BORSUK-ULAM TYPE THEOREMS ON PRODUCT SPACES II

Zdziseaw Dzedzej - Adam Idzik - Marek Izydorek

Dedicated to the memory of Juliusz P. Schauder

Abstract. A generalization of the theorem of Zhong on the product of spheres to multivalued maps is given. We prove also a stronger result of Bourgin-Yang type.

1. Introduction

Let S^{n} denote the unit sphere in the Euclidean space R^{n+1}. The famous Borsuk-Ulam theorem states that for every continuous map $f: S^{n} \rightarrow R^{n}$ there exists a point $x \in S^{n}$ such that $f(x)=f(-x)$ (see [1], [14]). It can be formulated also in the equivalent form:

Theorem 1.1. Let $f: S^{n} \rightarrow R^{n}$ be an odd map, i.e. $f(-x)=-f(x)$ for every $x \in S^{n}$. Then the set $f^{-1}(0)$ is nonempty.

One of the most important generalizations of it is the Bourgin-Yang theorem (see [2], [15]):

Theorem 1.2. Let $f: S^{n} \rightarrow R^{k}$ be an odd map. Then the covering dimension $\operatorname{dim} f^{-1}(0) \geq n-k$.

In 1992 Zhong [16] extended the Borsuk-Ulam theorem for maps on the product of two spheres.

1991 Mathematics Subject Classification. Primary 47H04, 52A20, 55M20; Secondary 05C35. Key words and phrases. Borsuk-Ulam theorem, G-action.
The research reported in this paper was supported by the KBN Grant No. 2 P03A 01711.

THEOREM 1.3. Suppose that $f=\left(f_{1}, f_{2}\right): S^{n} \times S^{m} \rightarrow R^{n} \times R^{m}$ is a continuous map satisfying:
(1) $f_{1}(-x, y)=-f_{1}(x, y), f_{1}(x,-y)=f_{1}(x, y)$ for every $(x, y) \in S^{n} \times S^{m}$,
(2) $f_{2}(-x, y)=f_{2}(x, y), f_{2}(x,-y)=-f_{1}(x, y)$ for every $(x, y) \in S^{n} \times S^{m}$. Then there exists a point $(x, y) \in S^{n} \times S^{m}$ such that $f(x, y)=0$.

It is easily seen that f is equivariant under a suitable action of the group $Z_{2} \times Z_{2}$ on $R^{n+1} \times R^{m+1}$.

The aim of the first part of our paper (see [5]) was to give a natural generalization of the theorem of Zhong to the product of q spheres with the natural free action of the group $\left(Z_{2}\right)^{r}, r \in N$. In fact, we have also generalized Theorem 1.2 to that case. As the main tool we used the ideal-valued G-index defined by Fadell and Husseini in [6]. Our proof was different from that of Zhong and gave a more general result. In this paper we present further generalizations of the above results to multivalued maps. Multivalued versions of the Borsuk-Ulam type theorems were considered also by Gęba and Górniewicz [7], and Izydorek [11], [12]. Here we extend their results to the product of spheres.

2. Preliminaries

Throughout the paper we will use the Čech cohomology with coefficients in Z_{2}, the group of integers mod 2. This particular cohomology is chosen because it is defined for paracompact spaces and has the continuity property, i.e.

$$
H^{*}\left(X, Z_{2}\right)=\lim _{\rightleftarrows} H^{*}\left(X_{n}, Z_{2}\right)
$$

where $X=\bigcap_{n \in N} X_{n}$.
Let G be the direct sum of r copies of the group $Z_{2}, G=\left(Z_{2}\right)^{r}$, for some $r \in N$. Assume that G acts freely on a paracompact Hausdorff space \widetilde{X}, i.e. for $g \in G$ and $\widetilde{x} \in \widetilde{X} g \widetilde{x}=\widetilde{x}$ implies $g=0$ in G. We call \widetilde{X} a free G-space.

It is well known that any free G-space \widetilde{X} admits an equivariant map \widetilde{h} : $\widetilde{X} \rightarrow E G$ into a contractible free G-space $E G$ (see [4]); any two such maps are equivariantly homotopic (see [4, Theorems 8.12 and 6.14]). The map \widetilde{h} induces a map $h: X \rightarrow B G$ on the orbit spaces $X:=\widetilde{X} / G$ and $B G:=E G / G$ which is unique up to homotopy. Consequently we are given the unique ring homomorphism

$$
h^{*}: H^{*}\left(B G, Z_{2}\right) \rightarrow H^{*}\left(X, Z_{2}\right)
$$

For $G=\left(Z_{2}\right)^{r}$ the space $E G$ can be identified with the r-fold Cartesian product of spheres S^{∞} of infinite dimension $E G=S^{\infty} \times \ldots \times S^{\infty}$ with a free action of G defined by

$$
g_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{r}\right)=\left(x_{1}, \ldots,-x_{k}, \ldots, x_{r}\right)
$$

where g_{k} are fixed generators of $G, k=1, \ldots, r$. We easily find the orbit space $B G$ which is the Cartesian product of r copies of infinite dimensional real projective spaces $B G=P^{\infty} \times \ldots \times P^{\infty}$.

It is well known that $H^{*}\left(P^{\infty}, Z_{2}\right)$ is the polynomial ring $Z_{2}[x]$, where x corresponds to the generator of $H^{1}\left(P^{\infty}, Z_{2}\right)=Z_{2}$. By the Künneth formula we obtain

$$
H^{*}\left(B G, Z_{2}\right)=Z_{2}\left[x_{1}, \ldots, x_{r}\right]
$$

the ring of polynomials of r variables. Elements x_{1}, \ldots, x_{r} correspond to generators g_{1}, \ldots, g_{r} of $H^{1}\left(B G, Z_{2}\right)=\left(Z_{2}\right)^{r}$.

Let us recall the Fadell and Husseini definition of the G-index, $I^{G}(\widetilde{X})$, for a G-space \tilde{X} (see [6]) formulated for the particular case when \widetilde{X} is a free $\left(Z_{2}\right)^{r}$ space.

Definition 2.1. The G-index of a free G-space \widetilde{X} is the ideal $I^{G}(\widetilde{X})=$ ker h^{*} in the ring $H^{*}\left(B G, Z_{2}\right)=Z_{2}\left[x_{1}, \ldots, x_{r}\right]$.

Most of the properties of the G-index are immediate consequences of the definition. In particular, we have:
(a) (Monotonicity) If G acts freely on \widetilde{X} and \widetilde{Y}, and $\tilde{f}: \widetilde{X} \rightarrow \widetilde{Y}$ is an equivariant map, then $I^{G}(\widetilde{Y}) \subset I^{G}(\widetilde{X})$.
(b) (Dimension) If $\operatorname{dim} \widetilde{X}<m$, then $x_{1}^{t_{1}} \ldots x_{r}^{t_{r}} \in I^{G}(\widetilde{X})$ whenever $t_{1}+\ldots+$ $t_{r} \geq m$ where dim denotes the covering dimension.
An important special case of the above is:
(c) (Nontriviality) If $I^{G}(\widetilde{X}) \neq Z_{2}\left[x_{1}, \ldots, x_{r}\right]$, then $\widetilde{X} \neq \emptyset$.

Let G act freely on \widetilde{X} and let $\widetilde{A} \subset \widetilde{X}$ be a compact G-space. Since the Čech cohomology has the continuity property and ring $Z_{2}\left[x_{1}, \ldots, x_{r}\right]$ is Noetherian we obtain:
(d) (Continuity) There is an open neighbourhood \widetilde{U} of \widetilde{A} in \widetilde{X} which is a G-space such that $I^{G}(\widetilde{U})=I^{G}(\widetilde{A})$.
The concept of the G-index was introduced by Yang [15] for $G=Z_{2}$ and next extended to other more general settings by several authors, notably to actions of compact Lie groups by Fadell and Husseini [6].

3. Multivalued maps

Let X, Y be two Hausdorff topological spaces. We say that $\varphi: X \rightarrow Y$ is a multivalued map if for every point $x \in X$ a nonempty subset $\varphi(x)$ of Y is given.

A graph of a multivalued map φ is the set

$$
\Gamma_{\varphi}:=\{(x, y) \in X \times Y \mid y \in \varphi(x)\}
$$

An image of a subset $A \subset X$ is the set $\varphi(A):=\bigcup_{x \in A} \varphi(x)$.
For a subset $B \subset Y$ we can define two types of a counterimage:

$$
\varphi^{-1}(B):=\{x \in X \mid \varphi(x) \subset B\}, \quad \varphi_{+}^{-1}(B):=\{x \in X \mid \varphi(x) \cap B \neq \emptyset\}
$$

They both coincide if φ is a singlevalued map.
One defines a composition of $\varphi: X \rightarrow Y$ and $\psi: Y \rightarrow Z$ as a map $\gamma: X \rightarrow Z$ given by $\gamma(x)=\psi(\varphi(x))$.

A multivalued map $\varphi: X \rightarrow Y$ is upper semicontinuous (u.s.c.) provided
(i) for each $x \in X \varphi(x) \subset Y$ is compact,
(ii) for every open subset $V \subset Y$ the set $\varphi^{-1}(V)$ is open in X.

Let us recall some basic properties of u.s.c. maps:
(1) The image of a compact set is a compact set.
(2) The graph Γ_{φ} is a closed subset of $X \times Y$.
(3) The composition of two u.s.c. maps is an u.s.c. map, too.

Now we recall an important class of admissible multivalued maps considered by Górniewicz [8], [9].

We say that a space X is acyclic if $H^{*}(X)=H^{*}$ (point).
Definition 3.1. An u.s.c. $\operatorname{map} \varphi: X \rightarrow Y$ is acyclic if all the values $\varphi(x)$ are acyclic sets.

A continuous map $p: X \rightarrow Y$ is a Vietoris map if:
(i) $p(X)=Y$,
(ii) p is proper (i.e. $p^{-1}(A)$ is compact whenever $A \subset Y$ is compact),
(iii) for every $y \in Y$ the set $p^{-1}(y)$ is acyclic.

An important feature of Vietoris maps is the famous Vietoris-Begle mapping theorem (see [13]) which says that if X, Y are paracompact spaces and $p: X \rightarrow Y$ is a Vietoris map, then it induces an isomorphism on the Čech cohomology.

Definition 3.2. An u.s.c. map $\varphi: X \rightarrow Y$ is admissible provided there exists a space Γ, and two continuous maps $p: \Gamma \rightarrow X, q: \Gamma \rightarrow Y$ such that
(i) p is a Vietoris map,
(ii) for every $x \in X q\left(p^{-1}(x)\right) \subset \varphi(x)$.

We call every such a pair (p, q) of maps a selected pair for φ.
The class of admissible maps includes all u.s.c maps with acyclic values, and in particular with convex values, when Y is a normed space. Moreover, a composition of two admissible maps is also admissible (see [8], [9]). Many results from the topological fixed point theory of singlevalued maps carry onto this class of maps.

A multivalued map $\varphi: X \rightarrow Y$ is a G-map if X, Y are G-spaces and $\varphi(g x)=g(\varphi(x))$ for all $x \in X$ and $g \in G$.

It is easily seen that each acyclic G-map admits a selected pair of G-maps (see Remark 4.1). However, there are admissible maps, even convex-valued maps, which are not G-maps still admitting a selected pair of G-maps.

4. Generalization of Zhong's theorem

Let us fix a sequence of natural numbers n_{1}, \ldots, n_{r}. For $k=1, \ldots, r$ consider a subspace of $E G$

$$
\widetilde{M}_{k}=S^{\infty} \times \ldots \times S^{\infty} \times S^{n_{k}-1} \times S^{\infty} \times \ldots \times S^{\infty}
$$

which is a G-space itself. Clearly,

$$
M_{k}=P^{\infty} \times \ldots \times P^{\infty} \times P^{n_{k}-1} \times P^{\infty} \times \ldots \times P^{\infty}
$$

It is well known that the cohomology ring $H^{*}\left(P^{m}, Z_{2}\right)$ is equal to the truncated polynomial ring $Z_{2}[x] /\left(x^{m+1}\right), m \geq 0$ (see [3], [4], [10], [13]). By the Künneth formula we obtain

$$
H^{*}\left(M_{k}, Z_{2}\right)=Z_{2}\left[x_{1}, \ldots, x_{r}\right] /\left(x_{k}^{n_{k}}\right)
$$

Lemma 4.1. If $\widetilde{M}=\bigcup_{k=1}^{r} \widetilde{M}_{k}$, then $x_{1}^{n_{1}} \cdot \ldots x_{r}^{n_{r}} \in I^{G}(\widetilde{M})$.
Proof. Since a G-map \widetilde{h} is unique up to G-homotopy we can choose $\widetilde{h}=\widetilde{\iota}$ - the natural inclusion. Using the diagram

we find that $\iota^{*}: Z_{2}\left[x_{1}, \ldots, x_{r}\right] \rightarrow Z_{2}\left[x_{1}, \ldots, x_{r}\right] /\left(x_{k}^{n_{k}}\right)$ maps x_{k} onto $x_{k}, k=$ $1, \ldots, r$. Since ι^{*} is a ring homomorphism

$$
\iota^{*}\left(x_{k}^{n_{k}}\right)=\left[\iota^{*}\left(x_{k}\right)\right]^{n_{k}}=0
$$

Therefore $x_{k}^{n_{k}}$ is an element of $I^{G}\left(\widetilde{M}_{k}\right)$.
Put $M=\bigcup_{k=1}^{r} M_{k}$ and consider the long exact sequence of the pair $\left(M, M_{k}\right)$, for $k=1, \ldots, r$,

$$
\cdots \longrightarrow H^{n_{k}}\left(M, M_{k}\right) \xrightarrow{j^{*}} H^{n_{k}}(M) \xrightarrow{i^{*}} H^{n_{k}}\left(M_{k}\right) \longrightarrow \cdots .
$$

Let $\widetilde{h}: \widetilde{M} \rightarrow E G$ be the natural inclusion map and let $h^{*}: Z_{2}\left[x_{1}, \ldots, x_{r}\right] \rightarrow$ $H^{*}(M)$ be the corresponding ring homomorphism. Now, $i^{*}\left(h^{*}\left(x_{k}^{n_{k}}\right)\right)=0$ because $x_{k}^{n_{k}} \in I^{G}\left(\widetilde{M}_{k}\right)$. Thus, there is an element $\alpha_{k} \in H^{n_{k}}\left(M, M_{k}\right)$ such that $j^{*}\left(\alpha_{k}\right)=h^{*}\left(x_{k}^{n_{k}}\right)$.

From the following commutative diagram

where \cup denotes the cup-product (see [3]), we conclude

$$
\alpha_{1} \cup \ldots \cup \alpha_{r}=0, \quad j_{1}^{*} \otimes \ldots \otimes j_{r}^{*}\left(\alpha_{1} \otimes \ldots \otimes \alpha_{r}\right)=h^{*}\left(x_{1}^{n_{1}}\right) \otimes \ldots \otimes h^{*}\left(x_{r}^{n_{r}}\right)
$$

and finally

$$
0=j^{*}(0)=h^{*}\left(x_{1}^{n_{1}}\right) \cup \ldots \cup h^{*}\left(x_{r}^{n_{r}}\right)=h^{*}\left(x_{1}^{n_{1}} \cdot \ldots \cdot x_{r}^{n_{r}}\right) .
$$

This proves Lemma 4.1.
Let $\widetilde{X}=S^{n_{1}} \times \ldots \times S^{n_{r}}$ be a standard G-subspace of $E G$ and let $\widetilde{\Gamma}$ be a free G-space. Consider the following diagram of G-maps

$$
\widetilde{X}=S^{n_{1}} \times \ldots \times S^{n_{r}} \stackrel{p}{\longleftarrow} \widetilde{\Gamma} \xrightarrow{q} R^{n_{1}} \times \ldots \times R^{n_{r}}
$$

Proposition 4.1. If p is a Vietoris map, then there is no G-equivariant $\operatorname{map} \widetilde{f}: \widetilde{\Gamma} \rightarrow \widetilde{M}$.

Proof. In [5] we have observed that

$$
I^{G}(\widetilde{X})=\left(x_{1}^{n_{1}+1}, \ldots, x_{r}^{n_{r}+1}\right) \subset Z_{2}\left[x_{1}, \ldots, x_{r}\right] .
$$

Since p is a Vietoris G-map on free G-spaces, and the group G is finite, it is easy to check that the induced map on orbit spaces is also a Vietoris map. Therefore it induces an isomorphism of cohomology algebras (with coefficients in Z_{2}). Hence

$$
I^{G}(\widetilde{\Gamma})=I^{G}(\widetilde{X})
$$

Suppose that there exists $\widetilde{f}: \widetilde{\Gamma} \xrightarrow{G} \widetilde{M}$. By the monotonicity property of the G-index it follows $I^{G}(\widetilde{M}) \subset I^{G}(\widetilde{\Gamma})$. But $x_{1}^{n_{1}} \ldots x_{r}^{n_{r}} \notin I^{G}(\widetilde{\Gamma})$. This contradicts Lemma 4.1.

Let $R^{n_{1}} \times \ldots \times R^{n_{r}}$ be a representation of $G=\left(Z_{2}\right)^{r}$ with the action given by $g_{k}\left(x_{1}, \ldots, x_{k}, \ldots, x_{r}\right)=\left(x_{1}, \ldots,-x_{k}, \ldots, x_{r}\right)$, where g_{k} are generators of G as before $(k=1, \ldots, r)$. In [5] we have proved the following

TheOrem 4.1. If $\tilde{f}: S^{n_{1}} \times \ldots \times S^{n_{r}} \rightarrow R^{n_{1}} \times \ldots \times R^{n_{r}}$ is a G-map, then $\tilde{f}^{-1}(0) \neq \emptyset$.

A multivalued version of it is the following

Theorem 4.2. If an admissible map $\widetilde{\varphi}: S^{n_{1}} \times \ldots \times S^{n_{r}} \rightarrow R^{n_{1}} \times \ldots \times R^{n_{r}}$ has a selected pair (p, q) of the form

$$
S^{n_{1}} \times \cdots \times S^{n_{r}} \stackrel{p}{\leftrightarrows} \widetilde{\Gamma} \xrightarrow{q} R^{n_{1}} \times \ldots \times R^{n_{r}}
$$

where p and q are G-maps, then $\widetilde{\varphi}^{-1}(0)=\{x \mid 0 \in \varphi(x)\} \neq \emptyset$.
Proof. It is enough to proof that $q^{-1}(0) \neq \emptyset$. Therefore we can proceed the same lines as in the proof of Theorem 3.1 in [5]. The difference is that we use our Proposition 4.1 instead of Proposition 3.1 in [5].

Let d_{1}, \ldots, d_{r} be natural numbers and let $S^{n_{1}+d_{1}} \times \ldots \times S^{n_{r}+d_{r}}$ be the standard G-subspace of $E G$.

ThEOREM 4.3. If $\widetilde{\varphi}: S^{n_{1}+d_{1}} \times \ldots \times S^{n_{r}+d_{r}} \rightarrow R^{n_{1}} \times \ldots \times R^{n_{r}}$ is an admissible map with a selected pair (p, q) of G-maps, then

$$
x_{1}^{d_{1}} \cdot \ldots \cdot x_{r}^{d_{r}} \notin I^{G}(\{x \mid 0 \in \widetilde{\varphi}(x)\}) .
$$

Proof. Observe that p induces a Vietoris map on orbit spaces, therefore the cohomology algebras are isomorphic. Thus, by repeating the algebraic arguments in the proof of Theorem 3.2 in [5], we obtain $x^{d_{1}} \cdot \ldots \cdot x^{d_{r}} \notin I^{G}\left(q^{-1}(0)\right)$.

But on the other hand $A=\{x \mid 0 \in \varphi(x)\}=p\left(q^{-1}(0)\right)$ and therefore $I^{G}(A) \subset I^{G}\left(q^{-1}(0)\right)$. This ends the proof.

Corollary 4.1. Let $\widetilde{\varphi}: S^{n_{1}+d_{1}} \times \ldots \times S^{n_{r}+d_{r}} \rightarrow R^{n_{1}} \times \ldots \times R^{n_{r}}$ be an admissible map with a selected pair (p, q) of G-maps. Then the covering dimension

$$
\operatorname{dim}\{x \mid 0 \in \widetilde{\varphi}(x)\} \geq d_{1}+\ldots+d_{r}
$$

Proof. It is an immediate consequence of the dimension property of the G-index and Theorem 4.3.

Remark 4.1. If X, Y are G-spaces and $\varphi: X \rightarrow Y$ is an acyclic G-map, then the projections $p_{\varphi}: \Gamma_{\varphi} \rightarrow X, q_{\varphi}: \Gamma_{\varphi} \rightarrow Y$ define a natural selected pair of G-maps. Therefore Theorems 4.1 and 4.2 hold true for acyclic G-maps and their compositions.

References

[1] K. Borsuk, Drei Sätze über die n-dimensionale euklidische Sphäre, Fund. Math. 20 (1933), 177-190.
[2] D. G. Bourgin, On some separation and mapping theorems, Comment. Math. Helv. 29 (1955), 199-214.
[3] A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1972.
[4] T. Dieck, Transformation Groups, Walter de Gruyter Studies in Math., vol. 8, Berlin New York, 1987.
[5] Z. Dzedzej, A. Idzik and M. Izydorek, Borsuk-Ulam type theorems on product spaces (to appear).
[6] E. Fadell and S. Husseini, An ideal-valued cohomological index theory with applications to Borsuk-Ulam and Bourgin-Yang theorems, Ergodic Theory Dynam. Systems 8* (1988), 73-85.
[7] K. Gba and L. Grniewicz, On the Bourgin-Yang theorem for multivalued maps I, Bull. Polish Sci. Math. 34 (1986), 315-322.
[8] L. Górniewicz, Homological methods in fixed point theory of multivalued maps, Dissertationes Math. 129 (1976), 1-71.
[9] , Topological Fixed Point Theory for Multivalued Mappings, Kluwer, Amsterdam, 1999.
[10] Wu Yi Hsiang, Cohomology Theory of Topological Transformation Groups, Ergebnisse der Mathematik und ihrer Grenzgebierte, vol. 85, Springer-Verlag, Berlin Heidelberg New York, 1975.
[11] M. Izydorek, Remarks on Borsuk-Ulam theorem for multivalued maps, Bull. Polish Acad. Sci. Math. 15 (1987), 501-504.
[12] M. Izydorek, Nonsymmetric version of Bourgin-Yang theorem for multivalued maps and free Z_{p}-actions, J. Math. Anal. Appl. 137 (1989), 349-353.
[13] E. H. Spanier, Algebraic Topology, McGraw Hill, New York, 1966.
[14] H. Steinlein, Borsuk's antipodal theorem and its generalizations and applications: A survey, Meth. Topol. en Anal. Non Lineaire, Sém. Math. Sup. 95 (1985), Presses Univ. Montréal, Montreal, Quebec, 166-235.
[15] C. T. Yang, On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobô and Dyson I, Ann. of Math. 60 (1954), 262-282.
[16] C. Zhong, The Borsuk-Ulam theorem on product space, Fixed point theory and its applications (K. K. Tan, ed.), World Scientific, Singapore, New Yersey, London, Hong Kong, 1992.

Zdzis£aw Dzedzej
Institute of Mathematics
Gdańsk University
Wita Stwosza 57
80-952 Gdańsk, POLAND
E-mail address: zdzedzej@ksinet.univ.gda.pl
Adam Idzik
Institute of Computer Science
Polish Academy of Sciences
Ordona 21
01-237 Warsaw, POLAND
E-mail address: aidzik@ipipan.waw.pl

Marek Izydorek
Department of Mathematics
Technical University of Gdańsk
G. Narutowicza $11 / 12$

80-952 Gdańsk, POLAND
E-mail address: izydorek@mifgate.pg.gda.pl
TMNA: Volume $14-1999-\mathrm{N}^{\mathrm{o}} 2$

