
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 15, 2000, 101–113

SOLUTIONS OF IMPLICIT EVOLUTION INCLUSIONS
WITH PSEUDO-MONOTONE MAPPINGS

Wenming M. Bian

Dedicated to the memory of Juliusz P. Schauder

Abstract. Existence results are given for the implicit evolution inclu-

sions (Bx(t))′ + A(t, x(t)) 3 f(t) and (Bx(t))′ + A(t, x(t)) − G(t, x(t)) 3
f(t) with B a bounded linear operator, A(t, · ) a bounded, coercive and

pseudo-monotone set-valued mapping and G a set-valued mapping of non-

monotone type. Continuity of the solution set of first inclusion with respect
to f is also obtained which is used to solve the second inclusion.

1. Introduction

In this paper, we shall consider existence and continuity problems of solutions
for the implicit inclusion

(1.1)
d

dt
(Bx(t)) + A(t, x(t)) 3 f(t) a.e. on [0, T ],

Bx(0) = Bx0,

and the perturbation problem

(1.2)
d

dt
(Bx(t)) + A(t, x(t))−G(t, x(t)) 3 f(t) a.e. on [0, T ],

Bx(0) = Bx0,
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in an evolution triple (V,H, V ∗) with V,H real separable Hilbert spaces. Here
B is a linear bounded, symmetric and positive operator from V to V ∗ and
inf‖u‖V

‖Bu‖V ∗ > 0, A(t, · ) is a set-valued, bounded and coercive pseudo-
monotone mapping from V to V ∗, f ∈ Lq(0, T ;V ∗) and G is a set-valued map-
ping of non-monotone type with values in H. The initial value x0 is supposed
to be in V although it can be in the larger space H. We will prove that these
two problems have solutions x ∈ Lp(0, T ;V ) with x′ ∈ Lq(0, T ;V ∗) and the set
of all such solutions to (1.1) is continuous with respect to f .

Problems (1.1) and (1.2) allow many special cases that have been studied
already. When B is the identity operator on V , (1.1) is the problem considered
by the Bian and Webb in [3] (where V can be a reflexive Banach space). When
A(t, x) ≡ A(x) and A is a maximal monotone mapping, (1.1) is studied by Barbu
and Favini in [2]. When A is monotone and Lipschitz, it is a problem treated by
Andrews, Kuttler and Shillor in [1]. When A is monotone and B is the identity
operator on V , (1.2) is the problem considered by Migórski in [4]. More further
special cases can be found in the references of the papers cited above.

We remark that we work in Lp(0, T ;V ) and Lq(0, T ;V ∗) with p ≥ 2, q =
p/(p − 1), and in [1] and [2], the spaces used are L2(0, T ;V ) and L2(0, T ;V ∗).
We also note that, in [1] and [2], the coercivity condition was imposed on the sum
A + λB for some λ > 0 and the assumption inf{‖Bu‖ : ‖u‖ = 1} > 0 was not
imposed, but in this paper, coercivity condition is made on A (if p > 2, these are
equivalent). The extra condition we imposed on B makes that the solution x of
(1.1) is such that x′ ∈ Lq(0, T ;V ∗) (particularly if p = q = 2, x′ ∈ L2(0, T ;V ))
and, from this property, the continuity result for (1.1) and the solvability for
(1.2) can be derived which are not given in [1], [2] or [3].

2. Preliminaries

In this paper, we always suppose that (V,H, V ∗) is an evolution triple with
V,H Hilbert spaces, we suppose p ≥ 2 is a given number and write q = p/(p−1).
The scalar product in H and the duality pairing between V and V ∗ are denoted
by ( · , · ). The space Lr(0, T ;V ) will be abbreviated as Lr(V ) and the duality
pairing between Lp(V ) and Lq(V ∗) will be denoted by (( · , · )). The set of all
bounded linear operators from V to V ∗ is denoted by L(V, V ∗). The norm in
a space X is denoted by ‖ · ‖X except that in L(V, V ∗) which will be denoted
by ‖ · ‖ only. Convergence in the weak topology will be written xn ⇀ x. The
space X endowed with the weak topology will be denoted by Xw.

Suppose N : V → 2V ∗ is a set-valued mapping. N is said to beof class (S+) if

(2.1) xn ⇀ x in V, un ∈ Nxn and lim sup
n→∞

(un, xn − x) ≤ 0
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imply xn → x. N is said to be pseudo-monotone if (2.1) implies that for each
y ∈ V , there exists u = u(y) ∈ Nx such that (u, x − y) ≤ lim infn→∞ (un, xn −
y). N is said to be quasi-monotone if xn ⇀ x in V . It is known that, if the
mapping involved is bounded and demicontinuous, monotonicity implies pseudo-
monotonicity, pseudo-monotonicity implies quasi-monotonicity, and a mapping
of class (S+) is pseudo-monotone.

Now, we introduce the following conditions regarding B and A.

(H1) B ∈ L(V, V ∗) is symmetric, positive and

l := inf{‖Bu‖ : u ∈ V, ‖u‖V = 1} > 0.

(H2) A : [0, T ]×V → 2V ∗ is measurable with nonempty closed convex values
and v 7→ A(t, v) is pseudo-monotone for every t ∈ [0, T ].

(H3) There exist b1 ≥ 0, b2 ∈ Lq(0, T ) such that

sup{‖u‖V ∗ : u ∈ A(t, v)} ≤ b1‖v‖p−1
V + b2(t), for all v ∈ V, t ∈ [0, T ].

(H4) There exist b3 ≥ 0, b4 ∈ L1(0, T ) such that

inf
u∈A(t,v)

(u, v) ≥ b3‖v‖p
V − b4(t), for all v ∈ V, t ∈ [0, T ].

We denote by

(Lx)(t) =
∫ t

0

x(s) ds, for each x ∈ Lr(V ), r ≥ 1,

Âx = {g ∈ L1(V ∗) : g(t) ∈ A(t, x(t)) a.e.}, for each x ∈ Lp(V ).

It is known that, under (H2)–(H4), Â is a well-defined bounded mapping from
Lp(V ) to Lq(V ∗) with closed convex values. Moreover, in [3], the authors proved
the following results which remains valid if we replace the general triple by
a Hilbert space one.

Lemma 2.1 ([3]). Suppose (H2)–(H4) are satisfied. Then the following as-
sertions hold.

(i) For each f ∈ Lq(V ∗) and each x0 ∈ V , there exists x ∈ Lp(V ) such that

x′ ∈ Lq(V ∗), x′(t) + A(t, x(t)) 3 f(t) a.e. and x(0) = x0.

(ii) If xn are functions from [0, T ] into V with xn ⇀ x in Lq(V ∗), Lxn ⇀ Lx

in Lp(V ) and zn ∈ ÂLxn, lim sup ((zn, Lxn − Lx)) ≤ 0, then there exist
z ∈ ÂLx, a subsequence {znj

} such thatznj
⇀ z and ((znj

, Lxnj
)) →

((z, Lx)).
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Let Λ : V → V ∗ be the canonical isomorphism and ε > 0 be given. Under
assumption (H1), we see that εΛ + B is an isomorphism from V to V ∗. So we
can let

〈u, v〉W := ((εΛ + B)−1u, v) and Aε(t, v) := A(t, (εΛ + B)−1v)

for all u, v ∈ V ∗. Since B is symmetric, 〈 · , · 〉W is an inner product on V ∗ and
the space W := (V ∗, 〈 · , · 〉W ) is a Hilbert space in which the norm is denoted
by ‖ · ‖W .

The following conclusion regarding the equivalence of the two norms on V ∗

might be known, but for completeness, we give it with proof.

Lemma 2.2. ‖(εΛ + B)−1‖−1/2‖v‖W ≤ ‖v‖V ∗ ≤ ‖εΛ + B‖1/2‖v‖W for each
v ∈ W .

Proof. Let v ∈ V ∗. Then

‖v‖2
W = ((εΛ + B)−1v, v) ≤ ‖(εΛ + B)−1‖‖v‖2

V ∗

which implies the first part of our inequalities. Also, there exists u ∈ V , ‖u‖V = 1
such that ‖v‖V ∗ = (u, v). Write z = (εΛ + B)u ∈ V ∗. Then

‖z‖2
W = 〈z, z〉W = (u, z) ≤ ‖z‖V ∗ ,

and, therefore, we have

‖v‖V ∗ = ((εΛ + B)−1z, v) = 〈z, v〉W
≤ ‖v‖W ‖z‖W ≤ ‖v‖W ‖z‖1/2

V ∗

≤ ‖v‖W ‖εΛ + B‖1/2‖u‖1/2
V = ‖εΛ + B‖1/2‖v‖W �

3. Existence

In this section, we consider the existence of solutions for problem (1.1) and
some related second order problems.

Lemma 3.1. Under assumptions (H1)–(H4), suppose ε∈(0, l/(2‖Λ‖)). Then
Aε : [0, T ]×W → 2W is a measurable mapping with closed convex values, Aε(t, · )
is pseudo-monotone and, for each v ∈ W and each y ∈ Aε(t, v), we have

‖y‖W ≤ b1(2/l)p−(1/2)(2‖B‖)(p−1)/2‖v‖p−1
W + (2/l)1/2b2(t),(3.1)

〈y, v〉W ≥ b3k
p(l/2)p/2‖v‖p

W − b4(t).(3.2)

Proof. First, under our assumptions, we see

‖εΛ + B‖ ≤ ‖B‖+ ε‖Λ‖ ≤ 2‖B‖,(3.3)

‖(εΛ + B)−1‖ = sup
‖u‖V =1

1
‖(εΛ + B)u‖V ∗

≤ 2
l
.(3.4)
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By our assumption (H2) and Lemma 2.2, Aε is a measurable mapping from
[0, T ]×W to 2W with closed convex values.

Suppose vn ⇀ v in W , wn ∈ Aε(t, vn) and lim supn→∞ 〈wn, vn−v〉W ≤ 0. Let
xn = (εΛ + B)−1vn, x = (εΛ + B)−1v. Then we see that wn ∈ A(t, xn), xn ⇀ x

in V and

0 ≥ lim sup
n→∞

〈wn, vn − v〉W = lim sup
n→∞

(wn, xn − x).

Since A(t, · ) is pseudo-monotone, for each y ∈ V ∗, there exists w(y) ∈ A(t, x)
such that

〈w(y), v − y〉W = (w(y), x− (εΛ + B)−1y)

≤ lim inf
n→∞

(wn, xn − (εΛ + B)−1y) = lim inf
n→∞

〈wn, vn − y〉W .

This means that Aε(t, · ) is pseudo-monotone.
To verify (3.1) and (3.2), we suppose v ∈ W and let y ∈ A(t, (εΛ + B)−1v).

Then

‖y‖2
W = 〈y, y〉W = ((εΛ + B)−1y, y) ≤ ‖(εΛ + B)−1‖‖y‖2

V ∗ .

Since ε ∈ (0, l/(2‖Λ‖)), by (3.4), we see ‖(εΛ + B)−1‖ ≤ 2/l. So from (H3),
Lemma 2.2 and (3.3), it follows

‖y‖W ≤ b1‖(εΛ + B)−1‖1/2‖(εΛ + B)−1v‖p−1
V ∗ + ‖(εΛ + B)−1‖1/2b2(t)

≤ b1‖(εΛ + B)−1‖p−(1/2)‖εΛ + B‖(p−1)/2‖v‖p−1
W + ‖(εΛ + B)−1‖1/2b2(t)

≤ b1(2/l)p−(1/2)(2‖B‖)(p−1)/2‖v‖p−1
W + (2/l)1/2b2(t).

On the other hand, let

k = inf
ε>0

inf
v∈V ∗\{0}

‖(εΛ + B)−1v‖V

‖v‖V ∗
.

If k = 0, then there exist sequences {vn} ∈ V ∗ and {εn} such that ‖vn‖V ∗ = 1,
εn → 0 and ‖(εnΛ + B)−1vn‖V → 0. Writing un = (εnΛ + B)−1vn, we see

1 = ‖vn‖V ∗ = ‖(εnΛ + B)un‖V ∗ ≤ (εn‖Λ‖+ ‖B‖)‖un‖V → 0

which is a contradiction. So k > 0 and, by (H4), Lemma 2.2 and (3.3), we have

〈y, v〉W = ((εΛ + B)−1v, y) ≥ b3‖(εΛ + B)−1v‖p
V − b4(t)

≥ b3k
p‖v‖p

V ∗ − b4(t) ≥ b3k
p‖(εΛ + B)−1‖−p/2‖v‖p

W − b4(t)

≥ b3k
p(l/2)p/2‖v‖p

W − b4(t). �

The main result of this section is
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Theorem 3.2. Under the assumptions (H1)–(H4), there exists c > 0 such
that, for each f ∈ Lq(V ∗), problem (1.1) has at least one solution x ∈ Lp(V )
with x′ ∈ Lq(V ∗) and ‖x‖Lp(V ), ‖x′‖Lq(V ∗) ≤ c(1 + ‖f‖Lq(V ∗)). If, in addition,
p = 2, then x′ ∈ L2(V ).

Proof. For each ε ∈ (0, l/(2‖Λ‖)), applying Lemma 3.1 and Lemma 2.1(i)
in the triple (W,W,W ), we see that there exists xε ∈ Lp(W ) with xε(0) = x1 :=
(εΛ + B)x0 and x′ε ∈ Lq(W ) such that

(3.5) x′ε(t) + Aε(t, (εΛ + B)−1xε(t)) 3 f(t), a.e. t ∈ [0, T ].

Scalar multiplying (3.5) by xε(t) and using the coercivity (3.2) of Aε, we have

1
2

d

dt
‖xε(t)‖2

W + C1‖xε(t)‖p
W − b4(t) ≤ ‖f(t)‖W ‖xε(t)‖W

with C1 := (l/2)p/2b3k
p. Therefore

1
2
‖xε(T )‖2

W + C1‖xε‖p
Lp(W ) ≤

1
2
‖x1‖2

W +
∫ T

0

|b4(t)|dt + ‖f‖Lq(W )‖xε‖Lp(W ).

Using (3.5) and the growth condition (3.1), we see

‖x′ε‖Lq(W ) ≤ ‖f‖Lq(W ) + C2‖xε‖p−1
Lp(W ) + C2

with C2 > 0 a constant independent of f and ε. By Lemma 2.2, (3.3) and (3.4),
we see

‖x1‖W ≤ ‖(εΛ + B)−1‖1/2‖x1‖V ∗

≤ (2/l)1/2‖εΛ + B‖‖x0‖V ≤ 2‖B‖(2/l)1/2‖x0‖V .

Similarly, ‖f‖Lq(W ) ≤ 2‖B‖(2/l)1/2‖f‖Lq(V ∗). So there exists constant C3 > 0,
independent of f and ε, such that

(3.6) ‖x′ε‖Lq(W ), ‖xε‖Lp(W ) ≤ C3(1 + ‖f‖Lq(V ∗)).

Let n be so large that 1/n < l/(2‖Λ‖). Let ε = 1/n, yn = ((1/n)Λ+B)−1xε.
Then yn ∈ Lp(V ), y′n = ((1/n)Λ + B)−1x′ε ∈ Lq(V ) ⊂ Lq(V ∗) and there exists
zn ∈ Lq(V ∗) with z(t) ∈ A(t, yn(t)) a.e. (that is zn ∈ ÂLy′n) such that

(3.7) yn(0) = x0 and ((1/n)Λ + B)y′n(t)) + zn(t) = f(t), a.e. on [0, T ].

Since (V,H, V ∗) is an evolution triple, there exists β > 0 such that

(3.8) ‖u‖V ∗ ≤ β‖u‖V and ‖u‖H ≤ β‖u‖V for all u ∈ V.
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From (3.6), Lemma 2.2, (3.3) and (3.4), it follows that there exist constants
C4 > 0, independent of f and ε, such that

‖y′n‖Lq(V ∗) ≤ β‖y′n‖Lq(V ) ≤ β‖((1/n)Λ + B)−1‖‖x′ε‖Lq(V ∗)(3.9)

≤ C4(1 + ‖f‖Lq(V ∗)),

‖yn‖Lp(V ) ≤ ‖((1/n)Λ + B)−1‖‖xε‖Lp(V ∗) ≤ C4(1 + ‖f‖Lq(V ∗)).

So we may suppose that yn → y := Ly′ + x0 in Lp(0, T ;V ), y′n ⇀ y′ in
Lq(0, T ;V ∗), zn ⇀ z in Lq(0, T ;V ∗) and ((1/n)Λ+B)y′n ⇀ (By)′ in Lq(0, T ;V ∗)
(by passing to subsequences). By (3.7) and noting yn(0) − y(0) = x0 − x0 = 0,
we have

lim sup
n→∞

((zn, yn − y)) = lim sup
n→∞

∫ T

0

(−((1/n)Λ−B)y′n(t), yn(t)− y(t))dt

= − lim inf
n→∞

∫ T

0

1
2

d

dt
(B(yn(t)− y(t)), yn(t)− y(t))dt

= −1
2

lim inf
n→∞

(B(yn(T )− y(T )), yn(T )− y(T )) ≤ 0.

By Lemma 2.1(ii), zn ⇀ z ∈ Â(Ly′). So (By)′ + z = f , that is, y is a solution
for (1.1). Obviously, ‖y′‖Lq(V ∗), ‖y‖Lp(V ) ≤ C4(1 + ‖f‖Lq(V ∗)).

If p = q = 2, from (3.9), it follows that {y′n} is bounded in L2(V ). So we
may suppose y′n ⇀ y′ in L2(V ). This means that y′ ∈ L2(V ). �

Remark 3.3. In [1] or [2], l > 0 is not imposed, but, the boundedness of
x (the solution) and x′ are not derived there either. The property that x′ ∈
L2(0, T ;V ) when p = q = 2 is claimed in [1] under other extra assumptions.

Corollary 3.4. Under the assumptions (H1)–(H4), suppose, A is mea-
surable mapping from [0.T ] × V to V ∗ with closed convex values and, for each
t ∈ [0, T ], v 7→ A(t, v) is quasi-monotone and weakly closed. Then, for each f ∈
Lq(V ∗), problem (1.1) is almost solvable in the sense that f ∈range(L∗B+L∗ÂL).
More precisely, if we denote by j the duality map from V to V ∗, then for each n,
there exists xn ∈ Lp(V ), x(0) = x0 such that

(3.10)
d

dt
(Bxn(t)) + A(t, xn(t)) 3 − 1

n
j(xn(t)) + f(t), a.e.

and j(xn)/n → 0 in Lq(V ∗).

Proof. For each n, define a mapping An : [0, T ]× V → V ∗ by

An(t, v) =
1
n

j(v) + A(t, v) for t ∈ [0, T ], v ∈ V.
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Since j is single-valued, of class (S+) and demicontinuous, It can be proved easily
that v 7→ An(t, v) is pseudo-monotone and

sup
u∈An(t,v)

‖u‖V ∗ ≤ (1 + b1)‖v‖p−1
V + 1 + b2(t),

inf
u∈An(t,v)

(u, v) ≥ b3‖v‖p
V − b4(t)

for all v ∈ V, t ∈ [0, T ] and n > 0. Applying Theorem 3.2, there exists xn ∈
Lp(V ) satisfying (3.10) for each n > 0 and ‖xn‖Lp(V ) ≤ c for some constant c

independent of n. As ‖j(xn(t))‖V ∗ = ‖xn(t)‖V , {j(xn)} is bounded in Lq(V ∗).
So, j(xn)/n → 0 in Lq(V ∗). �

Now, we consider some second order differential inclusions. The first one is

((Px(t))′ + m(x(t)))′ + Qx(t) = f(t), m(x(t)) ∈ N(t, x(t)) a.e.,(3.11)

Px(0) = Px0, ((Px)′ + m(x))(0) = Qx1, x0, x1 ∈ V.

Here, P,Q ∈ L(V, V ∗) are symmetric operators and (Pu, u) ≥ 0, (Qu, u) ≥
ω‖u‖p

V for some ω > 0 for all u ∈ V , inf‖u‖V
‖Pu‖V ∗ > 0, and N : [0, T ] ×

V → 2V ∗ is a set-valued mapping. Its solvability can be obtained directly from
Theorem 3.2.

Corollary 3.5. Suppose x0, x1 ∈ V, N satisfies (H2)–(H4). Then problem
(3.11) has at least one solution x ∈ Lp(V ) with Px′ + m(x) ∈ Lq(V ∗).

Proof. Obviously, (3.11) is equivalent to

(Bz(t))′ + A(t, z(t)) 3 f̂(t) a.e. and Bz(0) = Bz0

in the evolution triple (V 2,H2, V ∗2) with

B =
(

P 0
0 Q

)
, A(t, · ) =

(
N(t, · ) −Q

Q 0

)
, f̂ =

(
0
f

)
, z0 =

(
x0

x1

)
.

We take the duality pairing between V 2 and V ∗2 as

〈〈(u, v), (x, y)〉〉 = 〈u, x〉+ 〈v, y〉 for u, v ∈ V ∗, x, y ∈ V.

Here, in order to distinguish the duality pairing different from the points-pairing
(u, v) ∈ V 2 or V ∗2, we use 〈 · , · 〉 to stand for the duality pairing between V

and V ∗. Let zn := (xn, yn) ∈ V 2, wn = (un, vn) ∈ A(t, zn) such that zn ⇀ z =
(x, y) ∈ V 2 and

lim sup
n→∞

〈〈(un, vn), (xn, yn)− (x, y)〉〉 ≤ 0.
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Then un ∈ N(t, xn) − Qyn, vn = Qxn and xn ⇀ x, yn ⇀ y, Qxn ⇀ Qx,
Qyn ⇀ Qy. Since Q is symmetric, we see that

( lim inf) lim sup
n→∞

〈〈(un, vn), (xn, yn)− (x∗, y∗)〉〉(3.12)

= (lim inf) lim sup
n→∞

〈un + Qyn, xn − x∗〉+ 〈Qy, x∗〉 − 〈Qx, y∗〉,

for all x∗, y∗ ∈ V .By taking x∗ = x, y = y∗ in (3.12), we obtain lim supn→∞ 〈un+
Qyn, xn − x〉 ≤ 0 and, therefore, the pseudo-monotonicity of N implies that, for
each (x̂, ŷ) ∈ V 2, there exists u∗ ∈ N(t, x) such that

〈u∗, x− x̂〉 ≤ lim inf
n→∞

〈un + Qyn, xn − x̂〉.

Let û = u∗ −Qy, v̂ = Qx. Then (û, v̂) ∈ A(t, (x, y)). Using (3.12), we have

〈〈(û, v̂), (x, y)− (x̂, ŷ)〉〉 = 〈u∗, x− x̂〉+ 〈Qy, x̂〉 − 〈Qx, ŷ〉
≤ lim inf

n→∞
〈〈(un, vn), (xn, yn)− (x̂, ŷ)〉〉,

that is, A(t, · ) is pseudo-monotone. Also, it can be proved easily that the other
conditions of Theorem 3.2 are satisfied in the present situation. So, the conclu-
sion follows. �

Theorem 3.6. Under the assumptions (H1)–(H4), suppose P : V → V ∗

is a linear, bounded, symmetric and positive operator. Then, for each f ∈
Lq(V ∗), x0, x1 ∈ V , there exists x ∈ Lp(V ) such that

(3.13)
(Bx(t))′′ + A(t, x′(t)) + Px(t) 3 f(t) a.e.,

Bx(0) = Bx0, (Bx(0))′ = Bx1.

Proof. Consider the problem

(3.14) (By(t))′ + A(t, y(t)) + PLy(t) 3 f(t) a.e., By(0) = Bx1.

Let P̂ be the realization of P . By our assumptions on P , P̂L is continuous
and positive from Lp(V ) to Lq(V ∗). So L∗(Â + P̂L)L is pseudo-monotone and
satisfies the same coercive and growth conditions as L∗ÂL. Using almost the
same method as used in Theorem 3.2 (just replace Â by Â+ P̂L), problem (3.14)
has a solution y. Obviously, x = Ly + x0 is a solution of (3.13). �

4. Continuity

Now, we denote the solution set of problem (1.1) by

S(f) = {x ∈ W (0, T ) : x is a solution of (1.1),

‖x‖Lp(V ), ‖x′‖Lq(V ∗) ≤ c(1 + ‖f‖Lq(V ∗))}
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and consider its continuity with respect to f . Here c is the constant obtained in
Theorem 3.2 and W (0, T ) = {x ∈ Lp(V ) : x′ ∈ Lq(V ∗)}. Recall that is compact,
then W (0, T ) ↪→ Lp(H) compactly.

Theorem 4.1. Under the assumptions (H1)–(H4), S(f) is a bounded weakly
closed subset of W (0, T ). If, in addition, V ↪→ H compactly, then f 7→ S(f) is
upper semicontinuous as a set-valued mapping from Lq(H)w to both W (0, T )w

and Lp(H).

Proof. Suppose f ∈ Lq(V ∗) and xn ∈ S(f) with xn ⇀ x in W (0, T ). Then
xn ⇀ x in Lp(V ), x′n ⇀ x′ in Lq(V ∗) and there exist zn ∈ Sq

A( · ,xn( · )) such that

(Bxn(t))′ + zn(t) = f(t) a.e..

Multiplying both sides by xn − x, we have

((Bx(t))′, xn(t)− x(t)) +
1
2

d

dt
(Bxn(t)−Bx(t), xn(t)− x(t))

+ (zn(t), xn(t)− x(t)) = (f(t), xn(t)− x(t))

and, therefore

lim sup
n→∞

((zn, xn − x)) = lim sup
n→∞

((f − (Bx)′, xn − x))(4.1)

+
1
2

lim sup
n→∞

[−(B(xn(T )− x(T )), xn(T )− x(T )] ≤ 0.

Applying Lemma 2.1(ii) to the sequence {x′n}, we see that there exist a subse-
quence {znj} and a point z ∈ Sq

A( · ,x( · )) such that znj ⇀ z in Lq(V ∗). Hence
(Bxnj

)′ = f − znj
⇀ f − z. Since (Bxn)′ ⇀ (Bx)′, we see (Bx)′ + z = f , that

is. x ∈ S(f). This proves the closedness. Obviously, S(f) is a bounded subset.
Now, suppose V ↪→ H compactly. If S is not u.s.c. from Lq(H)w to W (0, T )w

or Lp(H), then there exist fn ⇀ f in Lq(H), xn ∈ S(fn) and a neighbourhood V
of S(f)in W (0, T )w or Lp(H) with xn /∈ V for all n > 0. Since {fn} is boundedin
Lq(V ∗), we see that {xn} is bounded in W (0, T ). We may suppose(by passing
to subsequences) that

xn ⇀ x in Lp(V ), x′n ⇀ x′ in Lq(V ∗)

for some x ∈ W (0, T ) and, therefore, Bxn ⇀ Bx, (Bxn)′ ⇀ (Bx)′ in Lq(V ∗).
The continuous embedding of W (0, T ) into C(0, T ;H) implies x(0) = x0. Since
W (0, T ) ↪→ Lp(H) compactly, we may suppose xn → x in Lp(H). Therefore

((fn, xn − x)) = ((fn, xn − x))H → 0 as n →∞.

Here, (( · , · ))H stands for the duality pairing between Lp(H) and Lq(H). Let
zn ∈ Sq

A( · ,xn( · )) be the functions such that (Bxn)′(t) + zn(t) = fn(t) a.e. So,
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using the same method as used to obtain (4.1), we have

lim sup
n→∞

((zn, xn − x)) = lim sup
n→∞

[
((fn − (Bx)′, xn − x))

− 1
2
(Bxn(T )−Bx(T ), xn(T )− x(T ))

]
≤ 0.

Applying Lemma 2.1(ii) to the sequence {x′n}, we see that there exist a subse-
quence {znj

} and z ∈ Sq
A( · ,x( · )) such that znj

⇀ z in Lq(V ∗) and ((znj
, xnj

−
x)) → 0. So (Bx(t))′ + z(t) = f(t) a.e. which implies x ∈ S(f) ⊂ V. In case V is
a neighbourhood of S(f)in W (0, T )w, this has contradicted the assumption that
xn /∈ V for all n. In case V is a neighbourhood of S(f) in Lp(H), the compact
embedding of W (0, T ) into Lp(H) implies that we can suppose (by passing to
a further sequence) xnj → x in Lp(H) which also contradicts our assumption.�

5. Perturbation problem

In this section, we consider the solvability of (1.2).

Theorem 5.1. Under the assumptions (H1)–(H4), let V ↪→ H compactly
and, for each f ∈ Lq(H), problem (1.1) has a unique solution. Suppose G :
[0, T ] × H → 2H is a measurable set-valued mapping with closed convex val-
ues, v 7→ G(t, v) is u.s.c. as a mapping from H into Hw. If there exist
d1 ∈ Lq(H), d2, d3 > 0 such that either

(5.1) ‖G(t, u)‖H := sup{‖v‖H : v ∈ G(t, u)} ≤ d1(t) for all t ∈ [0, T ], u ∈ H

or

(5.2) (Bu, u) ≥ d2‖v‖2
H , ‖G(t, u)‖H ≤ d3‖u‖p−1

H + d1(t)

for all t ∈ [0, T ], u ∈ H, then, for each x0 ∈ V and each f ∈ Lq(V ∗), problem
(1.2) has solutions.

Proof. First, we suppose (5.1) is satisfied. Let xf be the unique solution
of problem (1.1) and let

F (g) = S1
G( · ,xf+g( · )) = {z ∈ L1(H) : z(t) ∈ G(t, xf+g(t)) a.e.},

D = {x ∈ Lq(H) : ‖x(t)‖H ≤ d(t)}.

Then, our assumptions imply that F is a well-defined mapping from D into itself
with closed convex values.

Let (gn, zn) ∈ Graph(F ) and gn ⇀ g, zn ⇀ z in Lq(H). By Theorem 4.1,
xgn+f → xg+f in Lp(H) and, therefore, xgn+f (t) → xg+f (t) in H a.e. (by pas-
sing to a subsequence). Since G(t, · ) is u.s.c., we see

w- lim sup
n→∞

G(t, xgn+f (t)) ⊂ G(t, xg+f (t))
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for almost all t. Invoking Theorem 4.2 of [5], we have

z ∈ w- lim sup
n→∞

F (gn) ⊂ S1
w- lim supn→∞ G( · ,xgn+f ( · )) ⊂ S1

G( · ,xg+f ( · )) = F (g).

So (g, z) ∈ GraphF , that is F is closed under the weak topology. Since D

is weakly compact, we see F is weakly upper semicontinuous under the weak
topology. Since D is convex, from Kakutani’s fixed point theorem, it follows
that F has fixed point, say g. Obviously, xg+f is a solution of (1.2).

Now, suppose (5.2) is satisfied. We claim that there exists M > 0 such that

(5.3) ‖x(t)‖H ≤ M for each t ∈ [0, T ] and each solution x of (1.2).

In fact, let x be a solution to (1.2). Then there exist g1 ∈ Lq(V ∗), g2 ∈ Lq(H)
such that g1(t) ∈ A(t, x(t)), g2(t) ∈ G(t, x(t)) a.e. and (Bx(t))′ + g1(t)− g2(t) =
f(t) a.e. Therefore, by (5.3) and Young’s inequality, for each ε > 0, we have

1
2

d

dt
(Bx(t), x(t))2 + (g1(t), x(t))

= (g2(t), x(t)) + (f(t), x(t))

≤ (d3‖x(t)‖2/q
H + d1(t))‖x(t)‖H + ‖f(t)‖V ∗‖x(t)‖V

≤ 1
εqq

(d3‖x(t)‖2/q
H + d1(t))q

+
εp

p
‖x(t)‖p

H +
1

εqq
‖f(t)‖q

V ∗ +
εp

p
‖x(t)‖p

V .

Noting (5.2), (H4) and (3.8), we obtain

1
2
d2‖x(t)‖2

H + b3

∫ t

0

‖x(s)‖p
V ds

≤ 1
2
(Bx0, x0) +

∫ t

0

b4(s) ds +
2qdq

3

εqq

∫ t

0

‖x(s)‖2
H ds

+
1

εqq

∫ t

0

(2qdq
1(s) + ‖f(s)‖q

V ∗)
q ds +

εp

p
(βp + 1)

∫ t

0

‖x(s)‖p
V ds.

Choosing ε = [(pb3)/(βp + 1)]1/p, and by Gronwall’s Inequality, we see that
a priori estimates (5.3) hold. Let

G1(t, x) = G(t, x) if ‖x‖H ≤ M,

G1(t, x) = G(t, Mx/‖x‖H) if ‖x‖H > M.

Then G1 is an upper semicontinuous mapping from [0, T ] × H into H with
closed convex values and ‖G1(t, x)‖H ≤ d1(t)+d3M

2/q. Applying the conclusion
obtained in the first case, we see that there exists x ∈ W (0, T ) such that

Bx(0) = Bx0 and (Bx(t))′ + A(t, x(t))−G1(t, x(t)) 3 f(t) a.e..
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Using the same method as the one used to obtain (5.3), we can prove that
‖x(t)‖H ≤ M on [0, T ] and, therefore, G1(t, x(t)) = G(t, x(t)) a.e. Hence, x is a
solution of (1.1). �
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