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DEPENDENCE ON PARAMETERS
FOR THE DIRICHLET PROBLEM

WITH SUPERLINEAR NONLINEARITIES

Andrzej Nowakowski — Andrzej Rogowski

Abstract. The nonlinear second order differential equation

d

dt
h(t, x′(t)) + g(t, x(t)) = 0, t ∈ [0, T ] a.e. x′(0) = x′(T ) = 0

with superlinear function g is investigated. Based on dual variational

method the existence of solution is proved. Dependence on parameters
and approximation method are also presented.

1. Introduction

We investigate the nonlinear Hamilton equations:

(1.1)
d

dt
Lx′(t, x′(t)) + Vx(t, x(t)) = 0, a.e. in [0, T ]

where

(H) T > 0 is arbitrary, L, V : R×Rn → R are convex, Gateaux differentiable
in the second variable and measurable in t functions.

We are looking for solutions of (1.1) being a pair (x, p) of absolutely continuous
functions x, p : [0, T ] → Rn, with Dirichlet boundary conditions for the second
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146 Dependence of Parameters for the Dirichlet Problem

function i.e. p(0) = 0 = p(T ), such that

d

dt
p(t) + Vx(t, x(t)) = 0,

p(t) = Lx′(t, x′(t)).

Of course, if L(t, x′) = |x′|2/2, then for our solution of (1.1) p = x′ and thus
x belongs to C1,+([0, T ],Rn) of continuously differentiable functions x whose
derivatives x′ are absolutely continuous. In the sequel we assume that Vx is
superlinear. It is clear that (1.1) is the Euler–Lagrange equation to the functional

(1.2) J(x) =
∫ T
0
(−V (t, x(t)) + L(t, x′(t))) dt

considered on the space A of absolutely continuous functions x : R→ Rn.
Equations (1.1) with either Dirichlet or periodic boundary conditions were

studied in eighties by many authors as well in sublinear case as in superlinear one
(see e.g. [6]). We propose to study (1.1) with Dirichlet boundary conditions for
the second function of the solution i.e. we can not look for critical points studying
functional (1.2) directly. We believe that our paper may contribute some new
look at this problem. This is because we propose to study (1.1) by duality
methods in a way, to some extend, analogous to the methods developed for (1.1)
in sublinear cases [6], [7]. Some cases of (1.1) for superlinear Vx were studied by
[5], [6], [2], [9], [1]. It is interesting that the method developed in [5] is based
on the dual variational method for the problem, according to the idea developed
in [6]. Since functional (1.2) is, in general, unbounded in AP (especially in
superlinear case), therefore it is obvious that we must look for critical points of
J of ”minmax” type. The main difficulties which appear here are: what kind of
sets we should choose over which we wish to calculate ”minmax” of J and then
to link this value with critical points of J . Of course, we have the mountain pass
theorems, the saddle points theorems, the Morse theory, . . . (see e.g. [8], [6]) but
all these do not exhaust all critical points of J .
Our aim is to find a nonlinear subspace X of A defined by the type of

nonlinearity of V (and in fact also L). To be more precise let us set the basic
hypothesis we need:

(H1) there exist 0 < α1, α2, 2α2 < 3α1 and d1, d2 ∈ R such that, for x′ ∈ L2,

(1.3) d1 +
α1
2
‖x′‖2L2 ≤

∫ T
0
L(t, x′(t))dt ≤ α2

2
‖x′‖2L2 + d2,

L(t, · ) is strictly convex, Vx(t, · ) is continuous, t ∈ [0, T ], there exist
0 < β1 < β2, q1 > 1, q > 2, k1, k2 ∈ R such that for x ∈ Lq

(1.4) k1 +
β1
q1
‖x‖q1Lq1 ≤

∫ T
0
V (t, x(t))dt ≤ β2

q
‖x‖qLq + k2.
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Having the type of nonlinearities of L and V fixed we are able to define
nonlinear subspaces X, X̃ and X as follows. First we put for a given, arbitrary
k3 ∈ R

X =
{
v ∈ A :

∫ T
0
V (t, v(t)) dt ≤ 1

2

∫ T
0
L(t, v′(t)) dt+ k3

}
.

We reduce the space X to the set

X̃ =
{
x( · ) + cx ∈ X : x ∈ A0, cx ∈ Rn is such that

∫ T
0
Vx(t, x(t) + cx) dt = 0,

and p(t) = Lx′(t, x′(t)), t ∈ [0, T ] belongs to A0,0
}
,

where A0 is the space of absolutely continuous functions x : [0, T ] → Rn with
x′ ∈ L2, x(0) = 0, A0,0 is the space of absolutely continuous functions x :
[0, T ]→ Rn with x′ ∈ L2, x(0) = 0 = x(T ). Next we reduce the set X̃ to the set
X ⊂ X̃ with the property: for each v ∈ X, there exists (possible another) ṽ ∈ X
such that Vx(t, v(t)) = −dLx′(t, ṽ′(t))/dt, for a.e. t ∈ [0, T ].
It is clear that, in general, the set X is much smaller than X̃ and that it

depends strongly on the type of nonlinearities V and L. We easily see that X
is not in general a closed set in A. As the dual set to X we shall consider the
following set

Xd = {p ∈ Aq
′

0,0 : there exist v ∈ X such that p(t) = Lx′(t, v′(t)), t ∈ [0, T ] a.e.}

(Aq
′

0,0 – the space of absolutely continuous functions with p
′ ∈ Lq′ and p(0) =

0 = p(T )).
The constant cx from the specification of X̃ posesses very interesting prop-

erty:

Lemma 1.1. For any x ∈ X̃ the constant cx from the specification of X̃ is a
minimizer of the functional

(1.5) c→
∫ T
0
V (t, x(t) + c) dt.

Proof. Since the functional (1.5) is convex on Rn, therefore it attains min-
imum in each point cx satisfying equality

∫ T
0 Vx(t, x(t) + cx) dt = 0. �

Taking into account the structure of the space X and Xd we shall study the
functional

JD(p) = −
∫ T
0
L∗(t, p(t)) dt+

∫ T
0
V ∗(t,−p′(t)) dt

on the space Xd.
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We shall look for a “min” of JD over the set Xd i.e.

min
p∈Xd
JD(p).

To show that element p ∈ Xd realizing “min” is a critical point of J we develop
a duality theory between J and dual to it JD, described in the next section. Just
because of the duality theory we are able to avoid in our proof of an existence
of critical points the deformation lemmas, the Ekeland variational principle or
PS type conditions. One more advantage of our duality results is obtaining for
the first time in the superlinear case a measure of a duality gap between primal
and dual functional for approximate solutions to (1.1) (for the sublinear case see
[7]).

The main result of our paper is the following:

Main Theorem. Under hypothesis (H) and (H1) there exists a pair (x, p),
x ∈ X, p ∈ Xd, being a solution to (1.1) and such that

J(x) = min
x∈X
J(x) = min

p∈Xd
JD(p) = JD(p).

We see that our hypotheses on L and V concern only convexity of L(t, · ) or
V (t, · ) and that the latter function is of the superquadratic type. We do not
assume that V (t, x) ≥ 0. However we require that the above set X is nonempty,
which we must check in each concrete type of equation. Some routine how to do
that we show at the end of the paper for the equation

x′′ + Vx(t, x) = 0.

In Section 5 we consider the question of the continuous dependence on pa-
rameters of the set of critical points of the functional J and the set of solutions
to equation

d

dt
Lx′(t, x′(t)) + Vx(t, x(t), u(t)) = 0, a.e. in R,

where u ∈ U = {w ∈ L∞(0, T ) : u(t) ∈ U for a.e. t ∈ [0, T ]}. Here U is a given
subset of Rm.

2. Duality results

Because of the type of boundary conditions we deal with, we start from the
dual to J functional JD:

JD(p) = −
∫ T
0
L∗(t, p(t)) dt+

∫ T
0
V ∗(t,−p′(t)) dt.
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To obtain a duality principle we need a kind of perturbation of JD. Thus define
for each p ∈ Xd the perturbation of JD as

(2.1) JDp(y) =
∫ T
0
(L∗(t, p(t) + y(t))− V ∗(t,−p′(t))) dt

for y ∈ L2. Of course, JDp(0) = −JD(p). For x+ cx ∈ X and p ∈ Xd, we define
a type of conjugate of JD by

J#p (x+ cx) = sup
y∈L2

{∫ T
0
〈y(t), x′(t)〉 dt−

∫ T
0
L∗(t, p(t) + y(t)) dt

}
+
∫ T
0
V ∗(t,−p′(t)) dt

By a direct calculation we obtain

J#p (x+ cx) =
∫ T
0
〈x(t) + cx, p′(t)〉 dt(2.2)

+
∫ T
0
L(t, x′(t)) dt+

∫ T
0
V ∗(t,−p′(t)) dt

= −
∫ T
0
〈x(t) + cx,−p′(t)〉 dt

+
∫ T
0
L(t, x′(t))dt+

∫ T
0
V ∗(t,−p′(t)) dt.

Now we take “min” from J#p (x + cx) with respect to p ∈ Xd and calculate it.
Because Xd is not a linear space we need some trick to avoid calculation of the
conjugate with respect to a nonlinear space. To this effect we use the special
structure of the set X. First we observe that for each x + cx ∈ X there exists
px ∈ Xd such that p′x( · ) = −Vx( · , x( · ) + cx) and therefore∫ T

0
〈−p′x(t), x(t) + cx〉 dt−

∫ T
0
V ∗(t,−p′x(t)) dt =

∫ T
0
V (t, x(t) + cx) dt.

Next let us note that∫ T
0
〈−p′x(t), x(t) + cx〉 dt−

∫ T
0
V ∗(t,−p′x(t)) dt

≤ sup
p∈Xd

{∫ T
0
〈−p′(t), x(t) + cx〉 dt−

∫ T
0
V ∗(t,−p′(t)) dt

}
≤ sup
p′∈L2

{∫ T
0
〈−p′(t), x(t) + cx > dt−

∫ T
0
V ∗(t,−p′(t)) dt

}
=
∫ T
0
V (t, x(t) + cx) dt
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and actually all inequalities above are equalities. Therefore we can calculate for
x+ cx ∈ X

(2.3) sup
p∈Xd
−J#p (x+ cx) = sup

p∈Xd

{∫ T
0
〈x(t) + cx,−p′(t)〉 dt

−
∫ T
0
L(t, x′(t)) dt−

∫ T
0
V ∗(t,−p′(t)) dt

}
= −
∫ T
0
L(t, x′(t))dt+

∫ T
0
V (t, x(t) + cx) dt.

From (2.3) we infer, for p ∈ Xd, that

(2.4) sup
p∈Xd
−J#p (x+ cx) = −J(x+ cx).

We can also define a type of the second conjugate of JD: for y ∈ L2, x ∈ X,
p ∈ Xd, put

J##p (y) = sup
x∈X

{∫ T
0
〈y(t), x′(t)〉 dt+

∫ T
0
〈x′(t), p(t)〉 dt

−
∫ T
0
L(t, x′(t)) dt−

∫ T
0
V ∗(t,−p′(t)) dt

}
.

We assert that J##p (0, 0) = −JD(p). To prove that, we use the special structure
of Xd. First we observe that for each p ∈ Xd there exists xp ∈ X such that

p(t) = Lx′(t, x′p(t))

and, by classical convex analysis argument,

x′p(t) = L
∗
p(t, p(t)),

where L∗ is a Fenchel conjugate to L. Therefore∫ T
0
〈x′p(t), p(t)〉 dt−

∫ T
0
L(t, x′p(t)) dt =

∫ T
0
L∗(t, p(t)) dt.

On the other hand let us note that∫ T
0
〈x′p(t), p(t)〉 dt−

∫ T
0
L(t, x′p(t)) dt

≤ sup
x∈X

{∫ T
0
〈x′(t), p(t)〉 dt−

∫ T
0
L(t, x′(t)) dt

}
≤ sup
x′∈L2

{∫ T
0
〈x′(t), p(t)〉 dt−

∫ T
0
L(t, x′(t)) dt

}
=
∫ T
0
L∗(t, p(t)) dt.

Hence we see that, for p ∈ Xd

(2.5) J##p (0) =
∫ T
0
(L∗(t, p(t))− V ∗(t,−p′(t))) dt = −JD(p).
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We easily compute (see (2.4))

sup
p∈Xd
J##p (0) = sup

p∈Xd
sup
x∈X
−J#p (x+ cx)(2.6)

= sup
x∈X
sup
p∈Xd
−J#p (x+ cx) = sup

x∈X
−J(x).

Hence, from above and (2.6), we obtain the following duality principle

Theorem 2.1. For functionals J and JD we have the duality relation

(2.7) inf
x∈X
J(x) = inf

p∈Xd
JD(p).

Denote by ∂JDp(y) the subdifferential of JDp. In particular,

∂JDp(0) =
{
x′ ∈ L2 :

∫ T
0
L∗(t, p(t)) dt+

∫ T
0
L(t, x′(t)) dt =

∫ T
0
〈p(t), x′(t)〉 dt

}
The next result formulates a variational principle for “minmax” arguments.

Theorem 2.2. Let p ∈ Xd be such that

∞ > JD(p) = inf
p∈Xd
JD(p) > −∞

and let the set ∂JDp(0) be nonempty. Then there exist x′ ∈ ∂JDp(0) with x(t) =
cx +
∫ t′
0 x
′(s) ds belonging to X, such that x satisfies

J(x) = inf
x∈X
J(x).

Furthermore

JDp(0) + J
#
p (x) = 0,(2.8)

J(x)− J#p (x) = 0.(2.9)

Proof. By Theorem 2.1 to prove the first assertion it suffices to show that
J(x) ≤ JD(p). Let us observe that x′ ∈ ∂JDp(0) means, in fact, that x′(t) =
L∗p(t, p(t)), for a.e. t ∈ [0, T ] and therefore we have

−JD(p) =
∫ T
0
(L∗(t, p(t))− V ∗(t,−p′(t))) dt

=
∫ T
0
(−V ∗(t,−p′(t))− L(t, x′(t))) dt+

∫ T
0
〈x(t),−p′(t)〉 dt

≤
∫ T
0
(V (t, x(t))− L(t, x′(t))) dt = −J(x).

Hence J(x) ≤ JD(p) and so J(x) = JD(p) = infx∈X J(x). The first assertion
will be proved if we show that x ∈ X.
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The second assertion is a simple consequence of two facts: JDp(0) = −JD(p)
so JDp(0)+JD(p) = 0 and x′ ∈ ∂JDp(0) i.e. JDp(0)+J#p (x) = 0. Then equality
(2.9) implies that∫ T

0
(V ∗(t,−p′(t))) + V (t, x(t))) dt =

∫ T
0
〈x(t),−p′(t)〉 dt

and so p′(t) = −Vx(t, x(t)). By the definition of p and Lemma 1.1 we also infer
that x ∈ X. �

From equations (2.8), (2.9) we are able to derive a dual to (1.1) Euler–
Lagrange equations.

Corollary 2.1. Let p ∈ Xd be such that

∞ > JD(p) = inf
p∈Xd
JD(p) > −∞.

Then there exists x ∈ X such that the pair (x, p) satisfies the relations

−p′(t) = Vx(t, x(t)),(2.10)

p(t) = Lx′(t, x′(t)),(2.11)

JD(p) = inf
p∈Xd
JD(p) = inf

x∈X
J(x) = J(x).(2.12)

Proof. By the assumptions on L we see that y →
∫ T
0 L

∗(t, y(t)) dt is finite
in L2, convex and lower semicontinuous. Therefore JDp(y) is continuous in L2.
Hence ∂Jx(0) is nonempty and so the existence of x′ in Theorem 2.2 is now
obvious. Equations (2.8) and (2.9) imply∫ T

0
V (t, x(t)) dt+

∫ T
0
V ∗(t,−p′(t)) dt−

∫ T
0
〈x(t),−p′(t)〉 dt = 0,∫ T

0
L∗(t, p(t)) dt+

∫ T
0
L(t, x′(t)) dt−

∫ T
0
〈x′(t), p(t)〉 dt = 0,

and then (2.10), (2.11). Relations (2.12) are a direct consequence of Theorems 2.1
and 2.2. �

As a direct consequence of the above corollary and definition of Xd we have

Corollary 2.2. By the same assumptions as in Corollary 2.1 there exists a
pair (x, p) ∈ X ×Xd satisfying relations (2.12), and the pair (x, p) is a solution
to (1.1). Conversely, each pair (x, p) satisfying relations (2.12) satisfies also
equations (2.10), (2.11).

3. Variational principles and a duality gap for minimizing sequences

In this section we show that a statement similar to Theorem 2.2 is true for
a minimizing sequence of JD.
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Theorem 3.1. Let {pj}, pj ∈ Xd, j = 1, 2, . . . , be a minimizing sequence
for JD and let

∞ > inf
j
JD(pj) = a > −∞.

Then there exist x′j ∈ ∂JDpj (0) with xj ∈ X such that {xj} is a minimizing
sequence for J i.e.

inf
x∈X
J(x) = inf

xj∈X
J(xj) = inf

pj∈Xd
JD(pj) = inf

p∈Xd
JD(p).

Furthermore

JDpj (0) + J
#
pj (xj) = 0, J(xj)− J#pj (xj) ≤ ε, 0 ≤ JD(pj)− J(xj) ≤ ε

for a given ε > 0 and sufficiently large j.

Proof. We have that ∞ > infpj∈Xd JD(pj) = a > −∞, and therefore for
a given ε > 0 there exists j0 such that JD(pj) − a < ε, for all j ≥ j0. Further,
the proof is similar to that of Theorem 2.2, so we only sketch it. First, as in the
proof of Corollary 2.1, we observe that ∂JDpj (0) is nonempty for j ≥ j0 and take
x′j ∈ ∂JDpj (0). Accordingly to the definition of X let us take as a primitive of
x′j such xj that xj(0) = cx. Therefore, we also have

−JD(pj) =
∫ T
0
(−V ∗(t,−p′j(t)) + L∗(t, pj(t)) dt

=
∫ T
0
(−V ∗(t,−p′j(t))− L(t, x′j(t))) dt+

∫ T
0
〈x′j(t), pj(t)〉 dt

≤
∫ T
0
(V (t, xj(t))− L(t, x′j(t))) dt = −J(x).

Hence, due to Theorem 2.1,

a+ ε ≥ J(xj) ≥ a for j ≥ j0.

The second assertion is a simple consequence of two facts: JDpj (0) = −JD(pj)
so JDpj (0) + JD(pj) = 0 and x

′
j ∈ ∂JDpj (0) i.e. JDpj (0) + J#pj (xj) = 0. �

A direct consequence of this theorem is the following corollary.

Corollary 3.1. Let {pj}, pj ∈ Xd, j = 1, 2, . . . , be a minimizing sequence
for JD and let

∞ > inf
j
JD(pj) = a > −∞.

If x′j(t) = L
∗
p(t, pj(t)) then xj(t) = cxj +

∫ t
0 x
′
j(s) ds belongs to X and {xj} is a

minimizing sequence for J i.e.

inf
x∈X
J(x) = inf

xj∈X
J(xj) = inf

pj∈Xd
JD(pj) = inf

p∈Xd
JD(p).
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Furthermore

(3.1) J(xj)− J#pj (xj) ≤ ε, 0 ≤ JD(pj)− J(xj) ≤ ε

for a given ε > 0 and sufficiently large j.

4. The existence of a minimum of J

The last problem which we have to solve is to prove the existence of x ∈ X
such that

JD(p) = min
p∈Xd
JD(p).

To obtain this it is enough to use hypothesis (H1), the results of the former
section and known compactness theorems.

Theorem 4.1. Under hypothesis (H1) there exists p ∈ Xd such that JD(p) =
minp∈Xd JD(p).

Proof. Let us observe (see Section 2) that each p ∈ Xd satisfies the in-
equality

(4.1)
∫ T
0
V ∗(t,−p′(t))dt ≥ 3

4α2
‖p‖2L2 − k3 − d2.

Really, each x ∈ X̃ satisfies the inequality∫ T
0
V (t, x(t)) dt ≤ 1

2

∫ T
0
L(t, x′(t)) dt+ k3.

Then it is enough to add to both sides of this inequality the scalar product∫ T
0 〈x(t), p

′(t)〉 dt, multiply the obtained inequality by “−” and then take superior
of both sides over X̃ and apply (1.3). Hence and by (H1), JD(p) is bounded below
on Xd. Really, by (1.3), (1.4) and (4.1) we obtain:

JD(p) ≥ −
∫ T
0
L∗(t, p(t)) dt+

3
4α2
‖p‖2L2 − k3 − d2(4.2)

≥ 3α1 − 2α2
4α2α1

‖p‖2L2 + d1 − k3 − d2 ≥ d1 − k3 − d2.

From (4.2) we infer the boundedness below of JD on Xd as well as that the
sets Sb = {p ∈ Xd, JD(p) ≤ b}, b ∈ R are nonempty for sufficiently large b and
bounded with respect to the norm ‖p‖L2 . Next, analogously as above we get that
Sb is bounded with respect to the norm ‖p′‖Lq′ (1/q+1/q′ = 1 ). The last means
that Sb, b ∈ R are relatively weakly compact in Aq

′

0,0. It is a well known fact that

the functional JD is weakly lower semicontinuous in A
q′

0,0. Therefore there exists

a sequence {pn}, pn ∈ Xd, such that pn ⇀ p weakly in Aq
′

0,0 with p ∈ A
q′

0,0 and
lim infn→∞ J(pn) ≥ J(p). Moreover, we know that {pn} is uniformly convergent
to p. In order to finish the proof we must only show that p ∈ Xd.



A. Nowakowski — A. Rogowski 155

To prove that we apply the duality results of Section 3. To this effect let us
recall from Corollary 3.1 that for

(4.3) x′n(t) = L
∗
p(t, pn(t))

xn(t) = cxn+
∫ t
0 x
′
n(s) ds belongs to X where cxn is such that

∫ T
0 Vx(t, xn(t)) dt =

0 (see Lemma 1.1). Then {xn} is a minimizing sequence for J . We easily
check that {cxn} is a bounded sequence and therefore we may assume (up to a
subsequence) that it is convergent. From (4.3) we infer that {x′n} is a bounded
sequence in L2 norm and that it is pointwise convergent to

x′(t) = L∗p(t, p(t)).

Therefore {xn} is uniformly convergent to x where x(t) = cx +
∫ t
0 x
′(s) ds and

cx is such that the equality:
∫ T
0 Vx(t, x(t)) dt = 0 holds.

By Corollary 3.1 (see (3.1)) we also have (taking into account (4.3)) that for
εn → 0 (n→∞)

0 ≤
∫ T
0
(V ∗(t,−p′n(t)) + V (t, xn(t))) dt−

∫ T
0
〈xn(t),−p′n(t)〉 dt ≤ εn

and so, taking a limit

0 =
∫ T
0
V ∗(t,−p′(t)) dt+ lim

n→∞

∫ T
0
V (t, xn(t)) dt−

∫ T
0
〈x(t),−p′(t)〉 dt

and next, in view of the property of Fenchel inequality,

0 =
∫ T
0
V ∗(t,−p′(t)) dt+

∫ T
0
V (t, x(t))) dt−

∫ T
0
〈x′(t),−p′(t)〉 dt.

We have also p(t) = Lx′(t, x′(t)). Thus p ∈ Xd and the proof is completed. �

A direct consequence of Theorem 4.1 and Corollary 2.1 is the following main
theorem.

Theorem 4.2. Under hypothesis (H) and (H1) there exists a pair (x, p) being
a solution of (1.1) and such that

J(x) = min
x∈X
J(x) = min

p∈Xd
JD(p = JD(p).

5. Dependence on parameters

In this section we consider the question of the continuous dependence on
parameters of the set of critical points of the functional J and the set of solutions
to equation

(5.1)
d

dt
Lx′(t, x′(t)) + Vx(t, x(t), u(t)) = 0, a.e. in R,
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where u ∈ U = {w ∈ L∞(0, T ) : w(t) ∈ U for a.e. t ∈ [0, T ]}. Here U is a
given subset of Rm. It is clear that (5.1) is the Euler–Lagrange equation to the
functional

(5.2) J(x, u) =
∫ T
0
(−V (t, x(t), u(t)) + L(t, x′(t))) dt

This problem plays an essential role in applications of differential equations.
In the best knowledge of the authors, the problem of the continuous dependence
on parameters of solutions of superlinear equation (5.1) has not been investigated
up to now. In the seventies, some papers were published which deal with Dirichlet
problem for scalar ordinary differential equations. All these works are based on
direct methods (cf. [3], [4], [10] and references therein). In the pioneering work
[11], sufficient conditions for the continuous dependence on parameters for vector
systems of ODE are given. This work is based on variational methods. We also
apply the variational approach.
From now, we assume that V has a special structure: V (t, x, u) =W (t, x) +

〈g(t, u), x〉, g : [0, T ]×Rm → R, and W and L satisfy conditions from Section 1,
in particular (1.4). The set X is now defined as follows:

X =
{
v ∈ A :

∫ T
0
W (t, v(t)) ≤ 1

2

∫ T
0
L(t, v′(t)) dt+ k3

}
,

Let us also introduce, for u ∈ U the sets X̃u

X̃u =
{
x( · ) + cx ∈ X : x ∈ A0, cx ∈ Rn is such that∫ T
0
Vx(t, x(t) + cx, u(t)) dt = 0,

and p(t) = Lx′(t, x′(t)), t ∈ [0, T ] belongs to A0,0
}
,

and sets Xu ⊂ X̃u with the property that for each v ∈ Xu, there exists (possible
another) ṽ ∈ Xu such that Vx(t, v(t), u(t)) = − ddtLx′(t, ṽ

′(t))′, for a.e. t ∈ [0, T ].
Moreover, as the dual set to Xu we shall consider the following set

Xdu = {p ∈ A0,0 : there exist v ∈ Xu such that
p(t) = Lx′(t, v′(t)), t ∈ [0, T ] a.e.}.

The above settings allow us to apply, for every u ∈ U , Theorem 4.1 and Corol-
lary 2.1. We can always assume that 0 ∈ U and g(t, 0) = 0.

Theorem 5.1. Let {un} be sequence of elements U such that {g( · , u( · ))}
is pointwise convergent in [0, T ] to g( · , 0) and

∫ T
0 |g(t, un(t))| dt ≤ M for some

M and all n ∈ N. If {xn, pn} are solutions (dependent on un) to problem (5.1)



A. Nowakowski — A. Rogowski 157

assume also, that J(xn, un) ≤ b for some b and all n ∈ N. Then there exist
x ∈ X0 and p ∈ Xd0 such that{

−p′(t) =Wx(t, x(t)),
p(t) = Lx′(t, x′(t)),

and there exists a subsequence of {xn, pn} (which we still denote by {xn, pn})
uniformly convergent in [0, T ] to {x, p}.

Proof. We easily check, since xn ∈ X, that

b ≥ J(xn, un) ≥
α1
4

∫ T
0
|x′n(t)|2 dt−

∫ T
0
|xn(t)||g(t, un(t))| dt−K

≥ α1
4
|x′n|2L2 −M |xn|L∞ −K ≥ α̃|x′n|2L2 − K̃

for some α̃ > 0, K, K̃ ∈ R, and therefore there exists a subsequence of {x′n}
(which we still denote by {x′n}) weakly convergent in L2 to some x′ ∈ L2.
Since xn(t) = cxn +

∫ t
0 x
′
n(s) ds then xn → x uniformly in [0, T ] and x(t) =

cx+
∫ t
0 x
′(s) ds belongs to A. From Theorem 4.1 and Corollary 2.1 we also know

that

(5.3)
p′n(t) = −Wx(t, xn(t)) + g(t, un(t)) and
pn(t) = Lx′(t, xn(t)) for t ∈ [0, T ] a.e. n ∈ N.

Hence pn(t) =
∫ t
0 p
′
n(s) ds belongs to X

d
un . From (5.3) {pn

′} is bounded in L2

and pointwise convergent a.e. to

(5.4) p′(t) = −Wx(t, x(t)).

Hence pn → p uniformly in [0, T ], where p(t) =
∫ t
0 p
′(s) ds. Since pn satisfies

(5.3) therefore

0 =
∫ T
0
L∗(t, pn(t)) dt+

∫ T
0
L(t, x′n(t))) dt−

∫ T
0
〈x′n(t), pn(t)〉 dt

and after taking a limit we get

0 =
∫ T
0
L∗(t, p(t)) dt+ lim

n→∞

∫ T
0
L(t, x′n(t)) dt−

∫ T
0
〈x′(t), p(t)〉 dt

and by Fenchel inequality and Fatou Lemma

0 =
∫ T
0
L∗(t, p(t)) dt+

∫ T
0
L(t, x′(t))) dt−

∫ T
0
〈x′(t), p(t)〉 dt.

This means that p(t) = Lx′(t, x(t)), which together with (5.4) ends the proof.�

An obvious consequence of the above theorem is the following
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Corollary 5.1. Under assumptions of Theorem 5.1 there exists x ∈ X0
and p ∈ Xd0 satisfying

d

dt
p(t) +Wx(t, x(t)) = 0, a.e. in R,

p(t) = Lx′(t, x′(t)), a.e. in R.

6. Example

Consider the problem

(6.1)
x′′(t) +Wx(t, x(t)) = 0, a.e. in [0, 1],

x′(0) = 0 = x′(1),

where W ( · , x) is a measurable function in [0, T ], W (t, · ), t ∈ [0, 1], is a con-
vex, continuously Frechet differentiable function satisfying the following growth
condition:

• there exist 0 < β1 < β2, q1 > 1, q > 2, k1 ≥ 0, k2 > 0 such that for
x ∈ Lq

k1 +
β1
q1
‖x‖q1 ≤W (t, x) ≤ β2

q
‖x‖q + k2.

In the notation of the paper we have L(t, x′) = |x′|2/2, and V (t, x) =W (t, x).
It is easily seen that assumptions (H) and (H1) are satisfied. Therefore what we
have to do is to construct a nonempty set X defined in Section 1. To this effect
let us take any k > 0 and let X denote the same as in Section 1 with the new L
and V . We assume the following hypothesis:

(H1)’ k3 > (β2/q)kq + k2,
k3 > k((qβ

1/(q−1)
2 /(q − 1))(k + k2 − k1) + 1)q−1 +

∫ 1
0 W (t, 0) dt,

(qβ1/(q−1)2 /(q − 1))(k + k2 − k1) + 1)q−1 ≤ πk/3,
(q1/q)1/q1(k/3)q/q1 + ((k2 − k1)q1)1/q1 ≤ k/3.

We shall show that the set X = {v ∈ X̃ : 0 < ‖v‖L∞ ≤ k}, where

X̃ =
{
x( · ) + cx ∈ X : x ∈ A0, cx ∈ Rn is such that∫ 1
0
Wx(t, x(t) + cx)dt = 0,

and p(t) = v′(t), t ∈ [0, 1] belongs to A0,0
}

is a set X which we are looking for. That means: we must prove that for each
function x ∈ X the primitive of the function

(6.2) t→
∫ t
0
Wx(τ, x(τ)) dτ = w′(t),
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belongs toX i.e. w(t) = cw+
∫ t
0 w
′(s) ds with cw such that

∫ 1
0 Wx(τ, w(τ))dτ = 0.

It is obvious that w′ ∈ A0,0. Thus what we have to show is that ‖w‖L∞ ≤ k
because then, by the second of assumptions (H1)’ we shall get the inequality∫ 1
0 W (t, w(t)) dt ≤ (1/2)

∫ 1
0 L(t, w

′(t)) dt + k3. If we take p(t) = w′(t) (w′(t)
defined by (6.2)) then, by known theorem (taking into account the first of as-
sumptions (H1)’),

‖p′‖L∞ ≤ (qβ1/(q−1)2 /(q − 1))(k + k2 − k1) + 1)q−1

and next applying the estimation for the function by its derivative (for functions
with zero at the ends) we have

‖w′‖L2 ≤
1
π
‖p′‖L∞ .

Next using the estimations on W (t, x) and the last two assumptions of (H1)’ we
obtain

‖w‖L∞ ≤ k.
Therefore w belongs to X. It is clear that the set X is nonempty. Thus all
assumptions of Theorem 4.2 are satisfied, so we come to the following theorem
with L = |x′|2/2.

Theorem 6.1. There exists a pair (x, p) being a solution of (6.1) and such
that

J(x) = min
x∈X
J(x) = min

p∈Xd
JD(p) = JD(p).

References

[1] A. Capietto, J. Mawhin and F. Zanolin, Boundary value problems for forced super-

linear second order ordinary differential equations, Nonlinear Partial Differential Equa-
tions and their Applications. College de France Seminar, XII, vol. 302, Pitman Res. Notes

Ser., 1994, pp. 55–64,.

[2] A. Castro, J. Cossio and J. M. Neuberger, A sign-changing solution for a super-

linear Dirichlet problem, Rocky Mountain J. Math. 27 (1997), 1041–1053.

[3] S. K. Ingram, Continuous dependence on parameters and boundary value problems,

Pacific J. Math. 41 (1972), 395–408.

[4] G. Klaasen, Dependence of solutions on boundary conditions for second order ordinary

differential equations, J. Differential Equations 7 (1970), 24–33.

[5] L. Lassoued, Periodic solutions of a second order superquadratic systems with a change

of sign in the potential, J. Differential Equations 93 (1991), 1–18.
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