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SELECTION APPROACH TO
MULTIVALUED SEPARATION THEOREMS

P. V. Semenov — E. V. Shchepin

Abstract. A selection problem for convex-valued mappings is studied.

Two general results, so called “sandwich” theorems, are proved.

1. Introduction

The main result of the present article are the following “sandwich” theorems.

Theorem 1. Let F : X → Y be a lower semicontinuous convex-valued and
closed-valued mapping of a paracompact space X into a complete metric space Y

with a complete convex structure and let G : X → Y be an upper semicontinuous
compact-valued selection of F . Then there exists a continuous convex-valued and
compact-valued mapping H : X → Y such that, for all x ∈ X,

G(x) ⊂ H(x) ⊂ F (x).

Theorem 1’. If in Theorem 1 space X is perfectly normal and space Y is
separable then there exists a sequence {Hn}n∈N of continuous compact-valued

1991 Mathematics Subject Classification. Primary 54C60, 54C65, 52A01; Secondary 28B20,
54B20.

Key words and phrases. Multivalued mapping, selection, approximation, convex structure,

compact exponenta.
The authors was supported by RFFI grant 99-01-00009.

c©1999 Juliusz Schauder Center for Nonlinear Studies

183



184 P. V. Semenov — E. V. Shchepin

and convex-valued mappings Hn : X → Y such that, for all x ∈ X and n ∈ N,

G(x) ⊂ Hn(x) ⊂ F (x),

Hn(x) ⊂ Hn+1(x),

F (x) = Cl
{ ∞⋃

n=1

Hn(x)
}

.

Let us quickly quote all we know about similar facts in the case of the Banach
space range Y endowed by the standard convexity structure induced by the
linearity structure of Y .

For mappings F (x) = [−∞, f(x)] and G(x) = [−∞, g(x)] induced by sin-
glevalued mappings f and g and for X = Y = R, Theorem 1 is a corollary
of classical Baire results (see [2]). For analogous F and G, Y = R and for
X being a normal, countably paracompact space this theorem coincides with
Dowker theorem [6]. For compact-valued F and G and for X = Rn, Y = Rm

a version of Theorem 1 was obtained by Zaremba [21]. Hukuhara [7] proved for
X = Rn, Y = Rm and for compact-valued G and F (x) ≡ Y the existence of a
countable set of continuous separation mappings. For compact-valued F and G,
for metric space X and for Y = Rm Theorems 1 and 1’ are the Aseev’s result
[1]. For metric space X and for a separable real Banach space Y Theorems 1
and 1’ were proved by De Blasi (see [3]) under the additional assumption (and
with an additional conclusion) that the values F (x), x ∈ X, (respectively, the
values of H(x)) are bounded subsets of Y with non-empty interior. He also
used a metric version of semicontinuity. For similar results see also theorem of
Choban and Ipate [4], where in such terms a characterization of perfect normality
was given. A “measurably”-parametric version of Aseev theorem for mappings
F,G : X × Z → Y which are semicontinuous in the first argument and are
measurable in the second argument was proved by Kucia and Novak in [8]. A
parametric version of Hukuhara theorem was proved by Srivastava in [17].

Our approach has no intersections with methods of the above mentioned
papers. A key ingriedient of our proof is the following Michael–Curtis selection
theorem for a convex-valued mapping into a metric space with a suitable convex
structure (see [10] and [5]).

Theorem 2. Let M be a complete metric space with a convex structure.
Then every lower semicontinuous convex-valued and closed-valued mapping from
a paracompact space into M admits a continuous singlevalued selection.

After preparing this paper V. Gutev kindly informed us that G. Nepomn-
jashchĭı in [12] proved a more general (purely topological) version of Theorem 1.
He used another technique which is clear from the fact that in his result mapping
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F is assumed to be connected-valued and with the family {F (x)}x∈X of values
to be equi-locally connected.

2. Notation and definitions

As for a definition of convex structure, we use a more modern (and simple)
Curtis version of the original Michael definition. Let ∆n be the standard unit
simplex with n vertexes in n-dimensional Euclidean space, dim ∆n = n− 1.

Definition 3. A convex structure on a metric space (M,%) is defined as a
sequence {(Mn, kn)}∞n=1, of pairs where Mn is a subset of nth Cartesian power
Mn and kn is a mapping kn : Mn ×∆n → M with the following properties:

(a) kn(x, x, . . . , x; t1, t2, . . . , tn) = x for all x ∈ M and (t1, . . . , tn) ∈ ∆n,
(b) if x ∈ Mn, then ∂ix ∈ Mn−1 and, moreover, if additionally ti = 0

for a t ∈ ∆n, then kn(x, t) = kn−1(∂ix, ∂it), where ∂i is the usual ith
boundary operator,

(c) for every ε > 0 there exists δ > 0 such that for all n ∈ N and for
all x, y ∈ Mn the inequalities %(xi, yi) < δ, 1 ≤ i ≤ n, imply that
%(kn(x, t), kn(y, t)) < ε for all t ∈ ∆n.

In the original Michael definition property (c) was stated in its non-uniform
variant. It turns out that such uniform restriction allows to omit some point of
Michael definition which doesn’t hold for convex structures constructed below.

For a given convex structure on a metric space (M,%) a subset C ⊂ M is
said to be convex if for every x = (x1, . . . , xn) ∈ Cn we have that x ∈ Mn and
kn(x, t) ∈ C for all t ∈ ∆n. We also say that a subset Z ⊂ M is admissible if its
nth power Zn lies in Mn for every natural n. In applications property (c) is the
most difficult to verify. But it automatically holds in the case of a linear metric
space with convex open balls.

Definition 4. The convex hull conv(Z) of an admissible set Z is defined as
the set {kn(x, t) | n ∈ N, x ∈ Zn, t ∈ ∆n}. A convex structure in a metric space
(M,%) is said to be a complete convex structure if the closure of the convex hull
of every admissible subcompact of the space M is compact.

Recall that a multivalued mapping F of a topological space X into a topo-
logical space Y is said to be: lower semicontinuous if for every nonempty open
subset U ⊂ Y the following subset is open in space X

F−1(U) = {x ∈ X | F (x) ∩ U 6= ∅},

and upper semicontinuous if for every nonempty open subset U ⊂ Y the following
subset is open in space X

F−1(U) = {x ∈ X | F (x) ⊂ U}.



186 P. V. Semenov — E. V. Shchepin

Continuity of a compact-valued mapping into a metric space (Y, %) below means
continuity with respect to the Hausdorff distance topology in the set exp(Y ) of
all compact subsets of Y . Recall that the Hausdorff distance h%(A,B) between
two compacta A and B is defined as the infimum of the set of all positive ε for
which A lies in open ε-neighbourhood D%(B, ε) of B and symmetrically, B is
a subset of D%(A, ε). It is a well-known fact, that (exp(Y ), h%) is a complete
metric space whenever (Y, %) is complete metric space.

3. Proof of Theorem 1

Sketch. We apply Theorem 2 in the following manner. Let M = exp conv(Y )
be the set of all nonempty convex subcompacta of a given complete metric space
(Y, %) with a complete convex structure {(Yn, kn)}. Such set M will be topolo-
gizied by the Hausdorff metric h%. Clearly, M is a closed subset of the complete
metric space (exp(Y ), h%), i.e. of the compact exponent of Y . Hence (M,h%) is
a complete metric space, too. Our crucial technical observation is that the com-
plete convex stucture {(Yn, kn)} naturally induces some suitable (generally, non-
complete) convex structure {(Mn,Kn)} in the complete metric space (M,h%).

After this, to every point x ∈ X one can naturally associate the set Φ(x)
of all convex (with respect to {(Yn, kn)}) subcompacta of the convex closed set
F (x) which contains the convex compact set G(x). So, such corresponding Φ
can be regarded as a multivalued mapping from X into (M,h%) and we apply
Theorem 2 exactly to the mapping Φ. In reverse direction, a singlevalued con-
tinuous selection of mapping Φ : X → M can be regarded as a multivalued
mapping from X into Y . Clearly, such a selection automatically will be a re-
quired continuous convex-valued and compact-valued mapping which separates
a given semicontinuous mappings F and G.

Details. First, we define a convex structure {(Mn,Kn)} in the space (M,h%).
For every natural n we set:

Mn =
{

(A1, . . . , An) ∈ Mn

∣∣∣∣ ⋃
Aj lies in some convex closed subset of Y

}
,

Kn(A1, . . . , An; t1, . . . , tn)

= Cl(conv({kn(a1, . . . , an; t1, . . . , tn) | a1 ∈ A1, . . . , an ∈ An})).

Lemma 5. The sequence of pairs (Mn,Kn) is a well-defined convex structure
in the space (M,h%).

Proof. Let C be a closed convex subset of Y and let us (for a fixed n ∈ N)
consider a convex subcompacta A1, . . . , An of C and a point t = (t1, . . . , tn) ∈
∆n. Then the set

{kn(a1, . . . , an; t1, . . . , tn) | a1 ∈ A1, . . . , an ∈ An}
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is a compact as a continuous image of the compactum A1 × . . . × An. Hence,
Kn(A1, . . . , An; t1, . . . , tn) is a subcompact of C thanks to the completeness of
the convex structure of space Y . Convexity of Kn(A1, . . . , An; t1, . . . , tn) follows
from the general observation that the closure of a convex set S is a convex set, too,
whenever S is a subset of a closed convex set C. The last statement is a corollary
of property (c) of the convex structure {(Yn, kn)}. Therefore Kn(Mn×∆n) ⊂ M ,
i.e. the sequence of pairs {(Mn,Kn)} is well-defined.

(a) If A1 = A2 = A3 = . . . = An ∈ M , then the set

{kn(a1, . . . , an; t1, . . . , tn) | a1 ∈ A1, . . . , an ∈ An},

coincides with A due to the convexity of A and due to property (a) for the convex
structure in Y . Hence

Cl(conv({kn(a1, . . . , an; t1, . . . , tn) | a1 ∈ A1, . . . , an ∈ An})),

coincides with A due to the convexity and to the compactness of A.

(b) If (A1, . . . , An) ∈ Mn then ∂i((A1, . . . , An)) ∈ Mn−1 because (
⋃

Aj) \
Ai ⊂ (

⋃
Aj) ⊂ C for some closed convex C ⊂ Y . If, additionally, t ∈ ∆n with

ti = 0 then

Kn(A1, . . . , An; t1, . . . , tn)

= Cl(conv({kn(a1, . . . , an; t1, . . . , tn) | a1 ∈ A1, . . . , an ∈ An}))
= Cl(conv({kn−1(∂i(a1, . . . , an); ∂i(t1, . . . , tn)) | a1 ∈ A1, . . . , an ∈ An}))
= Kn−1(∂i(A1, . . . , An); ∂i(t1, . . . , tn)).

(c) For a fixed positive ε let δ = δ(ε) be a positive number from property (c)
for the convex structure in Y . Let us show that σ(ε) = δ(δ(ε/2)) works for
the above constructed convex structure in M . So, let h%(Aj , Bj) < σ for all
j = 1, . . . , n. We want to verify, that for every t = (tj) ∈ ∆n the inequality

h%(Kn((Aj); t),Kn((Bj); t)) < ε

holds. Take a point y ∈ Kn((Aj); t). There exists a convergent to y sequence
{yl} of points yl from

conv({kn(a1, . . . , an; t1, . . . , tn) | a1 ∈ A1, . . . , an ∈ An}).

Let yl = km(z1, . . . , zm; τ1, . . . , τm) for some m = m(l) ∈ N, for some τ =
(τ1, . . . , τm) ∈ ∆m and some zi ∈ kn(A1×. . .×An; t). The inequalities h%(Aj , Bj)
< σ imply that sets Aj lie in the D%(Bj , σ), i.e. each point of Aj is σ-close to
a point of Bj , j = 1, . . . n. Following the defintion of the function δ = δ(ε),
we find that each point zi is δ(ε/2)-close to a point wi ∈ kn(B1 × . . . × Bn; t),
i = 1, . . . , m(l). Using once more the definition of the function δ = δ(ε), we see
that every point yl is (ε/2)-close to the point ul = km(w1, . . . , wm; τ1, . . . , τm),
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l ∈ N. Hence, the sequence {yl} lies in the open (ε/2)-neighbourhood (with
respect to %) of the set

conv({kn(b1, . . . , bn; t1, . . . , tn) | b1 ∈ B1, . . . , bn ∈ Bn}).

So, y = lim yl lies in the open ε-neighbourhood of this set, i.e.

y ∈ D%(Kn((Bj); t), ε) and Kn((Aj); t) ⊂ D%(Kn((Bj); t), ε).

The inverse implication can be proved by the symmetric consideration. Lemma 5
is proved. �

Now, we return to the properties of mapping Φ : X → M defined in the
sketch section. It is easy to verify the convexity (with respect to convex structure
{(Mn,Kn)}) and closedness (in M) of the values Φ(x) of mapping Φ. The
nonemptness of the values Φ(x) follows from the obvious fact that G(x) ∈ Φ(x).
So, we must verify only the lower semicontinuity of Φ.

Lemma 6. Under the assumption of Theorem 1, let for x ∈ X

Φ(x) = {A ⊂ Y | A be a convex compact and G(x) ⊂ A ⊂ F (x)}.

Then Φ is a lower semicontinuous mapping from X into the metric space (M,h%).

Proof. Pick a point x ∈ X and pick an element A ∈ Φ(x). We must show
that x is an interior point of the preimage

Φ−1(Dh(A, ε)) = {x′ ∈ X | Φ(x′) ∩Dh(A, ε) 6= ∅},

for every positive ε. Here Dh(A, ε) denotes an open ε-ball centered at A in the
metric space (M,h%).

Find a finite σ-net y1, . . . , yn in the compact set A with G(x) ⊂ A ⊂ F (x)
where σ = δ(ε)/2 and let

U(x) = G−1(D%(G(x), σ)) ∩
[ n⋂

i=1

F−1(D%(yi, σ))
]
.

The set U(x) is an open neighbourhood of the point x due to the upper semi-
continuity of mapping G and due to the lower semicontinuity of mapping F .
For every x′ ∈ U(x) in the set F (x′) there exist points z1, . . . , zn such that
%(zi, yi) < σ. Let us consider the following subset of the set F (x′)

K ′ = G(x′) ∪ {z1, . . . , zn},

and define the following convex subcompactum of the set F (x′)

A′ = Cl(conv(K ′)).

Note, that here we once more use the completness of the convex stucture in Y .
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Clearly, G(x′) ⊂ A′ ⊂ F (x′), i.e. A′ ∈ Φ(x′). By the construction G(x′) ⊂
D%(G(x), σ) ⊂ D%(A, σ) and %(zi, yi) < σ where yi ∈ A. Hence K ′ ⊂ D%(A, σ) ⊂
D%(A, 2σ) = D%(A, δ(ε)) and

A′ = Cl(conv(K ′)) ⊂ D%(Cl(conv(A)), ε) = D%(A, ε),

thanks to property (c) of the convex structure in Y .
On the other hand, each point y ∈ A is σ-close to some point yi. Hence, y

is 2σ-close to the point zi ∈ K ′ ⊂ A′. So, A ⊂ D%(A′, 2σ) ⊂ D%(A′, ε) because
one can assume that δ(ε) ≤ ε. Finally, we see that h%(A,A′) < ε, i.e. that the
set Φ(x′) meets the open ε-ball Dh(A, ε) in the space (M,h%). Lemma 6 and
Theorem 1 are proved. �

4. Applications and remarks

(a) For zero-dimensional domains the analogous appoach immediately gives
the following “sandwich” theorem.

Theorem 7. Let F0 : X0 → Y be a lower semicontinuous complete-valued
mapping of a zero-dimensional (in dim-sense) paracompact space X0 into a
metric space Y and let G0 : X0 → Y be an upper semicontinuous compact-
valued selection of F0. Then there exists a continuous compact-valued mapping
H0 : X → Y such that

G0(x) ⊂ H0(x) ⊂ F0(x),

for all x ∈ X.

For n-dimensional domains and UV n-valued mappings see [16].
(b) After Theorem 7 an alternative appoach to the proof of Theorem 1 arises

in the spirit of the paper [14]. We represent the paracompact domain X as an
image of some zero-dimensional paracompact X0 under some Milutin mapping
m : X0 → X. Let ν be an associated with m mapping from X into the space
P (X0) of all probabilistic measures on X0. Namely, support of the measure νx is
a subset of the preimage m−1(x) which is a compact subset of X0, x ∈ X. After
this, Theorem 7 works for the mappings F0 = F ◦m and G0 = G ◦m. The final
step is the integration procedure, i.e. for x ∈ X one can put

H(x) =
∫

H0(z) dνx(z), z ∈ m−1(x).

The problem here is to find a “true” definition for integrals of continuous convex-
valued and compact-valued mappings. One of the possible ways is to define it as
the closure of the set of integrals of all continuous sinlevalued selections of the
mapping H0. The other approach is to construct such an integral directly in the
space M (= the convex compact exponent of Y ) thanks to the observation that
the construction of integrals of singlevalued continuous mappings with compact
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domains in the case of Banach Y can be performed directly as in the case of
mappings into a locally convex topological space, [15]. But in both variants
the verification of continuity of H is a non-trivial job. That is why we use
the Michael–Curtis Theorem 2 about selections of mappings with axiomatically
defined convex structures in ranges.

(c) Some remarks about continuous multivalued approximations. Let us
consider the case of perfectly normal domains and separable ranges of multi-
valued mappings. Clearly, the separability of Y implies the separability of its
compact exponent exp(Y ) and the separability of its convex compact exponent
M = expconv(Y ). So, a “word by word” repetition of the proof of Lemma 5.2
from [9] gives the existence of a countable set {ϕi} of continuous singlevalued
selections of mapping Φ which are dense in Φ in the sense that {ϕi(x)} is a
dense subset of Φ(x) for every x ∈ X. Going back to space Y , we find a
countable set {Si} of continuous convex-valued and compact-valued mappings
which “densely” separate the given semicontinuous mappings F and G. One
can easily obtain an increasing sequence of mappings of such type. Namely, if
Hi(x) = Cl(conv{S1(x) ∪ . . . ∪ Si(x)}), x ∈ X, i = 1, 2, . . . then

H1(x) ⊂ . . . ⊂ Hi(x) ⊂ · · · ⊂ F (x),

F (x) = Cl{H1(x) ∪ . . . ∪Hi(x) ∪ . . . },

and all mappings Hi, i ∈ N, are continuous compact-valued and convex-valued.
In other words, we prove Theorem 1’ and our approach gives the new proofs
of Aseev, De Blasi, Choban and Ipate approximaion theorems for paracompact
(generally, non-metric) domains. Generalizations of measurable-parametric ver-
sions of sandwich theorems are also true.

For a metric domains one can use another Michael’s “density” selection the-
orem [11] and prove the folowing sandwich theorem.

Theorem 8. Let F : X → Y be a lower semicontinuous convex-valued and
closed-valued mapping of a metric space X into a complete metric space Y with
complete convex structure and let G : X → Y be an upper semicontinuous convex-
valued and compact-valued selection of F . Then for every infinite cardinal α

there exists a family Γ (with cardinality ≤ α) of continuous convex-valued and
compact-valued mappings Hγ : X → Y such that G(x) ⊂ Hγ(x) ⊂ F (x) for all
x ∈ X, and such that F (x) = Cl(

⋃
{Hγ(x) | γ ∈ Γ}), whenever F (x) has a dense

subset of cardinality ≤ α.

Note, that the intersection of two continuous convex-valued mappings can be
non lower semicontinuous. Hence our approach doesn’t automatically give the
theorems about approximations of upper semicontinuous mappings by a sequence
of continuous mappings.
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(d) Every selection theorem gives (as a special case) some extension theo-
rem. So, as a corollary of our approach we obtain the following “multivalued
Dugundgji” theorem.

Theorem 9. Every continuous compact-valued and convex-valued mapping
from a closed subset Z of a paracompactum X into a complete metric space Y

with complete convex structure such that Y is convex, admits a continuous com-
pact-valued and convex-valued extension over the whole space X.

Theorem 9 admits a generalization in the spirit of Tolstonogov’s theorem [18],
i.e. one can assume that in Theorem 9 the partial multivalued mapping and its
extension are selections of a given continuous compact-valued and convex-valued
mapping from X into Y . In [18] such theorem was proved for a metric domain
and for a Banach space ranges. Note, also, that Theorem 9 is a corollary of the
result of G. Nepomnjashchĭı [13].

(e) There exists an alternative approach to the notion of convex structure
in topological spaces. Such approach is essentialy due to Van de Vel, and the
important difference with Michael–Curtis approach is the absence of real param-
eters describing convex combinations (see [19] and [20]). In these papers Van de
Vel proved that a “complete” metric convex structure on a space Y induces a
suitable metric convex structure on the convex exponent of space Y . Hence the
analogs of Theorems 1 and 1’ hold for such type of convex structures. Moreover,
in [20] exactly the above selection approach was used for finding a continuous
ε-enlargement of an upper-semicontinuous mapping. We emphasize that the
whole range space Y must be convex in Van de Vel approach and that it can be
non-convex in Michael–Curtis approach.

We finish by observing that there are other notions of convex structures.
But the question when a “good” convex structure on Y implies the existence of
a “good” convex structure on expconv Y is still open.
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