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QUASILINEAR PARABOLIC EQUATIONS WITH NONLINEAR
MONOTONE BOUNDARY CONDITIONS

Chin-Yuan Lin

Abstract. Of concern is the following quasilinear parabolic equation with

a nonlinear monotone boundary condition:

(∗)

8>>><
>>>:

ut(x, t) =
∂α(x, ux)

∂x
+ g(x, u), (x, t) ∈ (0, 1)× (0,∞),

(α(0, ux(0, t)),−α(1, ux(1, t))) ∈ β(u(0, t), u(1, t)),

u(x, 0) = u0(x).

Here β is a maximal monotone graph in R × R, which contains the origin

(0, 0). It is showed that (*) has a unique strong solution u, with the property
that

sup
t∈[0,T ]

‖u(x, t)‖C1+ν [0,1]

is uniformly bounded for 0 < ν < 1 and finite T > 0.

1. Introduction

We consider the following parabolic equation

(1)


ut(x, t) =

∂α(x, ux)
∂x

+ g(x, u), (x, t) ∈ (0, 1)× (0,∞),

(α(0, ux(0, t)),−α(1, ux(1, t))) ∈ β(u(0, t), u(1, t)),

u(x, 0) = u0(x),

1991 Mathematics Subject Classification. 35A05, 35B35, 35B65, 47H17, 47H20.

Key words and phrases. m-dissipative operators, method of lines.

c©1999 Juliusz Schauder Center for Nonlinear Studies

235



236 Ch.-Y. Lin

where β is a maximal monotone graph in R×R, containing the origin (0, 0). We
apply the evolution equation theory [1]–[5], [8], [14], [16], [17] to show that (1)
has a unique strong solution. Finally, a difference scheme from the method of
lines [11], [20] is employed to obtain a strong solution u, which coincides with
the solution from the evolution equation theory and has the property:

sup
t∈[0,T ]

‖u(x, t)‖C1+ν [0,1]

is uniformly bounded for 0 < ν < 1 and finite T > 0.
When α(x, ξ) = σ(x)ξ, a case in [18] follows, where a more general linear

equation of order 2n is considered and many other nice results are obtained.
When β(x, y) = (β0x, β1y) and β0 and β1 are maximal monotone graphs in
R, containing the origin, we obtain a case in [9]. Both [18] and [9] use the
evolution equation theory. Elliptic problems corresponding to (1) are studied in
[21], [22] with less nonlinearity. Nonlinear monotone boundary conditions of this
sort in (1) are very general, from which follows all the traditional ones, such as
Dirichlet, Neumann, Robin, and periodic; the derivation of these results can be
seen in e.g. [17], [18], [21], [22].

There are many ways to tackle parabolic problems. The traditional one for
solving quasilinear equations with linear boundarey conditions is detailed quite
well in [13]. Linear evolution equation (operator semigroup) approach is used in
e.g. [6], [15] and the nonlinear counterpart is applied in e.g. [1]–[5], [8], [9], [14],
[16]–[18].

The nonlinear evolution equation (operator semigroup) approach is to rewrite
(1) as an abstract ODE

(2)
du

dt
= Au, u(0) = u0

in a Banach space (X, ‖ · ‖). If the nonlinear operator A satisfies conditions:

(i) Dissipativity condition. ‖u−v‖ ≤ ‖(u−v)−λ(Au−Av)‖ for λ > 0 and
u, v ∈ D(A).

(ii) Range condition. The range of (I − λA) ⊃ D(A) for small λ > 0,

then A generates a nonlinear operator semigroup

T (t)u0 ≡ lim
n→∞

(
I − t

n
A

)−n

u0

for u0 ∈ D(A) by the Crandall–Liggett theorem [5] or the Komura theorem
[12] in the case of Hilbert spaces, and u(t) ≡ T (t)u0 for u0 ∈ D(A) is the
unique generalized solution to (2). The notion of a generalized solution is due
to Benilan [2]. When X is reflexive, u is a strong solution which satisfies (2) for
almost every t. If A satisfies (i) and

(iii) The range of (I − λA) = X for small λ > 0,
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A is called m-dissipative.
The method of lines [11], [20] is to time-discretize (2) and construct the

Rothe’s functions. In doing so, some crucial apriori estimates need to be derived.
The rest of this paper is organized as follows. Section 2 contains some basic

assumptions and preliminary results. The proof by the evolution equation (op-
erator semigroup) approach is given in Section 3 and Section 4 deals with the
the difference scheme from the method of lines.

2. Some basic assumptions and preliminary results

From here on, k denotes a generic constant, which can vary with different
situations.

We make the following assumptions.

(2.1) β is a maximal monotone graph in R × R, such that the range of β

contains the origin (0, 0).
(2.2) α is a continuously differentiable function on [0, 1]×R, such that αξ(x, ξ)

≥ k > 0 and α(x, 0) ≡ 0 for all x and ξ.
(2.3) αx/αξ has at most linear growth in ξ, so that there is a continuous

function M(x) ≥ k > 0, for which∣∣∣∣αx

αξ

∣∣∣∣ ≤ M(x)(1 + |ξ|).

(2.4) g is a continuous function on [0, 1] × R, such that g(x, ξ) is monotone
non-increasing in ξ and g(x, 0) ≡ 0 for all x.

Define a nonlinear operator A : D(A) ⊂ L2(0, 1) → L2(0, 1) as follows

D(A) = {u ∈ W 2,2(0, 1) : (α(0, u′(0)),−α(1, u′(1))) ∈ β(u(0), u(1))}

and

Au =
dα(x, u′)

dx
+ g(x, u) for u ∈ D(A).

Proposition 1. For each h ∈ C[0, 1], λ > 0, and a, b ∈ R, there is a unique
solution to the equation

(3)

{
u− λ

dα(x, u′)
dx

− λg(x, u) = h,

u(0) = a, u(1) = b.

Proof. Since the properties of α and g are not affected when multiplied
by λ, it suffices to consider only the case of λ = 1.

Let w ∈ C1[0, 1] and let Tw be the unique solution to

(4)

{
u− αx(x,w′)− αξ(x, w′)u′′ − g(x, w) = h,

u(0) = a, u(1) = b,

by linear ordinary differential equation theory [10], for all u.
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We show that the nonlinear operator T : C1[0, 1] → C1[0, 1] satisfies ‖u‖C1 ≤
k for which, σTu = u, σ ∈ [0, 1], and that T is compact and continuous.

Let σTu = u. Then (4) gives that

(5)

{
u− σαx(x, u′)− αξ(x, u′)u′′ − σg(x, u) = σh,

u(0) = σa, u(1) = σb.

If the maximum of u occurs at end points, then ‖u‖∞ is uniformly bounded
from (5); if instead, it occurs at some interior point x0 in (0, 1), then we have
that u′(x0) = 0 and u(x0)u′′(x0) ≤ 0 by the first and second derivative tests.
With those plugged into (5), we have that, by the monotonicity assumption of g,

u2(x0) ≤ σ[u(x0)αx(x0, 0) + h(x0)u(x0)]

and so again, ‖u‖∞ is uniformly bounded.
We continue to estimate u′. Equation (5) gives that

(6) u′′ + σ
αx(x, u′)
αξ(x, u′)

=
(u− σg(x, u)− σh)

αξ(x, u′)
.

The assumptions (2.2) and (2.3) imply that (6) is a uniformly elliptic equation
with bounded coefficients and bounded right side, and so, ‖u′‖∞ and ‖u′′‖∞ are
all uniformly bounded by linear ordinary differential equations theory [10]. Thus
‖u‖C2 ≤ k.

Next, let wn be a bounded sequence in C1[0, 1]. By the definition of T , we
have that

(7)

{
un − αx(x,w′′n)− αξ(x, w′n)u′′ − g(x, wn) = h,

un(0) = a, un(1) = b,

if un = Twn. By the above arguments, we have that ‖un‖C2 ≤ k, and so, un has
a convergent subsequence in C1[0, 1] by the Ascoli–Arzela theorem. Therefore,
T is compact.

Next, let wn converge to w in C1[0, 1] ( and so, wn is uniformly bounded
in C1[0, 1]). Then un ≡ Twn has a convergent subsequence unk

, converging to
some u in C1[0, 1] since T is compact. It follows that (7) converges to (3) with
λ = 1 through the subsequences unk

and wnk
, and so, Twnk

= unk
converges

to u = Tw. Here we have used the fact that the first differential operator d/dx

with C1[0, 1] as its domain is closed in C[0, 1]. This arguments, when repeated,
shows that every subsequence of Twn has, in turn, a convergent subsequence
conveging to Tw, and so, T is continuous.

With the above properties, T has a fixed point by the Schauder fixed point
theorem [7], which is a solution to (3) with λ = 1.
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We continue to prove uniqueness. Let u1 and u2 satisfy (3) with λ = 1. Then

(8)
(u1 − u2)−

α(x, u′1)− α(x, u′2)
dx

− [g(x, u1)− g(x, u2)] = 0,

(u1 − u2)(0) = (u1 − u2)(1) = 0.

Integrating (8) gives that

0 ≤
∫ 1

0

(u1 − u2)2 dx =
3∑

i=1

Ii,

where

I1 =
∫ 1

0

(u1 − u2)[g(x, u1)− g(x, u2) dx,≤ 0

since g(x, η) is monotone non-increasing in η,

I2 = (u1 − u2)[α(x, u′1)− α(x, u′2)]
∣∣1
0

= 0,

by the boundary condition in (3),

I3 = −
∫ 1

0

(u′1 − u′2)[α(x, u′1)− α(x, u′2)] dx ≤ 0,

by the assumption (2.2).
Thus,

∫ 1

0
(u1 − u2)2 dx = 0, and so, u1 ≡ u2 since u1, u2 ∈ C1[0, 1]. �

3. The evolution equation approach

We rewrite (1) as { du

dt
= Au for t > 0,

u(0) = u0,

in the Hilbert space (L2(0, 1), ‖ · ‖), where the nonlinear operator A is defined
Section 2.

Lemma 1. The nonlinear operator A has the dissipativity condition (i) on
L2(0, 1).

Proof. Let ui ∈ D(A), λ > 0, and hi = ui − λAui, where i = 1, 2. Using
integration by parts, we have that∫ 1

0

(u1 − u2)((h1 − h2) dx =
∫ 1

0

(u1 − u2)2 dx + λ
3∑

i=1

Ji,

where

J1 = −
∫ 1

0

(u1 − u2)[g(x, u1)− g(x, u2) dx,≥ 0

since g(x, η) is monotone non-increasing in η,

J2 =
∫ 1

0

(u′1 − u′2)[α(x, u′1)− α(x, u′2)] dx ≥ 0,
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by the uniformly elliptic assumption of (2.2),

J3 = −(u1 − u2)[α(x, u′1)− α(x, u′2)]
∣∣1
0
≥ 0,

using the monotonicity assumption (2.1) of β and the boundary condition in
D(A). Thus,

‖u1 − u2‖2 ≤
∫ 1

0

(u1 − u2)(h1 − h2) dx ≤ ‖u1 − u2‖‖h1 − h2‖

by the Hölder inequality, and so, ‖u1 − u2‖ ≤ ‖h1 − h2‖. This proves the
dissipativity of A. �

Proposition 2. For λ > 0, the range of (I − λA) contains C[0, 1] and so,
is dense in L2(0, 1).

Proof. It suffices to consider only the case of λ = 1. Let h ∈ C[0, 1] and
a, b ∈ R. Consider the equation

(9)

{
u− dα(x, u′)

dx
− g(x, u) = h,

u(0) = a, u(1) = b.

Proposition 1 implies that (9) has a unique solution u. Define the nonlinear
operator S : R× R → R× R by

S(a, b) = β(a, b) + B(a, b),

where
B(a, b) = −(α(0, u′(0)),−α(1, u′(1))).

We show that B is monotone and hemicontinuous, and that S is coercive.
Let u1 be the solution to (9), corresponding to the pair (a1, b1). Similarly, let

u2 correspond to the pair (a2, b2) through (9). Here, ai, bi ∈ R, i = 1, 2. Then

(10)

{
ui −

dα(x, u′i)
dx

− g(x, ui) = h,

(ui(0), ui(1)) = (ai, bi), i = 1, 2.

Integration by parts applied to (10) gives that

C ≡ (u1 − u2)[α(x, u′1)− α(x, u′2)]
∣∣1
0

=
∫ 1

0

(u1 − u2)2 dx +
∫

(u′1 − u′2)[φ(x, u′1)− φ(x, u′2)] dx

−
∫ 1

0

(u1 − u2)[g(x, u1 − g(x, u2)] dx ≥ 0,

by the arguments as in proving Lemma 1. Let 〈 · , · 〉 be the inner product in
R× R. Then

〈(a1 − b1)− (a2 − b2), B(a1 − b1)−B(a2 − b2)〉 = C ≥ 0,
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and so, B is monotone.
Next, let t ∈ [0, 1] and ut be the unique solution to (9), corresponding to the

pair (a + tc, b + td) = (a, b) + t(c, d), that is, let ut satisfy

(11)

{
ut −

dα(x, u′t)
dx

− g(x, ut) = h,

ut(0) = a + tc, ut(1) = b + td.

Similarly, let u correspond to the pair (a, b) through (9). Then, it follows from
as in proving Proposition 1 that ‖ut‖C2[0,1] ≤ k for t ∈ [0, 1]. Therefore, we can
use the Ascoli–Arzela theorem to derive that (11) converges to (9) through some
subsequence of ut as t → 0 and then, through the very sequence ut as in proving
Proposition 1. Consequently, we have that

−(α(0, u′t(0)),−α(1, u′t(1))) → −(α(0, u′(0)),−α(1, u′(1))),

that is, B((a, b) + t(c, d)) converges to B(a, b), and so, B is hemicontinuous.
Next, let x = (u(0), u(1)) = (a, b). Then 〈Sx, x〉 = J1 + J2, where

J1 = 〈β(u(0), u(1)), (u(0), u(1))〉 ≥ 0,

by the monotonicity assumption (2.1) of β,

J2 = 〈−(α(0, u′(0)),−α(1, u′(1))), (u(0), u(1))〉

= uα(x, u′)
∣∣1
0

=
∫ 1

0

(u2 + u′α(x, u′)− ug(x, u)− uh) dx,

by integrating (9), which we denote as
∑4

i=1 Ii. Here,

I1 =
∫ 1

0

u2 dx ≥ 0,

I2 =
∫ 2

0

u′α(x, u′) dx ≥ k

∫ 1

0

(u′)2 dx,

by the uniform elliptic assumption (2.2) of α,

I3 = −
∫ 1

0

ug(x, u) dx ≥ 0,

by the monotone non-increasing assumption (2.4) of g together with g(x, 0) = 0
and by the Hölder inequality

I4 = −
∫ 1

0

uh dx ≥ −
∫ 1

0

|uh| dx

≥ −
( ∫ 1

0

|u|2 dx

)1/2( ∫ 1

0

|h|2 dx

)1/2

≥ ‖u‖+ ‖h‖
−2

.

So, if we let M = ‖u‖2 and N = ‖u′‖2, then we have that

〈Sx, x〉 ≥ k(M + N)− ‖h‖2/2.
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We estimate further. By the fundamental theorem of calculus, for 0 ≤ x ≤ 1,
we have that

|b| = |u(1)| =
∣∣∣∣u(x) +

∫ 1

x

u′(t) dt

∣∣∣∣,≤ |u|+
∫ 1

0

|u′| dx,

and so, by the Hölder inequality,

|b|2 ≤ |u|2 +
( ∫ 1

0

|u′| dx

)2

+ 2|u|
∫ 1

0

|u′| dx

≤ |u|2 +
( ∫ 1

0

|u′| dx)2 +
[
|u|2 +

( ∫ 1

0

|u′| dx

)2]
≤ 2|u|2 + 2‖u′‖2.

Integrating both sides gives that |b|2 ≤ 2(M + N). Similarly, we have that
a2 = |u(0)|2 ≤ 2(M + N). So, we obtain that

〈Sx, x〉
|x|

=
〈Sx, x〉√
a2 + b2

≥ 2k(a2 + b2)− ‖h‖2

2
√

a2 + b2
,

which converges to ∞ as |x| = |(a, b)| → ∞. So, S is concercive.
Now, we have shown that B is monotone and hemicontinuous and that S is

coercive and so, S is onto [1]; in particular, we have that (0, 0) ∈ S(a, b) for some
(a, b) ∈ R× R. Thus, given h ∈ C[0, 1], there exists a solution u to

(12)

{
u− dα(x, u′)

dx
− g(x, u) = h,

(α(0, u′(0)),−α(1, u′(1))) ∈ β(u(0), u(1)),

which implies that the range of (I −A) contains C[0, 1]. �

Since A satisfies the dissipativity condition (i) and the range of (I − λA) ⊃
C[0, 1] ⊃ D(A) for λ > 0, we have by the Crandall–Liggett theorem or the
Komura theorem in the Hilbert space case that

Theorem 1. Problem (1) (written as (2) on L2(0, 1)) has a unique strong
solution for every u0 ∈ D(A).

Remark. In fact, A is m-dissipative on L2(0, 1). For this, it suffices to show
that A is closed in L2(0, 1) since C[0, 1] is dense in L2(0, 1).

Let wn ∈ D(A) → w and Awn → v. We need to show that w ∈ D(A) and
Aw = v. Let

(13) vn = Awn =
d

dx
α(x,w′n) + g(x, wn).

Since Awn → v in L2(0, 1), we have ‖vn‖ ≤ k. Multiplying (13) by wn and using
integration by parts, we have∫ 1

0

w′nα(x, w′n) dx−
∫ 1

0

wng(x,wn) dx + wnα(x,w′n)|01 = −
∫ 1

0

wnvn dx,
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which gives that

k‖w′n‖ ≤
∫ 1

0

w′nα(x,w′n) dx ≤ ‖wn‖‖vn‖,

by (2.2), (2.4), and the boundary condition in D(A). So we have ‖w′n‖ ≤ k.
Now, as in proving the coerciveness of S, we have that

(wn(1))2 ≤ 2(‖wn‖2 + ‖w′n‖2)

and so, |wn(1)| ≤ k. By the fundamental theorem of calculus, we have

|wn(x)| ≤ |wn(1)|+
∫ 1

0

|w′n| dx ≤ k + ‖w′n‖

and so, ‖wn‖∞ ≤ k. Next, (13) gives that

‖w′′n‖ ≤
‖vn‖+ ‖g(x,wn)‖

k
+ k‖1 + w′n‖,

by using (2.2) and (2.3) and so, ‖w′′n‖ ≤ k. Now as in proving the coerciveness
of S, we have

(w′n(1))2 ≤ 2(‖w′n‖2 + ‖w′′n‖2),

and so |w′n(1)| ≤ k. Then as above, ‖w′n‖∞ ≤ k. It follows from (13) that
‖w′′n‖∞ ≤ k. Thus by the Ascoli–Arzela theorem, we have wn → w in C1+ν [0, 1]
for 0 < ν < 1 and so, w satisfies the boundary condition in D(A) since (I−β)−1 :
R×R → R×R is nonexpansive (and so continuous) and wn satisfies the boundary
condition in D(A).

Next, for each φ ∈ L2(0, 1), (13) gives formally that∫
vnφdx =

∫
(αx(x,w′n) + αξ(x,w′n)w′′n + g(x,wn))φdx

=
∫

(αx(x,w′n)− αx(x, w′))φdx

+
∫

(αξ(x, w′n)w′′n − αξ(x,w′)w′′)φ dx

+
∫

g(x, wn)− g(x,w))φ dx

+
∫ (

d

dx
α(x,w′) + g(x,w)

)
φ dx,

which we denote as
∑4

i=1 Ii. Here the integration range [0, 1] is omitted.
Since wn converges to w in C1+ν [0, 1] and αx(x, ξ) is continuous in ξ, we

have |I1| → 0.
Next, rewrite I2 as∫

αξ(x,w)(w′′n − w′′)φdx +
∫

(αξ(x,w′n)− αξ(x, w′))w′′nφdx,
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which we denote as J1 + J2. We have |J2| → 0 since

|J2| ≤ ‖αξ(x,w′n)− αξ(x,w′)‖∞‖w′′n‖‖φ‖

and ‖wn‖C2[0,1] ≤ k.
On the other hand, we have |J1| → 0 since wn converges weakly in W 2,2(0, 1)

by the Alaoglu theorem and since αξ(x, w′)φ ∈ L2(0, 1).
Next, to see |I3| → 0, we note that wn converges in C1+ν [0, 1] and g is

continuous and the Lebesgue convergence theorem applies.
Thus, we have shown∫

vnφdx → I4 =
∫ (

d

dx
α(x, w′) + g(x, w)

)
φdx

for each φ ∈ L2 and so, w ∈ D(A) and Aw = v. This shows that A is closed in
L2(0, 1).

4. The difference scheme from the method of lines

Let T > 0 and n ∈ N large. Time-discretize (2) to have

(14) ui − εAui = ui−1, ui ∈ D(A),

where ε = T/n and i = 1 to n.
We assume that u0 ∈ D(A). Proposition 2 applied to (14) gives the existence

of a u1. The dissipativity proof for Lemma 1 shows immediately that u1 exists
uniquely. By induction, ui exists uniquely for i = 1 to n. For convenience, we
define

u−1 = u0 − εAu0.

Next, we estimate ui. From (14), we have that

(15)
ui − ui−1

ε
− (Aui −Aui−1) =

ui−1 − ui−2

ε
.

Multiplying (15) by (ui − ui−1)/ε and using integration by parts, we have, as in
proving dissipativity of A, that ‖vi,ε‖ ≤ ‖vi−1,ε‖, if we let vi,ε = (ui − ui−1)/ε,
and so, ‖vi,ε‖ is uniformly bounded since ‖v0,ε‖ = ‖Au0‖ ≤ k. Here, ‖ · ‖ is the
norm in L2(0, 1). The same arguments also show that ‖ui‖ ≤ ‖u0‖ ≤ k.

Now, rewrite (14) as

(16)
dα(x, u′i)

dx
+ g(x, ui) = vi,ε, ui ∈ D(A).

Multiplying (16) by ui and using integration by parts, we have that∫ 1

0

u′iα(x, u′i) dx +
∫ 1

0

(−u′i)g(x, ui) dx + uiα(x, u′i)
∣∣∣∣0
1

= −
∫ 1

0

uivi,ε dx,
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which gives that

k‖u′i‖2 ≤
∫ 1

0

u′iα(x, u′i) dx ≤ ‖ui‖‖vi,ε‖

by the uniformly elliptic assumption (2.2) of α, the monotone non-increasing
assumption (2.4) of g, and the boundary condition in D(A). Therefore, we have
that ‖u′i‖ ≤ k.

Now, as in proving the coerciveness of S in Section 3, we have that

(ui(1))2 ≤ 2(‖ui‖2 + ‖u′i‖2)

and so, |ui(1)| ≤ k. By the fundamental theorem of calculus formula

ui(x) = ui(1) +
∫ x

1

u′i(t) dt,

we have that

|ui(x)| ≤ |ui(1)|+
∫ 1

0

|u′i| dx ≤ k + ‖u′i‖,

by the Hölder inequality, and so ‖ui‖∞ is uniformly bounded.
Next, rewrite (16) as

(17) u′′i =
vi,ε − g(x, ui)

αξ(x, u′i)
− αx(x, u′i)

αξ(x, u′i)
,

which implies that

‖u′′i ‖ ≤
‖vi,ε‖+ ‖g(x, ui)‖

k
+ k‖1 + u′i‖,

by the uniformly elliptic assumption (2.2) of α and the most possible linear
growth assumption (2.3) of α(x, ξ) in ξ. So, ‖u′′i ‖ is uniformly bounded.

Next, again as in proving the coerciveness of S in Section 3, we have that

(u′i(1))2 ≤ 2(‖u′i‖2 + ‖u′′i ‖2),

and so, |u′i(1)| is uniformly bounded. Thus, by the fundamental theorem of
calculus, we have that

|u′i(x)| ≤ |u′i(1)|+
∫ 1

0

|u′′i | dx,

which is less than or equal to (k + ‖u′′i ‖) by the Hölder inequality. Thus, ‖u′i‖∞
is uniformly bounded. With this, (17) implies that ‖u′′i ‖∞ is uniformly bounded.
Therefore, we have shown that ‖ui‖C2 is uniformly bounded.

Next, we construct the Rothe’s functions [11], [20]. Let

χn(0) = u0, χn(t) = ui
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for t ∈ (ti−1, ti], and let

(18) un(t) = ui−1 +
ui − ui−1

ε
(t− ti−1) for t ∈ [ti−1, ti],

where, as before, n ∈ N is large, ε = T/n, and i = 1 to n. By the definition of
χn(t) and un(t), and by ‖vi,ε‖ ≤ k, we have that

sup
t∈[0,1]

‖un(t)− χn(t)‖∞ → 0,

‖un(t)− un(τ)‖ ≤ k|t− τ | for t, τ ∈ [ti−1, ti],(19)

and

(20)
dun(t)

dt
= Aχn(t), un(0) = u0,

where the last equation has values in B([0, 1];L2(0, 1)), the real Banach space of
all bounded functions from [0, 1] to L2(0, 1) since ‖ui‖C2 is uniformly bounded.

Next, we show convergence of un(t). Since ‖ui‖C2 ≤ k, we have that

sup
t∈[0,T ]

‖un(t)‖C2 ≤ k,

and so, un(t) has a t-uniformly convergent subsequence in C1+ν [0, 1] (and so in
L2(0, 1)) by using the Ascoli–Arzela theorem. Here, 0 < ν < 1. Thus, for each
t, un(t) is relatively compact in L2(0, 1). Since un(t) is also equi-continuous in
C([0, 1];L2(0, 1)) by (19), we have that un(t) (actually, its some subsequence)
converges to, say u(t) ∈ C([0, 1];L2(0, 1)) by using the Ascoli-Arzela theorem
[19] again.

Since (I + β)−1 : R × R → R × R is nonexpansive (and so continuous),
un(t) converges t-uniformly in C1+ν [0, 1] to u(t), and ui satisfies the boundary
condition in (1), we see easily that u(t) also satisfies the boundary condition in
(1). Here we notice, from the above, that supt∈[0,T ] ‖u(t)‖C1+ν [0,1] ≤ k.

Next, from (20), we have formally that for each φ ∈ L2(0, 1),∫
dun

dt
φ dx =

∫ [
αx

(
x,

dχn

dx

)
+ αξ

(
x,

dχn

dx

)
d2χn

dx2
+ g(x, χn)

]
φ dx

=
∫ [

αx

(
x,

dχn

dx

)
− αx

(
x,

du

dx

)]
φdx

+
∫ [

αξ

(
x,

dχn

dx

)
d2χn

dx2
− αξ

(
x,

du

dx

)
d2u

dx2

]
φdx

+
∫

[g(x, χn)− g(x, u)]φdx +
∫ [

dα(x, du/dx)
dx

+ g(x, u)
]
φdx,

which we denote as
∑4

i=1 Ii. Here, we omit the integration range [0, 1].
Now, we estimate Ii. Since un converges t-uniformly to u in C1+ν [0, 1] and

αx(x, ξ) is continuous in ξ, we have that |I1| → 0 t-uniformly.
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Next, rewrite I2 as∫
αξ

(
x,

du

dx

)(
d2χn

dx2
− d2u

dx2

)
φdx +

∫ [
αξ

(
x,

dχn

dx

)
− αξ

(
x,

du

dx

)]
d2χn

dx2
φdx,

which we denote as J1 + J2. We have that |J2| → 0 since

|J2| ≤
∥∥∥∥αξ

(
x,

dχn

dx

)
− αξ

(
x,

du

dx

)∥∥∥∥
∞

∥∥∥∥d2χn

dx2

∥∥∥∥‖φ‖
and ‖un‖C2 ≤ k. On the other hand, we have that |J1| → 0 since un(t) con-
verges weakly in W 2,2(0, 1) by the Alaoglu’s theorem and since αξ(x, du/dx)φ ∈
L2(0, 1).

Next, to see that |I3| → 0, we note that un(t) converges to u(t) t-uniformly in
C1+ν [0, 1] and g is continuous and the Lebesgue dominated convergence theorem
applies. Thus, we have shown that∫

dun

dt
φ dx → I4 =

∫ [
d

dx
α(x,

du

dx
) + g(x, u)

]
φ dx,

for each φ ∈ L2(0, 1), which we rewrite as(
dun(t)

dt
, φ

)
→ (Bu(t), φ)

t-uniformly, where ( · , · ) is the inner product in L2(0, 1). So, by the Fubini
theorem, we have that

(un(t)− un(0), φ) =
( ∫ t

0

dun

dt
dt, φ

)
=

∫ t

0

(
dun

dt
, φ

)
dt,

which converges to

(u(t)− u0, φ) =
∫ t

0

(Bu(τ), φ) dτ,

by the Lebesgue dominated convergence theorem since∣∣∣∣(dun(t)
dt

, φ

)∣∣∣∣ ≤ ∥∥∥∥dun(t)
dt

∥∥∥∥‖φ‖ ≤ k.

Now, by the Fubini theorem again, we have that

(u(t)− u0, φ) =
( ∫ t

0

Bu(τ) dτ, φ

)
for each φ ∈ L2(0, 1), and so,

u(t)− u0 =
∫ t

0

Bu(τ) dτ.

Hence, by the fundamental theorem of calculus, we have that

(21)

{ du

dt
= Bu(t) almost everywhere in t,

u(0) = u0.
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To prove uniqueness of solution, let u1 and u2 be two solutions of (21). By
integration by parts, we have that

1
2

d‖u1(t)− u2(t)‖2

dt
=

1
2

d
∫ 1

0
(u1(t)− u2(t))2 dx

dt

=
∫ 1

0

(Bu1(t)−Bu2(t))(u1(t)− u2(t)) dx ≤ 0,

and so,
0 ≤ ‖u1(t)− u2(t)‖2 ≤ ‖u1(0)− u2(0)‖2 = 0

and so, u1 ≡ u2 in L2(0, 1) for almost every t. Thus, we have proved that

Theorem 2. If u0 ∈ D(A), then there is a unique solution u satisfying (1)
on (0, T ) (T ∈ R is given) almost everywhere in t, with the properties that∥∥∥∥du

dt

∥∥∥∥ ≤ k for almost every t

and
sup

t∈[0,T ]

‖u(t)‖C1+ν [0,1] ≤ k.

Here 0 < ν < 1.

Remark. Since ui = (I−εA)−[t/ε]u0 for each t ∈ [ti, ti+1), we have the solu-
tion u from the difference scheme coincides with the solution from the Crandall–
Liggett theorem or the Komura theorem in the Hilbert space case.
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