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BRAID INVARIANTS AND INSTABILITY OF PERIODIC
SOLUTIONS OF TIME-PERIODIC 2-DIMENSIONAL ODE’S

Takashi Matsuoka

Dedicated to the memory of Juliusz P. Schauder

Abstract. We present a topological approach to the problem of the exis-
tence of unstable periodic solutions for 2-dimensional, time-periodic ordi-
nary differential equations. This approach makes use of the braid invariant,
which is one of the topological invariants for periodic solutions exploiting
a concept in the low-dimensional topology. Using the braid invariant, an
equivalence relation on the set of periodic solutions is defined. We prove
that any equivalence class consisting of at least two solutions must contain
an unstable one, except one particular equivalence class. Also, it is shown
that more than half of the equivalence classes contain unstable solutions.

1. Introduction

Consider a 2-dimensional ordinary differential equation of the form:

(1)
dx

dt
= f(x, t),

where f : R
2 × R → R

2 is a Carathéodory map (i.e., f is continuous in x for
almost all t and is measurable in t for each x) which is periodic with respect to t
with period ω > 0. Assume that there exists a unique solution x(t) of the initial-
value problem x(0) = x0 for each point x0 ∈ R

2 and this solution is defined
on an interval containing [0, ω]. We shall study the problem of the existence of
unstable periodic solutions of (1). The traditional approach to this problem is to
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make the linear analysis of the related variational equation, and it is known that
in some sense, the linear analysis in the instability case is easier than that in the
stability case (see e.g. [1], [2]). In this paper, we present a purely topological
approach to the problem. This approach makes use of the braid invariant, which
is one of the topological invariants for periodic solutions exploiting a concept
in the low-dimensional topology (see [4], [9] for a survey). We shall only treat
periodic solutions having period ω in order to make the argument simpler.

For any solution x(t) of (1), the set {(x(t), t) | 0 ≤ t ≤ ω} becomes a simple
arc in R

2 × [0, ω] which connects a point on the plane R
2 ×{0} to a point on the

plane R
2×{ω}. Thus, given a collection of finitely many ω-periodic solutions, we

obtain a disjoint union of simple arcs which satisfies the condition to be a braid.
The braid defined in this way provides one of the topological characterizations
of periodic solutions.

Assume that there are only finitely many ω-periodic solutions. Then the
set of all ω-periodic solutions determines a braid. Using this braid, one can
introduce an equivalence relation on the set of ω-periodic solutions, under which
two solutions are equivalent if the simple arcs corresponding to them have the
same linking behavior toward any other arc. We prove that any equivalence
class consisting of at least two solutions must contain an unstable one, except
one particular equivalence class called the “peripheral” equivalence class. Also,
when an equivalence class is not peripheral and consists of a single solution,
a sufficient condition on the linking behavior of this solution is given for its
instability. Furthermore, we prove that more than half of the non-peripheral
equivalence classes have an unstable solution.

The content of this paper is closely related to that of a previous paper [8] of
the author. The paper [8] considers an orientation-preserving embedding of the
2-dimensional closed disk into itself, and includes some results on the existence
of unstable fixed points for such embeddings. Consider the case where the initial-
values of the ω-periodic solutions of (1) are contained in a diskD which is mapped
into itself under the translation operator U : R

2 → R
2 associated with (1). Then

we can apply the results in [8] mentioned above to the embedding U : D → D,
and we obtain several results on the existence of unstable ω-periodic solutions
of (1). These results are slightly stronger than those given here, since they are
valid for all equivalence classes including the peripheral one. In this sense, the
present paper can be regarded as a generalization of [8] to the general case where
U may not have an invariant disk. The proofs of the results in this paper heavily
depend on results and arguments in [8], and will be given in Section 7 after some
preparations on the proofs in Sections 5 and 6.

I would like to thank Professor Jan Andres for many valuable comments.
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2. Braids of periodic solutions

Here we shall define a braid for a given set of ω-periodic solutions. For general
references on braid theory, see, e.g., [3], [6]. Let n be a positive integer. We call
a subset B of the product R

2× [0, ω] an n-braid if the following conditions hold:

(i) B is a union of mutually disjoint n simple arcs.
(ii) Each arc joins a point (x, 0) ∈ S × {0} to (τ(x), ω) ∈ S × {ω}, where

S is a set of n distinct points on the plane R
2 and τ is a permutation

defined on S.
(iii) Each arc intersects every plane R

2 × {t}, 0 ≤ t ≤ ω, exactly once.

These arcs are called the strings in B.
For an ω-periodic solution ξ of (1), let str(ξ) denote the simple arc in R

2 ×
[0, ω] defined by

str(ξ) = {(ξ(t), t) | 0 ≤ t ≤ ω}.
We call this arc the string corresponding to ξ.

In this paper, we shall always assume that the equation (1) has only finitely
many ω-periodic solutions.

Definition 1. Let P be a set of ω-periodic solutions of (1), and n the car-
dinality of P . Since the strings corresponding to the solutions in P are mutually
disjoint, the union

⋃
ξ∈P str(ξ) of these strings forms an n-braid denoted by b(P).

We call it the braid of P .

We note that for the braid b(P), the set S in the condition (ii) is given by
S = {ξ(0) | ξ ∈ P} and τ is the identity permutation.

3. An equivalence relation on periodic solutions

In this section, we shall introduce an equivalence relation on the set of ω-
periodic solutions. We first need the notion of a “block” in a braid:

Definition 2. Let B be a braid. A union B0 of strings in B is called a block
in B if there is a subset T of R

2 × [0, ω] such that

(i) T is the image of some embedding Λ : D × [0, ω] → R
2 × [0, ω], where

D is a closed disk, with Λ(D × {t}) ⊂ R
2 × {t} for each t.

(ii) If we denote by Tt the t-slice of T , i.e. the set {x ∈ R
2 | (x, t) ∈ T },

then we have T0 = Tω.
(iii) B0 = B ∩ T .

We call T an isolating tube for B0 with respect to B.

Example 1. It is clear that B is a block in itself, and any string in B is
also a block in B. We give non-trivial examples in Figures 1 and 2. Let B be
the braid consisting of three strings s1, s2, s3 as in Figure 1. Then the union
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B0 = s1∪s2 is a block in B, and the set T drawn here gives an isolating tube for
B0. On the other hand, s1∪s3 is not a block, Indeed, if it were a block, then the
string s2 winds around s1 and s3 in the same number of times. However, these
winding numbers are 1 and 0, respectively, and hence we get a contradiction.
Consider next the braid B as in Figure 2. Then s1 ∪ s2 and s4 ∪ s5 are blocks in
B with isolating tubes T , T ′, respectively. Also, s3 ∪ s4 ∪ s5 is clearly a block.
Furthermore, we can find an isolating block for the union s2 ∪ s3 ∪ s4 ∪ s5, and
so this union is a block.

Figure 1 Figure 2

Let Pω denote the set of ω-periodic solutions.

Definition 3. Two ω-periodic solutions ξ1 and ξ2 are said to be equivalent
if the braid b({ξ1, ξ2}) = str(ξ1) ∪ str(ξ2) forms a block in b(Pω).

The choice of the term “equivalent” in this definition is reasonable as the
following proposition shows:

Proposition 1. The relation on Pω defined above is an equivalence relation.

Example 2. (a) Suppose the equation (1) has three ω-periodic solutions ξi,
i = 1, 2, 3 and the braid b(Pω) is as in Figure 1, where si = str(ξi). Then ξ1 and
ξ2 are equivalent, since b({ξ1, ξ2}) = s1 ∪ s2 is a block in B = b(Pω). However,
ξ3 is not equivalent to ξ1, since s1 ∪ s3 is not a block. Thus, there are two
equivalence classes {ξ1, ξ2}, {ξ3}.

(b) Secondly, suppose (1) has five ω-periodic solutions ξi, i = 1, . . . , 5, with
the braid b(Pω) = s1 ∪ . . . ∪ s5 as in Figure 2, where si = str(ξi). Then,
considering winding numbers also in this case, we see easily that there are three
equivalence classes {ξ1, ξ2}, {ξ3}, and {ξ4, ξ5}.

It should be noted that there is one exceptional equivalence class for which
our main results, which will be stated in the next section, are not valid. This is
the equivalence class consisting of the “peripheral” solutions defined below:
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Definition 4. An ω-periodic solution ξ is said to be peripheral if one of the
following conditions holds:

1. Pω = {ξ}, i.e., there are no other ω-periodic solutions.
2. There are at least two ω-periodic solutions and b(Pω − {ξ}) is a block

in b(Pω).

Proposition 2. The set of peripheral solutions forms an equivalence class.

We call this class consisting of all the peripheral solutions the peripheral
equivalence class, and any other equivalence class a non-peripheral equivalence
class. The equation (1) may not have any peripheral solution. In this case, the
peripheral equivalence class is an empty set.

Example 3. If Pω is as in Example 2(a), then ξ3 is peripheral, since b(Pω −
{ξ3}) = s1 ∪ s2 is a block. Therefore, {ξ3} is the peripheral equivalence class.
Also, if Pω is as in Example 2(b), then {ξ1, ξ2} is the peripheral equivalence
class, since b(Pω − {ξ1}) = s2 ∪ s3 ∪ s4 ∪ s5 is a block and this means that ξ1 is
peripheral.

Propositions 1 and 2 will be proved in Section 7.

4. Existence of unstable fixed points

In this section, we shall state our main results, which are concerned with
the existence of unstable ω-periodic solutions. First, we recall the definition of
a stable solution (cf. [7]).

Definition 5. A solution x0 of (1) defined for 0 ≤ t < ∞ is stable (or
Ljapunov stable) if for any ε > 0, there is a δ > 0 such that every solution x(t)
with |x(0)−x0(0)| < δ is defined for all 0 ≤ t <∞ and satisfies |x(t)−x0(t)| < ε

for any t. Otherwise, x0 is said to be unstable.

Theorem 1. Any non-peripheral equivalence class consisting of at least two
ω-periodic solutions contains an unstable one.

In the case of an equivalence class with only one element, the following propo-
sition provides a sufficient condition for its instability:

Proposition 3. Suppose an ω-periodic solution ξ0 is not peripheral and is
a unique element in its equivalence class. Assume that there is a subset P of Pω

containing ξ0 such that b(P) and b(P − {ξ0}) are blocks in b(Pω). Then ξ0 is
unstable.

Theorem 1 and Poroposition 3 would suggest that not a few equivalence
classes have an unstable solution. In fact, the following theorem holds:
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Theorem 2. More than half of the non-peripheral equivalence classes con-
tain an unstable ω-periodic solution.

Example 4. (a) Suppose Pω has the braid as in Figure 3. Then {ξ4} is
the peripheral equivalence class, and the non-peripheral equivalence classes are
E1 = {ξ1, ξ2} and E2 = {ξ3}. Since E1 has two solutions, by Theorem 1, at
least one of these solutions is unstable. Also, ξ3 satisfies the assumption of
Proposition 3 with P = {ξ1, ξ2, ξ3}. Hence ξ3 is unstable. Thus, both E1 and
E2 contain an unstable solution.

(b) We show that the estimate of the number of equivalence classes with
unstable solutions given in Theorem 2 is the best possible one, by constructing an
example. Consider the self-homeomorphism H ′, on the disk with three disjoint
open disks removed, which can be defined in a similar way to H ′

P in [4, Sec-
tion 1.8] by replacing the matrix (

2 1
1 1

)

in the definition of H ′
P by (

5 2
2 1

)
.

We get a self-homeomorphism g of R
2 by extending H ′ to the whole disk D and

identifying R
2 with the interior IntD. Then, choosing an isotopy from id to g,

we get a vector field on R
2 × [0, ω] which induces a time-periodic equation (1).

We can choose the extension of H ′ appropriately so that the equation (1) has
five ω-periodic solutions ξi, i = 1, . . . , 5, with the braid b(Pω) as in Figure 4
and ξ1, ξ5 are stable and the other three are unstable. It is easy to see that
each of the five ω-solutions is non-peripheral and is the unique element in its
equivalence class. Therefore, there are five non-peripheral equivalence classes
and exactly three of them consist of unstable solutions.

Figure 3 Figure 4
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5. Canonical homeomorphism on a surface

Here we explain some notions in the Nielsen–Thurston classification theory
of surface homeomorphisms (see, e.g, [10], [5], [4, Section 7], which are necessary
for the proofs of the results of this paper. Let M be a compact surface, and
S a finite subset in the interior IntM of M . A homeomorphism φ : M → M

with φ(S) = S is said to be reducible relative to S if there exists a finite union
Σ of disjoint simple closed curves (called the reducing curves) in IntM − S

such that φ maps Σ to Σ and each connected component of M − (S ∪ Σ) has
negative Euler characteristic. The Nielsen–Thurston classification theory states
that every homeomorphism g : M → M with g(S) = S is isotopic, relative to
S, to a homeomorphism φ : M → M with φ(S) = S which is of finite order,
pseudo-Anosov, or reducible. Moreover, in the reducible case, φ is decomposed
into finite-order and pseudo-Anosov components. More precisely, such φ can be
chosen to have a disjoint union A of invariant annuli (called the reducing annuli),
one around each reducing curve, such that on each connected component N of
M −A, φ is either of finite order or pseudo-Anosov. This homeomorphism φ is
called a canonical homeomorphism on M relative to S. A connected component
N of M −A is called a component of φ, and it is called a finite-order component
or a pseudo-Anosov component if the restriction of φ to N is finite order or
pseudo-Anosov respectively.

A simple closed curve in M invariant under φ is called a φ-invariant curve.
We can assume, without loss of generality, that φ is twisted on every reducing
annulus A in the sense that if φ is equal to the identity on ∂A, then φ : A → A

is not isotopic to id through an isotopy fixing ∂A pointwise. In fact, if this
does not hold for a reducing annulus A, then we can glue the boundaries of A
together eliminating A. Under this assumption, the following fact on φ-invariant
curves holds: Suppose that φ is a canonical homeomorphism which is isotopic to
a homeomorphism g relative to S. Then, for any simple closed curve C in M −S
which is homotopic to its image g(C) in M − S, there exists a φ-invariant curve
Γ in M − S which is homotopic to C in M − S.

Consider the case where M is a closed disk D. Suppose φ is a canonical
homeomorphism on D relative to a set S. Assume that φ fixes each point of S.
Then it is easy to see that φ is equal to the identity map, id, on any finite-order
component. We call such a component an id-component. Thus every component
of φ is either a pseudo-Anosov component or an id-component. Let ν be the
number of id-components of φ. Let b+ (resp. b−) be the number of points x
of S such that x is contained in a pseudo-Anosov component and φ fixes each
prong (resp. no prongs) at x. Let Fix(φ) denote the fixed point set of φ. A
slightly weaker form of Lemma 5 in [8] and Lemma 6 in [8] are combined into
the following lemma, which will be used to prove Theorem 2:
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Lemma 1. Suppose φ : D → D is a canonical homeomorphism relative to a
set S with φ �= id and S ⊂ Fix(φ). Assume that φ has no fixed points on the
interior of any pseudo-Anosov component. Then ν + b+ − b− ≥ 1 + α, where
α = 0 if ∂D is contained in a pseudo-Anosov component and φ has a fixed point
on ∂D, and α = 1 otherwise.

6. Facts on disk embeddings

We collect here some results obtained in [8] which will be used to prove the
results of this paper. Let D be a closed disk and g : D → D an orientation-
preserving topological embedding with finitely many fixed points all of which are
contained in IntD. Suppose an isotopy gt : D → D (0 ≤ t ≤ ω) with g0 = id,
gω = g is given.

Given a subset S of Fix(g), define a braid b(S, g), called the braid of S with
respect to g, by

b(S, g) =
⋃

0≤t≤ω

(gt(S) × {t}).

In the remainder of this section, b(S, g) will be denoted by b(S) for simplicity.
Two fixed points x1, x2 of g are said to be g-equivalent if b({x1, x2}) is a block
in b(Fix(g)). Proposition 1 in [8] shows that the g-equivalence relation is an
equivalence relation on Fix(g).

A fixed point x of g is said to be stable if for any neighbourhood V of x,
there is a neighbourhood W of x with gm(W ) ⊂ V for any integer m ≥ 0. Let
ψ : D → D be the canonical homeomorphism in the isotopy class of g relative
to Fix(g). Since the isotopy between g and ψ keeps the set Fix(g) invariant, we
have Fix(g) ⊂ Fix(ψ).

Suppose E is a g-equivalence class. The following facts on E, fixed points of
g, and components of ψ hold:

(i) E is contained in a component of ψ.
(ii) Let NE denote the component of ψ containing E. If NE is a pseudo-

Anosov component, then E consists of a single point.
(iii) If E has at least two points, then it contains an unstable fixed point.
(iv) Suppose E consists of a single point x0. If there is a subset S of Fix(g)

containing x0 such that b(S) and b(S − {x0}) are blocks in b(Fix(g)),
then x0 is unstable.

(v) If NE is an id-component, then E contains an unstable fixed point.
(vi) If x ∈ Fix(g) and ψ fixes each prong at x, then x is unstable.
(vii) Any id-component of ψ has a fixed point of g.

The facts (i) and (ii) are immediate consequences of [8, Lemma 2]. (iii), (iv)
are Theorem 3 and Proposition 3 in [8], respectively. (v)–(vii) are contained in
Section 9 of [8].
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For blocks of fixed points, the following fact hold:

Lemma 2. Suppose S0, S are two subsets of Fix(g) with S0 ⊂ S. Then the
following conditions are equivalent:

(i) b(S0) is a block in b(S).
(ii) There is a simple closed curve C in D − S such that S0 is equal to the

set of fixed points of g enclosed by C and that C is homotopic to its
image g(C) in D − S.

(iii) There is a ψ-invariant curve Γ in D−S such that S0 is equal to the set
of fixed points of g enclosed by Γ.

The equivalence of (i) and (ii) is Lemma 1 in [8]. The equivalence of (ii) and
(iii) follows easily from the fact on invariant curves stated in Section 5.

7. Proofs of the results

For 0 ≤ t ≤ ω, let Ut : R
2 → R

2 be the translation operator defined by
Ut(x0) = x(t) for x0 ∈ R

2, where x(t) is the solution of (1) with initial-value x0

(see [7]). Note that a point of R
2 is the initial-value of some ω-periodic solution

if and only if it is a fixed point of Uω. Therefore, since there are only finitely
many ω-periodic solutions, the fixed point set Fix(Uω) is bounded. Hence, one
can choose a closed disk D0 with Fix(Uω) ⊂ IntD0. Also, choose a closed disk
D with D0 ∪ Uω(D0) ⊂ IntD. Let Φt : D → R

2 be the restriction of Ut to the
disk D, and let Φ = Φω. Then Fix(Φ) = Fix(Uω) ⊂ IntD. Choose a closed disk
D′ with Φt(D) ⊂ IntD′ for any t ∈ [0, ω]. Then the isotopy Φt : D → D′ of
embeddings can be extended to an isotopy Φ′

t : D′ → D′ of homeomorphisms.
Let Φ′ = Φ′

ω : D′ → D′. Note that Φ′ is an extension of Φ to D′, and so
Fix(Φ) ⊂ Fix(Φ′). Since Φ has no fixed points on some neighbourhood of ∂D,
we can take Φ′

t so that Φ′ has finitely many fixed points on D′−D and moreover
has no fixed points on ∂D′. Thus Fix(Φ′) is a finite set contained in IntD′.

For any subset S of Fix(Φ′), let b(S) denote the braid b(S,Φ′). Suppose P
is a subset of Pω and let S be the set of the initial-values of solutions in P , i.e.,
S = {ξ(0) | ξ ∈ P}. Then we have b(S) = b(P), since Φ′

t(ξ(0)) = Ut(ξ(0)) = ξ(t)
for any t, ξ ∈ P . In particular, we have b(Fix(Φ)) = b(Pω).

Lemma 3. Let S be a subset of Fix(Φ). Then b(S) is a block in b(Fix(Φ)) if
and only if it is a block in b(Fix(Φ′)).

Proof. It is obvious that if b(S) is a block in b(Fix(Φ′)), then it is a block
in b(Fix(Φ)), since b(S) ⊂ b(Fix(Φ)) ⊂ b(Fix(Φ′)). Conversely, assume b(S) is a
block in b(Fix(Φ)). Then, replacing S0, S, g,D in Lemma 2 with S,Fix(Φ),Φ′, D′

respectively, we have that there is a simple closed curve C in D′ − Fix(Φ) such
that S is equal to the set of fixed points of Φ′ enclosed by C and furthermore
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C is homotopic to its image Φ′(C) in D′ − Fix(Φ). Choose a homotopy γt :
S1 → D′ − Fix(Φ) (0 ≤ t ≤ 1) with γ0(S1) = C and γ1(S1) = Φ′(C). We
can assume, without loss of generality, that C is contained in D0, since there
are no fixed points of Φ on D′ −D0. Then Φ′(C) = Φ(C) ⊂ Φ(D0) = Uω(D0).
Choose a closed disk ∆ with D0 ∪ Uω(D0) ⊂ ∆ ⊂ IntD, and let r : D′ → D be
a homeomorphism with r = id on ∆. Then r ◦ γt : S1 → D − Fix(Φ) induces a
homotopy between r(C) and r(Φ′(C)). Since C ∪Φ′(C) ⊂ ∆, we have r(C) = C

and r(Φ′(C)) = Φ′(C). Therefore, C and Φ′(C) are homotopic in D − Fix(Φ)
and hence they are homotopic in the larger set D′−Fix(Φ′). Thus, by Lemma 2,
b(S) is a block in b(Fix(Φ′)). �

We say two points x1, x2 in Fix(Φ) are Φ-equivalent if b({x1, x2}) is a block
in b(Fix(Φ)). Note that Φ′ satisfies the same assumption as those imposed on g
in Section 6. Therefore, replacing g with Φ′ in the definition of the g-equivalence
relation, we obtain the Φ′-equivalence relation: Fixed points x1, x2 of Φ′ are
Φ′-equivalent if b({x1, x2}) forms a block in b(Fix(Φ′)). This is an equivalence
relation on Fix(Φ′).

Lemma 4. Suppose ξ1, ξ2 are ω-periodic solutions, and let x1, x2 be their
initial-values. Then the following conditions are equivalent:

(i) ξ1 and ξ2 are equivalent.
(ii) x1 and x2 are Φ-equivalent.
(iii) x1 and x2 are Φ′-equivalent.

Proof. The equivalence of the conditions (i) and (ii) follows easily from the
equalities b(Pω) = b(Fix(Φ)), b({ξ1, ξ2}) = b({x1, x2}). Also, the equivalence of
(ii) and (iii) follows easily from Lemma 3. �

Proof of Proposition 1. Since the Φ′-equivalence relation is an equiva-
lence relation, the equivalence of (i) and (iii) in Lemma 4 implies that the relation
on Pω is also an equivalence relation. �

A fixed point x of Φ is said to be peripheral if it is the initial-value of a
peripheral ω-periodic solution. In other words, x is peripheral if Fix(Φ) = {x} or
b(Fix(Φ)−{x}) is a block in b(Fix(Φ)). Lemma 4 implies that the Φ-equivalence
relation is an equivalence relation on Fix(Φ). A Φ-equivalence class is said to be
non-peripheral if it contains no peripheral fixed points.

Let φ′ : D′ → D′ be the canonical homeomorphism in the isotopy class of Φ′

relative to Fix(Φ′). Since φ′ fixes each point of Fix(Φ′), any component of φ′ is a
pseudo-Anosov component or an id-component, as has been shown in Section 5.
Let C0 = ∂D0. Then C0 and Φ′(C0) are simple closed curves in D enclosing
Fix(Φ), and hence they are homotopic to the boundary circle ∂D of D in the
punctured disk D′ − Fix(Φ′). Therefore they are homotopic in D′ − Fix(Φ′)
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mutually. As has been noted in Section 5, this implies that there exists a φ′-
invariant curve Γ contained in D′ −Fix(Φ′) such that Fix(Φ) coincides with the
set of fixed points of Φ′ enclosed by Γ. Let M be the closure of the interior
domain of Γ. Then Fix(Φ′) ∩M = Fix(Φ).

Suppose x0 ∈ Fix(Φ) and let N be the component of φ′ containing x0.

Lemma 5. A necessary and sufficient condition for x0 to be peripheral is
that N contains Γ and is an id-component of φ′.

Proof. Assume that x0 is peripheral. We claim that there exists a φ′-
invariant set M0 with Fix(Φ′) ∩M0 = {x0} and M0 ∩ Γ �= ∅. In the case of
Fix(Φ) = {x0}, let M0 = M . Then it has the required property. Consider
next the case where Fix(Φ) �= {x0}. Since x0 is peripheral, b(Fix(Φ)−{x0}) is a
block in b(Fix(Φ)) and hence in b(Fix(Φ′)) by Lemma 3. Therefore, by Lemma 2,
there is a φ′-invariant curve Γ in D′ − Fix(Φ′) such that the set of fixed points
of Φ′ enclosed by Γ is equal to Fix(Φ)− {x0}. Let L be the closure of the outer
connected component of D′ − Γ. Let M0 be the connected component of M ∩L
containing x0. Then it is easy to see that M0 has the required property.

Since M0 is a φ′-invariant set containing only one fixed point, x0, of Φ′, the
canonical homeomorphism φ′ relative to Fix(Φ′) must be the identity on M0.
This implies that N contains M0, and it is an id-component. Also, since M0

intersects with Γ, we have Γ ⊂ N . The converse assertion is easily proved. �

Replacing g, gt, ψ in Section 6 with Φ′,Φ′
t, φ

′, we can apply the facts there to
Φ′-equivalence classes and components of φ′. In particular, applying (i) in Sec-
tion 6 to Φ′, we see that each Φ′-equivalence class E′ is contained in a component
of φ′ denoted by NE′ .

Lemma 6. Let E be a non-peripheral Φ-equivalence class. Then

(i) E is a Φ′-equivalence class, and
(ii) the component NE of φ′ is contained in M .

Proof. By Lemma 4, we see that E is contained in a Φ′-equivalence class
E′. We claim that Γ does not intersect IntNE′ . Consider the case where NE′

is a pseudo-Anosov component. Then, since Γ is a φ′-invariant curve, it cannot
intersect IntNE′ . Consider the case where NE′ is an id-component. If it contains
Γ, then by Lemma 5, E must have a peripheral point. This contradicts with E

being non-peripheral, Thus it is proved thatNE′∩Γ = ∅, and the claim is proved.
The claim implies that NE′ ⊂ M . In particular, we have E′ ⊂ M , and hence
E′ ∩M = E′. Since E′ ∩M is equal to E, this implies that E = E′, which is a
Φ′-equivalence class, and NE = NE′ ⊂M . Thus the lemma is proved. �

Proof of Proposition 2. Let ξ1, ξ2 be peripheral ω-periodic solutions,
and let x1, x2 be their initial-values. LetNΓ be the component of φ′ containing Γ.



272 T. Matsuoka

By Lemma 5, x1 and x2 are contained in NΓ, and NΓ is an id-component. These
imply that there is a φ′-invariant curve in D′ − Fix(Φ′) such that x1, x2 are the
only fixed points of Φ′ enclosed by it. Hence by Lemma 2, b({x1, x2}) is a block
in b(Fix(Φ′)), and therefore x1 and x2 are Φ′-equivalent. By Lemma 4, we have
that ξ1, ξ2 are equivalent. �

Proof of Theorem 1. Let E be a non-peripheral equivalence class consist-
ing of at least two ω-periodic solutions. Then, the set E of initial-values of the
solutions in E is a non-peripheral Φ-equivalence class, and hence by Lemma 6, it
is a Φ′-equivalence class. Therefore, since E has at least two points, by (iii) in
Section 6, we have that E contains an unstable fixed point of Φ′, which is also
an unstable fixed point of Uω, since Φ′ = Uω on D. Since an ω-periodic solution
is unstable if and only if its initial-value is an unstable fixed point of Uω (see
Lemma 9.1 in [7]), we conclude that E has an unstable solution. �

Proof of Proposition 3. Let x0 = ξ0(0), E = {x0}, and S the set of
initial-values of the solutions in P . Then E is a non-peripheral Φ-equivalence
class and hence it is a Φ′-equivalence class. Moreover, since b(S) = b(P), b(S −
{x0}) = b(P − {ξ0}), we have that b(S), b(S − {x0}) are blocks in b(Fix(Φ)).
Hence they are blocks in b(Fix(Φ′)) by Lemma 3. Therefore, by (iv) in Section 6,
we see that x0 is unstable, and consequently so is ξ0. �

Proof of Theorem 2. Let c be the number of non-peripheral Φ-equivalen-
ce classes, and cu the number of such equivalence classes containing an unstable
fixed point. For the proof, it is enough to see that 2cu > c.

Let C be the set of non-peripheral Φ-equivalence classes. By Lemma 6, every
member of C is a Φ′-equivalence class. Therefore, the fact (ii) in Section 6
implies that C is decomposed into a disjoint union C = C0 ∪ C+ ∪ C−, where
E ∈ C belongs to C0 if NE is an id-component, and E belongs to C+ (resp. C− )
if NE is a pseudo-Anosov component and φ′ fixes each prong (resp. no prongs)
at the unique point in E. By (v) and (vi) in Section 6, any Φ-equivalence class in
C0∪C+ contains an unstable fixed point. Hence if we let ce = �Ce, the cardinality
of Ce, for e = 0,+,−, then we have cu ≥ c0 + c+. Since c = c0 + c+ + c−, this
implies that

2cu − c ≥ 2(c0 + c+) − (c0 + c+ + c−) = c0 + c+ − c−.

Therefore, for the proof of the desired inequality 2cu > c, it is enough to see that

(2) c0 + c+ − c− > 0.

Let φ be the restriction of φ′ : D′ → D′ to M . We can assume without loss
of generality that this map φ is a canonical homeomorphism on M relative to
Fix(Φ). Since M is a disk and φ fixes each point of Fix(Φ), we can define the
integres ν, b+, b− as in Section 5.
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Let Fix+(Φ) (resp. Fix−(Φ)) be the set of points x of Fix(Φ) such that x is
contained in a pseudo-Anosov component of φ′ and φ′ has an invariant prong
(resp. no invariant prongs) at x. Let e = +,−. Then be = �Fixe(Φ). Let
ρe : Ce → Fixe(Φ) be the injective map which sends E ∈ Ce to the unique point
in E. Suppose x0 ∈ Fixe(Φ). Let E = {x0}. If x0 is Φ′-equivalent to another
fixed point of Φ′, then by (ii) in Section 6, x0 is contained in an id-component
of φ′, and we get a contradiction. Hence E is a Φ′-equivalence class. Therefore,
Lemma 4 implies that E is a Φ-equivalence class, and by Lemma 5, E is non-
peripheral. Hence E ∈ Ce and ρe(E) = x0, and so the map ρe is onto. Therefore
we have

(3) c+ = b+, c− = b−.

Let I(φ) be the set of id-components of φ with no intersection with Γ. Sup-
pose E ∈ C0. By Lemma 5, NE has no intersection with Γ, and so NE ⊂ M .
Hence NE is a component of φ, and so we have NE ∈ I(φ). Therefore we can
define an injective map ρ0 : C0 → I(φ) which sends E ∈ C0 to NE .

Suppose N ∈ I(φ). Then since N has no intersection with Γ, it is a compo-
nent of φ′. Moreover, it is an id-component and hence the fact (vii) in Section 6
implies that it contains a fixed point of Φ′. Choose such a point x0. Since N
is contained in M , x0 is a fixed point of Φ. Let E be the Φ-equivalence class
containing x0. Then since N ∩Γ = ∅, by Lemma 5, x0 is non-peripheral. There-
fore E is a non-peripheral Φ-equivalence class. Since NE ⊂M , by Lemma 6(ii),
and both NE and N contain x0, they coincide. Hence NE is an id-component.
Therefore E ∈ C0 and ρ0(E) = NE = N . Therefore ρ0 is onto, and hence
c0 = �C0 = �I(φ).

Consider the case where there is no peripheral fixed point of Φ. Then, by
Lemma 5, any id-component of φ′ has no intersection with Γ. Thus clearly we
have �I(φ) = ν and hence c0 = ν. Hence, by (3) and Lemma 1, the inequality (2)
holds.

Consider the case where there is a peripheral fixed point of Φ. Then, by
Lemma 5, Γ is contained in an id-component, and hence c0 = �I(φ) = ν − 1 and
α = 1. Therefore (2) holds by (3) and Lemma 1. Thus the proof is completed.�
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