SOLUTIONS OF IMPLICIT EVOLUTION INCLUSIONS WITH PSEUDO-MONOTONE MAPPINGS

Wenming M. Bian

Dedicated to the memory of Juliusz P. Schauder

Abstract

Existence results are given for the implicit evolution inclusions $(B x(t))^{\prime}+A(t, x(t)) \ni f(t)$ and $(B x(t))^{\prime}+A(t, x(t))-G(t, x(t)) \ni$ $f(t)$ with B a bounded linear operator, $A(t, \cdot)$ a bounded, coercive and pseudo-monotone set-valued mapping and G a set-valued mapping of nonmonotone type. Continuity of the solution set of first inclusion with respect to f is also obtained which is used to solve the second inclusion.

1. Introduction

In this paper, we shall consider existence and continuity problems of solutions for the implicit inclusion

$$
\begin{align*}
& \frac{d}{d t}(B x(t))+A(t, x(t)) \ni f(t) \quad \text { a.e. on }[0, T], \tag{1.1}\\
& B x(0)=B x_{0},
\end{align*}
$$

and the perturbation problem

$$
\begin{align*}
& \frac{d}{d t}(B x(t))+A(t, x(t))-G(t, x(t)) \ni f(t) \quad \text { a.e. on }[0, T] \tag{1.2}\\
& B x(0)=B x_{0}
\end{align*}
$$

[^0]in an evolution triple $\left(V, H, V^{*}\right)$ with V, H real separable Hilbert spaces. Here B is a linear bounded, symmetric and positive operator from V to V^{*} and $\inf _{\|u\|_{V}}\|B u\|_{V^{*}}>0, A(t, \cdot)$ is a set-valued, bounded and coercive pseudomonotone mapping from V to $V^{*}, f \in L^{q}\left(0, T ; V^{*}\right)$ and G is a set-valued mapping of non-monotone type with values in H. The initial value x_{0} is supposed to be in V although it can be in the larger space H. We will prove that these two problems have solutions $x \in L^{p}(0, T ; V)$ with $x^{\prime} \in L^{q}\left(0, T ; V^{*}\right)$ and the set of all such solutions to (1.1) is continuous with respect to f.

Problems (1.1) and (1.2) allow many special cases that have been studied already. When B is the identity operator on V, (1.1) is the problem considered by the Bian and Webb in [3] (where V can be a reflexive Banach space). When $A(t, x) \equiv A(x)$ and A is a maximal monotone mapping, (1.1) is studied by Barbu and Favini in [2]. When A is monotone and Lipschitz, it is a problem treated by Andrews, Kuttler and Shillor in [1]. When A is monotone and B is the identity operator on $V,(1.2)$ is the problem considered by Migórski in [4]. More further special cases can be found in the references of the papers cited above.

We remark that we work in $L^{p}(0, T ; V)$ and $L^{q}\left(0, T ; V^{*}\right)$ with $p \geq 2, q=$ $p /(p-1)$, and in [1] and [2], the spaces used are $L^{2}(0, T ; V)$ and $L^{2}\left(0, T ; V^{*}\right)$. We also note that, in [1] and [2], the coercivity condition was imposed on the sum $A+\lambda B$ for some $\lambda>0$ and the assumption $\inf \{\|B u\|:\|u\|=1\}>0$ was not imposed, but in this paper, coercivity condition is made on A (if $p>2$, these are equivalent). The extra condition we imposed on B makes that the solution x of (1.1) is such that $x^{\prime} \in L^{q}\left(0, T ; V^{*}\right)$ (particularly if $p=q=2, x^{\prime} \in L^{2}(0, T ; V)$) and, from this property, the continuity result for (1.1) and the solvability for (1.2) can be derived which are not given in [1], [2] or [3].

2. Preliminaries

In this paper, we always suppose that $\left(V, H, V^{*}\right)$ is an evolution triple with V, H Hilbert spaces, we suppose $p \geq 2$ is a given number and write $q=p /(p-1)$. The scalar product in H and the duality pairing between V and V^{*} are denoted by (\cdot, \cdot). The space $L^{r}(0, T ; V)$ will be abbreviated as $L^{r}(V)$ and the duality pairing between $L^{p}(V)$ and $L^{q}\left(V^{*}\right)$ will be denoted by $((\cdot, \cdot))$. The set of all bounded linear operators from V to V^{*} is denoted by $L\left(V, V^{*}\right)$. The norm in a space X is denoted by $\|\cdot\|_{X}$ except that in $L\left(V, V^{*}\right)$ which will be denoted by $\|\cdot\|$ only. Convergence in the weak topology will be written $x_{n} \rightharpoonup x$. The space X endowed with the weak topology will be denoted by X_{w}.

Suppose $N: V \rightarrow 2^{V^{*}}$ is a set-valued mapping. N is said to beof class $\left(S_{+}\right)$if

$$
\begin{equation*}
x_{n} \rightharpoonup x \quad \text { in } V, \quad u_{n} \in N x_{n} \quad \text { and } \quad \limsup _{n \rightarrow \infty}\left(u_{n}, x_{n}-x\right) \leq 0 \tag{2.1}
\end{equation*}
$$

imply $x_{n} \rightarrow x . N$ is said to be pseudo-monotone if (2.1) implies that for each $y \in V$, there exists $u=u(y) \in N x$ such that $(u, x-y) \leq \liminf _{n \rightarrow \infty}\left(u_{n}, x_{n}-\right.$ $y) . N$ is said to be quasi-monotone if $x_{n} \rightharpoonup x$ in V. It is known that, if the mapping involved is bounded and demicontinuous, monotonicity implies pseudomonotonicity, pseudo-monotonicity implies quasi-monotonicity, and a mapping of class $\left(S_{+}\right)$is pseudo-monotone.

Now, we introduce the following conditions regarding B and A.
(H1) $B \in L\left(V, V^{*}\right)$ is symmetric, positive and

$$
l:=\inf \left\{\|B u\|: u \in V,\|u\|_{V}=1\right\}>0
$$

(H2) $A:[0, T] \times V \rightarrow 2^{V^{*}}$ is measurable with nonempty closed convex values and $v \mapsto A(t, v)$ is pseudo-monotone for every $t \in[0, T]$.
(H3) There exist $b_{1} \geq 0, b_{2} \in L^{q}(0, T)$ such that

$$
\sup \left\{\|u\|_{V^{*}}: u \in A(t, v)\right\} \leq b_{1}\|v\|_{V}^{p-1}+b_{2}(t), \quad \text { for all } v \in V, t \in[0, T]
$$

(H4) There exist $b_{3} \geq 0, b_{4} \in L^{1}(0, T)$ such that

$$
\inf _{u \in A(t, v)}(u, v) \geq b_{3}\|v\|_{V}^{p}-b_{4}(t), \quad \text { for all } v \in V, t \in[0, T] .
$$

We denote by

$$
\begin{gathered}
(L x)(t)=\int_{0}^{t} x(s) d s, \quad \text { for each } x \in L^{r}(V), r \geq 1 \\
\widehat{A} x=\left\{g \in L^{1}\left(V^{*}\right): g(t) \in A(t, x(t)) \text { a.e. }\right\}, \quad \text { for each } x \in L^{p}(V)
\end{gathered}
$$

It is known that, under (H2)-(H4), \widehat{A} is a well-defined bounded mapping from $L^{p}(V)$ to $L^{q}\left(V^{*}\right)$ with closed convex values. Moreover, in [3], the authors proved the following results which remains valid if we replace the general triple by a Hilbert space one.

Lemma 2.1 ([3]). Suppose (H2)-(H4) are satisfied. Then the following assertions hold.
(i) For each $f \in L^{q}\left(V^{*}\right)$ and each $x_{0} \in V$, there exists $x \in L^{p}(V)$ such that

$$
x^{\prime} \in L^{q}\left(V^{*}\right), \quad x^{\prime}(t)+A(t, x(t)) \ni f(t) \text { a.e. } \quad \text { and } x(0)=x_{0} .
$$

(ii) If x_{n} are functions from $[0, T]$ into V with $x_{n} \rightharpoonup x$ in $L^{q}\left(V^{*}\right), L x_{n} \rightharpoonup L x$ in $L^{p}(V)$ and $z_{n} \in \widehat{A} L x_{n}, \lim \sup \left(\left(z_{n}, L x_{n}-L x\right)\right) \leq 0$, then there exist $z \in \widehat{A} L x$, a subsequence $\left\{z_{n_{j}}\right\}$ such thatz $z_{n_{j}} \rightharpoonup z$ and $\left(\left(z_{n_{j}}, L x_{n_{j}}\right)\right) \rightarrow$ $((z, L x))$.

Let $\Lambda: V \rightarrow V^{*}$ be the canonical isomorphism and $\varepsilon>0$ be given. Under assumption (H1), we see that $\varepsilon \Lambda+B$ is an isomorphism from V to V^{*}. So we can let

$$
\langle u, v\rangle_{W}:=\left((\varepsilon \Lambda+B)^{-1} u, v\right) \quad \text { and } \quad A_{\varepsilon}(t, v):=A\left(t,(\varepsilon \Lambda+B)^{-1} v\right)
$$

for all $u, v \in V^{*}$. Since B is symmetric, $\langle\cdot, \cdot\rangle_{W}$ is an inner product on V^{*} and the space $W:=\left(V^{*},\langle\cdot, \cdot\rangle_{W}\right)$ is a Hilbert space in which the norm is denoted by $\|\cdot\|_{W}$.

The following conclusion regarding the equivalence of the two norms on V^{*} might be known, but for completeness, we give it with proof.

Lemma 2.2. $\left\|(\varepsilon \Lambda+B)^{-1}\right\|^{-1 / 2}\|v\|_{W} \leq\|v\|_{V^{*}} \leq\|\varepsilon \Lambda+B\|^{1 / 2}\|v\|_{W}$ for each $v \in W$.

Proof. Let $v \in V^{*}$. Then

$$
\|v\|_{W}^{2}=\left((\varepsilon \Lambda+B)^{-1} v, v\right) \leq\left\|(\varepsilon \Lambda+B)^{-1}\right\|\|v\|_{V^{*}}^{2}
$$

which implies the first part of our inequalities. Also, there exists $u \in V,\|u\|_{V}=1$ such that $\|v\|_{V^{*}}=(u, v)$. Write $z=(\varepsilon \Lambda+B) u \in V^{*}$. Then

$$
\|z\|_{W}^{2}=\langle z, z\rangle_{W}=(u, z) \leq\|z\|_{V^{*}},
$$

and, therefore, we have

$$
\begin{aligned}
\|v\|_{V^{*}} & =\left((\varepsilon \Lambda+B)^{-1} z, v\right)=\langle z, v\rangle_{W} \\
& \leq\|v\|_{W}\|z\|_{W} \leq\|v\|_{W}\|z\|_{V^{*}}^{1 / 2} \\
& \leq\|v\|_{W}\|\varepsilon \Lambda+B\|^{1 / 2}\|u\|_{V}^{1 / 2}=\|\varepsilon \Lambda+B\|^{1 / 2}\|v\|_{W}
\end{aligned}
$$

3. Existence

In this section, we consider the existence of solutions for problem (1.1) and some related second order problems.

Lemma 3.1. Under assumptions (H1)-(H4), suppose $\varepsilon \in(0, l /(2\|\Lambda\|))$. Then $A_{\varepsilon}:[0, T] \times W \rightarrow 2^{W}$ is a measurable mapping with closed convex values, $A_{\varepsilon}(t, \cdot)$ is pseudo-monotone and, for each $v \in W$ and each $y \in A_{\varepsilon}(t, v)$, we have

$$
\begin{align*}
\|y\|_{W} & \leq b_{1}(2 / l)^{p-(1 / 2)}(2\|B\|)^{(p-1) / 2}\|v\|_{W}^{p-1}+(2 / l)^{1 / 2} b_{2}(t), \tag{3.1}\\
\langle y, v\rangle_{W} & \geq b_{3} k^{p}(l / 2)^{p / 2}\|v\|_{W}^{p}-b_{4}(t) .
\end{align*}
$$

Proof. First, under our assumptions, we see

$$
\begin{align*}
\|\varepsilon \Lambda+B\| & \leq\|B\|+\varepsilon\|\Lambda\| \leq 2\|B\| \tag{3.3}\\
\left\|(\varepsilon \Lambda+B)^{-1}\right\| & =\sup _{\|u\|_{V}=1} \frac{1}{\|(\varepsilon \Lambda+B) u\|_{V^{*}}} \leq \frac{2}{l} \tag{3.4}
\end{align*}
$$

By our assumption (H2) and Lemma 2.2, A_{ε} is a measurable mapping from $[0, T] \times W$ to 2^{W} with closed convex values.

Suppose $v_{n} \rightharpoonup v$ in $W, w_{n} \in A_{\varepsilon}\left(t, v_{n}\right)$ and $\lim \sup _{n \rightarrow \infty}\left\langle w_{n}, v_{n}-v\right\rangle_{W} \leq 0$. Let $x_{n}=(\varepsilon \Lambda+B)^{-1} v_{n}, x=(\varepsilon \Lambda+B)^{-1} v$. Then we see that $w_{n} \in A\left(t, x_{n}\right), x_{n} \rightharpoonup x$ in V and

$$
0 \geq \limsup _{n \rightarrow \infty}\left\langle w_{n}, v_{n}-v\right\rangle_{W}=\limsup _{n \rightarrow \infty}\left(w_{n}, x_{n}-x\right)
$$

Since $A(t, \cdot)$ is pseudo-monotone, for each $y \in V^{*}$, there exists $w(y) \in A(t, x)$ such that

$$
\begin{aligned}
\langle w(y), v-y\rangle_{W} & =\left(w(y), x-(\varepsilon \Lambda+B)^{-1} y\right) \\
& \leq \liminf _{n \rightarrow \infty}\left(w_{n}, x_{n}-(\varepsilon \Lambda+B)^{-1} y\right)=\liminf _{n \rightarrow \infty}\left\langle w_{n}, v_{n}-y\right\rangle_{W}
\end{aligned}
$$

This means that $A_{\varepsilon}(t, \cdot)$ is pseudo-monotone.
To verify (3.1) and (3.2), we suppose $v \in W$ and let $y \in A\left(t,(\varepsilon \Lambda+B)^{-1} v\right)$. Then

$$
\|y\|_{W}^{2}=\langle y, y\rangle_{W}=\left((\varepsilon \Lambda+B)^{-1} y, y\right) \leq\left\|(\varepsilon \Lambda+B)^{-1}\right\|\|y\|_{V^{*}}^{2}
$$

Since $\varepsilon \in(0, l /(2\|\Lambda\|))$, by (3.4), we see $\left\|(\varepsilon \Lambda+B)^{-1}\right\| \leq 2 / l$. So from (H3), Lemma 2.2 and (3.3), it follows

$$
\begin{aligned}
\|y\|_{W} & \leq b_{1}\left\|(\varepsilon \Lambda+B)^{-1}\right\|^{1 / 2}\left\|(\varepsilon \Lambda+B)^{-1} v\right\|_{V^{*}}^{p-1}+\left\|(\varepsilon \Lambda+B)^{-1}\right\|^{1 / 2} b_{2}(t) \\
& \leq b_{1}\left\|(\varepsilon \Lambda+B)^{-1}\right\|^{p-(1 / 2)}\|\varepsilon \Lambda+B\|^{(p-1) / 2}\|v\|_{W}^{p-1}+\left\|(\varepsilon \Lambda+B)^{-1}\right\|^{1 / 2} b_{2}(t) \\
& \leq b_{1}(2 / l)^{p-(1 / 2)}(2\|B\|)^{(p-1) / 2}\|v\|_{W}^{p-1}+(2 / l)^{1 / 2} b_{2}(t)
\end{aligned}
$$

On the other hand, let

$$
k=\inf _{\varepsilon>0} \inf _{v \in V^{*} \backslash\{0\}} \frac{\left\|(\varepsilon \Lambda+B)^{-1} v\right\|_{V}}{\|v\|_{V^{*}}}
$$

If $k=0$, then there exist sequences $\left\{v_{n}\right\} \in V^{*}$ and $\left\{\varepsilon_{n}\right\}$ such that $\left\|v_{n}\right\|_{V^{*}}=1$, $\varepsilon_{n} \rightarrow 0$ and $\left\|\left(\varepsilon_{n} \Lambda+B\right)^{-1} v_{n}\right\|_{V} \rightarrow 0$. Writing $u_{n}=\left(\varepsilon_{n} \Lambda+B\right)^{-1} v_{n}$, we see

$$
1=\left\|v_{n}\right\|_{V^{*}}=\left\|\left(\varepsilon_{n} \Lambda+B\right) u_{n}\right\|_{V^{*}} \leq\left(\varepsilon_{n}\|\Lambda\|+\|B\|\right)\left\|u_{n}\right\|_{V} \rightarrow 0
$$

which is a contradiction. So $k>0$ and, by (H4), Lemma 2.2 and (3.3), we have

$$
\begin{aligned}
\langle y, v\rangle_{W} & =\left((\varepsilon \Lambda+B)^{-1} v, y\right) \geq b_{3}\left\|(\varepsilon \Lambda+B)^{-1} v\right\|_{V}^{p}-b_{4}(t) \\
& \geq b_{3} k^{p}\|v\|_{V^{*}}^{p}-b_{4}(t) \geq b_{3} k^{p}\left\|(\varepsilon \Lambda+B)^{-1}\right\|^{-p / 2}\|v\|_{W}^{p}-b_{4}(t) \\
& \geq b_{3} k^{p}(l / 2)^{p / 2}\|v\|_{W}^{p}-b_{4}(t)
\end{aligned}
$$

The main result of this section is

Theorem 3.2. Under the assumptions (H1)-(H4), there exists c>0 such that, for each $f \in L^{q}\left(V^{*}\right)$, problem (1.1) has at least one solution $x \in L^{p}(V)$ with $x^{\prime} \in L^{q}\left(V^{*}\right)$ and $\|x\|_{L^{p}(V)},\left\|x^{\prime}\right\|_{L^{q}\left(V^{*}\right)} \leq c\left(1+\|f\|_{L^{q}\left(V^{*}\right)}\right)$. If, in addition, $p=2$, then $x^{\prime} \in L^{2}(V)$.

Proof. For each $\varepsilon \in(0, l /(2\|\Lambda\|))$, applying Lemma 3.1 and Lemma 2.1(i) in the triple (W, W, W), we see that there exists $x_{\varepsilon} \in L^{p}(W)$ with $x_{\varepsilon}(0)=x_{1}:=$ $(\varepsilon \Lambda+B) x_{0}$ and $x_{\varepsilon}^{\prime} \in L^{q}(W)$ such that

$$
\begin{equation*}
x_{\varepsilon}^{\prime}(t)+A_{\varepsilon}\left(t,(\varepsilon \Lambda+B)^{-1} x_{\varepsilon}(t)\right) \ni f(t), \quad \text { a.e. } t \in[0, T] . \tag{3.5}
\end{equation*}
$$

Scalar multiplying (3.5) by $x_{\varepsilon}(t)$ and using the coercivity (3.2) of A_{ε}, we have

$$
\frac{1}{2} \frac{d}{d t}\left\|x_{\varepsilon}(t)\right\|_{W}^{2}+C_{1}\left\|x_{\varepsilon}(t)\right\|_{W}^{p}-b_{4}(t) \leq\|f(t)\|_{W}\left\|x_{\varepsilon}(t)\right\|_{W}
$$

with $C_{1}:=(l / 2)^{p / 2} b_{3} k^{p}$. Therefore

$$
\frac{1}{2}\left\|x_{\varepsilon}(T)\right\|_{W}^{2}+C_{1}\left\|x_{\varepsilon}\right\|_{L^{p}(W)}^{p} \leq \frac{1}{2}\left\|x_{1}\right\|_{W}^{2}+\int_{0}^{T}\left|b_{4}(t)\right| d t+\|f\|_{L^{q}(W)}\left\|x_{\varepsilon}\right\|_{L^{p}(W)}
$$

Using (3.5) and the growth condition (3.1), we see

$$
\left\|x_{\varepsilon}^{\prime}\right\|_{L^{q}(W)} \leq\|f\|_{L^{q}(W)}+C_{2}\left\|x_{\varepsilon}\right\|_{L^{p}(W)}^{p-1}+C_{2}
$$

with $C_{2}>0$ a constant independent of f and ε. By Lemma 2.2, (3.3) and (3.4), we see

$$
\begin{aligned}
\left\|x_{1}\right\|_{W} & \leq\left\|(\varepsilon \Lambda+B)^{-1}\right\|^{1 / 2}\left\|x_{1}\right\|_{V^{*}} \\
& \leq(2 / l)^{1 / 2}\|\varepsilon \Lambda+B\|\left\|x_{0}\right\|_{V} \leq 2\|B\|(2 / l)^{1 / 2}\left\|x_{0}\right\|_{V} .
\end{aligned}
$$

Similarly, $\|f\|_{L^{q}(W)} \leq 2\|B\|(2 / l)^{1 / 2}\|f\|_{L^{q}\left(V^{*}\right)}$. So there exists constant $C_{3}>0$, independent of f and ε, such that

$$
\begin{equation*}
\left\|x_{\varepsilon}^{\prime}\right\|_{L^{q}(W)},\left\|x_{\varepsilon}\right\|_{L^{p}(W)} \leq C_{3}\left(1+\|f\|_{L^{q}\left(V^{*}\right)}\right) \tag{3.6}
\end{equation*}
$$

Let n be so large that $1 / n<l /(2\|\Lambda\|)$. Let $\varepsilon=1 / n, y_{n}=((1 / n) \Lambda+B)^{-1} x_{\varepsilon}$. Then $y_{n} \in L^{p}(V), y_{n}^{\prime}=((1 / n) \Lambda+B)^{-1} x_{\varepsilon}^{\prime} \in L^{q}(V) \subset L^{q}\left(V^{*}\right)$ and there exists $z_{n} \in L^{q}\left(V^{*}\right)$ with $z(t) \in A\left(t, y_{n}(t)\right)$ a.e. (that is $\left.z_{n} \in \widehat{A} L y_{n}^{\prime}\right)$ such that

$$
\begin{equation*}
\left.y_{n}(0)=x_{0} \quad \text { and } \quad((1 / n) \Lambda+B) y_{n}^{\prime}(t)\right)+z_{n}(t)=f(t), \quad \text { a.e. on }[0, T] . \tag{3.7}
\end{equation*}
$$

Since $\left(V, H, V^{*}\right)$ is an evolution triple, there exists $\beta>0$ such that

$$
\begin{equation*}
\|u\|_{V^{*}} \leq \beta\|u\|_{V} \quad \text { and } \quad\|u\|_{H} \leq \beta\|u\|_{V} \quad \text { for all } u \in V \tag{3.8}
\end{equation*}
$$

From (3.6), Lemma 2.2, (3.3) and (3.4), it follows that there exist constants $C_{4}>0$, independent of f and ε, such that

$$
\begin{align*}
\left\|y_{n}^{\prime}\right\|_{L^{q}\left(V^{*}\right)} & \leq \beta\left\|y_{n}^{\prime}\right\|_{L^{q}(V)} \leq \beta\left\|((1 / n) \Lambda+B)^{-1}\right\|\left\|x_{\varepsilon}^{\prime}\right\|_{L^{q}\left(V^{*}\right)} \tag{3.9}\\
& \leq C_{4}\left(1+\|f\|_{L^{q}\left(V^{*}\right)}\right) \\
\left\|y_{n}\right\|_{L^{p}(V)} & \leq\left\|((1 / n) \Lambda+B)^{-1}\right\|\left\|x_{\varepsilon}\right\|_{L^{p}\left(V^{*}\right)} \leq C_{4}\left(1+\|f\|_{L^{q}\left(V^{*}\right)}\right)
\end{align*}
$$

So we may suppose that $y_{n} \rightarrow y:=L y^{\prime}+x_{0}$ in $L^{p}(0, T ; V), y_{n}^{\prime} \rightharpoonup y^{\prime}$ in $L^{q}\left(0, T ; V^{*}\right), z_{n} \rightharpoonup z$ in $L^{q}\left(0, T ; V^{*}\right)$ and $((1 / n) \Lambda+B) y_{n}^{\prime} \rightharpoonup(B y)^{\prime}$ in $L^{q}\left(0, T ; V^{*}\right)$ (by passing to subsequences). By (3.7) and noting $y_{n}(0)-y(0)=x_{0}-x_{0}=0$, we have

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left(\left(z_{n}, y_{n}-y\right)\right) & =\limsup _{n \rightarrow \infty} \int_{0}^{T}\left(-((1 / n) \Lambda-B) y_{n}^{\prime}(t), y_{n}(t)-y(t)\right) d t \\
& =-\liminf _{n \rightarrow \infty} \int_{0}^{T} \frac{1}{2} \frac{d}{d t}\left(B\left(y_{n}(t)-y(t)\right), y_{n}(t)-y(t)\right) d t \\
& =-\frac{1}{2} \liminf _{n \rightarrow \infty}\left(B\left(y_{n}(T)-y(T)\right), y_{n}(T)-y(T)\right) \leq 0
\end{aligned}
$$

By Lemma 2.1(ii), $z_{n} \rightharpoonup z \in \widehat{A}\left(L y^{\prime}\right)$. So $(B y)^{\prime}+z=f$, that is, y is a solution for (1.1). Obviously, $\left\|y^{\prime}\right\|_{L^{q}\left(V^{*}\right)},\|y\|_{L^{p}(V)} \leq C_{4}\left(1+\|f\|_{L^{q}\left(V^{*}\right)}\right)$.

If $p=q=2$, from (3.9), it follows that $\left\{y_{n}^{\prime}\right\}$ is bounded in $L^{2}(V)$. So we may suppose $y_{n}^{\prime} \rightharpoonup y^{\prime}$ in $L^{2}(V)$. This means that $y^{\prime} \in L^{2}(V)$.

Remark 3.3. In [1] or [2], $l>0$ is not imposed, but, the boundedness of x (the solution) and x^{\prime} are not derived there either. The property that $x^{\prime} \in$ $L^{2}(0, T ; V)$ when $p=q=2$ is claimed in [1] under other extra assumptions.

Corollary 3.4. Under the assumptions (H1)-(H4), suppose, A is measurable mapping from $[0 . T] \times V$ to V^{*} with closed convex values and, for each $t \in[0, T], v \mapsto A(t, v)$ is quasi-monotone and weakly closed. Then, for each $f \in$ $L^{q}\left(V^{*}\right)$, problem (1.1) is almost solvable in the sense that $f \in \overline{\operatorname{range}\left(L^{*} B+L^{*} \widehat{A} L\right)}$. More precisely, if we denote by j the duality map from V to V^{*}, then for each n, there exists $x_{n} \in L^{p}(V), x(0)=x_{0}$ such that

$$
\begin{equation*}
\frac{d}{d t}\left(B x_{n}(t)\right)+A\left(t, x_{n}(t)\right) \ni-\frac{1}{n} j\left(x_{n}(t)\right)+f(t), \quad \text { a.e. } \tag{3.10}
\end{equation*}
$$

and $j\left(x_{n}\right) / n \rightarrow 0$ in $L^{q}\left(V^{*}\right)$.
Proof. For each n, define a mapping $A_{n}:[0, T] \times V \rightarrow V^{*}$ by

$$
A_{n}(t, v)=\frac{1}{n} j(v)+A(t, v) \quad \text { for } t \in[0, T], v \in V
$$

Since j is single-valued, of class (S_{+}) and demicontinuous, It can be proved easily that $v \mapsto A_{n}(t, v)$ is pseudo-monotone and

$$
\begin{aligned}
& \sup _{u \in A_{n}(t, v)}\|u\|_{V^{*}} \leq\left(1+b_{1}\right)\|v\|_{V}^{p-1}+1+b_{2}(t) \\
& \inf _{u \in A_{n}(t, v)}(u, v) \geq b_{3}\|v\|_{V}^{p}-b_{4}(t)
\end{aligned}
$$

for all $v \in V, t \in[0, T]$ and $n>0$. Applying Theorem 3.2, there exists $x_{n} \in$ $L^{p}(V)$ satisfying (3.10) for each $n>0$ and $\left\|x_{n}\right\|_{L^{p}(V)} \leq c$ for some constant c independent of n. As $\left\|j\left(x_{n}(t)\right)\right\|_{V^{*}}=\left\|x_{n}(t)\right\|_{V},\left\{j\left(x_{n}\right)\right\}$ is bounded in $L^{q}\left(V^{*}\right)$. So, $j\left(x_{n}\right) / n \rightarrow 0$ in $L^{q}\left(V^{*}\right)$.

Now, we consider some second order differential inclusions. The first one is

$$
\begin{gather*}
\left((P x(t))^{\prime}+m(x(t))\right)^{\prime}+Q x(t)=f(t), \quad m(x(t)) \in N(t, x(t)) \quad \text { a.e., } \tag{3.11}\\
P x(0)=P x_{0}, \quad\left((P x)^{\prime}+m(x)\right)(0)=Q x_{1}, x_{0}, x_{1} \in V
\end{gather*}
$$

Here, $P, Q \in L\left(V, V^{*}\right)$ are symmetric operators and $(P u, u) \geq 0,(Q u, u) \geq$ $\omega\|u\|_{V}^{p}$ for some $\omega>0$ for all $u \in V, \inf _{\|u\|_{V}}\|P u\|_{V^{*}}>0$, and $N:[0, T] \times$ $V \rightarrow 2^{V^{*}}$ is a set-valued mapping. Its solvability can be obtained directly from Theorem 3.2.

Corollary 3.5. Suppose $x_{0}, x_{1} \in V, N$ satisfies (H2)-(H4). Then problem (3.11) has at least one solution $x \in L^{p}(V)$ with $P x^{\prime}+m(x) \in L^{q}\left(V^{*}\right)$.

Proof. Obviously, (3.11) is equivalent to

$$
(B z(t))^{\prime}+A(t, z(t)) \ni \widehat{f}(t) \quad \text { a.e. and } B z(0)=B z_{0}
$$

in the evolution triple $\left(V^{2}, H^{2}, V^{* 2}\right)$ with

$$
B=\left(\begin{array}{cc}
P & 0 \\
0 & Q
\end{array}\right), \quad A(t, \cdot)=\left(\begin{array}{cc}
N(t, \cdot) & -Q \\
Q & 0
\end{array}\right), \quad \widehat{f}=\binom{0}{f}, \quad z_{0}=\binom{x_{0}}{x_{1}} .
$$

We take the duality pairing between V^{2} and $V^{* 2}$ as

$$
\langle\langle(u, v),(x, y)\rangle\rangle=\langle u, x\rangle+\langle v, y\rangle \quad \text { for } u, v \in V^{*}, x, y \in V .
$$

Here, in order to distinguish the duality pairing different from the points-pairing $(u, v) \in V^{2}$ or $V^{* 2}$, we use $\langle\cdot, \cdot\rangle$ to stand for the duality pairing between V and V^{*}. Let $z_{n}:=\left(x_{n}, y_{n}\right) \in V^{2}, w_{n}=\left(u_{n}, v_{n}\right) \in A\left(t, z_{n}\right)$ such that $z_{n} \rightharpoonup z=$ $(x, y) \in V^{2}$ and

$$
\limsup _{n \rightarrow \infty}\left\langle\left\langle\left(u_{n}, v_{n}\right),\left(x_{n}, y_{n}\right)-(x, y)\right\rangle\right\rangle \leq 0
$$

Then $u_{n} \in N\left(t, x_{n}\right)-Q y_{n}, v_{n}=Q x_{n}$ and $x_{n} \rightharpoonup x, y_{n} \rightharpoonup y, Q x_{n} \rightharpoonup Q x$, $Q y_{n} \rightharpoonup Q y$. Since Q is symmetric, we see that
(3.12) (liminf) $\limsup _{n \rightarrow \infty}\left\langle\left\langle\left(u_{n}, v_{n}\right),\left(x_{n}, y_{n}\right)-\left(x^{*}, y^{*}\right)\right\rangle\right\rangle$

$$
=(\lim \inf) \limsup _{n \rightarrow \infty}\left\langle u_{n}+Q y_{n}, x_{n}-x^{*}\right\rangle+\left\langle Q y, x^{*}\right\rangle-\left\langle Q x, y^{*}\right\rangle
$$

for all $x^{*}, y^{*} \in V$.By taking $x^{*}=x, y=y^{*}$ in (3.12), we obtain $\lim \sup _{n \rightarrow \infty}\left\langle u_{n}+\right.$ $\left.Q y_{n}, x_{n}-x\right\rangle \leq 0$ and, therefore, the pseudo-monotonicity of N implies that, for each $(\widehat{x}, \widehat{y}) \in V^{2}$, there exists $u^{*} \in N(t, x)$ such that

$$
\left\langle u^{*}, x-\widehat{x}\right\rangle \leq \liminf _{n \rightarrow \infty}\left\langle u_{n}+Q y_{n}, x_{n}-\widehat{x}\right\rangle
$$

Let $\widehat{u}=u^{*}-Q y, \widehat{v}=Q x$. Then $(\widehat{u}, \widehat{v}) \in A(t,(x, y))$. Using (3.12), we have

$$
\begin{aligned}
\langle\langle(\widehat{u}, \widehat{v}),(x, y)-(\widehat{x}, \widehat{y})\rangle\rangle & =\left\langle u^{*}, x-\widehat{x}\right\rangle+\langle Q y, \widehat{x}\rangle-\langle Q x, \widehat{y}\rangle \\
& \leq \liminf _{n \rightarrow \infty}\left\langle\left\langle\left(u_{n}, v_{n}\right),\left(x_{n}, y_{n}\right)-(\widehat{x}, \widehat{y})\right\rangle\right\rangle
\end{aligned}
$$

that is, $A(t, \cdot)$ is pseudo-monotone. Also, it can be proved easily that the other conditions of Theorem 3.2 are satisfied in the present situation. So, the conclusion follows.

Theorem 3.6. Under the assumptions (H1)-(H4), suppose $P: V \rightarrow V^{*}$ is a linear, bounded, symmetric and positive operator. Then, for each $f \in$ $L^{q}\left(V^{*}\right), x_{0}, x_{1} \in V$, there exists $x \in L^{p}(V)$ such that

$$
\begin{gather*}
(B x(t))^{\prime \prime}+A\left(t, x^{\prime}(t)\right)+P x(t) \ni f(t) \quad \text { a.e., } \\
B x(0)=B x_{0}, \quad(B x(0))^{\prime}=B x_{1} . \tag{3.13}
\end{gather*}
$$

Proof. Consider the problem

$$
\begin{equation*}
(B y(t))^{\prime}+A(t, y(t))+P L y(t) \ni f(t) \quad \text { a.e., } \quad B y(0)=B x_{1} \tag{3.14}
\end{equation*}
$$

Let \widehat{P} be the realization of P. By our assumptions on $P, \widehat{P} L$ is continuous and positive from $L^{p}(V)$ to $L^{q}\left(V^{*}\right)$. So $L^{*}(\widehat{A}+\widehat{P} L) L$ is pseudo-monotone and satisfies the same coercive and growth conditions as $L^{*} \widehat{A} L$. Using almost the same method as used in Theorem 3.2 (just replace \widehat{A} by $\widehat{A}+\widehat{P} L$), problem (3.14) has a solution y. Obviously, $x=L y+x_{0}$ is a solution of (3.13).

4. Continuity

Now, we denote the solution set of problem (1.1) by
$S(f)=\{x \in W(0, T): x$ is a solution of (1.1),

$$
\left.\|x\|_{L^{p}(V)},\left\|x^{\prime}\right\|_{L^{q}\left(V^{*}\right)} \leq c\left(1+\|f\|_{L^{q}\left(V^{*}\right)}\right)\right\}
$$

and consider its continuity with respect to f. Here c is the constant obtained in Theorem 3.2 and $W(0, T)=\left\{x \in L^{p}(V): x^{\prime} \in L^{q}\left(V^{*}\right)\right\}$. Recall that is compact, then $W(0, T) \hookrightarrow L^{p}(H)$ compactly.

Theorem 4.1. Under the assumptions (H1)-(H4), $S(f)$ is a bounded weakly closed subset of $W(0, T)$. If, in addition, $V \hookrightarrow H$ compactly, then $f \mapsto S(f)$ is upper semicontinuous as a set-valued mapping from $L^{q}(H)_{w}$ to both $W(0, T)_{w}$ and $L^{p}(H)$.

Proof. Suppose $f \in L^{q}\left(V^{*}\right)$ and $x_{n} \in S(f)$ with $x_{n} \rightharpoonup x$ in $W(0, T)$. Then $x_{n} \rightharpoonup x$ in $L^{p}(V), x_{n}^{\prime} \rightharpoonup x^{\prime}$ in $L^{q}\left(V^{*}\right)$ and there exist $z_{n} \in S_{A\left(\cdot, x_{n}(\cdot)\right)}^{q}$ such that

$$
\left(B x_{n}(t)\right)^{\prime}+z_{n}(t)=f(t) \quad \text { a.e.. }
$$

Multiplying both sides by $x_{n}-x$, we have

$$
\begin{aligned}
\left((B x(t))^{\prime}, x_{n}(t)-x(t)\right) & +\frac{1}{2} \frac{d}{d t}\left(B x_{n}(t)-B x(t), x_{n}(t)-x(t)\right) \\
& +\left(z_{n}(t), x_{n}(t)-x(t)\right)=\left(f(t), x_{n}(t)-x(t)\right)
\end{aligned}
$$

and, therefore

$$
\begin{align*}
& \limsup _{n \rightarrow \infty}\left(\left(z_{n}, x_{n}-x\right)\right)=\limsup _{n \rightarrow \infty}\left(\left(f-(B x)^{\prime}, x_{n}-x\right)\right) \tag{4.1}\\
& \quad+\frac{1}{2} \limsup _{n \rightarrow \infty}\left[-\left(B\left(x_{n}(T)-x(T)\right), x_{n}(T)-x(T)\right] \leq 0 .\right.
\end{align*}
$$

Applying Lemma 2.1(ii) to the sequence $\left\{x_{n}^{\prime}\right\}$, we see that there exist a subsequence $\left\{z_{n_{j}}\right\}$ and a point $z \in S_{A(\cdot, x(\cdot))}^{q}$ such that $z_{n_{j}} \rightharpoonup z$ in $L^{q}\left(V^{*}\right)$. Hence $\left(B x_{n_{j}}\right)^{\prime}=f-z_{n_{j}} \rightharpoonup f-z$. Since $\left(B x_{n}\right)^{\prime} \rightharpoonup(B x)^{\prime}$, we see $(B x)^{\prime}+z=f$, that is. $x \in S(f)$. This proves the closedness. Obviously, $S(f)$ is a bounded subset.

Now, suppose $V \hookrightarrow H$ compactly. If S is not u.s.c. from $L^{q}(H)_{w}$ to $W(0, T)_{w}$ or $L^{p}(H)$, then there exist $f_{n} \rightharpoonup f$ in $L^{q}(H), x_{n} \in S\left(f_{n}\right)$ and a neighbourhood \mathcal{V} of $S(f)$ in $W(0, T)_{w}$ or $L^{p}(H)$ with $x_{n} \notin \mathcal{V}$ for all $n>0$. Since $\left\{f_{n}\right\}$ is boundedin $L^{q}\left(V^{*}\right)$, we see that $\left\{x_{n}\right\}$ is bounded in $W(0, T)$. We may suppose(by passing to subsequences) that

$$
x_{n} \rightharpoonup x \quad \text { in } L^{p}(V), \quad x_{n}^{\prime} \rightharpoonup x^{\prime} \quad \text { in } L^{q}\left(V^{*}\right)
$$

for some $x \in W(0, T)$ and, therefore, $B x_{n} \rightharpoonup B x,\left(B x_{n}\right)^{\prime} \rightharpoonup(B x)^{\prime}$ in $L^{q}\left(V^{*}\right)$. The continuous embedding of $W(0, T)$ into $C(0, T ; H)$ implies $x(0)=x_{0}$. Since $W(0, T) \hookrightarrow L^{p}(H)$ compactly, we may suppose $x_{n} \rightarrow x$ in $L^{p}(H)$. Therefore

$$
\left(\left(f_{n}, x_{n}-x\right)\right)=\left(\left(f_{n}, x_{n}-x\right)\right)_{H} \rightarrow 0 \quad \text { as } n \rightarrow \infty .
$$

Here, $((\cdot, \cdot))_{H}$ stands for the duality pairing between $L^{p}(H)$ and $L^{q}(H)$. Let $z_{n} \in S_{A\left(\cdot, x_{n}(\cdot)\right)}^{q}$ be the functions such that $\left(B x_{n}\right)^{\prime}(t)+z_{n}(t)=f_{n}(t)$ a.e. So,
using the same method as used to obtain (4.1), we have

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left(\left(z_{n}, x_{n}-x\right)\right)=\limsup _{n \rightarrow \infty} & {\left[\left(\left(f_{n}-(B x)^{\prime}, x_{n}-x\right)\right)\right.} \\
& \left.-\frac{1}{2}\left(B x_{n}(T)-B x(T), x_{n}(T)-x(T)\right)\right] \leq 0
\end{aligned}
$$

Applying Lemma 2.1(ii) to the sequence $\left\{x_{n}^{\prime}\right\}$, we see that there exist a subsequence $\left\{z_{n_{j}}\right\}$ and $z \in S_{A(\cdot, x(\cdot))}^{q}$ such that $z_{n_{j}} \rightharpoonup z$ in $L^{q}\left(V^{*}\right)$ and $\left(\left(z_{n_{j}}, x_{n_{j}}-\right.\right.$ $x)) \rightarrow 0$. So $(B x(t))^{\prime}+z(t)=f(t)$ a.e. which implies $x \in S(f) \subset \mathcal{V}$. In case \mathcal{V} is a neighbourhood of $S(f)$ in $W(0, T)_{w}$, this has contradicted the assumption that $x_{n} \notin \mathcal{V}$ for all n. In case \mathcal{V} is a neighbourhood of $S(f)$ in $L^{p}(H)$, the compact embedding of $W(0, T)$ into $L^{p}(H)$ implies that we can suppose (by passing to a further sequence) $x_{n_{j}} \rightarrow x$ in $L^{p}(H)$ which also contradicts our assumption.

5. Perturbation problem

In this section, we consider the solvability of (1.2).
Theorem 5.1. Under the assumptions (H1)-(H4), let $V \hookrightarrow H$ compactly and, for each $f \in L^{q}(H)$, problem (1.1) has a unique solution. Suppose G : $[0, T] \times H \rightarrow 2^{H}$ is a measurable set-valued mapping with closed convex values, $v \mapsto G(t, v)$ is u.s.c. as a mapping from H into H_{w}. If there exist $d_{1} \in L^{q}(H), d_{2}, d_{3}>0$ such that either
(5.1) $\|G(t, u)\|_{H}:=\sup \left\{\|v\|_{H}: v \in G(t, u)\right\} \leq d_{1}(t) \quad$ for all $t \in[0, T], u \in H$ or

$$
\begin{equation*}
(B u, u) \geq d_{2}\|v\|_{H}^{2}, \quad\|G(t, u)\|_{H} \leq d_{3}\|u\|_{H}^{p-1}+d_{1}(t) \tag{5.2}
\end{equation*}
$$

for all $t \in[0, T], u \in H$, then, for each $x_{0} \in V$ and each $f \in L^{q}\left(V^{*}\right)$, problem (1.2) has solutions.

Proof. First, we suppose (5.1) is satisfied. Let x_{f} be the unique solution of problem (1.1) and let

$$
\begin{aligned}
F(g) & =S_{G\left(\cdot, x_{f+g}(\cdot)\right)}^{1}=\left\{z \in L^{1}(H): z(t) \in G\left(t, x_{f+g}(t)\right) \text { a.e. }\right\} \\
D & =\left\{x \in L^{q}(H):\|x(t)\|_{H} \leq d(t)\right\}
\end{aligned}
$$

Then, our assumptions imply that F is a well-defined mapping from D into itself with closed convex values.

Let $\left(g_{n}, z_{n}\right) \in \operatorname{Graph}(F)$ and $g_{n} \rightharpoonup g, z_{n} \rightharpoonup z$ in $L^{q}(H)$. By Theorem 4.1, $x_{g_{n}+f} \rightarrow x_{g+f}$ in $L^{p}(H)$ and, therefore, $x_{g_{n}+f}(t) \rightarrow x_{g+f}(t)$ in H a.e. (by passing to a subsequence). Since $G(t, \cdot)$ is u.s.c., we see

$$
w-\limsup _{n \rightarrow \infty} G\left(t, x_{g_{n}+f}(t)\right) \subset G\left(t, x_{g+f}(t)\right)
$$

for almost all t. Invoking Theorem 4.2 of [5], we have

$$
z \in w-\limsup _{n \rightarrow \infty} F\left(g_{n}\right) \subset S_{w-\lim \sup _{n \rightarrow \infty}}^{1} G\left(\cdot, x_{g_{n}+f}(\cdot)\right) \subset S_{G\left(\cdot, x_{g+f}(\cdot)\right)}^{1}=F(g)
$$

So $(g, z) \in$ Graph F, that is F is closed under the weak topology. Since D is weakly compact, we see F is weakly upper semicontinuous under the weak topology. Since D is convex, from Kakutani's fixed point theorem, it follows that F has fixed point, say g. Obviously, x_{g+f} is a solution of (1.2).

Now, suppose (5.2) is satisfied. We claim that there exists $M>0$ such that

$$
\begin{equation*}
\|x(t)\|_{H} \leq M \quad \text { for each } t \in[0, T] \text { and each solution } x \text { of (1.2). } \tag{5.3}
\end{equation*}
$$

In fact, let x be a solution to (1.2). Then there exist $g_{1} \in L^{q}\left(V^{*}\right), g_{2} \in L^{q}(H)$ such that $g_{1}(t) \in A(t, x(t)), g_{2}(t) \in G(t, x(t))$ a.e. and $(B x(t))^{\prime}+g_{1}(t)-g_{2}(t)=$ $f(t)$ a.e. Therefore, by (5.3) and Young's inequality, for each $\varepsilon>0$, we have

$$
\begin{aligned}
\frac{1}{2} \frac{d}{d t}(B x(t), x(t))^{2} & +\left(g_{1}(t), x(t)\right) \\
= & \left(g_{2}(t), x(t)\right)+(f(t), x(t)) \\
\leq & \left(d_{3}\|x(t)\|_{H}^{2 / q}+d_{1}(t)\right)\|x(t)\|_{H}+\|f(t)\|_{V^{*}}\left\|^{2}(t)\right\|_{V} \\
\leq & \frac{1}{\varepsilon^{q} q}\left(d_{3}\|x(t)\|_{H}^{2 / q}+d_{1}(t)\right)^{q} \\
& +\frac{\varepsilon^{p}}{p}\|x(t)\|_{H}^{p}+\frac{1}{\varepsilon^{q} q}\|f(t)\|_{V^{*}}^{q}+\frac{\varepsilon^{p}}{p}\|x(t)\|_{V}^{p}
\end{aligned}
$$

Noting (5.2), (H4) and (3.8), we obtain

$$
\begin{aligned}
\frac{1}{2} d_{2}\|x(t)\|_{H}^{2} & +b_{3} \int_{0}^{t}\|x(s)\|_{V}^{p} d s \\
\leq & \frac{1}{2}\left(B x_{0}, x_{0}\right)+\int_{0}^{t} b_{4}(s) d s+\frac{2^{q} d_{3}^{q}}{\varepsilon^{q} q} \int_{0}^{t}\|x(s)\|_{H}^{2} d s \\
& +\frac{1}{\varepsilon^{q} q} \int_{0}^{t}\left(2^{q} d_{1}^{q}(s)+\|f(s)\|_{V^{*}}^{q}\right)^{q} d s+\frac{\varepsilon^{p}}{p}\left(\beta^{p}+1\right) \int_{0}^{t}\|x(s)\|_{V}^{p} d s
\end{aligned}
$$

Choosing $\varepsilon=\left[\left(p b_{3}\right) /\left(\beta^{p}+1\right)\right]^{1 / p}$, and by Gronwall's Inequality, we see that a priori estimates (5.3) hold. Let

$$
\begin{array}{ll}
G_{1}(t, x)=G(t, x) & \text { if }\|x\|_{H} \leq M \\
G_{1}(t, x)=G\left(t, M x /\|x\|_{H}\right) & \text { if }\|x\|_{H}>M
\end{array}
$$

Then G_{1} is an upper semicontinuous mapping from $[0, T] \times H$ into H with closed convex values and $\left\|G_{1}(t, x)\right\|_{H} \leq d_{1}(t)+d_{3} M^{2 / q}$. Applying the conclusion obtained in the first case, we see that there exists $x \in W(0, T)$ such that

$$
B x(0)=B x_{0} \quad \text { and } \quad(B x(t))^{\prime}+A(t, x(t))-G_{1}(t, x(t)) \ni f(t) \quad \text { a.e.. }
$$

Using the same method as the one used to obtain (5.3), we can prove that $\|x(t)\|_{H} \leq M$ on $[0, T]$ and, therefore, $G_{1}(t, x(t))=G(t, x(t))$ a.e. Hence, x is a solution of (1.1).

References

[1] K. T. Andrews, K. L. Kuttler and M. Shillor, Second order evolution equations with dynamic boundary conditions, J. Math. Anal. Appl. 197 (1996), 781-795.
[2] V. Barbu and A. Favini, Existence for an implicit nonlinear differential equation, Nonlinear Anal. 32 (1998), 33-40.
[3] W. M. Bian and J. R. L. Webb, Solutions of nonlinear evolution inclusions, Nonlinear Anal. 37 (1999), 915-932.
[4] S. Migórski, On an existence result for nonlinear evolution inclusions, Proc. Edinburgh Math. Soc. (2) 39 (1996), 133-141.
[5] N. S. Papageorgiou, Convergence theorems for Banach spaces valued integrable multifunctions, Internat. J. Math. Math. Sci. 10 (1987), 433-442.

W Enming M. Bian

Department of Mathematics
University of Glasgow
Glasgow G12 8QW, UNITED KINGDOM
E-mail address: wb@maths.gla.ac.uk

[^0]: 2000 Mathematics Subject Classification. 34A09, 34A60, 35K22, 47H15.
 Key words and phrases. Implicit differential inclusions, pseudo-monotone mappings, solution set, perturbations.

 The author thanks Professor J. R. L. Webb for his help.

