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NONLINEAR RIEMANN–HILBERT PROBLEMS
FOR DOUBLY CONNECTED DOMAINS

AND CLOSED BOUNDARY DATA
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Dedicated to Katrin Wendland on the occasion of her 30th birthday

Abstract. In this paper, for nonlinear Riemann–Hilbert problems in dou-

bly connected domains with smooth as well as Lipschitz continuous bound-
ary data, existence of at least two topologically different solutions is estab-

lished. The main tools are the topological degree of quasi-ruled Fredholm

mappings, Montel’s theorem, a priori estimates and the employment of
classical modular function theory.

1. Introduction

We use properties of the class of complex analytic functions on the ring
domain G2 and at the same time the properties of the lifted problem on the
universal covering Ξ which is defined by the reflexion principle on the Riemannian
manifold corresponding to the closed boundary conditions. On the universal
covering we use a very handy numbering and practical parametrization. The
existence proof rests on the use of nonlinear systems of singular integral equations
which can be treated as quasiruled Fredholm maps. In addition, we can show
a priori bounds for the solutions of the Riemann–Hilbert problem and of the
nonlinear singular integral equations. Hence, a degree of quasiruled Fredholm
mappings can be used which turns out to be nonzero since the nonlinear operator
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can homotopically be deformed to a simple linear problem that is easily solvable
due to our useful parametrization. The corresponding homotopy is constructed
explicitly.
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2. The nonlinear Riemann–Hilbert problem
and its lifting to the universal covering

Consider the nonlinear RHP2 in G2 := {z ∈ C | 0 < q < |z| < 1}, i.e.

(1)
∂Z

∂z
= 0 in G2,

subject to the nonlinear boundary conditions

(2) Z(qeiτ ) ∈ γτ,1 and Z(eiτ ) ∈ γτ,2,

where τ ∈ [0, 2π) is the angular coordinate on the circles ∂G2; and γτ,j (j = 1, 2)
are two families of closed, non–selfintersecting Lipschitz curves in the complex
CZ-plane depending smoothly on the parameter τ .

The boundary conditions (2) can also be written as

(3) F1

(
τ, U(qeiτ ), V (qeiτ )

)
= 0, F2

(
τ, U(eiτ ), V (eiτ )

)
= 0,

if the family of curves γτ,j is given implicitly:

(4) γτ,j = {Z = U + iV ∈ CZ | Fj(τ, U, V ) = 0}, j = 1, 2.

In the special case when the curves γτ,j (j = 1, 2) are independent of τ and the
curves γ1 and γ2 form the boundary of a bounded doubly–connected domain G∗

2

one obtains the classical problem of conformal mapping of G2 onto G∗
2. As is

well known, this problem is only solvable under an additional condition (see [7]).
In the special case that the two separated curves γ1, γ2 form the boundary of
two separated bounded components it is clear that no solutions exist at all due
to the open mapping properties of nonconstant holomorphic functions. These
two examples show us that – even in these special cases – the solvability of the
RHP2 depends crucially on the geometric configuration of the curves γτ,j .

In this paper we present sufficient conditions on the boundary curves γτ,j

which guarantee existence of at least two different solutions. We emphasize that
the case of a multiply connected domain is completely different from the simply
connected one (see [8], [9], [11]) and, hence, requires completely new arguments.
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Conditions 2.1.

(a) The curves of the two families {γτ,j | 0 ≤ τ ≤ 2π, j = 1, 2} are
closed, non–selfintersecting Lipschitz curves in the complex Z-plane CZ

for every τ ∈ [0, 2π), depending smoothly on the parameter τ ∈ [0, 2π).
(b) There exist real numbers Z` ∈ R ⊂ CZ (` = 1, 2, 3) with

Z1 < Z2 < Z3 < Z4 = ∞

such that, for every τ ∈ [0, 2π),

Z1 ∈ int γτ,1 ∩ ext γτ,2, Z2 ∈ int γτ,1 ∩ int γτ,2,

Z3 ∈ ext γτ,1 ∩ int γτ,2, Z4 ∈ ext γτ,1 ∩ ext γτ,2,

where int γτ,j denotes the interior domain in CZ bounded by γτ,j and
ext γτ,j denotes the exterior domain, respectively.

In addition, for every τ ∈ [0, 2π], we require,

(−∞, Z1) ∩ γτ,2 = ∅, (Z1, Z2) ∩ γτ,1 = ∅,
(Z2, Z3) ∩ γτ,2 = ∅, (Z3,∞) ∩ γτ,1 = ∅.

The situation under Conditions 2.1 for any fixed value of τ is indicated in
Figure 1.�CZ

Z1 Z1 Z1 Z4=∞

Figure 1

Without loss of generality, we may set Z2 = 0.
Compactness arguments imply that there exist two positive constants 0 <

%0 < R0 with the property

(5)
⋃

τ∈[0,2π)

γτ,j ⊂ {%0 ≤ |Z| ≤ R0} for j = 1, 2.

In addition to Conditions 2.1 for the boundary conditions we specify the class
of solutions by the requirement for their winding numbers,

(6)
1
2π

∫ 2π

0

d arg Z(qeiτ ) =
1
2π

∫ 2π

0

d arg Z(eiτ ) = 0.
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Definition 2.1. The solution Z(z) of the RHP2 is called “liftable” if the
mapping

Z(z) : G2 → S2 \ {Z1, Z2, Z3, Z4 = ∞}

is homotopic to the trivial one which here means that Z(z) satisfies condition (6),
where S2 denotes the Riemannian shere.

Now we are ready to formulate our main result.

Theorem 2.1. Let {γτ,j | 0 ≤ τ < 2π, j = 1, 2} satisfy Conditions 2.1. Then
there exist at least two different “liftable” solutions of the nonlinear RHP2.

In order to prove existence of solutions to (1)–(6) we reduce the nonlinear
RHP2 to nonlinear RHPs on the universal covering Ξ of S2 \ {Z1, Z2, Z3,∞}
on the Riemannian sphere S2. To this end, we denote by Γ1 := [Z1, Z2],Γ2 :=
[Z2, Z3],Γ3 := [Z3,∞] and Γ4 := [∞, Z1] and let f(Z) be the conformal mapping
of the upper half-plane onto T ⊂ Ξ where ∂T consists of four circular arcs
αj = f(Γj) which are orthogonal to the unit circle ∂Ξ at their endpoints f(Zj).
Let Sj be the circular quadrangle which is obtained from T by reflexion with
respect to the arc αj . It is clear, that the corners of ∂Sj lie on ∂Ξ. The four sides
of Sj , j = 1, . . . , 4 consist of circular arcs which are orthogonal to ∂Ξ. According
to the reflexion principle, Sj is the conformal image of the lower half-plane.
Clearly, f(Z) = f(1/Z) for the conformal mapping. Moreover, the corners of the
quadrangle Sj are images of the points Z1, Z2, Z3, Z4. By β

(1)
j , β

(2)
j , β

(3)
j , β

(4)
j , j =

1, . . . , 4, we denote the images of the segments Γj , respectively. Next, let Tj,k be
the circular quadrangle with the sides α`

j,k, ` = 1, . . . , 4, which is obtained from

Sj by reflexion across the side β
(k)
j , j 6= k. It is clear that we get the original

quadrangle if we reflect Sj backwards across the side β
(j)
j . According to the

reflexion principle, each of those Tj,k is the image of the upper half-plane. Of
course, the mapping function f(Z) is analytically extended across Γj onto the
half-plane of the next Riemann sheet. Next, we introduce the circular quadrangle
Sj,k,` by reflecting Tj,k across the side α`

j,k. Proceeding in this way, as a result
we obtain that Ξ is divided into a countable number of circular quadrangles of
the form

Sj1,k1,...,jr−1,kr−1,jτ
and Tj1,k1,...,jτ ,kτ

,

which are obtained from T by odd and even numbers of reflexions, respectively.
Now we are in the position to consider the images of the boundary curves

γτ,1 and γτ,2 on Ξ.
Let π : Ξ → S2 \ {Z1, Z2, Z3,∞} denote the canonical projection associated

with our construction. Now, according to the condition (6) there exists a holo-
morphic function ζ(z) mapping G2 → Ξ such that πζ(z) = Z(z) will define the
desired solution provided it exists [5], [10], [6].
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From the boundary condition (2) it follows that

(7) ζ(qeiτ ) = π−1
(
Z(qeiτ )

)
∈ π−1(γτ,1), ζ(eiτ ) = π−1

(
Z(eiτ )

)
∈ π−1(γτ,2).

Therefore it remains to describe the preimages of γτ,j (j = 1, 2) lying in the
universal covering Ξ. Note that, from our construction, it follows that any of
these preimages consists of a countable number of curves γ̃τ,j,m with m ∈ Z.
Let the point Z(j)(t) for −∞ < t < +∞ trace through the closed curve γτ,j

in the counter–clockwise direction and suppose Z(j)(t) = Z(j)(t + 1) with Im
Z(j)(t0) > 0. Let ξ(j)(t) be one of the preimages of Z(j)(t) in Ξ of the mapping
π which continuously depends on t ∈ R. The curve ξ(j)(t) coincides with γ̃τ,j,m

for some m ∈ Z. From Conditions 2.1 it follows that if

ξ(j)(t0) ∈ Tj1,k1,...,jτ ,kτ for j = 1, 2,

then

ξ(1)(t0 + 1) ∈ Tj1,k1,...,jτ ,kτ ,4,2 and ξ(2)(t0 + 1) ∈ Tj1,k1,...,jτ ,kτ ,1,3,

respectively. Let h(j) : Ξ → Ξ be the mapping corresponding to an even number
of consecutive reflexions of the upper half-plane of CZ . Due to our construction
of Ξ, it is enough to define h(j), j = 1, 2, in one of the domains:

h(1) : Tj1,k1,...,jτ ,kτ
→ Tj1,k1,...,jτ ,kτ ,4,2,(8)

h(2) : Tj1,k1,...,jτ ,kτ
→ Tj1,k1,...,jτ ,kτ ,1,3.(9)

It is clear that
ξ(j)(t + 1) = h(j) ◦ ξ(j)(t).

According to Brouwer’s fixed point theorem, the mapping h(j) : Ξ → Ξ has
two distinct fixed points on ∂Ξ. Since the curve ξ(j)(t) is invariant under the
mapping h(j), these points are the two endpoints for the curve ξ(j)(t). Now we
are in the position to reduce the original problem RHP2 to a different problem of
the same type, which is more suitable for our analysis. Let Z(z) be a solution of
the RHP2 (1)–(6), then there exists a function ζ(z) which is holomorphic in G2

and continuous on G2 with the following properties:

(R̃HP2) ζ(z) : G2 → Ξ and π
(
ζ(z)

)
= Z(z),

(see [10]) and there exist two integers m1,m2 ∈ Z such that

(10) ζ(qeiτ ) ∈ γ̃τ,1,m1 and ζ(eiτ ) ∈ γ̃τ,2,m2 .

Now we fix the chain of all Tj1,k1,...,jτ ,kτ
and Sj1,k1,...,jτ ,kτ ,jτ+1 through which

the curves γ̃τ,1,m1 and γ̃τ,2,m2 are trespassing, respectively. Then exactly one of
the following cases is possible (see also Figure 2):

(1) These chains have an intersection coinciding with Tj1,k1,...,jτ ,kτ
;
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�
Ξ

Figure 2. The chains on Ξ

(2) These chains have an intersection coinciding with Sj1,k1,...,jτ ,kτ ,jτ+1 ;
(3) These chains do not intersect at all.

Let γ̃τ,j,m`
and γ̃τ,j,mr

be two families of curves corresponding to the case
(1) each. Then it is not difficult to see that they can be transformed into each
other by the mappings h(j) : Ξ → Ξ (j = 1, 2). Hence, they are equivalent and
it suffices to consider the following two representative cases only:

Let γ̃τ,1,1 be the family which trespasses through the circular quadrangles

(11) . . . , S424, T42, S4, T, S2, T24, S242, . . . ,

and let γ̃τ,2,1 be the family which trespasses through

(12) . . . , S313, T31, S3, T, S1, T13, S131, . . .

and let γ̃τ,2,2 be the family which trespasses through the chains

(13) . . . , S213, T21, S2, T23, S231, . . . .

Each of the two families:
Case 1. [γ̃τ,1,1, γ̃τ,2,1],
Case 2. [γ̃τ,1,2, γ̃τ,2,2],

represents one of the cases, respectively. For each of these cases we shall prove
an existence theorem for solutions of the nonlinear R̃HP2. As a consequence, we
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shall show that the corresponding sets of solutions of the original problem RHP2

lead to two different sets of solutions.
We now restrict ourselves to Case 1. The Case 2 can be treated analogously.

Note that it is not difficult to see that there is no solution in the Case 3.
We denote by D1 the domain which is the union of all circular quadrangles

which contain γ̃τ,1,1 and the arcs dividing the neighbouring quadrangles in order
to obtain a connected domain including all sets in (11). By D2 we denote the
analogous domain for the family γ̃τ,2,2. Hence, we consider now the following
R̃HP2:

Find a holomorphic function ζ(z) in G2 and continuous in G2 such that

(1) ζ(qeiτ ) ∈ γ̃τ,1,1andζ(eiτ ) ∈ γ̃τ,2,1,
(2) ζ(G2) ⊂ D1 ∪D2.

To prove the existence of the R̃HP2 we reduce it to an equivalent system of
nonlinear singular integral equations on ∂G2.

To this end, similar to the ideas in [3], we use smooth approximations γε
τ,j

satisfying Condition 2.1 uniformly with respect to ε, and use Montel’s theorem.
From now on we deal with the familiy of smooth curves γε

τ,j and with γ̃ε
τ,j ,

correspondingly.
For every fixed ε > 0, let the curves γε

τ,j in the complex Z-plane be implicitly
represented by the real-valued functions

F ε
j (τ, U, V ) = 0, j = 1, 2

as in (3) and satisfy the following conditions:

(1) F ε
1 is a smooth function of all its arguments for 0 ≤ τ < 2π and Z =

U + iV ∈ S2 \ (Γ1∪Γ3) and F ε
2 is a smooth function of all its arguments

for 0 ≤ τ < 2π and Z ∈ S2 \ (Γ2 ∪ Γ4).
(2) gradU,V F ε

1 (τ, U, V ) 6= 0 for U + iV = Z ∈ S2 \ (Γ1 ∪ Γ3),
gradU,V F ε

2 (τ, U, V ) 6= 0 for U + iV = Z ∈ S2 \ (Γ2 ∪ Γ4),
uniformly with respect to ε > 0.

In order to formulate our problem on Ξ, let us define

(14) fε
j (τ, ζ) := F ε

j

(
τ,Re π(ζ), Im π(ζ)

)
for ζ ∈ Ξ,

where π : Ξ → S2 \ {Z1, Z2, Z3,∞} is the canonical projection. Let Hs(S1) be
the Sobolev–Slobodetskĭı space of order s ≥ 0 on the unit circle S1 and let X s

be the Banach space of functions holomorphic in G2 and continuous on G2 with
Hs(S1)-bounded traces on G2 equipped with the norm

(15) ‖ ζ ‖s:= {‖ ζ(qei•) ‖2
Hs(S1) + ‖ ζ(ei•) ‖2

Hs(S1)}
1/2

considered over the scalar field of the reals R. Then R̃HP2 can be reduced to
the following problem: Find a holomorphic function ζ(z) in G2 and continuous



118 M. A. Efendiev — W. L. Wendland

on G2 such that

(16) fε
1 (τ, ζ(qeiτ )) = 0 and fε

2 (τ, ζ(eiτ )) = 0.

Note that the families of curves fε
1 (τ, ζ) = 0 and fε

2 (τ, ζ) = 0 are non-closed and
are “going to ∂Ξ”.

To prove the existence of a solution to (16), we convert this problem to
a system of nonlinear singular integral equations on Γ = ∂G2 based on the
following theorems from [3] which are proved there.

Theorem 2.2. For every pair (u1, v1) ∈ [Hs(S1) × Hs(S1)] with s ≥ 0,
there exists a unique holomorphic function w(z) = u(z)+ iv(z) in G2 = {z ∈ C |
q < |z| < 1} such that

(17) Re w(qeiτ ) = u1(τ), Im w(eiτ ) = v2(τ).

Moreover, the correspondence (u1, v2) 7→ w(z) = u(z) + iv(z) is an isomorphism
between the space Hs(S1) with s ≥ 0 and the Banach space X s.

Let S denote the map S : Hs(S1) → X s given by (u1, v2) 7→ w(z), and write

(18) S1(u1, v2) := Im w(qeiτ ) and S2(u1, v2) := Re w(eiτ ).

The mapping S1,S2 is well defined due to Theorem 2.2.

Theorem 2.3. The linear operators S1 and S2 admit representations of the
form

(19)
S1(u1, v2) = H0u1(τ) + Au1(τ) + Bv2(τ),

S2(u1, v2) = H0v2(τ) + Cu1(τ) + Dv2(τ),

where H0 ist the Hilbert transform and A, B, C, D are linear integral operators
with analytical kernels.

3. The nonlinear singular integral equations

Thus, the nonlinear RHP2 is reduced to a system of nonlinear integral equa-
tions for the yet unknown traces of ζ(z) = u(z) + iv(z) on S1 of the form

(20) Aε(u1, v2) :=
(

fε
1 (τ, u1(τ),H0u1 + Au1 + Bv2)

fε
2 (τ,H0v2 + Cu1 + Dv2, v2(τ))

)
= 0.

We emphasize that the solution of this system of nonlinear integral equations
obeys the structure of the universal covering and will provide us with the periodic
solutions u1, v2 which define via

Z = πζ = u1 + iS1(u1, v2) on |z| = q, and

Z = πζ = S2(u1, v2) + iv2 on |z| = 1,
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the complete Cauchy data of Z on ∂G2, so Z is defined via the Cauchy integral
over ∂G2.

In order to solve (20), we use the degree theory of quasiruled Fredholm maps
(see [1], [4], [9] and the references therein). We now consider this equation on Ξ.
Here we solve the integral equations (20) discarding the fact that Ξ carries the
structure of an universal covering.

For the application of the degree theory, we shall need a priori bounds for
the solution, and, moreover, that the admissible functions will not admit values
on ∂Ξ. With a suitable homotopy we then find a simplified system of integral
equations that has a solution which implies that the degree of the mapping
associated with (20) is nonzero which in turn guarantees the desired existence
of a solution.

We first notice that the nonlinear integral equations (20) permit this ap-
proach.

Theorem 3.1. For every ε > 0, the operator Aε(u1, v2) : Hs(S1)×Hs(S1)
→ Hs(S1)×Hs(S1) for s > 1 defined by

(21) Aε(u1, v2) :=
(

fε
1

(
τ, u1(τ),H0u1(τ) + Au1(τ) + Bv2(τ)

)
fε
2

(
τ,H0v2(τ) + Cu1(τ) + Dv2(τ), v2(τ)

)
)

)
is quasilinear Fredholm, where A, B, C, D are the linear operators defined in
Theorem 2.2.

For the proof see [3].
In order to show the desired a priori estimates, we observe that every solution

of the system of boundary integral equations (20) will define some solution of
the RHP2. Hence, we can exploit the following results.

Theorem 3.2. Let F ε
j ∈ C∞ and satisfy Conditions 2.1. Then every holo-

morphic solution Z of the nonlinear Riemann–Hilbert problem (1)–(6) satisfies
the a priori estimates

(22) 0 < %0 ≤ |Z(z)| ≤ R0 and ‖ Z ‖X 1≤ C1

uniformly with respect to ε > 0 with the two constants %0 < R0 from Condi-
tions 2.1 and a constant C1, that do not depend on Z nor ε.

The proof of this theorem is based on the following theorem due to Šnirel’man
(see [9]).

Theorem 3.3. Suppose that Z(z) is a holomorphic solution of the nonlinear
Riemann–Hilbert problem in the unit disc with a boundary condition F ∈ C∞ and
where Z(z) is uniformly bounded by K0. Then Z satisfies the a priori estimate

(23) ‖ Z ‖X s≤ C1
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in the Sobolev–Slobodetskĭı norms (15) with s ≥ 1 where C1 is independent of Z

(but depends on K0 and s).

Proof of Theorem 3.2. The proof of (23) in [9] is based on local estimates
for the solutions Z. The global estimate (23) is then obtained by a partition of
the unity. Therefore, we can obtain local estimates separately for each of the
boundary components of ∂G2 repeating Snirelman’s arguments word by word
(see also [2]).

Because of Conditions 2.1 we have the property (5) available which implies
with the maximum principle for Z(z) in G2 via (2) that

(24) 0 < %0 ≤ |Z(z)| ≤ R0.

For the local estimates, in [9, Lemma 4.1], the constants Ch in [9, (4.11)] and C ′
h

in [9, (4.11’)] are bounds of the first derivatives of the boundary functions which
in our case can be estimated by the first derivatives of fε

j given in (14). Note
that our approximations can be chosen in such a way (e.g. by using Friedrichs
mollifiers) that ∣∣∣∣ ∂

∂τ
fε

j

∣∣∣∣, ∣∣∣∣ ∂

∂u
fε

j

∣∣∣∣, ∣∣∣∣ ∂

∂v
fε

j

∣∣∣∣ ≤ c · L

hold uniformly where L is the maximum of the Lipschitz constants of f j . Hence,
the constant C1 in (22) is independent of ε and depends only on L, %0, R0 and π.�

From (22) and continuous differentiability of the argument function, one gets
the a priori bounds

(25)
∣∣∣∣ 1
2π

∫ 2π

τ=0

d arg Z(qeiτ )
∣∣∣∣ < K < ∞ and

∣∣∣∣ 1
2π

∫ 2π

τ=0

d arg Z(eiτ )
∣∣∣∣ < K

for all solutions with an integer constant K depending only on %0, R0, C1 but
not on the solution Z.

We now emphasize that all these constants only depend on the functions Fj

and Conditions 2.1 and, hence, are available a priori. Therefore, the transforma-
tion z̃ = zK of the independent variable in G2 will imply that the transformed
solution Z̃ of the transformed problem in G̃2 has zero winding indices on both
boundary components of ∂G̃2.

From (25) we deduce, due to our construction, that we have a uniform esti-
mate on Ξ:

(26) |ζε(z)| ≤ K0 < 1.

Using Theorem 3.3 again, we also obtain the a priori bounds

(27) ‖ ζε ‖X 1≤ C1 and ‖ ζε ‖X s≤ C̃1(ε, s) with s > 1

for every periodic solution ζε = uε + ivε of the integral equations (20). Hence,
for every fixed ε > 0, a degree of the mapping Aε given by (20) is well defined
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[1], [4], [9]. It remains to compute the degree of Aε. To this end, we construct
a homotopy and a familiy of nonlinear integral equations that connects Aε with
a solvable system A1.

Construction of the homotopy. We now associate the solution of the
nonlinear integral equations (20) with the nonlinear RHP′2 for solutions ζ in G̃2

satisfying the boundary conditions (14) and, in what follows, we shall skip ε

in the notation of the solutions ζ = u + iv. Since these solutions satisfy the
a priori estimate (26), for |ζ(z)| > K0 we may formulate any ficticious boundary
conditions, e.g. with curves fε

j (τ, u, v) = 0 going off to infinity as in [1]. As
indicated in Figure 3 we further choose two strips |u| ≤ cu and |v| ≤ cv which
contain all curves γ̃τ,1,1 and γ̃τ,2,1, respectively, together with their ficticious
extensions.

�
Ξ

v=c2

v

u=c1

u

v

u

f1(τ,u,v)=0 u=c1

Figure 3

Now we choose a straight line u = c1 such that all ficticiously extended
curves Γ0 : fε

1 (τ, u, v) = 0 lie on the left side of Γ1 : u = c1 and solve the
auxiliary Dirichlet problem

∆u,vΨ1 = 0 for {(u, v) | u0 ≤ u ≤ c1, f
ε
1 (τ, u0, v) = 0},

with Ψ1|Γ0 = 0 and Ψ1|Γ1 = 1, Ψ1 ≤ 1,

and set fε,t
1 (τ, u, v) := Ψ1(τ, u, v) − t for 0 ≤ t ≤ 1. Then for every constant

value of t ∈ [0, 1], the equation fε,t
1 (τ, u, v) = 0 describes a level curve of Ψ1
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which is non-selfintersecting and lies in the strip |u| ≤ cu. Moreover,

fε,0
1 (τ, u, v) = 0 on Γ0, i.e. fε

1 (τ, u, v) = 0,

fε,1
1 (τ, u, v) = 0 on Γ1, i.e. u = c1.

In the same manner we construct fε,t
2 (τ, u, v) and obtain the second family of

boundary condition curves in |v| ≤ cv. Clearly, the family of integral equations

At
ε(u1, v2) =

(
fε,t
1 (τ, u1(τ),H0u1(τ) + Au1(τ) + Bv2(τ))

fε,t
2 (τ,H0v2(τ) + Cu1(τ) + Dv2(τ), v2(τ))

)
= 0

is now homotopic to

A1(u1, v2) =

{
u1 − c1 = 0 for |z̃| = qK ,

v2 − c2 = 0 for |z̃| = 1,

which has exactly one solution.
Consequently, the degree of the quasi Fredholm ruled mapping A1 is 1, so is

the degree of Aε = A0
ε. Hence, the integral equations (20) admit at least one

solution ζε
T (z) in case 1 for every ε > 0.

In the same manner we obtain at least one solution ζε
S(z) in case 2.

As a result we obtain Zε
T (z) = πζε

T (z) and Zε
S(z) = πζε

S(z). These are
solutions of the original problems (1)–(6) for the boundary curves F ε

j . For ε → 0,
it now remains to use convergence arguments. Taking into account the uniform
estimate (27) in X 1 and using Montel’s theorem, we obtain desired solutions
ZT (z) and ZS(z) of our original problem (see also [3]).

It remains to show that the two solutions obtained in case 1 and in case 2
are different. For this property it suffices to show that they are not homotopic.
This will be proved by contradiction. Let ZT (z) = πζT (z) and ZS(z) = πζS(z)
be two solutions obtained from the first and the second case, respectively. Then

ZT and ZS : G2 → S2 \ {Z1, . . . , Z4},

and

1. both solutions define holomorphic mappings;
2. due to boundary conditions we also have

ZT (qeiτ ) 6∈ Γ2 ∪ Γ4 and ZT (eiτ ) 6∈ Γ1 ∪ Γ3,

ZS(qeiτ ) 6∈ Γ2 ∪ Γ4 and ZS(eiτ ) 6∈ Γ1 ∪ Γ3.

Let us now suppose that ZT and ZS are homotopic and consider

gT := ZT |[q,1], gS := ZS|[q,1].

Then there exists a continuous function

g(t, x) with g : [0, 1]× [q, 1] → S2 \ {Z1, . . . , Z4}
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and
g(0, x) = gT (x), g(1, x) = gS(x);

moreover, g(t, q) 6∈ Γ2 ∪ Γ4 and g(t, 1) 6∈ Γ1 ∪ Γ3 for all t ∈ [0, 1].

�
0 q 1 x

1

t

Figure 4

Then ZT (qeiτ ) and ZS(qeiτ ) can also homotopically be deformed into each
other. In view of our construction, this will require that the corresponding curves
γ̃τ,1,1 or γ̃τ,1,2 on Ξ can homotopically be deformed into each other which implies
that some of these curves must have a nonempty intersection with the image of
Γ2 or Γ4, or some of the curves γt

τ,1 will intersect with Γ2, or with Γ4 which
contradicts Conditions 2.1.

In other words, one can easily see that to the curves g(t, x)|∂([q,1]×[0,1]) there
corresponds the unity of the fundamental group π1(S2 \ {Z1, Z2, Z3, Z4}) since
[q, 1]× [0, 1] is contractible. On the other hand, a direct computation shows that
the curve g(t, x)|∂([q,1]×[0,1]) corresponds to some element (g1g2)n1(g2g3)n2 with
n1, n2 ∈ Z of the fundamental group π1(S2 \{Z1, Z2, Z3, Z4}) which obviously is
always different from the unity e contradicting the previous statement. Here, we
denote by gj the generators of the free group π1 [10]. This completes the proof
of Theorem 2.1. �
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