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ON A GENERALIZED CRITICAL POINT THEORY
ON GAUGE SPACES AND APPLICATIONS

TO ELLIPTIC PROBLEMS ON RN

Marlène Frigon

Abstract. In this paper, we introduce some aspects of a critical point

theory for multivalued functions Φ : E → RN∪{∞} defined on E a complete
gauge space and with closed graph. The existence of a critical point is

established in presence of linking. Finally, we present applications of this

theory to semilinear elliptic problems on RN .

1. Introduction

In the last six years, critical point theory for lower semi-continuous function-
als defined on complete metric spaces was developped by Degiovanni, Marzocchi,
Corvellec [7], [8], Ioffe, Schwartzman [14], [15], and Katriel [16]. Since then, some
applications of this theory to partial differential equations were given. They con-
cern mainly problems from which the associated functional defined on a Banach
space is not continuously differentiable. The starting point of this work was to
see if this theory can be applied to semilinear elliptic problems on RN . Indeed,
the Fréchet space H1

loc(RN ) is a very natural metric space (which is not Ba-
nach) one can think of. Many difficulties occured; in particular, the associated
functional is not in general lower semi-continuous on its domain.
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In this paper, we generalize in some aspects the critical point theory devel-
opped by Degiovanni, Marzocchi and Corvellec [7], [8] and by the author [11]
for multivalued functionals, see also [21]. We consider complete gauge spaces E

and multivalued functions Φ : E → RN∪{∞} with closed graph. Obviously, this
contains the particular case of continuous functions φ : E → RN.

A notion of slope of Φ and the associated notion of critical point are intro-
duced. Also, we define a notion of linking in the spirit of the one introduced
in [12]. Our main theorem establishes under suitable assumptions the existence
of a critical point of Φ in presence of linking. As corollary, the existence of a
critical point of some functions Φ bounded from below is obtained. The proofs
of these results rely on a deformation lemma for subsets of graphΦ which is
established in Section 7.

Finally, two simple applications to the semilinear elliptic partial differential
equation

(1.1) −∆u + a(x)u = g(x, u), x ∈ RN

are presented. The existence of a solution in H1
loc(RN ) to (1.1) is obtained. Here,

no group invariance conditions are imposed on a and g. Also, no restrictions on
the behavior of a and g as ‖x‖ → ∞ are assumed. Moreover, g is not necessarily
superlinear at 0.

This type of problems has been and is still studied by many authors, see for
example [1]–[4], [9], [17], [19], [20], [22]–[24] and the references therein. Some
of them, as Strauss [22], Berestycki, Lions [4], Bartsch, Willem [2], [3], and
Bartsch, Wang [1], seeked radial solutions or O(N)-invariant solutions under
appropriate group invariance conditions on a and g. Others, as Lions [17], treated
the case where a and g have a limit at ∞, that is a(x) → a , g(x, u) → g(u) as
‖x‖ → ∞. The concentration-compactness principle of Lions [17] is an important
tool in these results. On the other hand, Bartsch, Wang [1], Ding, Ni [9], and
Rabinowitz [20] established existence results for the problem (1.1) without group
invariance conditions but with stronger assumptions on a than ours; for instance,
in [20], it is assumed that a(x) → ∞ as ‖x‖ → ∞. In [9] and [20], the results
are obtained in using a sequence {un} with un a solution of (1.1) on Bn the ball
of radius n in RN . All those results can not be compared to ours since, even
though our assumptions on a are weaker, those on g are different to theirs; also g

satisfies a subcritical growth condition as in [5], [6], [13]. However, it is worthwile
to mention that in most of the results in the literature on the problem (1.1), it
is assumed that inf a > 0 while this is not required here. Finally, we point out
that the approach presented in this paper has some similarities with the one used
in [11].
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2. Notations

In this paper, we consider complete gauge spaces (E, {dn}n∈N) (topological
spaces with topology induced by a family of gauges (semi-metric) {dn}n∈N),
see [10] for more details. In order to simplify the presentation, we choose {dn}
such that

(2.1) d1(u, v) ≤ d2(u, v) ≤ . . . .

We write for y ∈ E, S ⊂ E, and r > 0

Bn(y, r) = {x ∈ E | dn(y, x) < r},
O(y, r) = {x ∈ E | sup

n∈N
dn(x, y) < r},

Sr =
⋃
y∈S

O(y, r).

We denote by Tu the uniform topology on E generated by the open sets O(y, r).
Notice that E is endowed with the gauge space topology Tg generated by {dn}n∈N

unless the contrary is mentioned.
Observe that if (E, {dn}n∈N) is a complete gauge space satisfying (2.1), then

so is (E × RN, {Dn}n∈N) where Dn is the gauge defined by:

Dn((u, c), (v, b)) =
√

dn(u, v)2 + (max
k≤n

|ck − bk|)2.

Also, if Φ : E → RN ∪ {∞} is a multivalued map with closed graph, that is such
that

graphΦ = {y = (u, c) ∈ E × RN | c ∈ Φ(u)}
is closed in E×RN, then, (graphΦ, {Dn}n∈N) is a complete gauge space satisfy-
ing (2.1).

We say that a subset C ⊂ RN is bounded from below (resp. from above) if
there exists m = (m1,m2, . . . ) ∈ RN (resp. M = (M1,M2, . . . )) such that for
every c = (c1, c2, . . . ) ∈ C, cn ≥ mn (resp. cn ≤ Mn) for every n ∈ N; we
write C ⊂ [m,∞[ =

∏
n∈N[mn,∞[ (resp. C ⊂ ]−∞,M ]). We say that C is

bounded if it is bounded from above and from below, we write C ⊂ [m,M ] =∏
n∈N[mn,Mn]. For c ∈ RN and r ∈ R, we write c + r for (c1 + r, c2 + r, . . . ).

3. Linking

Let (E, {dn}n∈N) be a complete gauge space. We introduce a notion of linking
in the spirit of the one presented in [12]. For that, we use the following notation.
Let A1 ⊂ A0 ⊂ E with A0 6= ∅, we set

N (A0, A1) = {η : (A0, Tu)× [0, 1] → (E, Tu) | η is continuous

η(x, t) = x for all (x, t) ∈ A0 × {0} ∪A1 × [0, 1]}.
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Definition 3.1. Let A1 ⊂ A0 ⊂ E, Q1 ⊂ Q0 ⊂ E. We say that (A0, A1)
links (Q0, Q1) if A1 ∩ Q0 = ∅, A0 ∩ Q1 = ∅, A0 ∩ Q0 6= ∅, and if for every
η ∈ N (A0, A1), one of the following statements holds:

(1) η(A0, 1) ∩Q0 6= ∅,
(2) η(A0, ]0, 1[) ∩Q1 6= ∅.

Remark 3.2. Notice that A1 can be empty and Q1 nonempty (which is
impossible in the usual notions of linking). An analogous definition can be
stated with Tg instead of Tu. In fact, we chose to impose the continuity with
respect to Tu in order to obtain more linking sets.

Here are some examples of linking. Many others could be given.

Proposition 3.3. Let (F, {‖ · ‖n}n∈N) be a Fréchet space such that F =
F1 ⊕ F2 where F1 = span(e1, . . . , ek) with {e1, . . . , ek} linearly independant and
‖ei‖n ≤ R < ∞ for every n ∈ N, and i = 1, . . . , k. Let M > 0 and denote

A0 = {λ1e1 + · · ·+ λkek | λ = (λ1, . . . , λk) ∈ Rk with ‖λ‖ ≤ 1},
A1 = {λ1e1 + . . . + λkek | λ = (λ1, . . . , λk) ∈ Rk with ‖λ‖ = 1},
Q0 = {u ∈ F2 | lim inf

n→∞
‖u‖n ≤ M},

Q1 = {u ∈ Q0 | lim inf
n→∞

‖u‖n = M}.

Then (A0, A1) links (Q0, Q1); also, (A0, A1) links (F2, ∅).

Proof. Let η ∈ N (A0, A1). Define H : A0 × [0, 1] → F1 by h(u, t) =
PF1(η(u, t)), where PF1 is the projection on F1. It follows from degree theory
the existence of a continuum (in the uniform topology) C ⊂ {(u, t) ∈ A0 ×
[0, 1] : h(u, t) = 0} such that C ∩ A0 × {i} 6= ∅, i = 0, 1. This implies that
η(C ∩A0 × {1}) ∩ F2 6= ∅. So, (A0, A1) links (F2, ∅).

On the other hand, define L : F → R ∪ {±∞} by L(u) = lim infn→∞ ‖u‖n.
Observe that L◦η : A0×[0, 1] → R is well defined and continuous with respect to
the uniform topology. Since L◦η(C) is also a continuum and L◦η(C∩A0×{0}) =
0, we deduce that η(C ∩A0×{1})∩Q0 6= ∅ or η(C ∩A0× ]0, 1[)∩Q1 6= ∅. Hence
(A0, A1) links (Q0, Q1). �

Proposition 3.4. Let (E, {dn}n∈N) be a complete gauge space and let A1 ⊂
A0 ⊂ E, Q1 ⊂ Q0 ⊂ E be such that (A0, A1) links (Q0, Q1). Assume that
φ : E → RN is a continuous map with φ|A0 continuous with respect to the
uniform topology on A0 and RN. Consider the gauge space E = {(u, c) ∈ E ×
RN | c ∈ [φ(u),∞[}. Then (graphφ(A0), graphφ(A1)) links (Q̃0, Q̃1) in E, where
Q̃i = {(u, c) ∈ Qi × RN | c ∈ [φ(u),∞[}, i = 0, 1.
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Proof. Obviously, graphφ(A0) ∩ Q̃0 6= ∅, graphφ(A0) ∩ Q̃1 = ∅, and
graphφ(A1) ∩ Q̃0 = ∅. Let η = (η1, η2) ∈ N (graphφ(A0), graphφ(A1)). De-
fine

η̂ : A0 × [0, 1] → E by η̂(u, t) = η1((u, φ(u)), t).

Since (A0, A1) links (Q0, Q1), either η̂(A0, 1) ∩Q0 6= ∅, and hence

η(graphφ(A0), 1) ∩ Q̃0 6= ∅, or η̂(A0 × ]0, 1[) ∩Q1 6= ∅,

and hence η(graphφ(A0)× ]0, 1[)∩ Q̃1 6= ∅. So, (graphφ(A0), graphφ(A1)) links
(Q̃0, Q̃1). �

4. Slope and critical points

Let (E, {dn}n∈N) be a complete gauge space satisfying (2.1). We consider
Φ : E → RN ∪ {∞} a multivalued function with closed graph and the complete
gauge space (graphΦ, {Dn}n∈N). In order to define the notion of critical point
of Φ, we need to introduce the notion of slope.

Definition 4.1. Let y ∈ graphΦ. The slope of Φ at y, denoted |dΦ|(y),
is defined as the supremum of σ ≥ 0 such that there exist m ∈ N, δ > 0 and
a map H = (H0,H1, . . . ) : Bm(y, δ)× [0, δ] → graphΦ continuous with graphΦ
endowed with the uniform topology such that for every (v, b) ∈ Bm(y, δ) and
every t ∈ [0, δ],

(i) Dn(H((v, b), t), (v, b)) ≤ t
√

1 + σ2 for every n ∈ N,
(ii) Hn((v, b), t) ≤ bn − σt for every n ≥ m,
(iii) |Hn((v, b), t)− bn| ≤ σt for every n ∈ N.

Remark 4.2. For k ∈ [1,∞], we can define |k-dΦ|(y) by replacing (iii) by

(iii)k |Hn((v, b), t)− bn| ≤ kσt for every n ∈ N.

So, |dΦ|(y) = |1-dΦ|(y) and |dΦ|(y) ≤ |k-dΦ|(y) for every k ≥ 1.

Remark 4.3. (1) Let (E, d) be a complete metric space, and φ1 : E →
R ∪ {∞} a lower semi-continuous functional. Take Φ : E → RN ∪ {∞} defined
by

Φ(u) =

{
{∞} if φ1(u) = ∞,

{(c, c, . . . ) | c ≥ φ1(u)} otherwise.
Then the weak slope of φ1 at u in the sense of Degiovanni and Marzocchi [8]
|dφ1|(u) = |dΦ|(y) with y = (u, (φ1(u), φ1(u), . . . )).

(2) Let (E, d) be a complete metric space, and Φ1 : E → R ∪ {∞} a multi-
valued map with closed graph. Define Φ : E → RN ∪ {∞} by

Φ(u) =

{
{(c, c, . . . ) | c ∈ Φ1(u)} if Φ1(u) ∩ R 6= ∅,
{∞} otherwise.
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Then |dΦ1|(u, c) = |∞-dΦ|(u, (c, c, . . . )) (see Remark 4.2), where |dΦ1|(u, c) is
the weak slope introduced in [11].

(3) Let E be a Banach space and fn ∈ C1(E, R) for n ∈ N. Take Φ : E → RN

defined by Φ(u) = (f1(u), f2(u), . . . ). Then

|∞-dΦ|(u, (f1(u), f2(u), . . . )) ≤ lim inf
n→∞

‖f ′n(u)‖.

It is easy to show the following result.

Lemma 4.4. The slope |dΦ| is lower semi-continuous.

Definition 4.5. We say that u ∈ E is a critical point of Φ at level c ∈ RN

if (u, c) ∈ graphΦ and |dΦ|(u, c) = 0; c is called a critical value of Φ; we write
u ∈ Kc. We say that u is a critical point of Φ if u ∈ K =

⋃
c∈RN Kc.

Definition 4.6. Let C ⊂ RN. We say that Φ satisfies the Palais–Smale
condition at C, noted (PS)C if every sequence {yk} such that |dΦ|(yk) → 0 and
yk ∈ graphΦ ∩ E × C + [−rk, rk] with rk → 0, has a convergent subsequence.

Remark 4.7. This definition seems to be the most suitable in our context.
Indeed, let us consider the case where C = {c} ⊂ RN. The set of sequences
{yk = (uk, ck)} in graphΦ with ck → c and |dΦ|(yk) → 0 is much larger than
the set of sequences {yk} considered in the previous definition. Also, in practice,
it is extremely difficult to know exactly what will be the critical value; so, in our
case, C will be an interval in RN.

5. Single-valued continuous maps

For a better understanding of our Main Theorem, we first consider the par-
ticular case where φ : E → RN is a single-valued continuous map. Obviously, it
can be considered as a multivalued map u 7→ {φ(u)} with closed graph. However,
the Palais–Smale condition would hardly be satisfied because condition (iii) in
Definition 4.1 is very restrictive in this context. So, in practice, it seems more
appropriate to consider the associate multivalued map defined by

Φ(u) = [φ(u),∞[ .

We will say that u is a critical point of φ at level c if there exists c ∈ [φ(u),∞[
such that u is a critical point of Φ at level c. Similarly, we will say that φ satisfies
(PS)C if Φ satisfies (PS)C .

Lemma 5.1. Let φ : E → RN be a single-valued continuous map. If u is
a critical point of φ at level c, then

lim inf
n→∞

cn − φn(u) = 0.

In this particular case, we state a corollary of our main theorem which will
be presented in the next section.
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Theorem 5.2. Let φ : E → RN be a continuous single-valued map, and
c ∈ RN. Let A1 ⊂ A0 ⊂ E, Q1 ⊂ Q0 ⊂ E be such that (A0, A1) links (Q0, Q1),
and

(5.1) sup
u∈A1

lim inf
n→∞

φn(u)− cn < β = inf
u∈Q0

lim inf
n→∞

φn(u)− cn

≤ γ = sup
u∈A0

lim inf
n→∞

φn(u)− cn ≤ inf
u∈Q1

lim inf
n→∞

φn(u)− cn,

with γ ∈ R. Assume that graphφ(A0) is compact with the uniform topology,
and φ satisfies (PS)C for every bounded C ⊂ RN. Then φ has a critical point.

6. Main theorem

We state our main result establishing the existence of a critical point of
Φ : E → RN ∪ {∞} a multivalued map with closed graph. By convention
sup(∅) = −∞, inf(∅) = ∞.

Main Theorem 6.1. Let Φ : E → RN ∪ {∞} be a multivalued map with
closed graph. Let c = (c1, c2, . . . ) ∈ RN, A1 ⊂ A0 ⊂ graphΦ, Q1 ⊂ Q0 ⊂ graphΦ
be such that (A0, A1) links (Q0, Q1), and

(6.1) sup
(u,c)∈A1

lim inf
n→∞

(cn − cn) < β = inf
(u,c)∈Q0

lim inf
n→∞

(cn − cn)

≤ γ = sup
(u,c)∈A0

lim inf
n→∞

(cn − cn) ≤ inf
(u,c)∈Q1

lim inf
n→∞

(cn − cn),

with γ ∈ R. Assume that A0 is compact with the uniform topology, and Φ satisfies
(PS)C with

C = {c + r ∈ RN | |r| ≤ γ − β and there exists (u, c) ∈ A0

such that lim inf
n→∞

cn − cn ≥ β}.

Then there exists c ∈ C a critical value of Φ such that

β − (γ − β) ≤ lim inf
n→∞

(cn − cn) ≤ γ + (γ − β).

Remark 6.2. The previous theorem still holds if we replace |dΦ| by |k-dΦ|
for k ∈ ]1,∞] and γ − β by k(γ − β).

In imposing extra conditions on the values of Φ, we can get more precisions
on the critical value.

Theorem 6.3. Assume the assumptions of the previous theorem are satis-
fied, and assume that

b ∈ Φ(u) with bn < cn + β for some n ∈ N

⇒ (b1, . . . , bn−1, b̂n, bn+1, . . . ) ∈ Φ(u) for every b̂n ∈ [bn, cn + β].
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Then there exists c ∈ C a critical value of Φ such that lim infn→∞(cn− cn) ≥ β.

On the other hand, if we do not impose a compactness assumption on A0,
we get less precisions on the critical value.

Theorem 6.4. Let Φ : E → RN ∪ {∞} be a multivalued map with closed
graph. Let c = (c1, c2, . . . ) ∈ RN, A1 ⊂ A0 ⊂ graphΦ, Q1 ⊂ Q0 ⊂ graphΦ
be such that (A0, A1) links (Q0, Q1). Assume that (6.1) holds, and Φ satisfies
(PS)C with C = C̃ + [β − γ, γ − β] where C̃ is the closure (in Tg) of {c ∈ RN |
∃(u, c) ∈ A0}. Then there exists c ∈ C a critical value of Φ.

In order to prove these theorems, a deformation lemma which will be estab-
lished in the next section is needed. Before, we present a corollary.

In our context, we do not talk of minimum but sometimes, one can obtain a
critical point of Φ when it is bounded from below. This is shown in the following
result which is a direct consequence of Theorem 6.1 applied with A0 = {(û, ĉ)},
Q0 = graphΦ, and A1 = Q1 = ∅.

Corollary 6.5. Let Φ : E → RN ∪ {∞} be a multivalued map with closed
graph such that Φ(E) is bounded from below, that is Φ(E) ⊂ [m,∞[ ∪ {∞}.
Assume that there exists (û, ĉ) ∈ graphΦ such that

lim inf
n→∞

(mn − ĉn) = −r > −∞.

If (PS)C is satisfied with C = [ĉ− r, ĉ + r], then Φ has a critical value c ∈ C.

It is worthwhile to mention that the situation here is different from the
classical critical point theory. Indeed, one can find a map Φ bounded from
below, satisfying (PS)C for every C, which does not have critical points.

Example 6.6. Let E = RN, and Φ : E → RN defined by

Φ(u) = {c ∈ RN | cn ≥ en+max{u1,...,un}, n ∈ N}.

Obviously, Φ has closed graph and is bounded from below. Moreover, Φ has no
critical points. Indeed, for every (u, c) ∈ graphΦ, |dΦ|(u, c) ≥ e−1. To see this,
define H : graphΦ× [0, 1] → graphΦ by

H((v, b), t)

= (v − t,max{b1 − te−1, e1−t+v1},max{b2 − te−1, e2−t+max{v1,,v2}}, . . . ).

Obviously, Φ satisfies (PS)RN .

7. Deformation lemma

In this section, we obtain a deformation result which will be used in the proof
of Theorems 6.1 and 6.3. The proof is analogous to the one presented in [7].
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Theorem 7.1. Let S be a subset of graphΦ such that there exist σ > 0, and
R > 0 such that

(7.1) |dΦ|(y) > σ for every y ∈ SR.

Then there exist r > 0, a map η = (η0, η1, . . . ) : S × [0, r] → graphΦ contin-
uous with graphΦ endowed with the uniform topology, and there exists a map
N : S → N locally bounded such that for every (u, c) ∈ S and every t ∈ [0, r],

(i) Dn(η((u, c), t), (u, c)) ≤ t
√

1 + σ2 for every n ∈ N,
(ii) |ηn((u, c), t)− cn| ≤ σt for every n ∈ N,
(iii) ηn((u, c), t) ≤ cn − σt for every n ≥ N(u, c).

Proof. For every y ∈ SR, there exist δy > 0, my ∈ N, and a continuous in
the uniform topology map Hy : Bmy

(y, δy)× [0, δy] → graphΦ satisfying (i)–(iii)
of Definition 4.1 with σ.

By Milnor’s Lemma (see [18]), the open cover {Bmy
(y, δy/2)}y∈SR

of SR

admits a locally finite refinement {Vj,λ | j ∈ N, λ ∈ Λj} such that Vj,λ∩Vj,µ = ∅
if λ 6= µ. Let {θj,λ : SR → [0, 1] | j ∈ N, λ ∈ Λj} be a continuous partition of
unity subordinate to {Vj,λ | j ∈ N, λ ∈ Λj}.

For every (j, λ), choose yj,λ ∈ SR such that Vj,λ ⊂ Bmj,λ
(yj,λ, δj,λ/2), where

we set mj,λ = myj,λ
, δj,λ = δyj,λ

, and Hj,λ = Hyj,λ
. For y ∈ SR, denote

Ñ(y) = max{mj,λ | y ∈ Vj,λ}.

Let T : SR → ]0,∞[ be a continuous function such that

(7.2) 0 < T (y) <
1

2
√

1 + σ2
min{δj,λ | y ∈ Vj,λ}.

Such a function exists, and Ñ is locally bounded on SR since the refinement is
locally finite.

Define η1 = (η1
0 , η1

1 , . . . ) : {(y, t) ∈ SR × [0,∞[ | t ≤ T (y)} → graphΦ by

η1(y, t) =


H1,λ(y, θ1,λ(y)t) if y ∈ V1,λ,

y if y /∈
⋃

λ∈Λ1

V1,λ.

This function is continuous in the uniform topology since the inclusion

i : (graphΦ, Tu) → (graphΦ, Tg)
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is continuous. Also, it satisfies for every y = (u, c) ∈ SR and every t ≤ T (y),

Dn(η1(y, t), y) ≤ t
√

1 + σ2
∑

λ∈Λ1

θ1,λ(y) for every n ∈ N,

|η1
n(y, t)− cn| ≤ σt

∑
λ∈Λ1

θ1,λ(y) for every n ∈ N,

η1
n(y, t) ≤ cn − σt

∑
λ∈Λ1

θ1,λ(y) for every n ≥ Ñ(y).

Moreover, this with (7.2) imply that

Dn(η1(y, t), y) ≤ t
√

1 + σ2 <
1
2

min{δj,λ | y ∈ Vj,λ} for every n ∈ N.

Therefore, we can define inductively

ηj = (ηj
0, η

j
1, . . . ) : {(y, t) ∈ SR × [0,∞[ | t ≤ T (y)} → graphΦ

by

ηj(y, t) =


Hj,λ(ηj−1(y, t), θj,λ(y)t) if y ∈ Vj,λ,

ηj−1(y, t) if y /∈
⋃

λ∈Λj

Vj,λ.

This function is continuous in the uniform topology and satisfies for every y ∈ SR

and every t ≤ T (y),

Dn(ηj(y, t), y) ≤ t
√

1 + σ2

j∑
i=1

∑
λ∈Λi

θi,λ(y) for every n ∈ N,

|ηj
n(y, t)− cn| ≤ σt

j∑
i=1

∑
λ∈Λi

θi,λ(y) for every n ∈ N,

ηj
n(y, t) ≤ cn − σt

j∑
i=1

∑
λ∈Λi

θi,λ(y) for every n ≥ Ñ(y).

Since the refinement is locally finite, for every y ∈ SR, there exists a neighbour-
hood V of y which intersects a finite number of Vj,λ. So, there exists k̂ such
that

ηj(x, t) = η
bk(x, t) for every j ≥ k̂ and every x ∈ V.

Therefore, the map η̂ : SR × [0,∞[ → graphΦ defined by

η̂(y, t) = lim
j→∞

ηj(y, min{t, T (y)})

is continuous in the uniform topology. Also, it verifies for every y = (u, c) ∈ SR,

Dn(η̂(y, t), y) ≤ t
√

1 + σ2 for every n ∈ N,(7.3)

|η̂n(y, t)− cn| ≤ σt for every n ∈ N,(7.4)

η̂n(y, t) ≤ cn − σt for every n ≥ Ñ(y) and every t ≤ T (y).(7.5)
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Now, fix r = R/
√

1 + σ2. We define inductively η : S × [0, r] → graphΦ by

η(y, t) =



η̂(y, t) if T0(y) ≤ t ≤ T1(y),

η̂(η(y, T1(y)), t− T1(y)) if T1(y) < t ≤ T2(y),

η̂(η(y, T2(y)), t− T2(y)) if T2(y) < t ≤ T3(y),
...

where T0(y) = 0 and

(7.6) Th+1(y) = min{r, Th(y) + T (η(y, Th(y)))}, h = 0, 1, . . . .

Hence, from (7.3), we deduce that for every h ≥ 0, k ≥ 1, t ∈ ]Th+k−1(y) ,
Th+k(y)], and y ∈ S, we have for every n ∈ N,

(7.7) Dn(η(y, t), η(y, Th(y)))

≤ Dn(η(y, t), η(y, Th+k−1(y))) + . . . + Dn(η(y, Th+1(y)), η(y, Th(y)))

≤ [(t− Th+k−1(y)) + . . . + (Th+1(y)− Th(y))]
√

1 + σ2

≤ (t− Th(y))
√

1 + σ2,

and in particular, Dn(η(y, t), y) ≤ t
√

1 + σ2 ≤ R; so, η(y, t) ∈ SR. Also,
from (7.4), for every y = (u, c) ∈ S, t, and every n ∈ N, we have

|ηn(y, t)− cn| ≤ σt.

We claim that for every y ∈ S, there exists ĥ ∈ N such that

(7.8) Th(y) = r for all h ≥ ĥ.

If this is not the case, for some y ∈ S,

(7.9) Th(y) < r for every h ∈ N.

It follows from (7.7) that {η(y, Th(y))} is a Cauchy sequence in SR. Therefore,
there exists α > 0 such that

(7.10) T (η(y, Th(y))) ≥ α for every h ≥ 0,

since T is continuous and positive on SR. Combining (7.6), (7.9) and (7.10), we
deduce that for all h ∈ N,

r > Th(y) =
h−1∑
i=0

T (η(y, Ti(y))) ≥ hα,

a contradiction. This permits us to conclude that η is well defined and continuous
in the uniform topology. Moreover, for every y ∈ S, there exist a neighbourhood
V of y, and hy ∈ N such that

(7.11) Th(z) = Thy
(z) = r for every z ∈ V and h ≥ hy.
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On the other hand, from (7.5), we have for every y ∈ S,

ηn(y, t) ≤ cn − σt for all n ≥ Ñ(y), and all t ≤ T1(y);

and for all t ∈ [T1(y), T2(y)], and all n ≥ Ñ(η(y, T1(y))),

ηn(y, t) ≤ ηn(y, T1(y))− σ(t− T1(y));

so that for all t ≤ T2(y), and all n ≥ max{Ñ(y), Ñ(η(y, T1(y)))},

ηn(y, t) ≤ cn − σt;

and hence, for all t ≤ r,

ηn(y, t) ≤ cn − σt for all n ≥ N(y),

where N(y) = max{Ñ(y), Ñ(η(y, T1(y))), Ñ(η(y, T2(y))), . . . }. From (7.11), we
deduce that N : S → N is well defined and is locally bounded in S. �

Remark 7.2. An analogous result is also true with |k-dΦ|.

8. Proof of the Main Theorem

We define L : E × RN → R ∪ {−∞,∞} by

L(u, c) = lim inf
n→∞

cn − cn.

Proof of the Main Theorem 6.1. If there is no critical value in C, by
the Palais–Smale condition there exist σ > 0, R > 0 such that

|dΦ|(y) > σ for every y ∈ graphΦ ∩ E × C + [−2R, 2R].

Define L0 : A0 → [−∞, γ] by L0 = L|A0 . Observe that L0 is continuous in
the uniform topology. Fix ε > 0 such that

sup
(u,c)∈A1

L0(u, c) < β − 2ε.

There exists ε ∈ ]0, ε[ such that

L−1
0 [β − ε,∞[ ⊂ E × {c + r ∈ RN | there exists (u, c) ∈ A0

such that lim inf
n→∞

cn − cn ≥ β and |r| ≤ R},

and there exists an Urysohn’s function λ1 : A0 → [0, 1] such that

λ1(y) = 0 for y ∈ L−1
0 [−∞, β − ε] and λ1(y) = 1 for y ∈ L−1

0 [β,∞[ .

Denote S = graphΦ ∩ E × C + [−R,R]. Let r > 0 and η be given by
Theorem 7.1. We define η1 : A0 × [0, 1] → graphΦ by

η1(y, t) =

{
η(y, rtλ1(y)) if λ1(y) > 0,

y otherwise,
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so that η1 ∈ N (A0, A1). We have L(η1(y, t)) < γ for every y ∈ A0 and every
t ∈ ]0, 1]. Therefore, η1(A0, ]0, 1]) ∩Q1 = ∅, and hence, by definition of linking,

(8.1) η1(A0, 1) ∩Q0 6= ∅.

Define L1 : A0 → [−∞, γ] by L1 = L◦η1(·, 1). We have L1(y) = L0(y)−σrλ1(y).
So,

(8.2) L1(y) ≤ γ − σr or L1(y) < β.

If β > γ − σr, (6.1), (8.1) and (8.2) lead to a contradiction.
On the other hand, if γ − β ≥ σr, from the properties of η, we deduce that

η1(y, 1) ∈ S for every y ∈ L−1
1 [β − ε,∞[.

Again, there exists an Urysohn’s function λ2 : A0 → [0, 1] such that λ2(y) = 0
for y ∈ L−1

1 [−∞, β − ε] and λ2(y) = 1 for y ∈ L−1
1 [β,∞[.

We define η2 : A0 × [0, 1] → graphΦ by

η2(y, t) =

{
η(η1(y, 1), rtλ2(y)) if λ2(y) > 0,

η1(y, 1) otherwise,

We have η2 ∈ N (A0, A1), η2(A0, ]0, 1]) ∩Q1 = ∅, and

(8.3) η2(A0, 1) ∩Q0 6= ∅.

We define L2 : A0 → [−∞, γ] by L2 = L ◦ η2( · , 1). As before, L2(y) = L1(y)−
σrλ2(y), and

(8.4) L2(y) ≤ γ − 2σr or L2(y) < β.

If β > γ−2σr, (6.1), (8.3) and (8.4) lead to a contradiction. On the other hand,
if γ − β ≥ 2σr, we deduce that

η2(y, 1) ∈ S for every y ∈ L−1
2 [β − ε,∞[.

In doing this argument k times with γ − kσr < β, we get a contradiction. �

Proof of Theorem 6.3. As before, let us define L0 : A0 → [−∞, γ] by
L0 = L|A0 . Fix ε1 > 0 such that L0(A1) < β − 2ε1. There exists n1 ∈ N such
that

L−1
0 [β − ε1,∞[ ⊂ E × C̃1 = E × (c + Rn1 × [β − 2ε1,∞[× [β − 2ε1,∞[× . . . ).

Indeed, for every y ∈ L−1
0 [β − ε1,∞[, there exists ny such that

y ∈ Oy = graphΦ ∩ E × (c + Rny × ]β − 2ε1,∞[× ]β − 2ε1,∞[× . . . ).

So {Oy} is an open cover of L−1
0 [β − ε1,∞[ in the uniform topology. Since this

set is compact, L−1
0 [β − ε1,∞[ ⊂

⋃k
i=1Oyi

. Set n1 = max{ny1 , . . . , nyk
}.
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Let us denote C1 = C ∩ C̃1. If there is no critical value in C1, by the
Palais–Smale condition there exist σ > 0 and R > 0 such that

|dΦ|(y) > σ for every y ∈ graphΦ ∩ E × C1 + [−2R, 2R].

There exists ε ∈ ]0, ε1[ such that

L−1
0 [β − ε,∞[ ⊂ E × C̃1 ∩ {c + r ∈ RN | there exists

(u, c) ∈ A0 such that lim inf
n→∞

cn − cn ≥ β and |r| ≤ R}.

Denote S = graphΦ ∩ E × C1 + [−R,R], and let r > 0 and η = (η0, η1, . . . ) be
given by Theorem 7.1.

We proceed as in the previous proof except that we define η1 = (η1
0 , η1

1 , . . . ) :
A0 × [0, 1] → graphΦ by

η1
n(y, t) =

{
ηn(η0(y, 1), rtλ1(y)) if λ1(y) > 0,

η0
n(y, 1) otherwise,

for n = 0, . . . , n1 − 1, and for n ≥ n1

η1
n(y, t) =


max{ηn(η0(y, 1), rtλ1(y)), cn + β − 2ε1} if λ1(y) > 0,

θ1(y) max{η0
n(y, 1), cn + β − 2ε1}

+(1− θ1(y))η0
n(y, 1) otherwise,

where η0(y, 1) = y, and θ1 : A0 → [0, 1] is an Urysohn’s function such that
θ1(x) = 1 on L−1

0 [β − ε,∞[ and θ1(x) = 0 on L−1
0 ]−∞, β − 2ε]. This insures

that if γ − β ≥ σr

η1(y, 1) ∈ S for every y ∈ L−1
1 [β − ε,∞[ ,

where L1 : A0 → [−∞, γ] is defined by L1 = L ◦ η1( · , 1). We have

L1(y) = L0(y)− θ1(y) min{σrλ1(y), L0(y)− (β − 2ε)}.

So,
L1(y) ≤ γ − σr or L1(y) < β.

Therefore, η1 ∈ N (A0, A1), η1(A0, ]0, 1]) ∩ Q1 = ∅, and η1(A0, 1) ∩ Q0 6= ∅. As
before, if β > γ−σr, we get a contradiction. Otherwise we repeat this argument
a finite number of times until we get a contradiction.

Therefore, Φ has a critical point at level c1 ∈ C1.
Now, take ε2 ∈ ]0, ε1[. One can find

C̃2 = c + Rn1 × ([β − 2ε1,∞[)n2 × [β − 2ε2,∞[× [β − 2ε2,∞[× . . . ,

such that
L−1

0 [β − ε2,∞[ ⊂ E × C̃2.
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The same argument as before yields to the existence of u2 a critical point of Φ
at level c2 ∈ C2 = C ∩ C̃2. We continue this process with {εk} a decreasing
sequence converging to 0 in order to get a sequence of sets

C ⊃ C1 ⊃ C2 ⊃ . . .

and a sequence {uk} such that uk is a critical point of Φ at level ck ∈ Ck. From
the Palais–Smale condition, we deduce the existence of u a critical point of Φ at
some level c with

c ∈
⋂
n∈N

Cn,

and hence, lim infn→∞(cn − cn) ≥ β. �

The proof of Theorem 6.4 is similar to the proof of the Main Theorem 6.1.

9. Applications

In this section, we present simple applications of our results to nonlinear
partial differential equations on RN .

Let us consider the problem

(9.1) −∆u(x) + a(x)u(x) = g(x, u(x)), a.e. x ∈ RN .

We look for u ∈ H1
loc(RN ) such that∫

RN

∇u∇w + a(x)uw − g(x, u)w dx = 0 for every w ∈ C∞
c (RN ).

We assume

(H1) a ∈ C(RN , ]0,∞[),
(H2) g : RN+1 → R is such that x 7→ g(x, u) is measurable for every u ∈ R,

u 7→ g(x, u) is continuous for almost every x ∈ RN , and for every ε > 0,
there exists aε ∈ L

2N/(N+2)
loc (RN ), such that

|g(x, u)| ≤ aε(x) + ε|u|N−2/(N+2),

(H3) (1) there exist θ < 2, a3 ∈ L∞loc(RN ), a4 ∈ L1
loc(RN ) such that

G(x, u) ≤ a3(x)|u|θ + a4(x) for every u ∈ R and a.e. x ∈ RN ,

or
(2) there exist β > 2 > θ ≥ 0, R ∈ L

2N/(N−2)
loc (RN ), a3 ∈ L∞loc(RN ), and

a4 ∈ L1
loc(RN ) such that

βG(x, u)− g(x, u)u ≤ a3(x)|u|θ + a4(x) for every |u| ≥ R(x) and a.e. x ∈ RN ,
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where

G(x, u) =
∫ u

0

g(x, s) ds.

Let p = 2N/(N − 2). We define Φ : Lp
loc(RN ) → RN ∪ {∞} by

Φ(u) =

{
{c ∈ RN | cn ≥ φn(u) for all n ∈ N} if u ∈ H1

loc(RN ),

∞ otherwise,

where

φn(u) =
∫

Bn

|∇u|2

2
+

a(x)u2

2
−G(x, u) dx,

and Bn = {x ∈ RN | ‖x‖ ≤ n}. It is clear that Φ has closed graph.
The following result gives some information on the slope of Φ.

Proposition 9.1. Assume that (H1) and (H2) hold. Let (u, c) ∈ graphΦ
be such that |dΦ|(u, c) < ∞, then there exists α ∈ Lq(RN ) (with 1/p + 1/q = 1)
such that for every n ∈ N,∫

Bn

αw dx =
∫

Bn

∇u∇w + a(x)uw − g(x, u)w dx for every w ∈ H1(Bn).

Moreover, ‖α‖Lq(RN ) ≤ |dΦ|(u, c).

Proof. If, for every n ∈ N,

(9.2) sup
w∈C∞(Bn)

‖w‖Lp(Bn)≤1

{ ∫
Bn

∇u∇w + a(x)uw − g(x, u)w dx

}
≤ |dΦ|(u, c),

then, for every n ∈ N, the functional defined on C∞(Bn) by

w 7→
∫

Bn

∇u∇w + a(x)uw − g(x, u)w dx,

admits a continuous extension fn on Lp(Bn). By Riesz’s Theorem, there exists
αn ∈ Lq(Bn) such that fn(w) =

∫
Bn

αnw dx for every w ∈ Lp(Bn). In particular,∫
Bn

αnw =
∫

Bn

∇u∇w + a(x)uw − g(x, u)w dx for every w ∈ C∞(Bn).

Observe that
∫

Bn
(αm − αn)w dx = 0 for every w ∈ C∞

c (Bn) and every m ≥ n;
so, αm = αn a.e. on Bn. Hence, there exists α ∈ Lq

loc(RN ) satisfying for every
n ∈ N∫

Bn

αw dx =
∫

Bn

∇u∇w + a(x)uw − g(x, u)w dx for every w ∈ H1(Bn).

Moreover, ‖α‖Lq(Bn) ≤ |dΦ|(u, c) for every n ∈ N, so,

α ∈ Lq(RN ) and ‖α‖Lq(RN ) ≤ |dΦ|(u, c).



Generalized Critical Point Theory on Gauge Spaces 83

Now, suppose that (9.2) is false. Let n0 be the infimum of n ∈ N such that

|dΦ|(u, c) < sup
w∈C∞(Bn)

‖w‖Lp(Bn)≤1

{ ∫
Bn

∇u∇w + a(x)uw − g(x, u)w dx

}
.

Fix ρ ∈ R such that

|dΦ|(u, c) < ρ ≤ sup
w∈C∞(Bn0 )

‖w‖Lp(Bn0 )≤1

{ ∫
Bn0

∇u∇w + a(x)uw − g(x, u)w dx

}
,

and choose ε > 0 such that

(9.3) |dΦ|(u, c) < ρ− 6ε.

There exists w0 ∈ C∞
c (Bn0) such that ‖w0‖Lp(Bn0 ) ≤ 1, and

(9.4) ρ− ε

2
<

∫
Bn0

∇u∇w0 + a(x)uw0 − g(x, u)w0 dx.

Let us recall that

(9.5) −|dΦ|(u, c) ≤
∫

Bn

∇u∇w0 + a(x)uw0 − g(x, u)w0 dx for all n < n0.

We can find δ1 > 0 such that for every (v, b) ∈ Bn0((u, c), δ1), we have∫
Bn0

∇v∇w0 + a(x)vw0 − g(x, v)w0 dx > ρ− ε,(9.6) ∫
Bn

∇v∇w0 + a(x)vw0 − g(x, v)w0 dx > −|dΦ|(u, c)− ε(9.7)

for all n < n0. If (9.6) is false, there exists a sequence {(vk, bk)} such that
Dn0((vk, bk), (u, c)) < 1/k and

(9.8)
∫

Bn0

∇vk∇w0 + a(x)vkw0 − g(x, vk)w0 dx ≤ ρ− ε.

Since

φn0(vk) =
∫

Bn0

|∇vk|2

2
+

a(x)v2
k

2
−G(x, vk) dx ≤ bn0,k,

bk,n0 → cn0 , and vk → u in Lp(Bn0) as k →∞, we deduce that {vk} is bounded
in H1(Bn0), and hence has a subsequence converging weakly to u. This with (9.4)
and (9.8) lead to a contradiction. The inequality (9.7) can be proved by a
similar argument. On the other hand, there exists δ2 > 0 such that for every
(v, b) ∈ Bn0((u, c), δ2), 0 ≤ t ≤ δ2, and every n ≤ n0,

(9.9)
∫

Bn

[∫ v

v−tw0

g(x, s) ds

]
− tg(x, v)w0 dx ≤ tε.
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Indeed, otherwise, we could find n1 ≤ n0, and sequences {(vk, bk)}, {tk} such
that (vk, bk) ∈ Bn0((u, c), 1/k), tk ∈ ]0, 1/k[, and

(9.10)
∫

Bn1

[
1
tk

∫ vk

vk−tkw0

g(x, s) ds

]
− g(x, vk)w0 dx > ε.

Since vk → u in Lp(Bn0), without lost of generality, vk(x) → u(x) a.e. on Bn0 .
It follows from the mean value Theorem that

1
tk

∫ vk(x)

vk(x)−tkw0(x)

g(x, s) ds− g(x, vk(x))w0(x) → 0 a.e. x ∈ Bn0 .

The Lebesgue dominated convergence Theorem leads to a contradiction.
Finally, we set δ = min{δ1, δ2, 2ε/ζ} with ζ =

∫
Bn0

(|∇w0|2 +a(x)w2
0) dx, and

we define
H : Bn0((u, c), δ)× [0, δ] → graphΦ

by
H((v, b), t) = (v − tw0, b− t(M − 3ε)),

where M ∈ RN is given by

Mn =

{
−|dΦ|(u, c) if n < n0,

ρ otherwise.

Using (9.6), (9.7) and (9.9), we obtain

φn(v − tw0) = φn(v) +
t2

2

∫
Bn

|∇w0|2 + a(x)w2
0 dx

− t

[ ∫
Bn

∇v∇w0 + a(x)vw0 − g(x, v)w0 dx

]
+

∫
Bn

[ ∫ v

v−tw0

g(x, s) ds

]
− tg(x, v)w0 dx

≤ φn(v)− t

[ ∫
Bn

∇v∇w0 + a(x)vw0 − g(x, v)w0 dx

]
+ tε + tε

≤ bn − t(Mn − 3ε).

So H is well defined. Obviously, H is continuous when graphΦ is endowed
with Tu.

Observe that ‖v− tw0− v‖Lp(Bn) ≤ t and |Mn−3ε| ≤ ρ−3ε for every n ∈ N
by (9.3). Hence, |dΦ|(u, c) ≥ ρ− 3ε, a contradiction. �

Now, we establish the Palais–Smale condition.

Proposition 9.2. Assume that (H1)–(H3) hold. Then for every bounded
subset C ⊂ RN, Φ satisfies (PS)C .

Proof. Let {(uk, ck)} be a sequence such that |dΦ|(uk, ck) → 0 and

(uk, ck) ∈ graphΦ ∩ Lp
loc(R

N )× C + [−rk, rk] with rk → 0.
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Since C is bounded, we can find M ∈ RN such that ck ∈ [−M,M ] for every
k ∈ N.

From the previous proposition, for every k ∈ N, there exists αk ∈ Lq(RN )
such that

‖αk‖Lq(RN ) ≤ |dΦ|(uk, ck),

and ∫
Bn

αkw dx =
∫

Bn

∇uk∇w + a(x)ukw − g(x, uk)w dx

for all w ∈ H1(Bn) and all n ∈ N. If (H3)(1) is satisfied, fix γ = 0 and R ≡ 0;
and fix γ = 1/β if (H3)(2) holds. We deduce that, for every n ∈ N, there exist
γ1, γ2 ≥ 0 such that for every k ∈ N,

Mn ≥ ck,n ≥ φn(uk)− γ

∫
Bn

αkuk dx + γ

∫
Bn

αkuk dx

≥
(

1
2
− γ

) ∫
Bn

|∇uk|2 + a(x)u2
k dx− γ‖αk‖Lq(Bn)‖uk‖Lp(Bn)

+
∫

Bn

γg(x, uk)uk −G(x, uk) dx

≥
(

1
2
− γ

) ∫
Bn

|∇uk|2 + a(x)u2
k dx− γ|dΦ|(uk, ck)‖uk‖Lp(Bn)

+
[ ∫

Bn∩{x |uk(x)≤R(x)}
+

∫
Bn∩{x |uk(x)>R(x)}

]
γg(x, uk)uk −G(x, uk) dx

≥
(

1
2
− γ

) ∫
Bn

|∇uk|2 + a(x)u2
k dx− γ1‖uk‖

eθ
Lp(Bn) − γ2,

with θ̃ = max{1, θ}. Hence, for every n ∈ N, {uk} is bounded in H1(Bn).
So, without lost of generality, we can assume that {uk} is pointwise convergent
almost everywhere to some u ∈ H1

loc(RN ).
For ε > 0, define gε : RN × R → R by

gε(x, s) =


g(x, s) if |g(x, s)| ≤ aε(x),

aε(x) if g(x, s) > aε(x),

−aε(x) if g(x, s) < −aε(x),

where aε is given in (H2). Observe that

|g(x, u(x))− g(x, uk(x))| ≤ |g(x, u(x))− gε(x, u(x))|
+ |gε(x, u(x))− gε(x, uk(x))|+ |gε(x, uk(x))− g(x, uk(x))|.

Since
|gε(x, u(x))− gε(x, uk(x))| ≤ 2aε(x),

we deduce that for every n ∈ N,

‖gε( · , u)− gε( · , uk)‖L2N/(N+2)(Bn) → 0
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from Lebesgue’s Theorem. On the other hand, for every n ∈ N,

‖g( · , u)− gε( · , u)‖L2N/(N+2)(Bn) ≤ ε‖u‖p−1
Lp(Bn),

‖g( · , uk)− gε( · , uk)‖L2N/(N+2)(Bn) ≤ ε‖uk‖p−1
Lp(Bn).

Therefore, it follows that for every n ∈ N,

‖g( · , u)− g( · , uk)‖L2N/(N+2)(Bn) → 0 as k → 0.

Now, using standard arguments, we deduce the existence of a subsequence of
{uk} converging in H1(Bn) and hence, in Lp(Bn). So, there exists a convergent
subsequence {ukl

} in Lp
loc(RN ). Finally, [−M,M ] is compact in RN. Therefore,

{(ukl
, ckl

)} has a convergent subsequence in graphΦ. �

We start with the following example. Consider the problem

(9.11) −∆u + a(x)u = a(x)u1/3 + g(x, u), a.e. x ∈ RN .

Theorem 9.3. Assume (H1), (H2), and there exists k ∈ L1
loc(RN ) such that

k −G( · , 1) ∈ L1(RN ) and

G(x, u) ≤ k(x) for all u ∈ R and x ∈ RN .

Then the problem (9.11) has a solution. Moreover, if either g(x, 0) 6≡ 0 or
‖k − G( · , 1)‖L1(RN ) < ‖(4k + a)/8‖L1(Bn) for some n, then the solution is non
trivial.

Proof. Fix cn = −‖k + a/4‖L1(Bn). For every u ∈ H1
loc(RN ),

φn(u) =
∫

Bn

|∇u|2

2
+ a(x)

(
u2

2
− 3u4/3

4

)
−G(x, u) dx ≥ cn.

On the other hand, take u0 ≡ 1. We have

φn(u0) = cn +
∫

Bn

k(x)−G(x, 1) dx ≤ cn + ‖k −G( · , 1)‖L1(RN ) = cn + r.

Corollary 6.5 and Proposition 9.2 imply that Φ has a critical point at level c

with lim infn→∞ cn− cn ≤ 2r. In particular, if 2r < ‖k + a/4‖L1(Bn) for some n,

2r < lim inf
n→∞

φn(0)−cn ≤ lim inf
n→∞

bn−cn for all b ∈ RN such that (0, b) ∈ graphΦ.

So, the critical point is non trivial. �

In the next result, we establish the existence of a solution to problem (9.1).
From (H1), we deduce that for every bounded domain Ω ∈ RN , H1(Ω) can

be endowed with the norm

‖u‖H1(Ω) =
∫

Ω

|∇u|2

2
+

a(x)u2

2
dx,
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which is equivalent to the usual one. Let p = 2∗. For every n ∈ N, let an > 0 be
the constant obtained by the continuous imbedding H1(Bn) → Lp(Bn); that is

an‖u‖2Lp(Bn) ≤ ‖u‖2H1(Bn).

Theorem 9.4. Assume (H1)–(H3) and

(H4) there exist l ∈ L1(RN ), and a sequence of positive numbers {kn} such
that

inf
n∈N

an

kn
> 0 and G(x, u) ≤ l(x) + kn|u|p for all u ∈ R and a.e. x ∈ Bn.

If ‖l‖L1(RN ) is sufficiently small, the problem (9.1) has a solution.

Proof. Denote

α = inf
n∈N

4ap
n

ppk2
n

> 0.

If l is such that ‖l‖L1(RN ) < (p− 2)α1/(p−2), fix ε > 0 such that

ξ =
(p− 2)α1/(p−2)

(1 + ε)2
> ‖l‖L1(RN ).

For n ∈ N, take

rn =
(

2an

pkn

)1/(p−2)

,

and set

δ =
(

ε

1 + ε

)
inf
n∈N

rn.

Denote

Q0 = graphΦ ∩ ({u ∈ Lp
loc(R

N ) | ‖u‖Lp(Bn) ≤ rn for all n ∈ N} × RN),

Q1 = Q0 ∩ ({u ∈ Lp
loc(R

N ) | inf
n∈N

(rn − ‖u‖Lp(Bn)) = 0} × RN).

For (u, c) ∈ Q1, there exists n ∈ N such that ‖u‖Lp(Bn) ≥ rn − δ. Thus,

cn ≥ φn(u) =
∫

Bn

|∇u|2

2
+

a(x)u2

2
−G(x, u) dx

≥ an‖u‖2Lp(Bn) − kn‖u‖p
Lp(Bn) − ‖l‖L1(Bn) ≥ ξ − ‖l‖L1(Bn),

and, for m ≥ n, cm ≥ φm(u) ≥ ξ−‖l‖L1(Bm). So, lim infm→∞ cm ≥ ξ−‖l‖L1(RN ).

Similarly, for every (u, c) ∈ Q0, lim infm→∞ cm ≥ −‖l‖L1(RN ).

It is easy to see that ({(0, (0, 0, . . . ))}, ∅) links (Q0, Q1). From Theorem 6.1
and Proposition 9.2, we deduce that φ has a critical point, and hence the prob-
lem (9.1) has a solution by Proposition 9.1. �
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