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COMPUTER ASSISTED METHOD FOR
PROVING EXISTENCE OF PERIODIC ORBITS

Pawe�l Pilarczyk

Abstract. We introduce a method based on the Conley index theory
for proving the existence of a periodic trajectory in a smooth dynamical
system in R

n where an attracting periodic orbit is numerically observed.
We apply this method to prove the existence of a periodic orbit in the
Rössler equations, as announced in [9].

1. Introduction

The aim of this paper is to give a computer assisted proof of the following
theorem:

Theorem 1. The Rössler system [10]

(1)

ẋ = −(y + z),
ẏ = x+ by,

ż = b+ z(x− a),
for a = 2.2 and b = 0.2 admits a periodic orbit.

The existence of such a periodic orbit was conjectured by Hale and Koçak
in [2], where also numerical evidence of the existence of the periodic orbit in this
system was given.
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bourhood, algorithm.
Research partially supported by Polish Scientific Committee, grant no. 2 P03A 029 12.

c©1999 Juliusz Schauder Center for Nonlinear Studies

365



366 P. Pilarczyk

Periodic solutions to differential equations in Rn are among the basic objects
of interest in the theory of dynamical systems. A well known approach in proving
the existence of periodic orbits is to construct a Poincaré section and to use
suitable topological theorems to find a fixed point of the Poincaré map. However,
as observed in [2], it is usually difficult to locate a Poincaré section and even worse
to compute the Poincaré map, which makes these methods difficult to apply.
In this paper we apply another method for proving the existence of periodic

orbits. The method is based on the Conley index theory and does not require
the analysis of the Poincaré map. It uses recently developed and implemented
algorithms for computation of homology of representable sets and maps, together
with a method for rigorous integration of differential equations. The proposed
method is quite general. It may be applied to an arbitrary autonomous dif-
ferential equation in Rn which exhibits in numerical simulations an attracting
periodic trajectory.
The approach is constructive in the sense that the periodic orbit is proved

to be in an effectively constructed neighbourhood of the numerically observed
trajectory. This neighbourhood is obtained as a set built of hypercubes and may
be a subject of further analysis or visualization.
The method introduced here is based on several theorems from [6] and [7].

They are proved there in the context of a semiflow on an arbitrary metric space.
In order to avoid complicated definitions not really needed here, we reformu-
late these theorems in our context. For proofs, details and generalizations the
interested reader is referred to [6] and [7].

2. Preliminaries

Consider the differential equation

(2) ẋ = f(x),

where f : Rn → Rn is a vector field of class C2.
The continuous dynamical system (also called a flow) generated by the differ-

ential equation (2) is a function ϕ : Rn×R � (x, t) �→ ϕ(x, t) ∈ Rn such that for
every x ∈ Rn the function ϕ(x, · ) : R→ Rn is a solution to (2) with ϕ(x, 0) = x.
For a fixed t > 0, a discretization, called also a time-t map, of the flow ϕ is
a restriction of ϕ to Rn× tZ. This restriction, denoted by ϕt : Rn× tZ→ Rn, is
the discrete dynamical system generated by ϕt, i.e., ϕt(x, kt) = ϕkt (x) for every
x ∈ Rn and k ∈ Z (in particular, ϕt( · , 0) is the identity).
For a set N ⊂ Rn its invariant part with respect to the flow ϕ is defined

as inv(N,ϕ) = {x ∈ N | ϕ(x,R) ⊂ N} or, in an equivalent way, inv(N,ϕ) =
⋂
t∈R
ϕ(N, t). The set N is called an isolating neighbourhood if it is compact

and inv(N,ϕ) ⊂ intN . In such a case, S = inv(N,ϕ) is called an isolated
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invariant set and N is said to isolate S. The same definitions may be formulated
for a discretization ϕt of the flow ϕ starting with the definition of inv(N,ϕt)
obtained from the definition of inv(N,ϕ) by replacing R with tZ.
A compact subset Ξ of an (n− 1)-dimensional hyperplane P is called a local

section for ϕ if the vector field f is transverse to P on Ξ. Such a set Ξ is called
a Poincaré section for ϕ in an isolating neighbourhood N if Ξ∩N is closed and
for every x ∈ N there exists t > 0 such that ϕ(x, t) ∈ Ξ.
The definitions of the Conley index of an isolating neighbourhood N and an

isolated invariant set S both in the discrete and in the continuous case are based
on the notion of an index pair. The reader is referred to [6] or [7] for details.
The following proposition follows easily from the definition of the Conley index.

Proposition 2. Let N be an isolating neighbourhood of a discretization ϕt
of the flow ϕ. If ϕt(N) ⊂ N , the cohomology of N is the cohomology of S1 and
the map ϕt with its domain and range restricted to N induces an isomorphism in
cohomology then N has the cohomological Conley index of an attracting periodic
orbit.

To prove the existence of a periodic orbit we verify the assumptions of the
following theorem, which is a special case of Corollary 1.4 in [6]:

Theorem 3. Assume N is an isolating neighbourhood for the flow ϕ which
admits a Poincaré section Ξ. If N has the cohomological Conley index of a hy-
perbolic periodic orbit then inv(N,ϕ) contains a periodic orbit.

Since we perform computations for a discretization ϕt of the flow ϕ with an
arbitrarily chosen t > 0, we need the following two theorems, proved in a more
general setting in [7] as Theorem 1 and Corollary:

Theorem 4. For a flow ϕ in Rn the following three conditions are equiva-
lent:

(1) S is an isolated invariant set with respect to ϕ,
(2) S is an isolated invariant set with respect to ϕt for all t > 0,
(3) S is an isolated invariant set with respect to ϕt for any t > 0.

Theorem 5. The cohomological Conley index of an isolated invariant set
of a flow ϕ coincides with the corresponding index with respect to the discrete
dynamical system ϕt for any t > 0.

Let us now introduce the class of representable sets and maps we work with.
We recall that a Cartesian product ∆1 × . . .×∆n of n compact intervals in Rn

is called an n-dimensional hypercube. Such a hypercube is of size d ≥ 0 if each
interval ∆i has length d. We fix a grid size d > 0 and we denote by H the set of
all closed n-dimensional hypercubes of size d in Rn with vertices in (dZ)n. For
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A ⊂ H let |A| denote the union ⋃A = ⋃a∈A a. Any subset A of Rn such that
A = |A| for some A ⊂ H is called a cubical set.
For subsets A and B of H, a map F : A → 2B, which maps each hypercube

in A to a nonempty set of hypercubes in B, is called a multivalued cubical map.
Such a map F is called finite if A is finite and for each a ∈ A the set F(a) is finite.
A finite map F is called almost perfect if for each a ∈ A the set |F(a)| is convex.
The multivalued map |F| : |A| � x �→ ⋃{a∈A|x∈a} |F(a)| ∈ 2|B| is then almost
perfect in the sense of the definition used in [1]. A finite multivalued cubical
map F : A → 2B is called a cubical enclosure of a continuous map f : |A| → |B|
if f(a) ⊂ int|F(a)| for each a ∈ A. If F is an almost perfect cubical enclosure
of f then the chain map of |F| is defined in [1] as a chain map ψ between the
chain complexes of |A| and |B| such that the homology of ψ coincides with the
homology of f . An algorithm for the construction of a suitable map ψ is given
in [1] and was recently implemented by Mazur and Szybowski [5].

To compute a cubical enclosure F of ϕt on a finite set A ∈ H, we use one
of Lohner’s methods for computation of guaranteed enclosures for the solutions
of ordinary initial value problems [4], recently analyzed and implemented by
Mrozek and Zgliczyski [8]. This is a method for computing enclosures for ϕτ
for τ > 0, which works with sets of the form x + Cr0 + s, where x is a vector,
C is a matrix, r0 is an interval vector, and s is a small set from a certain class
of representable sets. For more details the reader is referred to [8], where such
sets are called doubletons, or to [4], where the corresponding method is called an
inner enclosure. Let us only mention that we take an arbitrary τ > 0 such that
t = kτ for a fixed k ∈ Z, we compute the enclosure for ϕt(a) on each a ∈ A in k
steps as the enclosure for ϕkτ (a), and we replace the resulting set with a minimal
convex cubical set containing it. The above method will be briefly referred to as
Lohner’s method.

In the sequel we use the same symbol F to denote cubical enclosures of
various restrictions of ϕt if the domain and range of each restriction is clear from
the context.

Finite subsets of H, finite multivalued cubical maps, finitely generated chain
complexes, their homology modules, as well as maps between these objects may
be easily implemented using aggregate data structures available in programming
languages and thus we use them in arguments of algorithms and as returned
values.

Let us now recall some basic terminology from the homotopy theory. Let X
and Y be topological spaces. We say that two continuous maps f, g : X → Y are
homotopic, and we write f � g, if there exists a continuous map h : X × [0, 1]→
Y such that h( · , 0) = f and h( · , 1) = g. The relation “�” is obviously an
equivalence. The map h is called a homotopy between f and g. We say that
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a topological space X has the homotopy type of a topological space Y , and we
write X � Y (as this relation is also an equivalence), if there exist continuous
maps f : X → Y and g : Y → X such that f ◦ g � idY and g ◦ f � idX ,
where idX and idY denote the appropriate identity maps. We say that A ⊂ X
is a retract of X if there exists a continuous map r : X → A such that r(a) = a
for each a ∈ A. The map r is called a retraction of X onto A. We say that A
is a deformation retract of X if A is a retract of X and idX � iA ◦ r, i.e., the
identity on X is homotopic with a certain retraction r : X → A composed with
the inclusion iA of A into X . The homotopy between idX and iA ◦ r is called
a deformation retraction of X onto A. If there exists a deformation retraction h
such that h(a, t) = a for each a ∈ A and t ∈ [0, 1] then the set A is called a strong
deformation retract of X and h is called a strong deformation retraction.

3. Construction of an isolating neighbourhood

In this section an algorithm for construction of an isolating neighbourhood
N for which ϕt(N) ⊂ intN is described in detail.

Lemma 6. Let N be an isolating neighbourhood with respect to a discretiza-
tion ϕt of the flow ϕ. Then N is an isolating neighbourhood with respect to the
flow ϕ and inv(N,ϕt) = inv(N,ϕ).

Proof. Let inv(N,ϕt) be denoted by S. Since S is an isolated invariant set
with respect to ϕt, it follows from Theorem 4 that S is an isolated invariant set
with respect to the flow ϕ. Since inv(N,ϕ) is the maximal invariant set with
respect to ϕ contained in N , it is obvious that S ⊂ inv(N,ϕ). On the other hand,
we have inv(N,ϕ) =

⋂
s∈R
ϕs(N) ⊂

⋂
s∈tZ ϕs(N) = inv(N,ϕt). This means that

inv(N,ϕ) ⊂ S and we obtain inv(N,ϕt) = inv(N,ϕ). Since inv(N,ϕt) ⊂ intN ,
it follows that also inv(N,ϕ) ⊂ intN . Hence N is an isolating neighbourhood
with respect to the flow ϕ. �

Algorithm 7.

function neighbourhood (N : finite subset of H,
F : A → 2H: finite multivalued cubical map): finite subset of H;

begin
if F(N ) ⊂ N then

return N
else if F(N ) ⊂ A then

return neighbourhood (N ∪F(N ), F)
else

return ∅
end;
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Proposition 8. Let N1 ⊂ A ⊂ H, and let F be a cubical enclosure of ϕt
on |A|. Assume Algorithm 7 called with N1 and F stops returning a nonempty
set N ⊂ H. Then N := |N | is an isolating neighbourhood with respect to ϕt and
ϕ such that ϕt(N) ⊂ intN and inv(N,ϕt) = inv(N,ϕ).

Proof. Let Nk denote the set of hypercubes passed to the procedure neigh-
bourhood as the first argument in its k-th recursive call. Since we assume that
the algorithm does not loop infinitely and does not return an empty set, there
exists K > 0 such that F(NK) ⊂ NK ⊂ A, and the algorithm returns N = NK .
Since F is a cubical enclosure of ϕt, we have ϕt(N) ⊂ intN . Since obviously
inv(N,ϕt) ⊂ ϕt(N), we have inv(N,ϕt) ⊂ intN . Moreover, N is compact as
a finite union of hypercubes. This implies that N is an isolating neighbourhood
with respect to the discretization ϕt of the flow ϕ. The remaining properties
of N follow immediately from Lemma 6. �

4. Reduction of a cubical set

The isolating neighbourhood constructed by Algorithm 7 may turn out to
be very large. Therefore it is worth to try to reduce it with no change to its
(co)homological properties. An algorithm suitable for this purpose is described
in this section.

Lemma 9. Let a ∈ H and C ⊂ H be such that a �∈ C and a ∩ b �= ∅ for each
b ∈ C. Then a ∩ |C| is a strong deformation retract of |C|.

Proof. Since a is convex, for each x ∈ |C| there exists a unique y(x) ∈ a
such that dist(x, y(x)) = dist(x, a). It is a simple geometrical matter to see that
the map x �→ y(x) is continuous and if x ∈ b ∈ C then y(x) ∈ b. The function
|C|× [0, 1] � (x, t) �→ (1−t)x+ty(x) ∈ |C| is then a strong deformation retraction
of |C| onto a ∩ |C|, which completes the proof. �

Algorithm 10.

function reduce (A, D: finite subset of H): finite subset of H;
begin

for each a ∈ A \ D do
begin

C := {b ∈ A \ {a} such that a ∩ b �= ∅};
if (C �= ∅) and (reduce (C, ∅) has exactly one element) then

return reduce (A \ {a}, D);
end;
return A;

end;
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Proposition 11. Given finite sets A ⊂ H and D ⊂ A, Algorithm 10 always
stops returning a set of hypercubes B ⊂ A such that D ⊂ B and the inclusion
|B| ⊂ |A| induces an isomorphism in homology.

Proof. The proof proceeds by induction on the cardinality of A. If A
consists of a single hypercube, the conclusion is trivial. Assume the proposition
holds true for families A consisting of less than n elements. Let A ⊂ H be of
cardinality n. First observe that all recursive calls of reduce complete in finite
time by the induction assumption, because in each call the first argument is
contained in A\{a}. Therefore reduce called with the n-element set A as the first
argument will stop. It will either returnA or A′ := reduce (A\{a}, D) for some a
for which the corresponding set reduce (C, ∅) has exactly one element. In the first
case the conclusion is obvious. Hence consider the other case. By the induction
assumption D ⊂ A′ ⊂ A \ {a} ⊂ A and the inclusion |A′| ⊂ |A \ {a}| induces
an isomorphism in homology. For the same reason |C| has the same homology
as |reduce (C, ∅)|, which is a single hypercube. Therefore the homology of |C| is
trivial and by Lemma 9 so is the homology of a ∩ |C| = a ∩ |A \ {a}|. It follows
from the Mayer–Vietoris sequence that the inclusion |A \ {a}| ⊂ |A| induces
an isomorphism in homology. Therefore the inclusion |A′| ⊂ |A| induces an
isomorphism in homology as a composition of two isomorphisms. The conclusion
for A of cardinality n follows. �

5. Computation of the Conley index

In this section we describe algorithms which may be used in the proof of
the fact that the Conley index of the isolating neighbourhood constructed by
Algorithm 7 is the one of an attracting periodic orbit.
First we recall two algorithms, whose bodies and proofs of correctness may

be found in [1] and [3], respectively.

Algorithm 12.

function chainmap (A, B: finite subset of H,
F : A → 2B: almost perfect multivalued cubical map):
(C, D: chain complexes of |A| and |B|,
ψ : C → D: chain map of |F|);

Algorithm 13.

function homology (C, D: finitely generated free chain complex,
ψ : C → D: chain map):
(HC, HD: homology modules of C and D with coefficients in Q,
Hψ : HC → HD: homology of the map ψ);

Let us now focus on the following algorithm, which is a combination of the
algorithms introduced so far:
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Algorithm 14.

function computations (N1: finite subset of H,
F : A → 2H: finite multivalued cubical map):
(HC, HD: homology module, Hψ : HC → HD);

begin
N := neighbourhood (N1, F);
N ′ := reduce (N , ∅);
if F is not almost perfect on N ′ then

return (∅, ∅, ∅);
N ′′ := reduce (N , F(N ′));
(C, D, ψ) := chainmap (N ′, N ′′, F);
return homology (C, D, ψ)

end;

Proposition 15. Let N1 be a finite subset of H. Let F be a cubical enclosure
of ϕt. If Algorithm 14 stops and returns HC, HD and Hψ such that HC or HD
is isomorphic to the homology module of the circle S1 and Hψ is an isomorphism
then N := |N | has the cohomological Conley index of an attracting periodic orbit
with respect to the flow ϕ.

Proof. First of all, let us notice that it follows from Proposition 11 that
HC and HD are both isomorphic to the homology module of N . Moreover,
Hψ corresponds to the homology of ϕt : N → N by Corollary 4.6 and 4.7
in [1]. Since we work with compact cubical sets in Rn which are obviously
polyhedra, it follows that we have the same result for the Alexander–Spanier
cohomology, i.e., the cohomology of N is isomorphic to the cohomology of S1 and
the map ϕt on N induces an isomorphism in cohomology. From Proposition 2 it
follows that ϕt in N has the cohomological Conley index of an attracting periodic
orbit. By definition this is the Conley index of inv(N,ϕt). By Proposition 8
inv(N,ϕ) = inv(N,ϕt), and it follows from Theorem 5 that the cohomological
Conley index of inv(N,ϕ) is the Conley index of an attracting periodic orbit.�

6. Verification of the existence of a Poincaré section

In this section we introduce a method which may be used to prove that an
isolating neighbourhood admits a Poincaré section. In the sequel the notation
IK will stand for the set {0, . . . ,K}.

Algorithm 16.

function verify (A: finite subset of H, Q: subset of Rn, τ : real,
K: integer, F : function A× IKτ → 2Rn): boolean;

begin
for each a ∈ A do
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begin
answer := false;
for k := 0 to K do

if F (a, kτ) ⊂ intQ then
answer := true;

if answer = false then
return false

end;
return true

end;

Proposition 17. Let A be a finite subset of H. Assume Ξ ⊂ Rn and
Q ⊂ Rn are such that Ξ∩ intQ = ∅ and ϕ(x,R+)∩Ξ �= ∅ for each x ∈ intQ. Let
τ > 0, K ∈ Z+, and F : A× IKτ → 2Rn be a map such that ϕ(a, kτ) ⊂ F (a, kτ)
for each a ∈ A and k ∈ IK . If Algorithm 16 returns true then ϕ(x,R+)∩Ξ �= ∅
for every x ∈ |A|.

Proof. Given x ∈ |A|, there exists a ∈ A such that x ∈ a. For this a
there exists k ∈ IK such that F (a, kτ) ⊂ intQ, because otherwise Algorithm 16
returns false. Denote ϕ(x, kτ) by y. Since y ∈ intQ, there exists s > 0 such
that ϕ(y, s) ∈ Ξ. Then ϕ(x, kτ + s) ∈ Ξ, which completes the proof. �

7. Application to the Rössler equations

In this section we apply our method to give a computer assisted proof of
Theorem 1. The results of computations mentioned here are available in [12].
Let ϕ be the continuous dynamical system generated by the Rössler sys-

tem (1). Let Ξ = {0} × [−6,−3]× [−0.5, 0.5] and let Q = [−1, 0]× [−4.5,−3]×
[−0.5, 0.5].

Lemma 18. The Rössler vector field is transverse to Ξ, Ξ ∩ intQ = ∅ and
ϕ(q,R+) ∩ Ξ �= ∅ for each q ∈ intQ.

Proof. The transversality of the Rössler vector field to Ξ is obvious, as well
as the emptiness of the intersection of Ξ with the interior of Q. To see the last
property of Q, take an auxiliary set R = [−1, 0] × [−6,−3] × [−0.5, 0.5]. Let
q ∈ intQ. We will show that there exists t ∈ (0, 0.5) such that ϕ(q, t) ∈ Ξ and
ϕ(q, [0, t]) ⊂ R. Let t = min{τ > 0 | ϕ(q, τ) ∈ ∂R}. Note that t ∈ (0, 0.5),
because ẋ > 2 in R. Since for z = −0.5 we have ż > 0 in R and for z = 0.5 we
have ż < 0 in R, we can easily see that ϕ(q, t) is neither at the upper nor at the
lower face of R. Since ẏ ∈ [−2.2,−0.6] in R, we can see that ϕ(q, t) cannot be in
the plane {y = −6} and {y = −3}. Recall that ẋ > 0 in R to conclude that the
only possibility for ϕ(q, t) is to be in the plane P := {x = 0}. But Ξ = P ∩ R
and thus ϕ(q, t) ∈ Ξ. �
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Figure. Projections of the neighbourhood N to the planes XY and XZ

Proof of Theorem 1. Let d = 1/32. Take N1 = {[−107/32,−106/32] ×
[−1/32, 0]× [1/32, 2/32]}. Let t = 2. Apply Algorithm 14 to N1 and an almost
perfect cubical enclosure F of ϕt on [−6, 6]3 computed with Lohner’s method. It
stops and returnsHC, HD andHψ such thatHC andHD are isomorphic to the
homology of S1 and Hψ is an isomorphism. By Proposition 15 the constructed
isolating neighbourhood N = |N | has the cohomological Conley index of an
attracting periodic orbit. Algorithm 16 applied to N , Q, τ := 1/16, K := 120
and F computed again with Lohner’s method returns true. It follows from
Proposition 17 that N admits a Poincaré section. Thus the assumptions of
Theorem 3 are satisfied. It follows that the set N contains a periodic orbit. �

8. Remarks and comments

In this section some technical remarks on various aspects of the computations
are gathered, and the cost of implementation is roughly discussed.

The most important parameters in the construction of an isolating neighbour-
hood are grid size d > 0 and time t > 0. They are vital for Algorithm 7, which
is the most time consuming part of the proof and the remaining computations
depend on its result. Before proceeding with this algorithm, some preliminary
simulations may help make an appropriate choice of d and t. Instead of using
Lohner’s algorithm, the image of each hypercube may be computed by integrat-
ing its vertices with an approximate numerical method (like the Runge–Kutta
or Euler methods) and by taking a minimal convex cubical set containing them.
Since Lohner’s method implemented by Mrozek and Zgliczyski produces very
tight enclosures, in most cases the rigorously computed set N should not be
significantly larger than the estimated one.

In Table 1 the size of the neighbourhood and the cost of its construction in
the case of the Rössler system (1) is illustrated as a function of the grid size
d > 0. It is worth to point out that the volume of the neighbourhood, which
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grid number of volume of the computation time time of reduc-

size cubes neighbourhood on a PC 133 MHz tion to N ′
1/16 f a i l u r e

1/32 159,677 4.87 1.5 days 33 minutes

1/64 293,756 1.12 2.7 days 57 minutes

1/128 563,364 0.27 5.2 days 99 minutes

1/256 1,097,512 0.065 10 days 170 minutes

Table 1. Different isolating neighbourhoods for different grid sizes

may serve as a measure of precision in locating the periodic orbit, decreases
rapidly with the grid size. In the case of d = 1/16 the algorithm fails in creating
a suitable neighbourhood because of producing too large enclosures of images of
some of the cubes, which is caused by the lack of reasonable estimations for the
vector field over large areas.

time number of volume of the computation time

t cubes neighbourhood on a PC 133 MHz

0.25 f a i l u r e

0.5 1,063,211 32.4 2.5 days

1.0 376,171 11.5 1.7 days

2.0 159,677 4.87 1.5 days

3.0 66,521 2.03 22 hours

4.0 53,725 1.64 24 hours

5.0 41,034 1.25 23 hours

6.0 f a i l u r e

Table 2. Different isolating neighbourhoods for different times

In Table 2 several choices of t > 0 are listed together with some features of
the neighbourhoods constructed for them by Algorithm 7. If the cubes have little
time to be attracted towards the periodic trajectory, the algorithm constructs
a large neighbourhood (like the one for t = 0.5) or seems to loop infinitely (as
for t = 0.25). On the other hand, if the cubes are iterated for a long period of
time, they grow to such an extent that applying this method to them becomes
practically impossible, which is the case of t ≥ 6.
If the set N is small, Algorithms 12 and 13 may be run without prior com-

putation of N ′ and N ′′ with Algorithm 10. However, this may only be the case
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of simple examples, because the algebraical structures being created during the
computation of the homology of N and ϕt are very large (cf. [1], [3], [5]).
The set N1 is meant to be an initial approximation of the orbit, but in

most cases it is sufficient to take a single hypercube close to the orbit and let it
propagate into a full neighbourhood. This was the case of the proof of Theorem 1.
However, an appropriate set N1 may be a good hint for reduction of N to N ′
by Algorithm 10.
Finding sets satisfying the assumptions of Proposition 17, like it was illus-

trated in Lemma 18, is usually very simple and involves elementary analysis of
the vector field f . It is important to find a possibly large set Q in order to allow
producing loose enclosures of ϕ by the function F in Algorithm 16, which allows
these computations to complete significantly faster than during the construction
of N . Moreover, if the grid size d is very small, in this part of computations
the set N may be replaced by a cubical set N+ with respect to a larger grid,
provided |N | ⊂ |N+|.
We would like to emphasize that in this method an isolating neighbourhood

containing the periodic trajectory is constructed. This is in contrast with the
Poincaré map methods which produce at most a subset of the Poincaré section
containing its intersection with the periodic trajectory.
This method may be generalized to detect hyperbolic periodic orbits which

are not necessarily attracting. For this purpose, an isolating neighbourhood N
should be determined a priori, and an algorithm for construction of an index pair
in N must be used (an example may be found in [11]). Moreover, an algorithm
for computation of relative homology of this pair of cubical sets must be used,
together with computation of homology of the index map. Such algorithms are
currently under development and should be available soon.

Acknowledgments. I would like to express my gratitude to professor Ma-
rian Mrozek for inspiration to undertake this work and for many fruitful discus-
sions.
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