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INEQUALITIES IN METRIC SPACES WITH APPLICATIONS

Ismat Beg

Abstract. We prove the parallelogram inequalities in metric spaces and

use them to obtain the fixed points of involutions.

1. Introduction and preliminaries

The parallelogram law is the one of fundamental property of Hilbert spaces
which distinguishes them from general Banach spaces. This law is used in solv-
ing many problems in Hilbert spaces. Recently several authors have tried this
idea for solving problems in Banach spaces by establishing equalities and usually
inequalities analogous to the parallelogram law, see for example K. Goebel and
W. A. Kirk [8], S. Reich [17], T. C. Lim [14], C. Zalinescu [23], I. E. Poffald and
S. Reich [15], B. Prus and R. Smarzewski [16], H. K. Xu [22] and J. Górnicki
[11]. W. Takahashi [21] introduced the notion of convexity in metric spaces
and proved that all normed spaces and their convex subsets are convex met-
ric spaces. Moreover, W. Takahashi also gave many examples of convex metric
spaces which are not embedded in any normed/Banach space. Subsequently
M. D. Guay, K. L. Singh and J. H. M. Whitfield [12], T. Shimizu and W. Taka-
hashi [18], L. Gajič and M. Stojakovič [6], L. Ciric [5], I. Beg et al [2]–[4] and
many other authors have studied fixed point theorems on convex metric spaces.
Recently T. Shimizu and W. Takahashi [19] introduced the concept of uniform
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convexity in convex metric spaces, studies its properties and constructed example
of a uniformly convex metric space which is not normed space. The purpose of
this paper is to establish some inequalities in uniformly convex complete metric
spaces analogous to the parallelogram law in Hilbert spaces. Applications of the
inequalities obtained to fixed points of k-Lipschitzian involutions are also shown.

Definition 1.1 ([21]). Let (X, d) be a metric space. A mapping W : X×X×
[0, 1] → X is said to be a convex structure on X if for each (x, y, λ) ∈ X×X×[0, 1]
and u ∈ X,

d(u, W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y).

Metric space X together with the convex structure W is called a convex metric
space. Obviously W (x, x, λ) = x.

Let X be a convex metric space. A nonempty subset K of X is said to be
convex if W (x, y, λ) ∈ K whenever (x, y, λ) ∈ K ×K × [0, 1]. W. Takahashi [21]
has shown that open spheres B(x, r) = {y ∈ X : d(x, y) < r} and closed spheres
B[x, r] = {y ∈ X : d(x, y) ≤ r} are convex.

Definition 1.2. A convex metric space X is said to have property (B) if it
satisfies:

d(W (x, a, α),W (y, a, α)) = α d(x, y).

Taking x = a property (B) implies α d(a, y) = d(a,W (y, a, α)).

Definition 1.3. A convex complete metric space X is said to be uniformly
convex if for all x, y, a ∈ X,

[d(a,W (x, y, 1/2))]2

≤ 1
2

(
1− δ

(
d(x, y)

max{d(a, x), d(a, y)}

))
([d(a, x)]2 + [d(a, y)]2),

where the function δ is a strictly increasing function on the set of strictly positive
numbers and δ(0) = 0.

Uniformly convex Banach spaces are uniformly convex metric spaces.

Definition 1.4. A uniformly convex metric space X is said to be 2-uni-
formly convex if there exists a constant c > 0 such that δ(ε) ≥ cε2.

Definition 1.5. Let K be a nonempty subset of a metric space X. A map-
ping T : K → K is call k-Lipschitzian if for all x, y in K, d(Tx, Ty) ≤ k d(x, y).
A mapping T : K → K is called an involution if T 2 = I, where I denotes the
identity map (see K. Goebel and W. A. Kirk [9]).

Beg Theorem 2.3 from [1], can be reformulated as:
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Theorem 1.6 ([1]). Let X be a uniformly convex metric space having prop-
erty (B) and K be a nonempty closed convex bounded subset of X. If T : K → K

is a nonexpansive mapping then the set of fixed points of T is nonempty.

Remark 1.7. Let X be an uniformly convex metric space. If d(x, z) =
r1, d(y, z) = r2 and d(x, y) = r1 + r2 then z = W (x, y, r2/(r1 + r2)).

2. The inequalities

In this section we establish the parallelogram inequalities in metric spaces
which are analogous to the parallelogram law in Hilbert spaces. Applications of
these inequalities will be given in Section 3.

Theorem 2.1. Let (X, d) be a uniformly convex metric space having property
(B). Then X is 2-uniformly convex if and only if there exists a number c > 0
such that, for all a, x, y in X,

(1) [d(a,W (x, y, 1/2))]2 ≤ 1/2([d(a, x)]2 + [d(a, y)]2 − c[d(x, y)]2).

Proof. Necessity. Let X be a 2-uniformly convex then δ(ε) ≥ cε2. Now for
every a, x, y ∈ X,

[d(a,W (x, y, 1/2))]2

≤ 1
2

[
1− δ

(
d(x, y)

max{d(a, x), d(a, y)}

)]
([d(a, x)]2 + [d(a, y)]2)

≤ 1
2
([d(a, x)]2 + [d(a, y)]2)− c

2
[d(x, y)]2

[d(a, x)]2 + [d(a, y)]2

[max{d(a, x), d(a, y)}]2

≤ 1
2
([d(a, x)]2 + [d(a, y)]2 − c[d(x, y)]2).

Sufficiency. Assume that inequality (1) holds. For each α > 0 define

ξ(α) := inf
{

1
2
[d(a, x)]2 +

1
2
[d(a, y)]2 − [d(a,W (x, y, 1/2))]2 :

a, x, y in X and d(x, y) = α

}
.

and ξ(0) = 0. Then (i) ξ(α) > 0, (ii) ξ(αβ) = α2ξ(β) = β2ξ(α) for all α, β > 0.

(i.e. ξ(α) = α2ξ(1) for α > 0).
By definition of ξ, for a, x, y in X, we have

[d(a,W (x, y, 1/2))]2 ≤ 1
2
[d(a, x)]2 +

1
2
[d(a, y)]2 − ξ(α) (using (ii))

=
1
2
[d(a, x)]2 +

1
2
[d(a, y)]2 − α2ξ(1)

=
1
2
([d(a, x)]2 + [d(a, y)]2 − c[d(x, y)]2)
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=
1
2

(
1− c[d(x, y)]2

[d(a, x)]2 + [d(a, y)]2

)
([d(a, x)]2 + [d(a, y)]2),

where c = 2ξ(1). It further implies

[d(a,W (x, y, 1/2))]2

≤ 1
2

(
1− δ

(
d(x, y)

max{d(a, x), d(a, y)}

))
([d(a, x)]2 + [d(a, y)]2)

where δ is defined by

δ

(
d(x, y)

max{d(a, x), d(a, y)}

)
:= 2ξ(1)

(
[d(x, y)]2

[d(a, x)]2 + [d(a, y)]2

)
,

It can be easily shown that δ is strictly increasing function on the set of strictly
positive numbers with δ(0) = 0 and δ(ε) ≥ cε2 where c = 2ξ(1). Hence X is
a 2-uniformly convex metric space. �

Theorem 2.2. Let X be a 2-uniformly convex metric space having property
(B), K a nonempty closed convex subset of X. Let {xn} be a bounded sequence.
Then there exists a unique point z in K such that

(2) lim sup
n→∞

[d(xn, z)]2 ≤ lim sup
n→∞

[d(xn, x)]2 − c[d(x, z)]2,

for every x in K, where c is the constant given in (1).

Proof. Let p(x) = lim supn→∞[d(xn, x)]2, x ∈ X. By Theorem 2.1,

p(W (x, y, 1/2)) ≤ 1
2
p(x) +

1
2
p(y)− c

2
[d(x, y)]2.

Thus there is a unique point z in K such that p(z) = infx∈K p(x). It follows
from inequality (1), that

p(W (x, z, 1/2)) ≤ 1
2
p(x) +

1
2
p(z)− c

2
[d(x, z)]2

for x in K, also p(z) ≤ p(W (x, z, 1/2)). It implies that,

0 ≤ p(x)− p(z)− c[d(x, z)]2,

and the inequality (2) follows. �

3. Fixed points

Let K be a nonempty closed convex subset of a convex complete metric
space X. Let T : K → K be a mapping. For x0 ∈ K, we define,

xn+1 = W (xn, Txn, 1/2).

If there exists a c, 0 ≤ c < 1 such that

d(xn+2, xn+1) ≤ cd(xn+1, xn), n = 0, 1, 2, . . .
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Then the sequence {xn} converges in K. Indeed, from (4), it follows that
d(xn+1, xn) ≤ cnd(x1, x0) and {xn} converges to a point p (say) in K.

Theorem 3.1. Let X be a convex complete metric space and K be a non-
empty closed convex subset of X. Let T : K → K be a k-Lipschitzian map.
Assume that there exists real constants a, b such that 0 ≤ a < 1 and b > 0. If for
arbitrary x ∈ K there exists u ∈ k such that

(i) d(Tu, u) ≤ ad(Tx, x), and
(ii) d(u, x) ≤ bd(Tx, x).

Then T has a fixed point in K.

Proof. Let x0 ∈ K be an arbitrary point. Consider a sequence {xn} ⊂ K

which satisfies the following conditions

d(Txx+1, xn+1) ≤ ad(Txn, xn),

and
d(xn+1, xn) ≤ bd(Txn, xn), n = 0, 1, 2, . . .

It implies that
d(xn+1, xn) ≤ band(Tx0, x0).

If further implies that {xn} is a convergent sequence. Let limn→∞ xn = x. Then,

d(Tx, x) ≤ d(Tx, Txn) + d(Txn, xn) + d(xn, x)

≤ (1 + k)d(x, xn) + and(Tx0, x0) → 0 as n →∞.

Hence Tx = x. �

Theorem 3.2. Let X be a convex complete metric space and K be a non-
empty closed convex subset of X. Let T : K → K be a k-Lipschitzian involution.
If 1 ≤ k < 2 then T has a fixed point in K.

Proof. For any x ∈ K, let u = W (x, Tx, 1/2) Then,

d(u, x) = d(W (x, Tx, 1/2), x) ≤ 1
2
d(Tx, x),

and

d(u, Tu) = d(W (x, Tx, 1/2), Tu) ≤ 1
2
[d(x, Tu) + d(Tx, Tu)]

=
1
2
[d(T 2x, Tu) + d(Tx, Tu)] ≤ k

2
[d(Tx, u) + d(x, u)]

=
k

2
[d(Tx,W (x, Tx, 1/2)) + d(x,W (x, Tx, 1/2))] ≤ k

2
d(Tx, x).

Where by assumption k/2 < 1.
Now, for arbitrary x0 ∈ K, define inductively a sequence {xn} ⊂ K by

xn+1 = W (xn, Txn, 1/2),
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for n = 0, 1, 2, . . . By Theorem 3.1 this sequence is convergent limn→∞ xn = x

(say) and Tx = x. �

Remark 3.3. As immediate corollary to Theorem 3.4 we have K. Goebel
[7].

Theorem 3.4. Let X be a 2-uniformly convex metric space having property
(B) and K be a nonempty closed convex subset of X. Let T : K → K be a
k-Lipschitzian involution. If 0 ≤ k <

√
4 + 2c, then T has a fixed point.

Proof. For any x ∈ K, let u = W (x, Tx, 1/2). Then Theorem 2.1, implies
that

[d(u, Tu)]2 = [d(Tu,W (x, Tx, 1/2)]2

≤ 1
2
([d(Tu, x)]2 + [d(Tu, Tx)]2 − c[d(x, Tx)]2)

=
1
2
([d(Tu, T 2x)]2 + [d(Tu, Tx)]2 − c[d(x, Tx)]2)

≤ 1
2
([kd(Tx, u)]2 + [kd(u, x)]2 − c[d(x, Tx)]2)

=
1
2
([k d(Tx,W (x, Tx, 1/2))]2

+ [k d(W (x, Tx, 1/2), x)]2 − c[d(x, Tx)]2)

≤ [(k2 − 2c)/4][d(x, Tx)]2,

where by assumption (k2−2c)/4 < 1. For arbitrary x0 ∈ K, defining inductively
a sequence {xn} ⊂ K by xn+1 = W (xn, Txn, 1/2), n = 0, 1, 2, . . . . Theorem 3.1
implies that this sequence is convergent, let limn→∞ xn = x. Then Tx = x. �

Theorem 3.4. Let X be a 2-uniformly convex metric space having property
(B) and let K be a nonempty closed convex bounded susbet of X.If T : K → K

satisfies for every x, y in K,

(i) d(T 2x, T 2y) ≤ d(x, y), and
(ii) d(Tx, Ty) ≤ k d(x, y),

with 0 ≤ k <
√

4 + 2c, then T has a fixed point in K.

Proof. By Theorem 1.6, K1 = {x ∈ K : T 2x = x} is nonempty and closed.
Also K1 is convex. To prove this fact let x1, x2 ∈ K1 and t ∈ (0, 1), then we
have

d(x1, x2) ≤ d(x1, T
2(W (x1, x2, t))) + d(T 2(W (x1, x2, t)), x2)

≤ d(T 2x1, T
2(W (x1, x2, t))) + d(T 2(W (x1, x2, t)), T 2x2)

≤ d(x1, (W (x1, x2, t)) + d(W (x1, x2, t), x2)

≤ (1− t)d(x1, x2) + td(x1, x2) = d(x1, x2).



Inequalities in Metric Spaces With Applications 189

It implies that

(5) d(x1, T
2(W (x1, x2, t))) + d(T 2(W (x1, x2, t)), x2)

= d(x1, (W (x1, x2, t)) + d(W (x1, x2, t), x2) = d(x1, x2).

Since d(T 2x, T 2y) ≤ d(x, y), T 2x1 = x1 and T 2x2 = x2 therefore

(6) d(x1, T
2(W (x1, x2, t))) = d(x1,W (x1, x2, t)) = r1

and

(7) d(x2, T
2(W (x1, x2, t))) = d(x2,W (x1, x2, t)) = r2.

Now, using equality (5), we obtain

(8)
r2

r1 + r2
=

d(x2,W (x1, x2, t))
d(x1,W (x1, x2, t)) + d(x2,W (x1, x2, t))

=
td(x1, x2)
d(x1, x2)

= t.

Equalities (5)–(8) together with Remark 1.7 imply

T 2(W (x1, x2, t)) = W

(
x1, x2,

r1

r1 + r2

)
= W (x1, x2, t).

It further implies that K1 is convex. Moreover, T (K1) = K1 and T 2 = I on K1.
Hence Theorem 3.4 implies that T has a fixed point in K1. �
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