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BORSUK–ULAM TYPE THEOREMS ON PRODUCT SPACES II

Zdzis law Dzedzej — Adam Idzik — Marek Izydorek

Dedicated to the memory of Juliusz P. Schauder

Abstract. A generalization of the theorem of Zhong on the product of
spheres to multivalued maps is given. We prove also a stronger result

of Bourgin–Yang type.

1. Introduction

Let Sn denote the unit sphere in the Euclidean space Rn+1. The famous
Borsuk–Ulam theorem states that for every continuous map f : Sn → Rn there
exists a point x ∈ Sn such that f(x) = f(−x) (see [1], [14]). It can be formulated
also in the equivalent form:

Theorem 1.1. Let f : Sn → Rn be an odd map, i.e. f(−x) = −f(x) for
every x ∈ Sn. Then the set f−1(0) is nonempty.

One of the most important generalizations of it is the Bourgin–Yang theorem
(see [2], [15]):

Theorem 1.2. Let f : Sn → Rk be an odd map. Then the covering dimen-
sion dim f−1(0) ≥ n− k.

In 1992 Zhong [16] extended the Borsuk–Ulam theorem for maps on the
product of two spheres.
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Theorem 1.3. Suppose that f = (f1, f2) : Sn × Sm → Rn × Rm is a con-
tinuous map satisfying:

(1) f1(−x, y) = −f1(x, y), f1(x,−y) = f1(x, y) for every (x, y) ∈ Sn × Sm,
(2) f2(−x, y) = f2(x, y), f2(x,−y) = −f1(x, y) for every (x, y) ∈ Sn × Sm.

Then there exists a point (x, y) ∈ Sn × Sm such that f(x, y) = 0.

It is easily seen that f is equivariant under a suitable action of the group
Z2 × Z2 on Rn+1 ×Rm+1.
The aim of the first part of our paper (see [5]) was to give a natural general-

ization of the theorem of Zhong to the product of q spheres with the natural free
action of the group (Z2)r, r ∈ N . In fact, we have also generalized Theorem 1.2
to that case. As the main tool we used the ideal-valued G-index defined by
Fadell and Husseini in [6]. Our proof was different from that of Zhong and gave
a more general result. In this paper we present further generalizations of the
above results to multivalued maps. Multivalued versions of the Borsuk–Ulam
type theorems were considered also by Gęba and Górniewicz [7], and Izydorek
[11], [12]. Here we extend their results to the product of spheres.

2. Preliminaries

Throughout the paper we will use the Čech cohomology with coefficients
in Z2, the group of integers mod 2. This particular cohomology is chosen because
it is defined for paracompact spaces and has the continuity property, i.e.

H∗(X,Z2) = lim←−H
∗(Xn, Z2),

where X =
⋂
n∈N Xn.

Let G be the direct sum of r copies of the group Z2, G = (Z2)r, for some
r ∈ N. Assume that G acts freely on a paracompact Hausdorff space X̃, i.e. for
g ∈ G and x̃ ∈ X̃ gx̃ = x̃ implies g = 0 in G. We call X̃ a free G-space.
It is well known that any free G-space X̃ admits an equivariant map h̃ :

X̃ → EG into a contractible free G-space EG (see [4]); any two such maps
are equivariantly homotopic (see [4, Theorems 8.12 and 6.14]). The map h̃
induces a map h : X → BG on the orbit spaces X := X̃/G and BG := EG/G

which is unique up to homotopy. Consequently we are given the unique ring
homomorphism

h∗ : H∗(BG,Z2)→ H∗(X,Z2).

For G = (Z2)r the space EG can be identified with the r-fold Cartesian
product of spheres S∞ of infinite dimension EG = S∞ × . . . × S∞ with a free
action of G defined by

gk(x1, . . . , xk, . . . , xr) = (x1, . . . ,−xk, . . . , xr),
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where gk are fixed generators of G, k = 1, . . . , r. We easily find the orbit
space BG which is the Cartesian product of r copies of infinite dimensional real
projective spaces BG = P∞ × . . .× P∞.
It is well known that H∗(P∞, Z2) is the polynomial ring Z2[x], where x

corresponds to the generator of H1(P∞, Z2) = Z2. By the Künneth formula we
obtain

H∗(BG,Z2) = Z2[x1, . . . , xr],

the ring of polynomials of r variables. Elements x1, . . . , xr correspond to gene-
rators g1, . . . , gr of H1(BG,Z2) = (Z2)r.
Let us recall the Fadell and Husseini definition of the G-index, IG(X̃), for

a G-space X̃ (see [6]) formulated for the particular case when X̃ is a free (Z2)r-
space.

Definition 2.1. The G-index of a free G-space X̃ is the ideal IG(X̃) =
kerh∗ in the ring H∗(BG,Z2) = Z2[x1, . . . , xr].

Most of the properties of the G-index are immediate consequences of the
definition. In particular, we have:

(a) (Monotonicity) If G acts freely on X̃ and Ỹ , and f̃ : X̃ → Ỹ is an
equivariant map, then IG(Ỹ ) ⊂ IG(X̃).

(b) (Dimension) If dim X̃ < m, then xt11 . . . x
tr
r ∈ IG(X̃) whenever t1+ . . .+

tr ≥ m where dim denotes the covering dimension.

An important special case of the above is:

(c) (Nontriviality) If IG(X̃) 6= Z2[x1, . . . , xr], then X̃ 6= ∅.

Let G act freely on X̃ and let Ã ⊂ X̃ be a compact G-space. Since the Čech
cohomology has the continuity property and ring Z2[x1, . . . , xr] is Noetherian
we obtain:

(d) (Continuity) There is an open neighbourhood Ũ of Ã in X̃ which is
a G-space such that IG(Ũ) = IG(Ã).

The concept of the G-index was introduced by Yang [15] for G = Z2 and next
extended to other more general settings by several authors, notably to actions
of compact Lie groups by Fadell and Husseini [6].

3. Multivalued maps

Let X, Y be two Hausdorff topological spaces. We say that ϕ : X → Y

is a multivalued map if for every point x ∈ X a nonempty subset ϕ(x) of Y is
given.
A graph of a multivalued map ϕ is the set

Γϕ := {(x, y) ∈ X × Y | y ∈ ϕ(x)}.
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An image of a subset A ⊂ X is the set ϕ(A) :=
⋃
x∈A ϕ(x).

For a subset B ⊂ Y we can define two types of a counterimage:

ϕ−1(B) := {x ∈ X | ϕ(x) ⊂ B}, ϕ−1+ (B) := {x ∈ X | ϕ(x) ∩B 6= ∅}.

They both coincide if ϕ is a singlevalued map.
One defines a composition of ϕ : X → Y and ψ : Y → Z as a map γ : X → Z

given by γ(x) = ψ(ϕ(x)).
A multivalued map ϕ : X → Y is upper semicontinuous (u.s.c.) provided

(i) for each x ∈ X ϕ(x) ⊂ Y is compact,
(ii) for every open subset V ⊂ Y the set ϕ−1(V ) is open in X.

Let us recall some basic properties of u.s.c. maps:

(1) The image of a compact set is a compact set.
(2) The graph Γϕ is a closed subset of X × Y .
(3) The composition of two u.s.c. maps is an u.s.c. map, too.

Now we recall an important class of admissible multivalued maps considered
by Górniewicz [8], [9].
We say that a space X is acyclic if H∗(X) = H∗(point).

Definition 3.1. An u.s.c. map ϕ : X → Y is acyclic if all the values ϕ(x)
are acyclic sets.

A continuous map p : X → Y is a Vietoris map if:

(i) p (X) = Y ,
(ii) p is proper (i.e. p−1(A) is compact whenever A ⊂ Y is compact),
(iii) for every y ∈ Y the set p−1(y) is acyclic.

An important feature of Vietoris maps is the famous Vietoris–Begle mapping
theorem (see [13]) which says that ifX, Y are paracompact spaces and p : X → Y

is a Vietoris map, then it induces an isomorphism on the Čech cohomology.

Definition 3.2. An u.s.c. map ϕ : X → Y is admissible provided there
exists a space Γ, and two continuous maps p : Γ→ X, q : Γ→ Y such that

(i) p is a Vietoris map,
(ii) for every x ∈ X q(p−1(x)) ⊂ ϕ(x).

We call every such a pair (p, q) of maps a selected pair for ϕ.
The class of admissible maps includes all u.s.c maps with acyclic values,

and in particular with convex values, when Y is a normed space. Moreover,
a composition of two admissible maps is also admissible (see [8], [9]). Many
results from the topological fixed point theory of singlevalued maps carry onto
this class of maps.
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A multivalued map ϕ : X → Y is a G-map if X, Y are G-spaces and
ϕ(gx) = g(ϕ(x)) for all x ∈ X and g ∈ G.
It is easily seen that each acyclic G-map admits a selected pair of G-maps

(see Remark 4.1). However, there are admissible maps, even convex-valued maps,
which are not G-maps still admitting a selected pair of G-maps.

4. Generalization of Zhong’s theorem

Let us fix a sequence of natural numbers n1, . . . , nr. For k = 1, . . . , r consider
a subspace of EG

M̃k = S∞ × . . .× S∞ × Snk−1 × S∞ × . . .× S∞

which is a G-space itself. Clearly,

Mk = P∞ × . . .× P∞ × Pnk−1 × P∞ × . . .× P∞.

It is well known that the cohomology ring H∗(Pm, Z2) is equal to the trun-
cated polynomial ring Z2[x]/(xm+1), m ≥ 0 (see [3], [4], [10], [13]). By the
Künneth formula we obtain

H∗(Mk, Z2) = Z2[x1, . . . , xr]/(x
nk
k ).

Lemma 4.1. If M̃ =
⋃r
k=1 M̃k, then x

n1
1 · . . . · xnrr ∈ IG(M̃).

Proof. Since a G-map h̃ is unique up to G-homotopy we can choose h̃ = ι̃
– the natural inclusion. Using the diagram

M̃k
eι−−−−→ EG

p

y yp
Mk

ι−−−−→ BG

we find that ι∗ : Z2[x1, . . . , xr] → Z2[x1, . . . , xr]/(x
nk
k ) maps xk onto xk, k =

1, . . . , r. Since ι∗ is a ring homomorphism

ι∗(xnkk ) = [ι
∗(xk)]nk = 0.

Therefore xnkk is an element of I
G(M̃k).

PutM =
⋃r
k=1Mk and consider the long exact sequence of the pair (M,Mk),

for k = 1, . . . , r,

· · · −→Hnk(M,Mk)
j∗−→Hnk(M) i

∗

−→Hnk(Mk)−→ · · · .

Let h̃ : M̃ → EG be the natural inclusion map and let h∗ : Z2[x1, . . . , xr] →
H∗(M) be the corresponding ring homomorphism. Now, i∗(h∗(xnkk )) = 0 be-
cause xnkk ∈ IG(M̃k). Thus, there is an element αk ∈ Hnk(M,Mk) such that
j∗(αk) = h∗(x

nk
k ).
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From the following commutative diagram

Hn1(M)⊗ . . .⊗Hnr (M) ∪−−−−→ Hnr+...+nr (M,M) = 0

j∗1⊗...⊗j
∗
r

y yj∗
Hn1(M,M1)⊗ . . .⊗Hnr (M,Mr)

∪−−−−→ Hn1+...+nr (M)

where ∪ denotes the cup-product (see [3]), we conclude

α1 ∪ . . . ∪ αr = 0, j∗1 ⊗ . . .⊗ j∗r (α1 ⊗ . . .⊗ αr) = h∗(x
n1
1 )⊗ . . .⊗ h∗(xnrr ),

and finally

0 = j∗(0) = h∗(xn11 ) ∪ . . . ∪ h∗(xnrr ) = h∗(x
n1
1 · . . . · xnrr ).

This proves Lemma 4.1. �

Let X̃ = Sn1 × . . .×Snr be a standard G-subspace of EG and let Γ̃ be a free
G-space. Consider the following diagram of G-maps

X̃ = Sn1 × . . .× Snr p←− Γ̃ q−→Rn1 × . . .×Rnr .

Proposition 4.1. If p is a Vietoris map, then there is no G-equivariant
map f̃ : Γ̃→ M̃ .

Proof. In [5] we have observed that

IG(X̃) = (xn1+11 , . . . , xnr+1r ) ⊂ Z2[x1, . . . , xr].

Since p is a Vietoris G-map on free G-spaces, and the group G is finite, it is easy
to check that the induced map on orbit spaces is also a Vietoris map. Therefore it
induces an isomorphism of cohomology algebras (with coefficients in Z2). Hence

IG(Γ̃) = IG(X̃).

Suppose that there exists f̃ : Γ̃ G−→ M̃ . By the monotonicity property of the
G-index it follows IG(M̃) ⊂ IG(Γ̃). But xn11 . . . xnrr 6∈ IG(Γ̃). This contradicts
Lemma 4.1. �

Let Rn1 × . . .×Rnr be a representation of G = (Z2)r with the action given
by gk(x1, . . . , xk, . . . , xr) = (x1, . . . ,−xk, . . . , xr), where gk are generators of G
as before (k = 1, . . . , r). In [5] we have proved the following

Theorem 4.1. If f̃ : Sn1 × . . . × Snr → Rn1 × . . . × Rnr is a G-map, then
f̃−1(0) 6= ∅.

A multivalued version of it is the following
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Theorem 4.2. If an admissible map ϕ̃ : Sn1 × . . .× Snr → Rn1 × . . .×Rnr
has a selected pair (p, q) of the form

Sn1 × · · · × Snr p←− Γ̃ q−→Rn1 × . . .×Rnr

where p and q are G-maps, then ϕ̃−1(0) = {x | 0 ∈ ϕ(x)} 6= ∅.

Proof. It is enough to proof that q−1(0) 6= ∅. Therefore we can proceed
the same lines as in the proof of Theorem 3.1 in [5]. The difference is that we
use our Proposition 4.1 instead of Proposition 3.1 in [5]. �

Let d1, . . . , dr be natural numbers and let Sn1+d1 × . . . × Snr+dr be the
standard G-subspace of EG.

Theorem 4.3. If ϕ̃ : Sn1+d1 × . . . × Snr+dr → Rn1 × . . . × Rnr is an
admissible map with a selected pair (p, q) of G-maps, then

xd11 · . . . · xdrr 6∈ IG({x | 0 ∈ ϕ̃(x)}).

Proof. Observe that p induces a Vietoris map on orbit spaces, therefore the
cohomology algebras are isomorphic. Thus, by repeating the algebraic arguments
in the proof of Theorem 3.2 in [5], we obtain xd1 · . . . · xdr 6∈ IG(q−1(0)).
But on the other hand A = {x | 0 ∈ ϕ(x)} = p(q−1(0)) and therefore

IG(A) ⊂ IG(q−1(0)). This ends the proof. �

Corollary 4.1. Let ϕ̃ : Sn1+d1 × . . . × Snr+dr → Rn1 × . . . × Rnr be
an admissible map with a selected pair (p, q) of G-maps. Then the covering
dimension

dim{x | 0 ∈ ϕ̃(x)} ≥ d1 + . . .+ dr.

Proof. It is an immediate consequence of the dimension property of the
G-index and Theorem 4.3. �

Remark 4.1. If X, Y are G-spaces and ϕ : X → Y is an acyclic G-map,
then the projections pϕ : Γϕ → X, qϕ : Γϕ → Y define a natural selected pair
of G-maps. Therefore Theorems 4.1 and 4.2 hold true for acyclic G-maps and
their compositions.
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