

◦( n

N

)
,

or in other words: suitably normalized generalized eigenvectors represent (gen-
eralized) eigenfunctions of equation (26).

In Lemma 10 we will incorporate the last remark into Lemma 5, but before
we can do this we need a way to express eigenfunctions of higher order by a linear
combination of eigenvectors belonging to eigenvalues “near” to each other.

Lemma 9. For a fixed 1 ≤ m0 ≤ M let λ1, . . . , λm0 be pairwise distinct
eigenvalues of A, with corresponding eigenvectors v1, . . . , vm0 . Define νj,l ∈ ∗CM

by

ν1,l = vl for 1 ≤ l ≤ m0,

νj,l =
1

N(λl − λj−1)
(νj−1,l − νj−1,j−1) for 2 ≤ j ≤ l ≤ m0.

Then

(29) νj,j =
1

N j−1

j∑
m=1

vm∏j
k=1

k 6=m
(λm − λk)

for 1 ≤ j ≤ m0.

In particular lin {v1, . . . , vm0} = lin {ν1,1, . . . , νm0,m0}.
If

∑m0
j=1 αjvj =

∑m0
j=1 βjνj,j, then

(30) βj = N j−1
m0∑
l=j

j−1∏
k=1

(λl − λk)αl for 1 ≤ j ≤ m0.

If additionally there is a µ ∈ C, such that

λj ∈ Sµ =
{

λ =
(

1 +
ε

N

)
eiϕ/N ∈ ∗C : ◦ε = Re µ, ◦ϕ = Im µ

}
, 1 ≤ j ≤ m0,

then, for 0 ≤ n/N ≈ t ∈ R,

(31) Anνj,j
∧=

(t + r + θ)j−1

(j − 1)!
eµ(t+r+θ): [−r, 0] → C for 1 ≤ j ≤ m0.
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Proof. First we derive an expression for νj,l, 1 ≤ j ≤ l ≤ m0:

(32) νj,l =
1

N j−1

( j−1∑
m=1

vm∏j−1
k=1

k 6=m
(λm − λk)(λm − λl)

+
vl∏j−1

k=1(λl − λk)

)
.

We prove (32) by induction over j. The case j = 1 is trivial. Assume (32) holds
for 1 ≤ j. Then for j + 1 ≤ l ≤ m0:

νj+1,l =
1

N j(λl − λj)

[ j−1∑
m=1

(
vm∏j−1

k=1
k 6=m

(λm − λk)(λm − λl)
− vm∏j

k=1
k 6=m

(λm − λk)

)

+
vl∏j−1

k=1(λl − λk)
− vj∏j−1

k=1(λj − λk)

]

=
1

N j

[ j∑
m=1

vm∏j
k=1

k 6=m
(λm − λk)(λm − λl)

+
vl∏j

k=1(λl − λk)

]

and (32) has been proven. (32) implies lin {v1, . . . , vm0} = lin {ν1,1, . . . , νm0,m0}
and (29).

To prove (30) we use (29) and again an induction over j = m0, . . . , 1. For
j = m0

αm0vm0 = βm0

1
Nm0−1

vm0∏m0−1
k=1 (λm0 − λk)

and (30) follows.
For j ⇒ j − 1

αj−1vj−1 = vj−1 ·
(

βj−1
1

N j−2
∏j−2

k=1(λj−1 − λk)

+
m0∑
l=j

βl
1

N l−1
∏l

k=1
k 6=j−1

(λj−1 − λk)

)

and

βj−1 = N j−2

j−2∏
k=1

(λj−1 − λk)αj−1 −
m0∑
l=j

βl
1

N l−j+1

1∏l
k=j(λj−1 − λk)

= N j−2

j−2∏
k=1

(λj−1 − λk)αj−1 −
m0∑
l=j

N l−1

N l−1−j+2

m0∑
m=l

∏l−1
k=1(λm − λk)∏l

k=j(λj−1 − λk)
αm

= N j−2

j−2∏
k=1

(λj−1 − λk)αj−1 −
m0∑

m=j

αm

m∑
l=j

N j−2

∏l−1
k=1(λm − λk)∏l

k=j(λj−1 − λk)
.
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We claim, for j ≤ m ≤ m0

(33)
m∑

l=j

∏l−1
k=1(λm − λk)∏l

k=j(λj−1 − λk)
= −

j−2∏
k=1

(λm − λk).

This immediately yields (30). Setting λj−1 = λ̃, the former is equivalent to

(34)

m∑
l=j

∏l−1
k=j−1(λm − λk)∏l

k=j(λ̃− λk)
= −1

⇔
m∑

l=j

l−1∏
k=j−1

(λm − λk)
m∏

k=l+1

(λ̃− λk) = −
m∏

k=j

(λ̃− λk)

⇔
m∑

l=j

l−1∏
k=j

(λm − λk)
m∏

k=l+1

(λ̃− λk) =
m−1∏
k=j

(λ̃− λk)

⇔
m∑

l=j+1

l−1∏
k=j

(λm − λk)
m∏

k=l+1

(λ̃− λk) =
m−1∏

k=j+1

(λ̃− λk)(λm − λj)

⇔
m∑

l=j+1

l−1∏
k=j+1

(λm − λk)
m∏

k=l+1

(λ̃− λk) =
m−1∏

k=j+1

(λ̃− λk)

but the last equation is like (34), so applying these steps various times we see
(33) is equivalent to

(λ̃− λm) + (λm − λm−1) = λ̃− λm−1

and the claim has been proven.
Now assume λm ∈ Sµ for all m. Fix a λ0 ∈ Sµ, and define δm = λm − λ0,

1 ≤ m ≤ m0. Then Nδm ≈ 0. With formula (29) one can reduce the proof
of (31) to the proof of

1
N j−1

j∑
m=1

λM−1+n
m∏j

k=1
k 6=m

(λm − λk)
≈ (◦(n/N) + r)j−1

(j − 1)!
eµ(◦(n/N)+r),

for −M + 1 ≤ n, n/N finite, and 1 ≤ j ≤ m0. Using the fact that N−j
(
n
j

)
λnj

0 ≈
(◦(n/N))jeµ◦(n/N)/j! for finite j and n/N , it suffices to show

1
N j−1

j∑
m=1

λM−1+n
m∏j

k=1
k 6=m

(δm − δk)
− 1

N j−1

(
M − 1 + n

j − 1

)
λM+n−j

0 ≈ 0

for −M + 1 ≤ n, n/N finite and 1 ≤ j ≤ m0. If j = 1 we have equality, so
assume 1 < j ≤ m0.
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We claim for these n and j

j∑
m=1

λM−1+n
m∏j

k=1
k 6=m

(δm − δk)
(35)

=
(

M − 1 + n

j − 1

)
λM+n−j

0 +
M−1+n∑

k1=j

(
M − 1 + n

k1

)
λM−1+n−k1

0

·
k1−1∑

k2=j−2

δk1−1−k2
1

k2−1∑
k3=j−3

δk2−1−k3
2 . . .

kj−1−1∑
kj=0

δ
kj−1−1−kj

j−1 δ
kj

j .

Indeed, both sides of (35) are the leading coefficient of the polynomial interpolat-
ing the function (λ0 +x)M+1−n in δ1, . . . , δj : the left-hand side is the expression
we get by the Lagrange formula, and the right-hand side is due to Newton’s
formula. To see the latter, note that for pairwise different δl1 , . . . , δlj

[δl1 . . . δlj ] :=
(

M − 1 + n

j − 1

)
λM+n−j

0 +
M−1+n∑

k1=j

(
M − 1 + n

k1

)
λM+n−1−k1

0

·
k1−1∑

k2=j−2

δk1−1−k2
l1

. . .

kj−1−1∑
kj=0

δ
kj−1−1−kj

lj−1
δ

kj

lj

satisfies the inductive rule for Newton’s formula, i.e.

[δl1 ] =
M−1+n∑

k1=0

(
M − 1 + n

k1

)
λM+n−1−k1

0 δk1
l1

= λM−1+n
l1

and

[δl1 . . . δlj+1 ] =
[δl1 . . . δlj ]− [δl1 . . . δlj−1 , δlj+1 ]

δlj − δlj+1

.

(Note, that the order of the entities in the square brackets is of no importance
for the Newton interpolation.)

With the claim above, and defining δ = max{|δ0|, . . . , |δm0 |}, cn = max{|λj
0| :

0 ≤ j ≤ M − 1 + n}, we get for 1 ≤ j ≤ m0, −M + 1 ≤ n, n/N finite

(36) N−j+1

∣∣∣∣ j∑
m=1

λM−1+n
m∏j

k=1
k 6=m

(δm − δk)
−

(
M − 1 + n

j − 1

)
λM+n−j

0

∣∣∣∣
≤ cn

N j−1

M−1+n∑
k1=j

(
M − 1 + n

k1

)
δk1−j+1

k1−1∑
k2=j−2

k2−1∑
k3=j−3

. . .

kj−1−1∑
kj=0

1

=
cn

N j−1

M−1+n∑
k1=j

(
M − 1 + n

k1

)
δk1−j+1

(
k1

j − 1

)
=

cn

N j−1

M−1+n∑
k=j

Sk,
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defining Sk in the last step and using

k0−1∑
k1=m−1

k1−1∑
k2=m−2

. . .

km−1−1∑
km=0

1 =
(

k0

m

)
.

Now for n/N finite,

Sk+1

Sk
≤ δ

M − 1 + n− k

k + 2− j
< δ

M + n

2
≈ 0,

where we used Nδ ≈ 0. For these n we conclude

(36) ≤ cn

N j−1
Sj

M−1+n∑
k=j

(
δ
M + n

2

)k−j

≤ cn

N j−1

(M − 1 + n)!j
j!(M − 1 + n− j)!

δ
1− (δ(M + n)/2)M+n−j

1− δ(M + n)/2
≤ finite · infinitesimal ≈ 0,

which finishes the proof. �

Lemma 10. Let u ∈ C, m0 ∈ N, and define as before

Sµ = {λ = (1 + ε/N)eiϕ/N ∈ ∗C : ◦ε = Re µ, ◦Im µ}.

Then following conditions are equivalent:

(i) for all 0 ≤ m ≤ m0, zm(t) = ((t + r)m/m!)eµ(t+r) is a solution of
equation (26),

(ii) p(λ) has m0 + 1 roots (counting multiplicities) in Sµ,
(iii) for all 0 ≤ m ≤ m0 and λ ∈ Sµ : N−m+1p(m)(λ) ≈ 0,
(iv) for all 0 ≤ m ≤ m0 there exists a λm ∈ Sµ : N−m+1p(m)(λm) ≈ 0,
(v) for all λ0 ∈ Sµ there exist ∆j ∈ ∗R, such that

∑M−1
j=0 |∆j | ≈ 0, the

internal p∆(λ) = p(λ) + (1/N)
∑M−1

j=0 ∆jλ
M−1−j is the characteristic

polynomial for the disturbed matrix A∆, and p∆(λ) has a root of order
m0 + 1 at λ0.

Proof. For m0 = 0 Lemma 10 is just a special case of Lemma 5 for d = 1.
Hence we can inductively assume that all statements are equivalent for m0−1 ≥ 0
and have to prove the equivalence for m0.

(ii)⇒(i). If we change the Lj slightly to get pairwise distinct eigenvalues, we
can apply Lemma 9 to get the desired solution of the RFDE. Since the existence
of such solutions is independent of the particular description, (i) follows from (ii).

(i)⇒(iii). The proof runs along the same lines as in Lemma 5. Fix a λ0 ∈ Sµ

and set for finite n/N :

Vm0,n := (vm0,n, . . . , vm0,n−M+1)t, vm0,j = N−m0

(
M − 1 + j

m0

)
λM−1+j−m0

0 .
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Then for t = ◦(n/N)

Vm0,n
∧=

(t + r + θ)m0

m0!
eµ(t+r+θ): [t− r, t] → C.

For these n we have 0 ≈ AnVm0,0 − Vm0,n. Now, if e1 is the first unit vector,

AVm0,n = Vm0,n+1 −
(λn

0p(λ0))(m0)

Nm0m0!
e1,

and, for n/N finite,

0 ≈ 1
Nm0m0!

n−1∑
j=0

(λj
0p(λ0))(m0)An−1−je1(37)

=
1

Nm0m0!
p(m0)(λ0)

n−1∑
j=0

λj
0A

n−1−je1 −
m0−1∑
l=0

(
m0

l

)
p(l)(λ0)
Nm0m0!

·
n−1∑
j=0

j(j − 1) . . . (j −m0 + l + 1)λj−m0+l
0 An−1−je1.

Assuming by induction N−l+1p(l)(λ0) ≈ 0 for 0 ≤ l < m0 (m0 is finite!), we see
that the last sum is infinitesimal.

As in the proof of (i)⇒(iii) of Lemma 5, there is a n1 ∈ ∗N, n1/N 6≈ 0, such
that for arbitrary V ∈ ∗CM

|λj
0(A

n−1−jV − V )e1| ≤
1
2
‖V ‖∞ for all 0 ≤ j ≤ n− 1 ≤ n1

and Re λj
0 > 2/3 for these j. Using this in (37)

0 ≈ 1
Nm0m0!

p(m0)(λ0)
( n1∑

j=0

λj
0(A

n1−je1 − e1) +
n1∑

j=0

λj
0e1︸ ︷︷ ︸

| ′′ |≥2n1/3−n1/2=n1/6

)
,

and the choice of n1 implies 0 ≈ N−m0+1p(m0)(λ0).
Proof of (iii)⇒(iv) is trivial.
(iv)⇒(iii). We only have to show N−m0+1p(m0)(λ) ≈ 0, for all λ ∈ Sµ. So

fix a λ̃ ∈ Sµ, and let λm0 as in (iv). Set δ := λ̃− λm0 , then

p(m0)(λ̃) =M(M − 1) . . . (M −m0 + 1)
M−m0∑

j=0

(
M −m0

j

)
λM−m0−j

m0
δj

− (M − 1) . . . (M −m0)
M−1−m0∑

j=0

(
M − 1−m0

j

)
λM−1−m0−j

m0
δj

− 1
N

M−1∑
l=0

Ll(M − 1− l) . . . (M − l −m0)
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·
M−1−m0−l∑

j=0

(
M − 1−m0 − l

j

)
λM−1−m0−j−l

m0
δj

= p(m0)(λm0) + δ

[
M . . . (M −m0 + 1)δM−m0−1

+ (M − 1) . . . (M −m0 + 1)

·
M−m0−2∑

j=0

(
(M −m0)(M −m0 − 1)(m0 + 1 + j)

(j + 1)(M −m0 − 1− j)

+ (λm0 − 1)
M(M −m0)(M −m0 − 1)
(j + 1)(M −m0 − 1− j)

)
·
(

M − 2−m0

j

)
λM−2−m0−j

m0
δj

− 1
N

M−1∑
l=0

Ll(M − 1− l) . . . (M − l −m0)

·
M−2−m0−l∑

j=0

(
M − 2−m0 − l

j

)
M − 1−m0 − l

j + 1
λM−2−m0−j−l

m0
δj

]
= p(m0)(λm0) + δ[∗∗],

where we define [∗∗] in the last step. Keeping in mind Nδ ≈ 0, it is sufficient to
show N−m0 [∗∗] to be finite. This is not difficult. Let

Sj :=
(

M − 2−m0

j

)
(M −m0)(M −m0 − 1)(m0 + 1 + j)

(j + 1)(M −m0 − 1− j)
|λm0 |M−2−m0−j |δ|j ,

then

|[∗∗]|N−m0

≤
(

M

N

)m0

|δ|M−1−m0 +
(

M

N

)m0−1 1
N

·
M−2−m0∑

j=0

(
Sj + |λm0 − 1|M(M −m0)

(
M −m0 − 2

j

)
|λm0 |M−2−m0−j |δ|j

)

+
(

M

N

)m0+1 M−1∑
l=0

|Ll|(|λm0 |+ |δ|)M−m0−2−l

≤ 1 +
(

M

N

)m0−1 1
N

M−2−m0∑
j=0

Sj + (|µ|+ 1)
(

M

N

)m0+1

(|λm0 |+ |δ|)M−m0−2

+
(

M

N

)m0+1

K max{(|λm0 |+ |δ|)M−m0−2, (|λm0 |+ |δ|)−m0−1}

=finite +
(

M

N

)m0−1 1
N

M−2−m0∑
j=0

Sj .
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But
Sj+1

Sj
=

(M −m0 − j − 1)(m0 + 2 + j)
(m0 + 1 + j)(j + 2)

|δ|
|λm0 |

≤ 2M |δ| ≈ 0,

and

1
N

M−2−m0∑
j=0

Sj ≤
(M −m0)(m0 + 1)

N
|λm0 |M−2−m0

M−2−m0∑
j=0

(2M |δ|)j = finite

follows, which in turn yields N−m0 |(∗∗)| to by finite too.
(iii)⇒(v). Fix λ0 ∈ Sµ. p̃(λ) having a root of order m0 + 1 at λ0 is equiva-

lent to the existence of a solution (∆0, . . . , ∆M−1) of the system of linear equa-
tions described by

(38)



λM−1
0 λM−2

0 . . . . . . . . . 1 −N1p(λ0)

M−1
N λM−2

0
M−2

N λM−3
0 . . . . . . 1

N 0 −N0p′(λ0)

(M−1)(M−2)
N2 λM−3

0
(M−2)(M−3)

N2 λM−4
0 . . . 2

N2 0 0 −N−1p′′(λ0)

...
...

...
...

...
...

...
(M−1)...(M−m0)

Nm0 λ
M−1−m0
0 . . . m0!

Nm0 0 . . . 0 −N−m0+1p(m0)(λ0)


has a solution (∆0, . . . , ∆M−1). Choose 0 ≤ j0 < . . . < jm0 ≤ M − 1, such that
for tm := ◦(jm/N), m = 0, . . . , m0 we have: t0 < . . . < tm0 . The system above
has a solution, if there is a solution considering on the left-hand side only the
columns j0, . . . , jm0 . But this reduced (square) matrix is infinitely close to

R =


eµ(r−t0) eµ(r−t1) · · · eµ(r−tm0 )

(r − t0)eµ(r−t0) (r − t1)eµ(r−t1) · · · (r − tm0)e
µ(r−tm0 )

...
...

. . .
...

(r − t0)m0eµ(r−t0) (r − t1)m0eµ(r−t1) · · · (r − tm0)
m0eµ(r−tm0 )

 .

This is an invertible matrix, and (R, x) 7→ R−1x is continuous. By (iii), the right-
hand side of (38) is infinitely close to 0 ∈ Rm0+1. Continuity now implies (38)
has a solution ∆j = 0 for all j ∈ {0, . . . ,M − 1} \ {j0, . . . , jm0}, and ∆j ≈ 0 for
j ∈ {j0, . . . , jm0}. Since m0 is finite, (v) has been proved.

(v)⇒(ii). Fix λ0 ∈ Sµ and let ∆0, . . . ,∆M−1,
∑M−1

j=0 |∆j | ≈ 0, such that
p∆(λ) has a root of order m0 + 1 at λ0. Now let Γ: ∗[0, 1] → ∗RM be an internal
path joining (∆0, . . . , ∆M−1) with 0. For τ ∈ ∗[0, 1] we have corresponding
characteristic polynomials pΓ(τ)(λ), and continuously depending roots λm(Γ(τ)),
0 ≤ m ≤ m0. If all λm(Γ(τ)) ∈ Sµ we are done. So assume that at least one λ

leaves Sµ. But then by Lemma 5 (or Lemma 10 and m0 = 0), we would have
solutions eµ(τ)(t+r) of equation (26), where C 3 µ(τ) 6= µ connects continuously
with µ. This cannot be, hence indeed no λm(τ) leaves Sµ, and for τ = 1 we have
(at least) m0 + 1 roots in Sµ. �

Lemma 10 implies, that in any Sµ there can only be finitely many eigenvalues
of A. If we have exactly m0 ∈ N eigenvalues within one given Sµ, say λ1, . . . , λm0 ,
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we can change in the representation Y =
∑M−1

j=1 αjvj the part belonging to these
eigenvalues. We use Lemma 9 to do this, and get

∑m0
j=1 αjvj =

∑m0
j=1 βjνj,j . The

new representation uses vectors νj,j representing linearly independent eigenfunc-
tions instead of eigenvectors. These sums represent some standard function, and
by Lemma 8 part (i), the contribution of this (partial) sum is finite, hence all co-
efficients βj have to be finite too. Note, that this is not true for the αj . A simple
example is the case, that N(λ1 − 1) ≈ N(λ2 − 1), because then v1

∧= x(θ) ∧= v2

and (v1−v2) times an infinite number can still represent a function, for example
(θ + r)eµ(θ+r).

For j = 1, . . . , m0 let νj,j , βj be defined as in (29) and (30), respectively.
Then ◦(βjνj,j) is the projection onto the eigenfunction (θ+r)j−1eµ(θ+r)/(j−1)!.
We will give now in Proposition 3 an explicit formula for these projections, using
only µ and η(θ). The projection onto the “highest” eigenfunction is given by
a quotient of integrals, the other ones are given by derivating this quotient with
respect to the eigenvalue and inserting certain factors. This is a new result, be-
cause other methods only give a construction of the projections via a normalized
basis for the eigenspaces of the equation and its transposed.

Proposition 3. Assume the linear autonomous one-dimensional RFDE (26)
has an eigenvalue µ ∈ C with corresponding eigenspace Pµ = lin {z1, . . . , zm0} ⊂
C([−r, 0], C), where zm(θ) = (θ + r)m−1eµ(θ+r)/(m− 1)!, m = 1, . . . , m0. There
is a decomposition C([−r, 0], C) = Pµ ⊕Qµ, such that the following holds:

If {µ ∈ C : µ is eigenvalue of equation (26), Re µ ≥ ρ} = {µ1, . . . , µq}
and prµj :C([−r, 0], C) → Pµj , j = 1, . . . , q, are the corresponding pro-
jections of C([−r, 0], C) = Pµj

⊕Qµj
, then for 0 < ε ∈ R small enough∣∣∣∣x(t)−

q∑
j=1

(prµj
(Φ))(t)

∣∣∣∣ ≤ Ce(ρ−ε)t‖Φ‖∞ for all t ≥ 0,

for a constant C ∈ R, x(t) the solution of (26) with initial value Φ.

If we write prµΦ =
∑m0

m=1 Ψmzm, then

(39) Ψm0−m =
1
m!

∑
γ∈Nm+1

|γ|=m

aγ,m∏m
j=1

(
m0+γj

γj

) N (γ0)(µ)D(γ1)(µ) . . . D(γm)(µ)
(D(µ))m+1

,

where N(µ), D(µ) and aγ,m ∈ R are defined by

N(µ) = Φ(0) +
∫ 0

−r

µe−µtΦ(t) dt−
∫ 0

−r

∫ θ

−r

eµ(θ−t)Φ(t) dt dη(θ),

(40) D(µ) =
1

m0!

(
eµr(m0r

m0−1 + µrm0)−
∫ 0

−r

(θ + r)m0eµ(θ+r)dη(θ)
)

,
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N(µ)
D(µ)

)(m)

=
1

(D(µ))m+1

∑
γ∈Nm+1

|γ|=m

aγ,mN (γ0)(µ)D(γ1)(µ) . . . D(γm)(µ).

Proof. As before, we describe the RFDE by Y0 = (y0, . . . , y−M+1)t ∧= Φ,
Yn = AYn−1, A as in (27). Without loss of generality, we can assume A to have
only simple eigenvalues λ1, . . . , λM , so we get a basis of eigenvectors v1, . . . , vM

and a decomposition of ∗CM by Y0 =
∑M

j=1 αjvj , where αj is given by (14),
which in the one-dimensional case becomes

(41) αj =
y0 +

∑M−1
l=1 (λl

j − λl−1
j − 1

N

∑l−1
k=0 Lkλl−1−k

j )y−l

p′(λj)
=

K(Y0, λj)
p′(λj)

.

With Lemma l0 we have exactly m0 eigenvalues in Sµ, say λ1, . . . , λm0 . Lemma 9
implies, that Pµ corresponds to lin {v1, . . . , vm0} ⊂ ∗CM . α1, . . . , αm0 don’t have
an interpretation as coefficients of functions, since there may be infinite, as we
already mentioned before. So we change basis by Lemma 9 and

m0∑
m=1

αmvm =
m0∑

m=1

βmνm,m,

where νm,m
∧= zm, m = 1, . . . , m0. Define

prµΦ =
◦( m0∑

m=1

αmvm

)
=

◦( m0∑
m=1

βmνm,m

)
.

The so defined prµ is the projection we are looking for: Assume µ1, . . . , µq ∈ C
are all the eigenvalues of the RFDE (26) satisfying Re µj ≥ ρ, with corresponding
eigenspaces Pµj

, j = 1, . . . , q. We define the projections prµj
accordingly. Then

for t ≈ n/N , x(t) the solution of (26), with initial value Φ ∧= Y0 =
∑M

j=1 αjvj ,
and 0 < ε ∈ R small enough∣∣∣∣x(t)−

q∑
j=1

prµj
(Φ)(t)

∣∣∣∣ ≈ ∣∣∣∣ M∑
j=1

αjλ
n
j vj −

M∑
j=1

N(|λj |−1)>ρ−ε

αjλ
n
j vj

∣∣∣∣
=

∣∣∣∣ M∑
j=1

N(|λj |−1)<ρ−ε

αjλ
n
j vj

∣∣∣∣ < C

(
1 +

ρ− ε

N

)n

‖Y0‖∞ ≈ Cet(ρ−ε)‖Φ‖∞,

using Lemma 8, for a constant C ∈ R. Of course, we have to show, that∑m0
j=1 βjµj,j represents a function, i.e. all βj are finite. For this and the proof

of (39), it suffices to show ◦βm = Ψm, m = 1, . . . , m0. βm is given by (see (30)
and (41))

(42) βm = Nm−1
m0∑

l=m

1∏m0
k=m

k 6=l
(λl − λk)

K(Y0, λl)∏M
k=m0+1(λl − λk)

.
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We have to compute the standard part of βm. We start with K(Y0, λm):

K(Y0, λm) = y0 +
1
N

M−1∑
l=1

λl−1
m N(λm − 1)y−l −

M−2∑
k=0

Lk
1
N

M−1∑
l=k+1

λl−1−k
m y−l

≈ Φ(0) +
∫ 0

−r

µe−µtΦ(t) dt−
∫ 0

−r

∫ θ

−r

eµ(θ−t)Φ(t) dt dη(θ) = N(µ).

Before we continue to take standard parts to get D(µ), a few notations we
will need later on. Let δ := max{|λj−λl| : 1 ≤ j ≤ l ≤ m0}, ∆ := min{|λj−λl| :
1 ≤ j ≤ m0, m0 < l ≤ M}. Since λ1, . . . , λm0 are all the eigenvalues in Sµ, we
have N∆ 6≈ 0. And by Lemma l0 we can assume λ1, . . . , λm0 to be arbitrarily
close to each other, in particular we assume at least Nm0+1δ/∆ ≈ 0.

Now we relate D(µ) to a derivative of p(λ). For 1 ≤ m ≤ m0 we have

(43) N−m0+1p(m0)(λm)

=
M − 1

N

M − 2
N

· · · M −m0 + 1
N

λM−1−m0
m

(
N(λm − 1)

M

N
+ m0

)
−

M−1∑
k=0

Lk
M − 1− k

N
· · · M − k −m0

N
λM−1−k−m0

m

≈ rm0−1eµr(µr + m0)−
∫ 0

r

(θ + r)m0eµ(θ+r) dη(θ) = m0!D(µ),

and the maximality of m0 implies, either directly or via Lemma 10, D(µ) 6= 0.
The link between the second part of the denominator in (42) and p(m0)(λ) is:

p(m0)(λ) =m0!
∑

γ∈{0,1}M

|γ|=M−m0

(λ− λ1)γ1 . . . (λ− λM )γM

=m0!
[ M∏

k=m0+1

(λ− λk) +
m0∑
l=1

∑
γ∈{0,1}m0

|γ|=l

(λ− λ1)γ1 . . . (λ− λm0)
γm0

·
∑

γ∈{0,1}M−m0

|γ|=M−m0−l

(λ− λm0+1)γm0+1 . . . (λ− λM )γM

]
.

For λ ∈ {λ1, . . . , λm0}, each term in the sum can be estimated by (δ/∆)l ·
|
∏M

k=m0+1(λ − λk)|, the number of these terms is bounded by
(

M
m0

)
. Hence for

these λ

p(m0)(λ) = m0!
M∏

k=m0+1

(λ− λk)[1 + R],

where

|R| ≤
m0∑
l=1

(
δ

∆

)l(
M

m0

)
≤ Mm0

m0!
δ

∆
· 2 ≈ 0.
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Plugging this in (43), we get N−m0+1
∏M

k=m0+1(λ − λk) ≈ D(µ). That is,
N−m0+1 times the second part of the denominator in (42) is infinitely close
to D(µ), and ◦(βm0) = Ψm0 . In other words, (39) is true for m = 0. To prove
it for m ≥ 1, note that if all λj 6= λm0 are fixed, then βm0 = βm0(λm0) is an
∗-analytic function. There is a series expansion

βm0(λ) = Nm0−1 K(Y0, λ)∏M
k=m0+1(λ− λk)

=
∑
j∈∗N

β
(j)
m0(λm0)

j!
(λ− λm0)

j ,

valid for at least N |λ− λm0 | ≈ 0. Writing

βj = N j−m0

m0∑
l=j

βm0(λl)
1∏m0

k=j

k 6=l
(λl − λk)

,

we see, the sum in above expression is the leading coefficient of the polynomial
interpolating βm0(λ) at λj , . . . , λm0 . Since for coinciding nodes, the normal
interpolation becomes the Hermite interpolation, the coefficients of the interpo-
lating polynomial of an analytic function are analytic functions themselves (of
the nodes). Hence for λ1, . . . , λm0 near enough to each other, we get

βj = N j−m0
β

(m0−j)
m0 (λm0)
(m0 − j)!

+ infinitesimal.

We are interested in the standard part of βj , so all we need is the derivative
of βm0 . Setting Dβ(λ) = N−m0+1

∏M
k=m0+1(λ− λK) we have

βm0(λ) =
K(Y0, λ)
Dβ(λ)

,

β(m)
m0

(λ) =
1

(Dβ(λ))m+1

∑
γ∈Nm+1

|γ|=m

aγ,m
∂γ0

∂λγ0
K(Y0, λ)D(γ1)

β (λ) . . . D
(γm)
β (λ),

where aγ,m has been defined in (40). The only thing still missing in the proof
of (39) is to show for 1 ≤ m ≤ m0 − 1 the last step in

◦βm0−m ≈ N−m

m!
β(m)

m0
(λ)

=
N−m

m!(Dβ(λm0))m+1

·
∑

γ∈Nm+1

|γ|=m

aγ,m
∂γ0

∂λγ0
K(Y0, λm0)D

(γ1)
β (λm0) . . . D

(γm)
β (λm0)

≈ 1
m!

∑
γ∈Nm+1

|γ|=m

aγ,m∏m
k=1

(
m0+γk

γk

) N (γ0)(µ)D(γ1)(µ) . . . D(γm)(µ)
Dm+1(µ)

.
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For this to be true, it is sufficient to show N (m)(µ) ≈ N−m∂mK(Y0, λ)/∂λm,
and D(m)(µ) ≈ N−m

(
m0+m

m

)
D

(m)
β (λ), for all λ ∈ Sµ, 0 ≤ m ≤ m0.

For m = 0 we have shown it already, and for m > 0

N−m ∂m

∂λm
K(Y0, λ) =

1
N

M−1∑
l=1

N−m+1(λl−1(λ− 1))(m)︸ ︷︷ ︸
≈(◦(l/N))m−1eµ◦(l/N)(◦(l/N)µ+m)

y−l

−
M−2∑
k=0

Lk

N

M−1∑
l=k+1

N−m(λl−1−k))(m)︸ ︷︷ ︸
≈◦((l−k)/N)meµ◦((l−k)/N)

y−l

≈
∫ 0

−r

(−t)m−1e−µt(−µt + m)Φ(t) dt

−
∫ 0

−r

∫ θ

−r

(θ − t)meµ(θ−t)Φ(t) dt dη(θ) = N (m)(µ),

and for λ1, . . . , λm0 sufficiently near to each other

N−m0−m+1

m0!
p(m0+m)(λ)

=N−m0−m+1 (m0 + m)!
m0!

∑
γ∈{0,1}M

|γ|=M−m0−m

(λ− λ1)γ1 . . . (λ− λM )γM

=N−m0−m+1 (m0 + m)!
m0!

[ ∑
γ∈{0,1}M−m0

|γ|=M−m0−m

(λ− λm0+1)γ1 . . . (λ− λM )γM−m0

+
m0∑
l=1

∑
γ∈{0,1}m0

|γ|=l

(λ− λ1)γ1 . . . (λ− λm0)
γm0

·
∑

γ∈{0,1}M−m0

|γ|=M−m0−m−l

(λ− λm0+1)γm0+1 . . . (λ− λM )γM

]

=N−m

(
m0 + m

m

)
D

(m)
β (λ) + infinitesimal,

by the definition of Dβ(λ). On the other hand

N−m0−m+1

m0!
p(m0+m)(λ)

=
1

m0!

[
M − 1

N
· · · M −m0 −m + 1

N
λM−m0−m−1

(
M

N
N(λ− 1) + m0 + m

)
−

M−1∑
k=0

Lk
M − 1− k

N
· · · M −m0 −m− k

N
λM−1−m0−m−k

]
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≈ 1
m0!

[
rm0+m−1eµr(rµ + m0 + m)−

∫ 0

−r

(r + θ)m0+meµ(r+θ) dη(θ)
]

= D(m)(µ)

and the proof is complete. �

As a last application, we show how the linear operator L changes if one
exchanges one eigenvalue µ0 by an arbitrary (complex) number µ1, leaving all
other eigenvalues unchanged. Of course, if µ0 or µ1 is complex one has to repeat
the step with the conjugated number to get a real RFDE.

Pandolfi showed in [10], how one can change a finite number of eigenvalues.
He gives a method to construct the resulting linear operator (in various dimen-
sions). Here we only change one eigenvalue at a time, and have a one-dimensional
RFDE, but we give an explicit formula for the resulting operator, not only a way
to construct it.

Lemma 11. Let µ0 be an eigenvalue of the RFDE

(44) x′(t) =
∫ 0

−r

x(t + θ) dη0(θ)

and µ1 ∈ C be an arbitrary number. Then the RFDE

x′(t) =
∫ 0

−r

x(t + θ) dη1(θ),

where η1(θ) is defined by η1(0) = 0, and for −r ≤ θ < 0 by (46) below, has
exactly the same eigenvalues (including multiplicities) as in the RFDE (44), with
the only exception of one eigenvalue µ0 having become µ1.

Proof. Let pm(λ) = λM −λM−1− qm(λ)/N , qm(λ) =
∑M−1

j=0 L
(m)
j λM−1−j ,

m = 0, 1, where p0(λ) is the characteristic polynomial of equation (44). We have
to find L

(1)
j , so that the conclusion holds.

We can choose L
(0)
j = ∗η0(−j/N)− ∗η0((−j − 1)/N) (without loss of gener-

ality assume M/N < r). Let λ0, λ1 ∈ ∗C, such that N(λm − 1) ≈ µm, m = 0, 1,
and assume p0(λ0) = 0.

Define L
(1)
j by p1(λ) ≡ p0(λ)(λ − λ1)/(λ − λ0). We will show

∑M−1
j=0 |L(1)

j |
to be finite, and by Lemma 6 we get η1(θ), which by Lemma 10 satisfies the
requirements of this lemma.

Assume λ0, λ2, . . . , λM to be the roots of p0(λ). Then

(45) q1(λ)− q0(λ) = N(p0(λ)− p1(λ)) = N

M∏
j=2

(λ− λj)(λ1 − λ0)

and
M∏

j=2

(λ− λj) =
p0(λ)
λ− λ0

=
M−1∑
j=0

λM−1−j

j∑
l=0

λl
0aM−j+l,︸ ︷︷ ︸
=:bj
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where aM = 1, aM−1 = −1 − L
(0)
0 /N , aj = −L

(0)
M−j−1/N , j = 0, . . . , M − 2.∑M−1

j=0 |L(0)
j | is bounded, by say K0 ∈ R, so we get b0 = aM = 1 and, for

j = 1, . . . , M − 1,

|bj | =
∣∣∣∣λj

0 − λj−1
0 − 1

N

j−1∑
l=0

λj−1−l
0 L

(0)
l

∣∣∣∣
≤ 1

N
[|λ0|j−1N |λ0 − 1|+ (1 + |λ0|M )K0] =

finite
N

.

Hence
∑M−1

j=0 |bj | is finite. By (45) L
(1)
j = L

(0)
j +N(λ1−λ0)bj , and together with

N(λ1−λ0) finite,
∑M−1

j=0 |L(1)
j | is finite too. We conclude the proof by giving an

explicit formula for η1(θ), as defined in (16) using L
(1)
j .

η1(0) := 0, and for −r ≤ θ < 0, n/N ≤ −θ maximal, define η1(θ) by

η1(θ) ≈ −
n∑

j=0

L
(1)
j

= −
n∑

j=0

L
(0)
j + N(λ0 − λ1)

( n∑
j=0

λj
0 −

n∑
j=1

λj−1
0 − 1

N

n∑
j=1

j−1∑
l=0

λj−1−l
0 L

(0)
l

)

≈ −
∫ 0

θ

dη0(t)

+ (µ0 − µ1)
(

1 + µ0

∫ 0

θ

e−µ0tdt−
∫ 0

θ

∫ t

θ

eµ0(t−s) ds dη0(t)
)

.

On both sides there are standard quantities, which therefore have to be equal,
and we get finally: η1(0) = 0, and for −r ≤ θ < 0

(46) η1(θ) =



µ1

µ0
(η0(θ)− η0(0)) + (µ0 − µ1)e−µ0θ

+
(

µ1

µ0
− 1

) ∫ 0

θ

eµ0(t−θ) dη0(t) for µ0 6= 0,

η0(θ)− η0(0)− µ1 + µ1

∫ 0

θ

(t− θ) dη0(t) for µ0 = 0.

This η1(θ) satisfies the conclusion of Lemma 11. �

6. Conclusion

Nonstandard Analysis has been applied fruitfully to various areas of the
theory of ODE’s (see e.g. Benoit’s article in [1], [3], [6]), but to our knowledge
not to RFDE’s so far. The main advantage of Nonstandard Analysis in the theory
of ODE’s, in our mind, is that it offers alternative descriptions, together with
the necessary tools. These are often very intuitive, making an understanding
and subsequently an investigation easier.
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This paper is a first presentation of above mentioned nonstandard description
of RFDE’s. It treats only the linear autonomous case in more detail. The
whole field of non-linear and non-autonomous equations, while the description
is applicable in these cases too, has still to be looked at more closely. Even in
the case of autonomous linear equations of various dimensions, the counterparts
of some results in one dimension remain to be done (see Lemma 11, part of
Lemma 10, and Proposition 3).

The framework presented here is very new, and thus applications are few.
Still, two examples of new standard results we got with this approach, have
been included. In both cases we use simple representations in the nonstandard
framework to get explicit formulas for standard quantities (see Proposition 3
and Lemma 11). In our opinion these applications show, that it is worthwhile
to pursue our approach further. In particular, the possibility of relating the
characteristic equation of a linear autonomous RFDE to a polynomial seems
promising for further exploitation.

In the case of non-linear RFDE, the finite dimensionality (within Nonstan-
dard Analysis) gives advantages too, but before one can think seriously of ex-
ploiting this to advance the (standard) theory of RFDE, there has to be a closer
look into the features of our description in this more general case.

If one chooses M/N infinite instead of near to the finite delay r, then one
would have infinite delay. Proposition 1, which proves the applicability of our
method, does not apply to this case. But if it were applicable, within the non-
standard description there would be no change at all. Obviously, one has to
think about how far in this case the nonstandard features of the description re-
main interpretable in the real world. A new description cannot get rid of the
differences between RFDE with finite, respectively infinite delay. Still, this is
an other interesting problem to look into.
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