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F-EPI MAPS

Jürgen Appell — Martin Väth — Alfonso Vignoli

Abstract. The concept of 0-epi maps is a known homotopic analogue
to maps with nonzero degree. There exist various related notions on un-

bounded sets and for multivalued maps. We introduce a concept which

unifies these definitions. We also compare the various concepts. In partic-
ular, we prove that proper 0-epi maps are also 0-multiepi.

1. Introduction

The probably simplest homotopic concept for equations is the concept of
0-epi maps which has been introduced in [5]: If X,Y are Banach spaces and
Ω ⊆ X is bounded, then a continuous map F : Ω → Y with 0 /∈ F (∂Ω) is called
0-epi if the equation F (x) = ϕ(x) has a solution for any compact map ϕ: Ω → Y

with ϕ|∂Ω = 0. Roughly speaking, a map is 0-epi if it has a homotopically stable
0. In particular, it turns out that the above definition is independent under
perturbations by compact homotopies.

It is a consequence of Hopf’s theorems on the connection of homology and
homotopy theory that if Ω ⊆ X = Y is open and bounded, and if F has the
form F = id−C where C is compact (or just so-called strictly condensing), then
F is 0-epi if and only if deg(F,Ω0, 0) 6= 0 for some component Ω0 of Ω (see [6]).
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However, the above definition is also useful if no degree for F is defined, in
particular if X 6= Y .

In view of this observation, the notion of 0-epi maps has already found numer-
ous applications which go beyond the realms of degree theory. For an overview,
we refer to the monograph [8].

A corresponding multivalued concept where ϕ is replaced by a multivalued
function has been introduced in [14]. However, in [14], emphasis was put on the
extension to noncompact functions. The question was left open whether each
0-epi map is also 0-epi in the multivalued sense. In Section 4, we give a positive
answer for proper maps.

If the set Ω above is an unbounded subset of a topological vector space, one
may repeat the above definition but require additionally that ϕ have bounded
support as was done in [5]. However, this is a very restrictive requirement on
ϕ. It appears more natural to modify the definition in this case by requiring
that F (x) = ϕ(x) have a solution for any compact map ϕ with bounded range
with ϕ|∂Ω = 0. (Here, compact means as usual that ϕ maps bounded sets into
precompact sets). However, also the requirement that ϕ have bounded range is
too restrictive for many applications. In [4], this condition was replaced in case
Ω = X by the sublinear growth condition

lim sup
‖x‖→∞

‖ϕ(x)‖
‖x‖

= 0.

The corresponding maps F have been called stably-solvable in [4].
We shall introduce a concept in Sections 2 and 3 which contains all of the

above notions (both, in the single-valued and in the multi-valued case). Our
concept also easily covers generalized growth conditions like

lim sup
‖x‖→∞

‖ϕ(x)‖
q(‖x‖)

= 0

(with q(t) ↑∞ as t ↑∞). The relation between the single-valued and the multi-
valued case in our general unifying concept is discussed in Section 4.

It will be convenient (although mathematically not quite precise) to identify
single-valued maps with multi-valued maps, i.e.occassionally we do not nota-
tionally distinguish the map ϕ:A → B from the map Φ:A → 2B defined by
Φ(x) = {ϕ(x)}. In particular, we will use certain multi-valued concepts also for
single-valued maps without further remarks. We adopt the usual notation for
the image of a set Φ(C) =

⋃
x∈C Φ(x).

Throughout this paper, we assume the axiom of dependent choices DC which
allows countably many recursive or nonrecursive choices ([9]) and which usually
suffices for real analysis, in particular for applications in physics. If we use the
(general) axiom of choice, we mention this explicitly.
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2. F-epi maps

We introduce now the general concept mentioned in the introduction. In view
of later applications, we study not only the case that we have maps between
Banach spaces but only between topological spaces which is a more natural
setting for a homotopical concept. Only for the image space Y we also require
a vector structure for simplicity, but it suffices to consider maps which attain
their values in a certain subset K ⊆ Y . This is of some interest for applications,
since this enables us e.g. to look for positive solutions (if K is the cone of positive
functions).

Throughout this paper, let D be a normal space, P ⊆ D closed, and Ω ⊆ D.
Let Y be a topological vector space, and K ⊆ Y . We will be interested in
solutions of the equation F (x) = ϕ(x) where F :D → Y and ϕ:D → K. In the
situation of the introduction, one should think of D = Ω and P = ∂Ω. We call
this the “canonical” situation.

However, we have an important reason why we do not restrict ourselves to
this case: For the homotopical definition of a coincidence index (the fixed point
index of morphisms [7], [11], see also [17]), one studies instead of solutions of
the equation F (x) = ϕ(x) the fixed points of the multivalued map ϕ ◦ F−1. In
particular, this index is defined in terms of subsets of K. In this connection, it is
more natural to put e.g. D = F−1(O) and P = F−1(∂O) where O ⊆ K is open
in K and the boundary (and closure) are understood with respect to K.

Some general remark: Roughly speaking, one might consider the theory pre-
sented in this paper as a “purely homotopical” approach to the solution of co-
incidence equations. It is somewhat surprising that this approach is formulated
most naturally in terms of subsets of D (or in other words: in terms of the
multivalued map F−1 ◦ ϕ) while the corresponding homological approach (via
coincidence index) is formulated more naturally in terms of subsets of K (or in
terms of the multivalued map ϕ ◦ F−1). In the classical “fixed point setting”
(i.e. if F (x) = x), the Hopf extension theorem implies that the two approaches
in fact coincide in some sense [6], [18]. However, in the general situation the
above described difference makes it even hard to just formulate such a connec-
tion (although a generalization of the Hopf theorem for the coincidence index is
known [10]).

One should think of K as a cone, i.e. a closed and convex subset of Y with
0 ∈ K+K ⊆ K. In this connection, we emphasize that in the canonical situation
even if Ω is a subset of a normed space X, it might be convenient to consider
Ω as a subset of some cone D in X and to understand the boundary P = ∂Ω
with respect to this cone (many cones have no interior points). This allows e.g.
to look for positive solutions of certain problems.
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We point out that another possible choice for subsets Ω of a normed space
X is to consider Ω as a subset of D = X ∪ {∞} (endowed with the natural
topology), and to understand the boundary P = ∂Ω with respect to D. In this
case the condition ϕ|P = 0 means that ϕ has bounded support and ϕ|∂XΩ = 0
where ∂XΩ is the boundary of Ω with respect to X. This choice will lead to the
original concept of 0-epi maps from [5], [8] mentioned in the beginning.

Throughout, we assume that we have given a family B of subsets of D. One
should think of B as the “bounded” subsets of D. We require compactness
conditions only on the “bounded” sets:

Definition 2.1. We call a map Φ:D → 2Y (B,K)-compact, if conv(Φ(B))
is compact and contained in K for any B ∈ B. Similarly, we call a homo-
topy H: [0, 1] × D → Y (B,K)-compact, if conv(H([0, 1] × B)) is compact and
contained in K for any B ∈ B.

Example 2.1. Let Y be a Fréchet space, and K ⊆ Y be closed and convex.
If D is a subset of some topological space X and B denotes the system of all
bounded subsets of D, then a map Φ:Ω → 2Y is (B,K)-compact if and only if
it maps bounded sets into precompact sets and if its range is contained in K.

If Y is for example an uncomplete normed space, then the requirement that
conv(Φ(B)) be compact is in general more restrictive than the apparently more
natural requirement that Φ(B) be compact. However, the former is more conve-
nient and useful in many proofs (it is also needed in the results from [14]).

We assume throughout that we have given two sets of functions G and G−
such that (G,G−) represents a growth condition in the following sense:

Definition 2.2. Let G be a set of multi-valued functions H: [0, 1]×D → 2Y .
If Φ:D → 2Y has the form Φ = H(0, · ) with some H ∈ G, we also write Φ ∈ G.
Similarly for single-valued functions. Let G− be a set of (single-valued) functions
F :D → Y . We say that (G,G−) defines a (B,K)-growth condition if the following
properties are satisfied:

(1) If H ∈ G and λ:X → [0, 1] is continuous, then also (t, x) 7→ H(λ(t), x)
belongs to G.

(2) If ϕ:D → Y belongs to G, then also λϕ ∈ G for any λ ∈ R.
(3) If ϕ:D → Y belongs to G, then h(t, x) = tϕ(x) (0 ≤ t ≤ 1) belongs

to G.
(4) If Φ:D → 2Y and ϕ:D → Y belong to G, then also Φ + ϕ ∈ G.
(5) If Φ,Ψ:D → 2Y belong to G, and if Ω0 ⊆ Ω is such that the piecewise

defined function

χ(x) =

{
Φ(x) if x ∈ Ω0,

Ψ(x) if x /∈ Ω0,



F-Epi Maps 377

is upper semicontinuous, then χ ∈ G.
(6) For each (B,K)-compact H ∈ G and each F ∈ G− there is a neigh-

bourhood V ⊆ Y of 0 such that for each compact C ⊆ V there is some
B ∈ B with {x ∈ D : F (x) ∈ H([0, 1]× {x}) + C} ⊆ B.

The first properties mean, roughly speaking, that G indeed consists of all
functions which satisfy a certain type of growth condition (the first condition
means that the growth condition for H(t, · ) is uniform with respect to t). How-
ever, the last requirement in Definition 2.2 is the most essential one. This con-
dition implies in particular that we have an a priori estimate for the solutions
of the inclusion F (x) ∈ Φ(x) for F ∈ G and Φ ∈ G−. In general, the larger the
class G, the smaller must be G− to satisfy this requirement. Roughly speaking:
The less restrictive the “growth condition” on Φ, the “faster” must F grow.

We note that not every property of Definition 2.2 is needed for every result. In
particular, the somewhat technical property (5) is only needed for Corollary 3.2
(restriction property for f -multiepi maps). The reader who has no usage for
the restriction property thus may eliminate the requirement (5) from the above
definition.

We are mainly interested in the following three special cases which correspond
to the earlier mentioned definition of 0-epi maps on bounded sets, on unbounded
sets, and of stably-solvable maps, respectively:

Example 2.2. If D ∈ B, then we may let G and G− consist of all (single- or
multi-valued) functions from D (resp. [0, 1]×D) into Y . In other words, if Ω is
bounded in the situation of Example 2.1 (or if we are only interested in functions
Φ with compact convΦ(D)), there is no need to consider any growth condition.

Example 2.3. Consider the situation of Example 2.1. Let G denote the
system of all functions with bounded range, and G− the system of all functions
with the property that preimages of bounded sets are bounded. Then (G,G−)
defines a (B,K)-growth condition (and one may even choose V = Y ). Indeed,
since compact sets are bounded, it follows that for any Φ ∈ G the set Φ(D) +C

is bounded, and so even F−1(Φ(D) + C) ∈ B.

Example 2.4. Let X and Y be normed spaces, D ⊆ X, and let B denote
the system of all bounded subsets of D. Assume that we have given monotone
increasing maps p, q: [0,∞) → [0,∞). We assume that p satisfies a ∆2-condition,
i.e. there are constants t0, c ∈ [0,∞) with

p(2t) ≤ c · p(t) (t ≥ t0).

A typical example is p(t) = tα (0 < α <∞). Moreover, we assume that q(t) →∞
as t→∞. Given a map H: [0, 1]×D → 2Y , we put
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[H]p,q := lim sup
‖x‖→∞

x∈D

sup
{
p(‖y‖)
q(‖x‖)

: y ∈ H([0, 1]× {x})
}

and

[H]p,q := lim inf
‖x‖→∞

x∈D

inf
{
p(‖y‖)
q(‖x‖)

: y ∈ H([0, 1]× {x})
}

where we put, to avoid special cases, sup ∅ := 0 and inf ∅ := ∞. We also
put [H]p,q := 0 and [H]p,q := ∞ if D is bounded. If Φ:D → 2Y , we put
[Φ]p,q := [H]p,q and [Φ]p,q := [H]p,q where H(t, · ) := Φ; analogously for single-
valued maps. Then the pair (G,G−) satisfies a (B,K)-growth condition when G
denotes the class of all functions Φ with [Φ]p,q = 0 and G− denotes the class of
all functions F with [F ]p,q > 0.

Indeed, observe first that if a function Φ is “dominated” by a function Ψ ∈ G
(in the sense that for each x ∈ D and each y ∈ Φ(x) there is some z ∈ Ψ(x) with
‖y‖ ≤ ‖z‖), then Φ ∈ G. Moreover, if Φ,Ψ ∈ G, then also the “union function”
(Φ ∪ Ψ)(x) := Φ(x) ∪ Ψ(x) belongs to G. This already implies the property (5)
of Definition 2.2. The ∆2-condition implies that for any Φ ∈ G we have 2Φ ∈ G
and thus even 2nΦ ∈ G for any n which now implies λΦ ∈ G for any λ ∈ R.
Moreover, if also ϕ ∈ G, then 2(Φ∪ϕ) dominates Φ +ϕ and belongs to G; hence
Φ + ϕ ∈ G.

Finally, if F ∈ G−, H ∈ G, then for any bounded C ⊆ Y the set S = {x ∈
D : F (x) ∈ H([0, 1]×{x}) +C} is bounded. Indeed, suppose that C is bounded
by m < ∞, without loss of generality m ≥ t0. We find ε > 0 and r > 0 such
that for any x ∈ D with ‖x‖ > r the estimates

p(‖F (x)‖) > εq(‖x‖) ≥ c · p(m)

and

p(‖y‖) ≤ εq(‖x‖)/c (y ∈ H([0, 1]× {x}))

hold. For each such x, each y ∈ H([0, 1] × {x}), and each z ∈ C, we thus
find p(‖y + z‖) ≤ p(2 max{‖y‖,m}) ≤ max{cp(‖y‖), cp(m)} < p(‖F (x)‖) which
implies x /∈ S. Hence, S is bounded by r.

The reader familiar with the paper [4] might consider Example 2.4 as the
deeper reason why the conditions [ϕ]id,id = 0 and [F ]id,id > 0 play such a crucial
role for stably-solvable maps. There is usually no difficulty to replace them by
the more general conditions [ϕ]p,q = 0 and [F ]p,q > 0. (However, be aware that
for some applications in [4] it is required that F = id satisfies [F ]p,q > 0 which
excludes many choices for p and q).

Now we come to our main definitions:
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Definition 2.3. We call a family F of maps Φ:D → 2Y appropriate (with
respect to (Ω, P,K, Y,G)) if the following holds:

(1) Any Φ ∈ F is upper semicontinuous, and all values Φ(x) are closed.
(2) For any Φ ∈ F and any (B,K)-compact continuous map ϕ:D → Y

which satisfies ϕ ∈ G and ϕ|P = 0, the sum Φ + ϕ belongs to F .

In the following results we always (tacitly) assume that F is appropriate.
However, although we will prove our results only under this assumption, it will
be sometimes convenient to use the following essential notion even if F fails to
be appropriate.

Definition 2.4. We call a map F :D → Y

(1) F-epi (on Ω), if for any Φ ∈ F the inclusion F (x) ∈ Φ(x) has a solution
x ∈ Ω.

(2) F-admissible (on P ), if for any Φ ∈ F the inclusion F (x) ∈ Φ(x) has
no solution on P .

The crucial property of F-epi maps is that this class is stable under homo-
topic perturbations (if F is appropriate):

Poposition 2.1 (Homotopy invariance for F-epi maps). Let F :D → Y be
continuous, and H: [0, 1] × D → Y be continuous, (B,K)-compact, and belong
to G. Assume that H(0, · ) = 0 and that each of the functions Fλ(x) = F (x) −
H(λ, x) is F-admissible. If F0 is F-epi, then all Fλ are F-epi.

Proof. We have to prove that Fλ1 is F-epi for any λ1 ∈ [0, 1]. Replacing
H by H̃(λ, x) = H(λλ1, x) if necessary, it suffices to consider the case λ1 = 1.
Let Φ ∈ F be given.

The set S = {x ∈ D : Fλ(x) ∈ Φ(x) for some λ ∈ [0, 1]} is closed. Indeed,
given x0 /∈ S, let Λ denote the system of all open sets L ⊆ [0, 1] with the property
that Fλ(x) /∈ Φ(x) for all x in some neighbourhood U of x0 for any λ ∈ L. Then
Λ is an open covering of [0, 1]: For any λ0 ∈ [0, 1] the closed set Φ(x0) is disjoint
from the compact set {Fλ0(x0)}, since x0 /∈ S. By [13, Theorem 1.10] there are
disjoint open sets V1, V2 ⊆ Y which contain Φ(x0) and Fλ0(x0), respectively. By
the (upper semi-)continuity, we find neighbourhoods U ⊆ D of x0 and L ⊆ [0, 1]
of λ0 with Φ(x) ⊆ V1 and Fλ(x) ∈ V2 for (x, λ) ∈ U × L, in particular Fλ(x) /∈
Φ(x). The compact set [0, 1] is covered by finitely many sets L1, . . . , Lk ∈ Λ; let
U1, . . . , Uk denote corresponding neighbourhoods of x0 with Fλ(x) /∈ Φ(x) for
(x, λ) ∈ Ui × Li. The intersection U0 = U1 ∩ · · · ∩ Uk is a neighbourhood of x0

which thus satisfies U0 ∩ S = ∅. Hence, x0 /∈ S, and so S is closed.
Since each of the functions Fλ is F-admissible, it follows that S ∩P = ∅. By

Urysohn’s lemma, we thus find a continuous function λ:D → [0, 1] with λ|P = 0
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and λ|S = 1. Put Ψ(x) = Φ(x) + H(λ(x), x). We have Ψ ∈ F , because F is
admissible. Since F is F-epi, the inclusion F (x) ∈ Ψ(x) has a solution x ∈ Ω.
This means Fλ(x)(x) ∈ Φ(x), and so x ∈ S which in turn implies λ(x) = 1, i.e.
F1(x) ∈ Φ(x). Hence, F1 is F-epi. �

The following observation is not an immediate consequence of Mazur’s lem-
ma, since we do not assume that Y is a Fréchet space:

Lemma 2.1. If A,B ⊆ Y are convex and compact, then conv(A ∪ B) =
conv(A ∪B) and conv(A+B) = A+B are compact.

Proof. Consider the map f :A × B × [0, 1] → Y , defined by f(a, b, λ) =
λa+(1−λ)b. Since A and B are convex, the range of the continuous function f
contains (and thus is equal to) conv(A∪B). We point out that the compactness of
a finite product A×B× [0, 1] of compact spaces can be proved without appealing
to the axiom of choice [15] (although the proof is much more cumbersome with
this restriction than other proofs of Tychonoff’s theorem). The compactness of
A + B follows analogously by the continuity of g:A × B → Y , g(a, b) = a + b,
and a straightforward calculation shows that A + B is convex if A and B are
convex. �

Proposition 2.2 (Rouché stability for F-epi maps). Let K ⊆ Y be convex
with 0 ∈ K, and F,G:D → Y be continuous such that F − G belongs to G and
is (B,K)-compact. If the boundary condition

F (x) + λ(G(x)− F (x)) /∈ Φ(x) (Φ ∈ F , x ∈ P, 0 ≤ λ ≤ 1)

holds and F is F-epi, then G is F-epi.

Proof. Lemma 2.1 implies that conv((F −G)(B)∪{0}) is a compact subset
of K for any B ∈ B, and so H(λ, x) = λ(F (x)−G(x)) is (B,K)-compact. The
statement now follows from Proposition 2.1. �

Corollary 2.1 (Boundary dependence). Let K ⊆ Y be convex with 0 ∈ K,
and F,G:D → Y be continuous with F |P = G|P . Assume that F −G belongs to
G and is (B,K)-compact. If F is F-admissible and F-epi then G is F-admissible
and F-epi.

3. F◦f -epi maps

Definition 2.4 is somewhat too general for our purpose: We are mainly in-
terested in a particular type of systems F .

Definition 3.1. Given some appropriate family F , we denote by F◦ the
subset of all Φ ∈ F which belong to G and are (B,K)-compact. Similarly, we
denote by Ff the subset of all Φ ∈ F which satisfy Φ|P = f (put Ff = F if
P = ∅). We also write F◦f := (F◦)f = (Ff )◦.
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Note that F◦ implicitly depends on G, B, and K.

Proposition 3.1. If K +K ⊆ K, then F◦, Ff , and F◦f are appropriate.

Proof. Let Φ ∈ F◦ and some (B,K)-compact continuous map ϕ:D → Y

with ϕ ∈ G and ϕ|P = 0 be given. Then Φ + ϕ ∈ G. Moreover, for any B ∈ B,
the sets A1 = conv(Φ(B)) and A2 = conv(ψ(B)) are compact subsets of K, and
so in view of Lemma 2.1, also conv((Φ + ψ)(B)) ⊆ conv(A1 + A2) = A1 + A2

is a compact subset of K (here, we use that K + K ⊆ K). Hence, Φ + ψ is
(B,K)-compact, and so Φ + ψ ∈ F◦. This proves that F◦ is appropriate. Since
trivially Ff is appropriate for appropriate F , the statement follows. �

If Ff 6= ∅, then F :D → Y is Ff -admissible if and only if F (x) /∈ f(x) for all
x ∈ ∂Ω. To denote the latter, we simply say that F is f-admissible. From the
homotopy invariance of F-epi maps, we get immediately:

Corollary 3.1 (Homotopy invariance for Ff -epi maps). Let K +K ⊆ K,
and F :D → Y be continuous. Let the (B,K)-compact homotopy H: [0, 1]×D →
K belong to G, satisfy H(0, · ) = 0, and be such that each of the functions
Fλ(x) = F (x)−H(λ, x) is f-admissible. If F0 is Ff -epi then each of the functions
Fλ is Ff -epi.

Of course, also an anologue of the Rouché theorem holds. We leave the
formulation to the reader, but mention instead a more powerful result under an
additional assumption for F :

Recall that a map is called proper if preimages of compact sets are compact.
For maps in topological vector spaces, a more natural and less restrictive require-
ment is that the map be proper on closed bounded subsets. This is the case, for
example, if F = id−C with a continuous compact (linear or nonlinear) map C.
The analogue to that definition in our abstract situation is:

Definition 3.2. We call a map F :D → Y (B,K)-proper, if for any compact
C ⊆ K and any B ∈ B the set F−1(C) ∩B is compact.

Proposition 3.2 (Uniform Rouché stability for proper maps). Let K ⊆ Y

be convex with 0 ∈ K + K ⊆ K. Let F :D → Y be continuous, (B,K)-proper,
and belong to G−. If F is f-admissible, then there is a balanced neighbourhood
V ⊆ Y of 0 such that (F (x) + V ) ∩ f(x) = ∅ for any x ∈ P . Moreover, for
any such V the following holds: If F is F◦f -epi, and G:D → Y is continuous
with G(x) ∈ F (x) + V for x ∈ P and such that F − G belongs to G and is
(B,K)-compact, then G is F◦f -epi.

Proof. Assume by contradiction that for any balanced neighbourhood V ⊆
V0 of 0, we find some xV ∈ P and some yV ∈ V with F (xV )−yV ∈ f(xV ). If we
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partially order the index set of all V by inclusion, we may assume by the axiom
of choice that (xV )V and (yV )V are nets.

Recall that the system of all balanced neighbourhoods of 0 forms a base, see
e.g. [13, Theorem 1.14]. In particular, yV → 0, and so the set C = {yV : V } is
compact. Choose some Φ ∈ Ff . Passing to a subnet if necessary, it is no loss of
generality to assume that C is contained in the neighbourhood of Definition 2.2,
and so the set A = {xV : V } is contained in some B ∈ B. Since Φ is (B,K)-
compact, it follows that f(A) ⊆ conv(Φ(B)) is compact, and so also F (A) is
contained in the compact set f(A) + C. Since A ⊆ B and F is (B,K)-proper,
it follows that A is compact, i.e. xV ∈ P contains a subnet which converges to
some x ∈ P . By the continuity, and since f(x) is closed, we find F (x) ∈ f(x)
which contradicts the assumption that F be f -admissible. The second statement
now follows from Proposition 2.2. Indeed, since V is balanced, we have for any
λ ∈ [0, 1] and any x ∈ P that F (x)+λ(G(x)−F (x)) ∈ F (x)+V which is disjoint
from f(x). �

If Y is not metrizable, our proof of Proposition 3.2 requires the axiom of
choice. We do not know whether it is possible to prove the proposition without
that axiom in this case (for metrizable Y one just has to pass to a countable
base of balanced neighbourhoods V ⊆ Y of 0 in the proof).

If F = C(D,K) is the system of all single-valued continuous maps, then we
call the F◦f -epi maps simply f-epi (note that this definition implicitly depends
on Ω, B, K, Y , B, and G). If additionally f ≡ 0, we call these maps 0-epi. If K
is a subspace of Y , it suffices to study 0-epi maps:

Proposition 3.3. Let 0 ∈ K +K ⊆ K and −K ⊆ K, and f :B → Y be the
restriction of a (B,K)-compact continuous map f0 ∈ G. Then a map F :D → K

is f-epi if and only if F − f0 is 0-epi.

Proof. For F = C(D,K), we have Φ ∈ F◦f if and only if Φ + f0 ∈ F◦0 .
Indeed, if Φ ∈ F◦ then a similar argument as in Proposition 3.1 shows that
Φ+f0 ∈ F◦. Since −K ⊆ K, also −f0 is (B,K)-compact, and so also conversely
Ψ = Φ + f0 ∈ F◦ implies Φ = Ψ + (−f0) ∈ F◦. �

In the situation of Example 2.3 (and if we are in the canonical situation
in normed spaces), we get the earlier mentioned concept of 0-epi maps from
[5]. Moreover, if we define G as in Example 2.4, our 0-epi maps are precisely
the stably-solvable maps from [4]. In both situations, the homotopy invariance
(Corollary 3.1) has been proved separately in the corresponding papers.

If K is a cone, and F = K = K(D,K) is the system of all upper semi-
continuous maps with nonempty, closed and convex values in K, then we call
F◦f -epi maps f-multiepi. If B is as in Example 2.2 (and if M is metric), this
definition was introduced in [14]. For this particular situation, the homotopy
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invariance (Corollary 3.1) has already been obtained in [14] for the class of f -epi
resp. f -multiepi maps separately.

As some substitute for the additivity of the degree, we have for Ff -epi maps
a restriction property which states roughly speaking that if a map F is Ff -epi
on some Ω, then it has this property also on subsets Ω0 ⊆ Ω if it is admissible
on the difference Ω \Ω0. Sadly, in our general situation, the precise formulation
of this idea is rather technical:

Definition 3.3. If Ω0 ⊆ Ω and f0:P ∪ (Ω \ Ω0) → 2Y , we denote by Ff0

the set of all functions Φ ∈ F with Φ|P∪(Ω\Ω0) = f0. Moreover, if D0 ⊆ D, we
denote by F|D0 the set of all restrictions Φ|D0 with Φ ∈ F .

In particular, if f0|P = f , then Ff0 ⊆ Ff .
The definition does not conflict with our previous notation, for if P ∪ (Ω \

Ω0) = P , then f0 = f .

Proposition 3.4 (Restriction property). Let F :D → Y be Ff -epi (on Ω).
Let Ω0 ⊆ Ω, f0:P ∪ (Ω \ Ω0) → 2Y , and suppose that F (x) /∈ f0(x) for x ∈
Ω \Ω0. Then F is Ff0-epi on Ω0. In particular, F |D0 is Ff0 |D0-epi on Ω0 when
Ω0 ⊆ D0 ⊆ D.

Proof. Given some Ψ ∈ Ff0 , we find by definition some Φ ∈ Ff with
Φ|Ω\Ω0 ≡ f0 and Ψ = Φ|D0 . Since F is Ff -epi, the inclusion F (x) ∈ Φ(x) has a
solution x ∈ Ω. We must have x ∈ Ω0, since otherwise F (x) /∈ f0(x) = Φ(x), by
assumption. Hence, F (x) ∈ Φ(x) = Ψ(x). �

In the following corollary, we understand that the growth condition G0 on the
“smaller” set D0 is defined by restriction of the corresponding growth condition
G on D (i.e. G0 = {Φ|D0 : Φ ∈ G}).

Corollary 3.2 (Restriction property for f -multiepi maps). Let Ω0 ⊆ Ω,
and Ω0 ⊆ D0 ⊆ D. Suppose P0 ⊆ D0 is closed in D0, and ∂Ω0 ∪ (P ∩ Ω) ⊆ P0

(the boundary is understood with respect to D). Let f0 be the restriction of
some function Φ0 ∈ K(D,K)◦f to P0. If F :D → Y is f-multiepi on Ω and
F (x) /∈ Φ0(x) for all x ∈ Ω \ Ω0, then F |D0 is f0-multiepi on Ω0.

Proof. Put F = K(D,K)◦. Any map Ψ ∈ K(D0,K)◦f0
belongs to FΦ0 |D0 .

Indeed, we have Ψ = Φ|D0 for

Φ(x) =

{
Ψ(x) if x ∈ Ω0,

Φ0(x) if x ∈ D \ Ω0.

Since we have on ∂Ω0 that Ψ(x) = f0(x) = Φ0(x), it follows that Φ is upper
semicontinuous, and so Φ ∈ K(D,K). Since Ψ ∈ G0 and Ψ0 ∈ G, we have Φ ∈ G.
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Moreover, for any B ∈ B the sets A1 = conv(Ψ(B)) and A2 = conv(f0(B)) are
compact, and so also conv(Φ(B)) ⊆ conv(A1 ∪A2) is compact by Lemma 2.1.�

Replacing K by C in the previous proof, we find:

Corollary 3.3 (Restriction property for f -epi maps). Let Ω0 ⊆ Ω, and
Ω0 ⊆ D0 ⊆ D. Suppose P0 ⊆ D0 is closed in D0, and ∂Ω0 ∪ (P ∩ Ω) ⊆ P0

(the boundary is understood with respect to D). Let f0 be the restriction of some
function ϕ0 ∈ C(D,K)◦f to P0. If F :D → Y is f-epi on Ω and F (x) 6= ϕ0(x)
for all x ∈ Ω \ Ω0, then F |D0 is f0-epi on Ω0.

In [5] it has been proved that in the situation of Examples 2.2 and 2.3 the
identity is 0-epi (with respect to P = ∂Ω) if (and only if) 0 ∈ Ω. This result
may be considered as an analogue to the normalization property of the degree.
However, since the main advantage of 0-epi maps over the degree occurs ifX 6= Y ,
we intend to prove a normalization result also in this situation, i.e. when we
replace the identity by some “almost homeomorphism”. In the proof we will
exhibit that the normalization property follows from the restriction property
and the Tychonoff fixed point theorem. In the multivalued case, one needs of
course the Ky Fan fixed point theorem:

Proposition 3.5 (Normalization property for f -multiepi maps on bounded
sets). Let D ∈ B, and let G− and G contain all maps (recall Example 2.2).
Assume that Y is locally convex and D is metrizable. Let K ⊆ Y be a cone, and
F :D0 → K be the restriction of a homeomorphism G:D1 → K where D1 ⊆ D.
Let f :P → 2Y where P ⊆ D0 is closed in D0. Let Ω ⊆ D0 be such that the
boundary of Ω with respect to D1 is contained in P . If G−1(conv(f(P ))) ⊆ Ω
then F is f-multiepi.

Proof. Without loss of generality, we assume D = D1 and that C =
conv(f(P )) is a compact subset of K.

By Ma’s generalization of Dugundji’s extension theorem [12, Theorem 2.1]
we may extend f to a map Φ0 ∈ K(D,C); in case C = ∅, put Φ0(x) ≡ {c}
where c ∈ G(Ω). Put Ω1 = D and P1 = ∅, and let f1 = Φ0|P1 be the “empty”
function. We claim that G is f1-multiepi on Ω1 (with the growth condition from
Example 2.2).

Indeed, if Φ ∈ K(D,K)◦f1
= K(D,K)◦ is given, consider the map G0 =

Φ ◦ G−1. Since conv(G0(C)) ⊆ C is compact, the Ky Fan fixed point theorem
implies that G0 has a fixed point y ∈ C. For x = G−1(y) ∈ Ω1, we have
Φ(x) = G0(y) 3 y = G(x), and so G is f1-multiepi on Ω1, as claimed.

Since G is one-to-one and G−1(C) ⊆ Ω, we have G(x) /∈ C for x ∈ D \ Ω,
and so G(x) /∈ Φ0(x) for x ∈ Ω1 \ Ω (the latter holds also if C = ∅, since then
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G(x) 6= c ∈ G(Ω) for x ∈ Ω1 \ Ω). Corollary 3.2 thus implies that F = G|D0 is
f -multiepi on Ω. �

If Y is metrizable and D is separable, one can also apply the extension
result from [15] to find the extension Φ0 of f in the previous proof. Without
this assumption, our previous proof required the axiom of choice for this step.
However, usually the existence of such an extension is trivial (in particular, if
f ≡ 0).

If we are only interested in the single-valued case and if Y is metrizable, we
do not need the axiom of choice to find the extension. Moreover, in this case we
may even drop the requirement that D be metrizable:

Proposition 3.6 (Normalization property for f -epi maps on bounded sets).
Let D ∈ B, and let G− and G contain all maps. Assume that Y is locally convex
and metrizable. Let K ⊆ Y be a cone, and F :D0 → K be the restriction of a
homeomorphism G:D1 → K where D1 ⊆ D. Let f :P → Y where P ⊆ D0 is
closed in D0. Let Ω ⊆ D0 be such that the boundary of Ω with respect to D1 is
contained in P . If G−1(conv(f(P ))) ⊆ Ω, then F is f-epi.

Proof. The proof proceeds analogous to Proposition 3.5 (using Tychonoff’s
fixed point theorem and Corollary 3.3) if we can prove that f has an extension
to a function from C(D,C) (if C 6= ∅). But C is a compact metric ANR and
thus isomorphic to a neighbourhood retract of the Hilbert cube H. Identifying
C with its image under the corresponding isomorphism, we may extend f to
a continuous map f :D → H by the Tietze–Urysohn extension theorem. Since
C is even an absolute metric retract, there is a retraction ρ of H onto C; the
composition ρ ◦ f is the desired extension of f . �

On unbounded sets, we need an additional requirement for the homeomor-
phism G.

Proposition 3.7 (Normalization property for f -(multi)epi maps on vector
spaces). Consider the situation of Example 2.3. Assume that Y is locally convex
and D is metrizable. Let K ⊆ Y be a cone, and F :D0 → K be the restriction
of a homeomorphism G:D1 → K where D1 ⊆ D such that G−1 maps bounded
sets into bounded sets (i.e. G ∈ G−). Let f :P → 2Y where P ⊆ D0 is closed in
D0. Let Ω ⊆ D0 be such that the boundary of Ω with respect to D1 is contained
in P . If G−1(conv(f(P ))) ⊆ Ω then F is f-multiepi (and thus f-epi if f is
single-valued).

Proof. Put C = conv(f(P )). By Ma’s extension theorem, we may extend f
to a function Φ0 ∈ K(D1, C) (if C 6= ∅). As in the proof of Proposition 3.5, we put
Ω1 = D1, P1 = ∅, f1 = Φ0|∂Ω1 , and prove that G is f1-multiepi on Ω1 (but now
with the growth condition from Example 2.3): If Φ ∈ K(D1,K)◦f1

= K(D1,K)◦
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is given, the set R = conv(Φ(D1)) is bounded, and thus also B = G−1(R) is
bounded. Consequently, the set K0 = conv(Φ(B)) is a compact subset of K.
The map G0 = Φ ◦ G−1 maps K0 into itself and thus has a fixed point by the
Ky Fan fixed point theorem. As in the proof of Proposition 3.5 this implies that
G(x) ∈ Φ(x) for some x ∈ G−1(K0) ⊆ B.

Since G is one-to-one and G−1(C) ⊆ Ω, we find as in the proof of Proposi-
tion 3.5 that G(x) /∈ Φ0(x) for x ∈ D1 \ Ω, and may conclude the proof with an
application of Corollary 3.3. �

Note that also Proposition 3.7 required the axiom of choice to find the ex-
tension Φ0 for f (which nevertheless is trivial in many cases). The axiom of
choice is not required if Y is metrizable, C = conv(f(∂Ω)) is complete, and D is
separable.

We point out that the proof of the normalization property involved the fixed
point theorems for the map Φ ◦ G−1 which corresponds to the “homologic”
approach to coincidence points, as mentioned in the beginning. This is not
surprising, since the Tychonoff/Ky Fan fixed point theorem is of a “homologic
nature”.

If one applies deeper homology theory instead of these fixed point theorems,
one may weaken the assumption that G be a homeomorphism. Recall that a
continuous surjection G:D1 → K is called a Vietoris map, if it is proper, and if
for any y ∈ K the fibre G−1({y}) is acyclic with respect to the Čech cohomlogy
with rational coefficients. Of course, each homeomorphism is a Vietoris map.

Theorem 3.1 (Vietoris normalization for f -(multi)epi maps). Assume that
either D ∈ B, and G− and G contain all maps, or that we are in the situation of
Example 2.3. Assume that Y is locally convex, and D and Y are metrizable. Let
K ⊆ Y be a cone, and F :D0 → K be the restriction of a (surjective) Vietoris
map G:D1 → K with G ∈ G where D1 ⊆ D. Let f :P → 2Y where P ⊆ D0 is
closed in D0. Let Ω ⊆ D0 be such that the boundary of Ω with respect to D1 is
contained in P . Assume that the set G(D1 \Ω) is disjoint from conv(f(P )) (and
also 6= K if P = ∅). Then F is f-multiepi (and thus f-epi if f is single-valued).

Proof. The proof is similar to the previous proofs. The main difference is
that one has to prove that if K0 ⊆ K is closed and convex and Φ ∈ K(D1,K0)

◦,
then the inclusion G(x) ∈ Φ(x) has a solution x ∈ B0 = G−1(K0). Since
G:B0 → K0 is a Vietoris map, this follows e.g. from the last corollary in [17].�

As before, we applied the axiom of choice for the proof.

4. Relation between f-epi and f-multiepi maps

We study the question whether f -epi maps and f -multiepi maps actually
are the same. This question of course only makes sense if f is single-valued.
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Actually, we are not only interested in convex-valued maps Φ but in a larger
class of maps.

Definition 4.1. Let Φ:D → 2Y . Given some neighbourhood U ⊆ D×Y of
the graph of Φ, we call a single-valued map ϕ:D → Y a U-approximation, if ϕ
is continuous and its graph is contained in U. We call Φ

(1) approximable if for each neighbourhood U of the graph of Φ there is a
U-approximation.

(2) B-approximable, if for each B ∈ B there is some B0 ∈ B with the
following property: For any neighbourhood U ⊆ D × Y of the graph of
Φ there is some U-approximation ϕ with

ϕ(B) ⊆ conv(Φ(B0))

and such that for each B1 ∈ B there is some B2 ∈ B with

ϕ(B1) ⊆ conv(Φ(B2)).

(Note that B0 may only depend on B, but B2 may also depend on U

and ϕ).

We denote the system of all upper semicontinuous and B-approximable maps
Φ:D → 2K with closed values by A = A(D,K).

Proposition 4.1. Each B-approximable map Φ is approximable. The con-
verse holds if Y is locally convex and there are B1, B2, . . . ∈ B with the following
properties:

(1)
⋃

B = D, and each B ∈ B is contained in some Bn.
(2) The set Bn is contained in the interior (with respect to D) of Bn+1.
(3) Cn = conv(Φ(Bn)) are neighbourhood retracts in Y .

Proof. Without loss of generality, we may assume that Cn 6= ∅ for each n.
Since Cn are neighbourhood retracts, we find open sets Vn ⊆ Y with Vn ⊇ Cn

and retractions ρn of Vn onto Cn. Let In denote the interior of Bn. Then
In ⊆ Bn ⊆ In+1, and for each x ∈ D there is some n with x ∈ Bn ⊆ In+1.

Let a neighbourhood U of the graph of Φ be given. Given some pair (x, y)
of the graph of Φ, we find some smallest n with x ∈ In. Moreover, we find some
open P ⊆ In with x ∈ P and some convex neighbourhood V ⊆ Y of 0 such that
P × (y+V ) ⊆ U (here, we used that Y is locally convex). Since y ∈ Cn ⊆ Cn+1,
we have ρn(y) = ρn+1(y) = y, and so there is some open W ⊆ y + V with
y ∈ W ⊆ Vn ∩ Vn+1 and ρn(W ) ∪ ρn+1(W ) ⊆ y + V . Let U0 denote the system
of all sets of the form P ×W which can be obtained in this way (i.e. for any
choice of x, y, V , P and W which satisfy the above requirements). Then U0 is
open and contains the graph of Φ by construction.
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Since Φ is approximable, there is some U0-approximation ψ. Since D is
normal, we find by Urysohn’s lemma continuous functions λn: In+1 → [0, 1]
with λn|In

= 1 and λn|∂In+1 = 0. For x ∈ I1, put ϕ(x) = ρ1(ψ(x)), and for
x ∈ In+1 \ In put

ϕ(x) = λn(x)ρn(ψ(x)) + (1− λn(x))ρn+1(ψ(x)).

Then ϕ defines an U-approximation. Indeed, given x ∈ D, let n be the smallest
number with x ∈ In. Since ψ is an U0-approximation, we find by definition of U0

some y ∈ Φ(x), some open P ⊆ In, and some convex neighbourhood V ⊆ Y of
0 with P × (y + V ) ⊆ U such that w = ψ(x) ∈ Vn ∩ Vn+1 and ρn(w), ρn+1(w) ∈
y + V . In particular, ϕ(x) is defined and belongs to conv(y + V ) = y + V , i.e.
(x, ϕ(x)) ∈ U. Our choice of λn implies that ϕ is continuous on ∂In.

Finally, we have by induction that ϕ(In) ⊆ Cn: This is trivial for n = 1, and if
this is true for n, it is also true for n+1, becaues ϕ(In+1\In) ⊆ conv(Cn∪Cn+1) =
Cn+1. For each B ∈ B there is some smallest n with B ⊆ Bn ⊆ In+1, and so
ϕ(B) ⊆ Cn+1 = conv(Φ(Bn+1)). Note that our choice of n only depends from
B and B. �

In view of Proposition 4.1, we recall that if Y is a metrizable locally convex
space, then any closed convex set is even a retract of Y by Dugundji’s extension
theorem ([3]). The latter requires the axiom of choice, in general, but there is
a constructive proof for compact convex subsets [16] which is the only case of
interest for us in the following. (In the extension result from [16] it is required
that Y be a Fréchet space, but since compact sets are complete, one may just
consider the completion of Y ; see [17] for details). In particular, we have:

Corollary 4.1. Let Y be a metrizable locally convex space, M be a subset
of a normed space X, and B be the system of all bounded subsets of D. If
Φ:D → 2Y is approximable and (B,K)-compact, then Φ is B-approximable.

Proof. Put Bn = {x ∈ D : ‖x‖ ≤ n} in Proposition 4.1. �

Maps with convex values are B-approximable:

Proposition 4.2 (K◦ ⊆ A◦ for bounded Ω). Let Y be a locally convex space,
and D ∈ B be metrizable. Then any upper semicontinuous map Φ:D → 2Y

with nonempty, convex and compact values is B-approximable, in particular,
K(D,K)◦ ⊆ A(D,K)◦.

Proof. Let a neighbourhood U of the graph of Φ be given. Given x ∈ D, we
find some εx > 0 and some open Vx ⊇ Φ(x) such that K(εx, x)× Vx ⊆ U where
K(εx, x) denotes the ball with center x and radius εx. Since the compact set
Φ(x) is disjoint from the closed complement of Vx, we find by [13, Theorem 1.10]
a neighbourhood Ux ⊆ Y of 0 with Φ(x) + Ux ⊆ Vx. Since Y is locally convex,
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we may assume that Ux is convex. Since Φ(x) is convex, it follows that Φ(x)+Ux

is a convex neighbourhood of Φ(x).
By shrinking Vx and εx if necessary, we may thus assume that Vx is con-

vex and, since Φ is upper semicontinuous, that Φ(K(εx, x)) ⊆ Vx. By Stone’s
theorem, D is paracompact, and so we find a partition of unity (ψx)x which
is subordinate to (K(εx/3, x))x. Choose an arbitrary single-valued selection
ϕ0:D → Y , i.e. ϕ0(x) ∈ Φ(x), and put

ϕ(z) =
∑
x∈D

ϕ0(x)ψx(z) (z ∈ D).

Since (ψx)x is a partition of unity and ϕ0 attains its values in Φ(D), the function
ϕ is continuous and attains its values in conv(Φ(D)). Given z ∈ D, consider the
finite set I = {x : ϕx(z) 6= 0}, and let x0 ∈ I be such that εx0 becomes maximal.
Then we have for any x ∈ I that d(x, x0) ≤ d(x, z) + d(z, x0) ≤ 2εx0/3, and so
K(εx/3, x) ⊆ K(εx0 , x0) which implies ψx(z) ∈ Φ(εx0 , x0) ∈ Vx0 . Since Vx0 is
convex, we thus have (z, ϕ(z)) ∈ K(εx0 , x0)× Vx0 ⊆ U, as desired. �

If Y is normed, Proposition 4.2 has been proved in [1]. Our proof follows [2,
Theorem 24.2].

We point out that if D is not compact, Proposition 4.2 makes essential use
of the axiom of choice. The same holds for the following analogous result:

Proposition 4.3 (K◦ ⊆ A◦ in normed spaces). Let Y be a locally convex
space, and M be a subset of a normed space X. Let B denote the system of all
bounded subsets of D ⊆ M . Then any upper semicontinuous map Φ:D → 2Y

with nonempty, convex and compact values is B-approximable, in particular,
K(D,K)◦ ⊆ A(D,K)◦.

Proof. We may not apply Corollary 4.1 for the proof, since if Y is not
metrizable, it is not clear whether closed convex subsets are neighbourhood
retracts. However, we may just repeat the construction of Proposition 4.2:
It is no loss of generality in this construction that we always have εx ≤ 1.
It follows that if B ⊆ D is bounded by some smallest constant C ≥ 0, we
have for any z ∈ B that ψx(z) = 0 for any x which does not belong to
the set B0 := {x ∈ D : ‖x‖ ≤ C + 1}. The definition of ϕ then implies
ϕ(B) ⊆ conv(Φ(B0)). Note that I(B) actually depends only from B. �

For applications, it is important to note that even if X and Y are Banach
spaces, and M ⊆ X, the set A(D,K) usually contains much more maps than
K(D,K) in view of Corollary 4.1.

For example, ifD is an ANR, then all upper semicontinuous maps Φ:D → 2K

are approximable by [11, Corollary 1.36] if the images Φ(x) are nonempty and
compact and so-called UV ω sets; in particular, Rδ sets (i.e. the intersection of a
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decreasing sequence of nonempty compact contractible sets) have this property.
Moreover, the composition of an approximable maps with a continuous (single-
valued) map is approximable. This observation is of interest, since the evolution
operator of differential inclusions usually is the composition of an Rδ-valued map
with a continuous map. For more results on approximable maps, we refer to [11].

Lemma 4.1 (Rouché for the graph). Let K ⊆ Y be convex with 0 ∈ K +
K ⊆ K, and F = C(D,K). Assume that F :D → Y is f-admissible, f-epi,
and belongs to G−. Then for each upper semicontinuous map Φ:D → 2Y with
Φ|P = f |P the following holds:

• There is a neighbourhood U ⊆ D×Y of the graph of Φ such that, for any
U-approximation ϕ, we have: if there is some ψ ∈ Ff such that ϕ − ψ

is (B,K)-compact and belongs to G, then the equation F (x) = ϕ(x) has
a solution x ∈ Ω.

Proof. For any x ∈ P , the compact set {F (x)} is disjoint from the closed
set {f(x)}, by assumption. By [13, Theorem 1.14], we thus find a balanced
open neighbourhood V ⊆ Y of 0 such that the sets F (x) + V and f(x) + V are
disjoint. By the continuity, we find an open neighbourhood U of x such that
F (U) ⊆ F (x) + V and Φ(U) ⊆ f(x) + V . Let U0 be the union of all sets of the
form U × (f(x) + V ) obtained in this way.

Note that in the previous construction x ∈ U , and so the projection of U0

onto the first component contains a neighbourhood of P . Since D is normal, we
find a closed neighbourhood of P which is contained in this projection. Let O
be the complement of this neighbourhood, and U = U0 ∪ (O × Y ).

Then U is a neighbourhood of the graph of Φ with the following property: If
(x, y) ∈ U and x ∈ P , then there is a balanced neighbourhood V ⊆ Y of 0 with
y ∈ f(x) + V and F (x) /∈ f(x) + V .

Hence, if ϕ is an U-approximation, we have for any x ∈ P and 0 ≤ λ ≤ 1
that F (x) 6= f(x) + λ(ϕ(x)− f(x)).

Choose some ψ ∈ Ff such that ϕ − ψ is (B,K)-compact, and put G =
F − (ϕ − ψ). Then F −G = ϕ − ψ, and for any x ∈ P and 0 ≤ λ ≤ 1 we have
F (x) + λ(G(x)− F (x)) = F (x)− λ(ϕ(x)− f(x)) 6= f(x).

Proposition 2.2 thus implies that G is f -epi, and in particular, the equation
G(x) = ψ(x) has a solution x ∈ Ω. But this equation means F (x) = ϕ(x). �

To prove that proper 0-epi maps are 0-multiepi, we need a slightly more
restrictive condition:

Definition 4.2. Let Φ ∈ A(D,K) and F ∈ G−. We say that (F,Φ) is
graph-admissible if there is some neighbourhood U ⊆ D × Y of the graph of Φ
such that we have for some B ∈ B: Any U-approximation ϕ with the additional
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property that for each B1 ∈ B there is some B2 ∈ B with

(4.1) ϕ(B1) ⊆ conv(Φ(B2))

satisfies:

(1) ϕ ∈ G,
(2) {x ∈ Ω : F (x) = ϕ(x)} ⊆ B.

We say that an f -admissible map F ∈ G− is f-graph-admissible, if for any Φ ∈
A◦f ∩ G the pair (F,Φ) is graph-admissible.

Example 4.1. If (G,G−) is a growth condition as in some of our previous
examples, then any f -admissible F ∈ G− is f -graph-admissible.

This is non-trivial only for Example 4.1 if Y is not normed, since in this
case neighbourhoods need not be bounded. However, for Φ ∈ G, the set B0 =
conv(Φ(D)) is bounded. Since (4.1) implies ϕ(D) ⊆ B0, it follows that the set
{x ∈ D : F (x) = ϕ(x)} is contained in the bounded set B := F−1(B0).

Now we are in a position to formulate our main theorem on multiepi maps:

Theorem 4.1 (Proper f -epi maps are A◦f -epi). Let Y be a locally convex
space, and K ⊆ Y be convex with 0 ∈ K + K ⊆ K. Let the continuous map
F :D → Y be f-admissible, f-epi, (B,K)-proper, and belong to G−. Let Φ ∈
A(D,K)◦f be such that (F,Φ) is graph-admissible, and assume:

• For each B ∈ B there is some ψ ∈ C(D,K)◦f such that Φ(B)−ψ(B) is
contained in K.

Then the inclusion F (x) ∈ Φ(x) has a solution x ∈ Ω \ P .

Proof. Choose a neighbourhood U0 of the graph of Φ with the properties
described in Lemma 4.1. We may assume that U0 also has the properties de-
scribed in Definition 4.2; let B ∈ B denote the corresponding set, and let B0 be
the corresponding set from Definition 4.1.

Then for any neighbourhood U ⊆ U0, we find an U-approximation ϕU with
the following properties:

(1) ϕU ∈ G,
(2) ϕU is (B,K)-compact (because for any B1 ∈ B there is some B2 ∈ B

such that conv(ϕU(B1)) ⊆ conv(Φ(B2)) is a compact subset of K),
(3) the coincidence set AU = {x ∈ Ω : F (x) = ϕU(x)} is contained in B,

and so F (AU) = ϕ(AU) ⊆ ϕ(B) ⊆ conv(Φ(B0)) =: C.

Since F is f -epi, we find some xU ∈ AU. By the axiom of choice, we may assume
that (xU)U is a net. Since C ⊆ K is compact, AU ⊆ F−1(C) ∩ B, and F is
(B,K)-proper, it follows that xU contains a subnet which converges to some
point x ∈ Ω.



392 J. Appel — M. Väth — A. Vignoli

We claim that F (x) ∈ Φ(x). Otherwise, we find disjoint open sets VF , VΦ

with F (x) ∈ VF and Φ(x) ⊆ VΦ. By the (upper semi-)continuity, we find a
neighbourhood U1 ⊆ D of x with F (U1) ⊆ VF and Φ(U1) ⊆ VΦ. Since D is
normal, we find a neighbourhood U2 of x with U2 ⊆ U1. Then (U1×VΦ)∪ ((D \
U2) × Y ) is a neighbourhood of the graph of Φ and thus contains some U for
which xU ∈ U2. Then F (xU) = ϕU(xU) ∈ VΦ and F (xU) ∈ VF , a contradiction.

This contradiction proves F (x) ∈ Φ(x), and since F is f -admissible, we may
conclude that x /∈ P . �

If we assume the axiom of choice, we thus have proved the following:

Corollary 4.2 (Proper f -epi maps are f -multiepi). Let Y be a Fréchet
space, K = Y , and P ⊇ Ω \ Ω. Assume that one of the following conditions is
satisfied:

(1) D ∈ B is metrizable, and G and G− consist of all maps (recall Exam-
ple 2.2),

(2) D is a subset of a normed space X, and B is the system of bounded
subsets of D ⊆ X.

Let f :P → Y be such that C(D,Y )◦f 6= ∅. Then for any continuous map F :D →
Y which is f-graph-admissible and proper on each B (B ∈ B) the following
statements are equivalent:

(1) F is f-epi,
(2) F is f-multiepi,
(3) F is A◦f -epi,
(4) F is F◦f -epi where F denotes the system of all approximable upper semi-

continuous maps Φ:D → 2Y with closed values.

Proof. If F is f -epi, Theorem 4.1 implies that F is A◦f -epi. Moroever,
Proposition 4.1 implies that A◦f = F◦f (recall the remarks following Proposi-
tion 4.1 concerning the existence of a retraction), and Proposition 4.2, resp.
Proposition 4.3 implies that if F is A◦f -epi, then F is K◦f -epi, i.e. f -multiepi.
Finally, since single-valued continuous maps belong to K, it follows that any
f -multiepi map is f -epi. �

In connection with Corollary 4.2, we point out once more that in all our
previous examples any f -admissible map F ∈ G− is f -graph-admissible.

We do not know whether Corollary 4.2 holds without the artificial assumption
that F be proper. Note, however, that in all definitions of a degree or index for
a map that we found in literature, properness of the corresponding map F is
assumed. So in this sense, our result is not “worse” than the corresponding
analogous results for the degree.
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[12] T.-W. Ma, Topological degrees of set-valued compact fields in locally convex spaces,

Dissertationes Math. (Rozprawy Mat.) 92 (1972), Scientific Publ., Warszawa. (Polish)

[13] W. Rudin, Functional Analysis, 14th ed., McGraw-Hill, New Delhi, New York, 1990.
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