# EXISTENCE OF MANY SIGN-CHANGING NONRADIAL SOLUTIONS FOR SEMILINEAR ELLIPTIC PROBLEMS ON THIN ANNULI 

Alfonso Castro - Marcel B. Finan


#### Abstract

We study the existence of many nonradial sign-changing solutions of a superlinear Dirichlet boundary value problem in an annulus in $\mathbb{R}^{N}$. We use Nehari-type variational method and group invariance techniques to prove that the critical points of an action functional on some spaces of invariant functions in $H_{0}^{1,2}\left(\Omega_{\varepsilon}\right)$, where $\Omega_{\varepsilon}$ is an annulus in $\mathbb{R}^{N}$ of width $\varepsilon$, are weak solutions (which in our case are also classical solutions) to our problem. Our result generalizes an earlier result of Castro et al. (See [4])


## 1. Introduction

In this article we discuss the existence of many sign-changing nonradial solutions of semilinear elliptic equations on an annulus in $\mathbb{R}^{N}, N \geq 2$ :

$$
\Omega_{\varepsilon}:=\left\{x \in \mathbb{R}^{N}: 1-\varepsilon<|x|<\varepsilon\right\},
$$

where $\varepsilon>0$.
We consider the Dirichlet boundary value problem

$$
\left\{\begin{align*}
\Delta u+f(u)=0 & \text { in } \Omega_{\varepsilon},  \tag{1.1}\\
u=0 & \text { on } \partial \Omega_{\varepsilon},
\end{align*}\right.
$$

1991 Mathematics Subject Classification. 35J20, 35J25, 35J60.
Key words and phrases. Dirichlet's problem, superlinear, subcritical, sign-changing nonradial solution, group action, symmetric criticality lemma, variational method.
where the non-linearity $f$ is of class $C^{1}(\mathbb{R})$ and satisfies the following assumptions:
(A1) $f(0)=0$ and $f^{\prime}(0)<\lambda_{1}$, where $\lambda_{1}$ is the smallest eigenvalue of $-\Delta$ with zero Dirichlet boundary condition in $\Omega_{\varepsilon}$.
(A2) $f^{\prime}(u)>f(u) / u$ for all $u \neq 0$.
(A3) (Superlinearity)

$$
\lim _{|u| \rightarrow \infty} \frac{f(u)}{u}=\infty
$$

(A4) (Subcritical growth) There exist constants $p \in(1,(N+2) /(N-2))$ and $C>0$ such that

$$
\left|f^{\prime}(u)\right| \leq C\left(|u|^{p-1}+1\right) \quad \text { for all } u \in \mathbb{R}
$$

(A5) There exist constants $m \in(0,1)$ and $\rho$ such that

$$
u f(u) \geq \frac{2}{m} F(u)>0
$$

where $|u|>\rho$ and $F(u)=\int_{0}^{u} f(s) d s$.
If $N=2$, then $p \in(1, \infty)$. A typical nonlinearity is the function $f(t)=t^{3}$, although our results are not restricted to an odd nonlinearity.

We note that the condition $f^{\prime}(0)<\lambda_{1}$ is necessary for the existence of signchanging solutions (see [2]).

In [11], Wang proved that, over a smooth bounded domain, problem (1.1) has a positive solution, a negative solution, and a third solution with no information about its sign. In [2], Castro et al. proved the existence of a third solution that changes sign exactly once. Later in [4], they established the existence of a nonradial sign-changing solution when the underlying domain is an annulus in $\mathbb{R}^{N}$. Furthermore, if the annulus is two dimensional they proved that (1.1) has many sign-changing nonradial solutions. The purpose of this paper is to extend their result to higher dimensions.

Our main result is the following
Theorem 1.1. Assume $f$ satisfies (A1)-(A5). Then for each positive integer $k$ there exists $\varepsilon_{1}(k)>0$ such that if $0<\varepsilon<\varepsilon_{1}(k)$ then (1.1) has $k$ sign-changing nonradial solutions.

In our context, by a solution to (1.1) we mean a function $u \in H_{0}^{1,2}\left(\Omega_{\varepsilon}\right)$ that satisfies

$$
\begin{equation*}
\int_{\Omega_{\varepsilon}}(\nabla u \cdot \nabla v-v f(u)) d x=0 \tag{1.2}
\end{equation*}
$$

for all $v \in C_{0}^{\infty}\left(\Omega_{\varepsilon}\right)$, where $H_{0}^{1,2}\left(\Omega_{\varepsilon}\right)$ is the Sobolev space with inner product $\langle u, v\rangle=\int_{\Omega_{\varepsilon}} \nabla u \cdot \nabla v d x$ (see [1]). Note that (1.2) is obtained by multiplying the
equation in (1.1) by $v$ and integrating by parts. So classical solutions of (1.1) (that is, the ones which are in $C^{2}\left(\Omega_{\varepsilon}\right) \cap C\left(\overline{\Omega_{\varepsilon}}\right)$ ) are also weak solutions. By the assumptions on $f$ and the regularity theory for elliptic boundary value problems (see [7]), a weak solution of (1.1) is also a classical solution.

The left-hand side of (1.2) is just the Fréchet derivative of the functional

$$
J(u)=\int_{\Omega_{\varepsilon}}\left\{\frac{1}{2}|\nabla u|^{2}-F(u)\right\} d x
$$

defined on $H_{0}^{1,2}\left(\Omega_{\varepsilon}\right)$. Note that $J \in C^{2}\left(H_{0}^{1,2}\left(\Omega_{\varepsilon}\right), \mathbb{R}\right.$ ) (see [10]). Moreover, $u$ is a solution to (1.1) if and only if $u$ is a critical point of $J$.

Instead of looking for sign-changing critical points of the functional $J$ on $H_{0}^{1,2}\left(\Omega_{\varepsilon}\right)$, we look for them on a subset of a submanifold of invariant functions in $H_{0}^{1,2}\left(\Omega_{\varepsilon}\right)$.

Our main tools for proving existence and multiplicity results consist of an idea in [8] and [9] and critical point theory, i.e., we consider the functional $J$ defined above and the functional

$$
\gamma(u)=\int_{\Omega_{\varepsilon}}\left(|\nabla u|^{2}-u f(u)\right) d x
$$

For a positive integer $k$, we define

$$
\begin{aligned}
H(\varepsilon, k) & :=\operatorname{Fix}(G(k)) \\
& =\left\{v \in H_{0}^{1,2}\left(\Omega_{\varepsilon}\right): v(g x, T y)=v(x, y), \text { for all }(g, T) \in G(k)\right\} \\
& =\left\{v \in H_{0}^{1,2}\left(\Omega_{\varepsilon}\right): v(x, y)=u(x,|y|), \text { for some } u\right.
\end{aligned}
$$

$$
\text { which satisfies } \left.u(g x,|y|)=u(x,|y|) \text { for all } g \in G_{k}\right\}
$$

where $G(k)=G_{k} \times \mathbf{O}(N-2), \mathbf{O}(j)$ denotes the group of $j \times j$ orthogonal matrices, and

$$
\begin{aligned}
G_{k}:= & \{g \in \mathbf{O}(2): \\
& g\left(x_{1}, x_{2}\right)=\left(x_{1} \cos \frac{2 \pi l}{k}+x_{2} \sin \frac{2 \pi l}{k},-x_{1} \sin \frac{2 \pi l}{k}+x_{2} \cos \frac{2 \pi l}{k}\right), \\
& \left.\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, l \in \mathbb{Z}\right\} .
\end{aligned}
$$

Note that $H(\varepsilon, k)$ can be regarded as the class of functions that are periodic of period $2 \pi / k$ in the $\theta$ variable, where $(r, \theta)$ are the polar coordinate of $x=\left(x_{1}, x_{2}\right)$, and that depend on $|y|$, where $y=\left(x_{3}, \ldots, x_{N}\right)$.

Also, we consider the Nehari manifold

$$
S(\varepsilon, k)=\{v \in H(\varepsilon, k) \backslash\{0\}: \gamma(v)=0\} .
$$

Of particular interest is the subset of $S(\varepsilon, k)$ given by

$$
S^{1}(\varepsilon, k)=\left\{v \in S(\varepsilon, k): v_{+}, v_{-} \in S(\varepsilon, k)\right\}
$$

where $v_{+}(x)=\max \{v(x), 0\}$ and $v_{-}(x)=\min \{v(x), 0\}$ are the positive and negative parts of $v$ respectively.

Similarly, we define

$$
\begin{aligned}
H(\varepsilon, \infty):= & \left\{v \in H_{0}^{1}\left(\Omega_{\varepsilon}\right): v(g x, T y)=v(x, y),\right. \\
& \text { for all }(g, T) \in \mathbf{O}(2) \times \mathbf{O}(N-2)\} \\
= & \left\{v \in H_{0}^{1,2}\left(\Omega_{\varepsilon}\right): v(x, y)=u(|x|,|y|), \text { for some } u\right\},
\end{aligned}
$$

the manifold

$$
S(\varepsilon, \infty)=\{v \in H(\varepsilon, \infty) \backslash\{0\}: \gamma(v)=0\}
$$

and the set

$$
S^{1}(\varepsilon, \infty)=\left\{v \in S(\varepsilon, \infty): v_{+}, v_{-} \in S(\varepsilon, \infty)\right\}
$$

Note that if $u \in H(\varepsilon, \infty)$ then $u$ is $\theta$-independent.
We consider the following numbers associated with the above sets

$$
j_{k}^{\varepsilon}=\inf _{v \in S^{1}(\varepsilon, k)} J(v), \quad j_{\infty}^{\varepsilon}=\inf _{v \in S^{1}(\varepsilon, \infty)} J(v)
$$

We will obtain many sign-changing nonradial solutions to (1.1) by establishing the following properties:
(i) $j_{k}^{\varepsilon}$ is achieved by some $u_{\varepsilon, k} \in S^{1}(\varepsilon, k)$ and $u_{\varepsilon, k}$ is a critical point of $J$ on $H(\varepsilon, k)$.
(ii) $u_{\varepsilon, k}$ is a critical point of $J$ on $H_{0}^{1,2}\left(\Omega_{\varepsilon}\right)$.
(iii) $j_{k}^{\varepsilon}<j_{\infty}^{\varepsilon}$ for $k \geq 1$ and $0<\varepsilon<\varepsilon_{1}(k)$.
(iv) $j_{k}^{\varepsilon}<j_{k n}^{\varepsilon}$ whenever $j_{k n}^{\varepsilon}<j_{\infty}^{\varepsilon}$.

Note that assertion (ii) is related to the symmetric criticality principle: if $u_{\varepsilon, k}$ is a critical point of $J$ on $H(\varepsilon, k)$, then $u_{\varepsilon, k}$ is a critical point of $J$ on $H_{0}^{1,2}\left(\Omega_{\varepsilon}\right)$ (see [12]).

The paper is organized as follows: in Section 2, we discuss assertions (i), (iii), and (iv). In Section 3, we prove Theorem 1.1.

## 2. Existence results

Assertion (i) of the previous paragraph is a direct consequence of the following theorem

Theorem 2.1. For each positive integer $k=1,2 \ldots$ and $\varepsilon>0$ there exists a minimizer $u_{\varepsilon, k}$ of $j_{k}^{\varepsilon}$ which changes sign. Moreover, $u_{\varepsilon, k}$ is a critical point of $J$ on $H(\varepsilon, k)$.

Proof. This follows from a recent result of Castro, Cossio, and Neuberger [2].

As for assertion (iii) we have
Theorem 2.2. For a positive integer $k$, there exists $\varepsilon_{1}(k)>0$ such that if $0<\varepsilon<\varepsilon_{1}(k)$ then $j_{k}^{\varepsilon}<j_{\infty}^{\varepsilon}$. Thus, $u_{\varepsilon, k}$ is $\theta$-dependent.

Proof. A proof of this theorem can be found in [6].
The following lemma, which establishes assertion (iv), shows that if $k$ divides $n$ and $j_{n}^{\varepsilon}<j_{\infty}^{\varepsilon}$ then $j_{k}^{\varepsilon}<j_{n}^{\varepsilon}$.

LEmma 2.3. Let $f$ satisfies (A1)-(A5). For $n=2,3, \ldots, k=1,2, \ldots$ if $j_{k n}^{\varepsilon}<j_{\infty}^{\varepsilon}$ then $j_{k}^{\varepsilon}<j_{k n}^{\varepsilon}$.

Proof. Fix $k$ and $n$. For $\varepsilon>0$, Theorem 2.1 guarantees the existence of a sign-changing minimizer $u$ of $J$ on $S^{1}(\varepsilon, k n)$. According to Theorem 2.1 and assertion (ii), $u$ is a solution to (1.1). Furthermore, invoking Theorem 2.2 with $0<\varepsilon<\varepsilon_{1}(k)$, we know that $u$ is $\theta$-dependent. Now, by the regularity theory of elliptic equations we know that $u$ is a $C^{2}$ function. Let $x=(r, \theta)$ be the polar coordinate of $x \in \mathbb{R}^{2}$ and write $u=u(r, \theta,|y|)$. Then

$$
\int_{\Omega_{\varepsilon}}|\nabla u|^{2} d x d y=\int_{(r,|y|)} \int_{0}^{2 \pi}\left(u_{r}^{2}+\frac{1}{r^{2}} u_{\theta}^{2}+\left|\nabla_{y} u\right|^{2}\right) r d r d \theta d y
$$

and

$$
\int_{\Omega_{\varepsilon}} F(u) d x d y=\int_{(r,|y|)} \int_{0}^{2 \pi} F(u) r d r d \theta d y
$$

Define the function

$$
v(r, \theta,|y|)=u(r, \theta / n,|y|), \quad 0 \leq \theta \leq 2 \pi
$$

Since $u$ is $\theta$-dependent and changes sign so does $v$. Also,

$$
v_{ \pm}(r, \theta+2 \pi / k,|y|)=v_{ \pm}(r, \theta,|y|) .
$$

It follows that $v_{ \pm} \in H(\varepsilon, k)$.
An easy calculation yields the following equalities

$$
\begin{aligned}
\int_{\Omega_{\varepsilon}}\left|\nabla v_{ \pm}\right|^{2} d x d y= & \int_{(r,|y|)} \int_{0}^{2 \pi}\left(\left(u_{ \pm}\right)_{r}^{2}(r, \theta,|y|)+\frac{1}{r^{2} n^{4}}\left(u_{ \pm}\right)_{\theta}^{2}(r, \theta,|y|)\right. \\
& \left.+\left|\nabla_{y} u_{ \pm}(r, \theta,|y|)\right|^{2}\right) r d r d \theta d y
\end{aligned}
$$

and

$$
\int_{\Omega_{\varepsilon}} F\left(v_{ \pm}\right) d x d y=\int_{(r,|y|)} \int_{0}^{2 \pi} F\left(u_{ \pm}(r, \theta,|y|)\right) r d r d \theta d y
$$

Since $u$ does not belong to $S^{1}(\varepsilon, \infty)$ we have

$$
\int_{(r,|y|)} \int_{0}^{2 \pi}\left(u_{ \pm}\right)_{\theta}^{2}(r, \theta,|y|) r d r d \theta d y>0
$$

This implies that $\gamma\left(v_{ \pm}\right)<0$. That is

$$
\begin{equation*}
\int_{\Omega_{\varepsilon}}\left|\nabla v_{ \pm}\right|^{2} d x d y<\int_{\Omega_{\varepsilon}} v_{ \pm} f\left(v_{ \pm}\right) d x d y \tag{2.1}
\end{equation*}
$$

Now, by Lemma 2.2 of [2] we can find $0<\alpha<1$ and $0<\beta<1$ such that $\alpha v_{+} \in S(\varepsilon, k)$ and $\beta v_{-} \in S(\varepsilon, k)$. Let $w=\alpha v_{+}+\beta v_{-} \in S^{1}(\varepsilon, k)$. Using the fact that $P_{v}(\lambda)=\lambda v f(\lambda v) / 2-F(\lambda v)$ is monotonically increasing for $\lambda>0$ and the definition of $j_{k}^{\varepsilon}$ we have

$$
j_{k}^{\varepsilon} \leq P_{v_{+}}(\alpha)+P_{v_{-}}(\beta)<P_{v_{+}}(1)+P_{v_{-}}(1)=J(u)=j_{k n}^{\varepsilon} .
$$

Putting together all the arguments above we conclude a proof of the lemma.

## 3. Proof of Theorem 1.1

Let $k \geq 1$ be an integer. According to Theorem 2.2 there exists $\varepsilon_{1}\left(2^{k}\right)$ such that if $0<\varepsilon<\varepsilon_{1}\left(2^{k}\right)$ then $j_{2^{k}}^{\varepsilon}<j_{\infty}^{\varepsilon}$. Applying Lemma 2.3 to obtain

$$
\begin{equation*}
j_{2}^{\varepsilon}<j_{2^{2}}^{\varepsilon}<\ldots<j_{2^{k}}^{\varepsilon}<j_{\infty}^{\varepsilon} . \tag{3.1}
\end{equation*}
$$

According to Theorem 2.1 there exists $u_{i} \in S^{1}\left(\varepsilon, 2^{i}\right), i=1, \ldots, k$, such that $j_{2^{i}}^{\varepsilon}=J\left(u_{i}\right)$. Moreover, $u_{i}$ is a solution of (1.1). Also, according to Theorem 2.2, $u_{i}$ is $\theta$-dependent. Finally, by (3.1), $\left\{u_{i}\right\}_{i=1}^{k}$ are distinct. The proof of Theorem 1.1 is now complete.

## References

[1] R. Adams, Sobolev Spaces, Academic Press, 1975.
[2] A. Castro, J. Cossio and J. M. Neuberger, A sign changing solution for a superlinear Dirichlet Problem, Rocky Mountain J. Math. 27 (1997), 1041-1053.
[3] $\qquad$ , On multiple solutions of a nonlinear Dirichlet problem, Proceedings of World Congress of Nonlinear Analysts, 1996.
[4] , A minmax principle, index of the critical point, and existence of sign-changing solutions to elliptic boundary value problems, Electron. J. Differential Equations 2 (1998), 1-18.
[5] C. V. Coffman, A nonlinear boundary value problem with many positive solutions, J. Differential Equations 54 (1984), 429-437.
[6] M. B. Finan, Existence of many sign-changing nonradial solutions for semilinear elliptic problems on annular domains, Dissertation, University of North Texas, 1998.
[7] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983.
[8] Y. Y. Li, Existence of many positive solutions of semilinear elliptic equations on an annulus, J. Differential Equations 83 (1990), 348-367.
[9] S. S. Lin, Existence of many positive nonradial solutions for nonlinear elliptic equations on an annulus, J. Differential Equations 103 (1993), 338-349.
[10] P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Partial Differential Equations, Amer. Math. Soc., Providence, 1986.
[11] Z. Q. Wang, On a superlinear elliptic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), 43-57.
[12] M. Willem, Minimax Theorems, Birkhäuser, 1996.

## Alfonso Castro

Division of Mathematics and Statistics
University of Texas at San Antonio
San Antonio, Texas 78249, USA
E-mail address: castro@math.utsa.edu

Marcel B. Finan
Department of Mathematics
University of Texas at Austin
Austin, Texas 78712, USA
E-mail address: mbfinan@math.utexas.edu

