QUASILINEAR PARABOLIC EQUATIONS WITH NONLINEAR MONOTONE BOUNDARY CONDITIONS

Chin-Yuan Lin

Abstract. Of concern is the following quasilinear parabolic equation with a nonlinear monotone boundary condition:
(*)

$$
\left\{\begin{array}{l}
u_{t}(x, t)=\frac{\partial \alpha\left(x, u_{x}\right)}{\partial x}+g(x, u), \quad(x, t) \in(0,1) \times(0, \infty) \\
\left(\alpha\left(0, u_{x}(0, t)\right),-\alpha\left(1, u_{x}(1, t)\right)\right) \in \beta(u(0, t), u(1, t)), \\
u(x, 0)=u_{0}(x)
\end{array}\right.
$$

Here β is a maximal monotone graph in $\mathbb{R} \times \mathbb{R}$, which contains the origin $(0,0)$. It is showed that $\left({ }^{*}\right)$ has a unique strong solution u, with the property that

$$
\sup _{t \in[0, T]}\|u(x, t)\|_{C^{1+\nu}[0,1]}
$$

is uniformly bounded for $0<\nu<1$ and finite $T>0$.

1. Introduction

We consider the following parabolic equation
(1)

$$
\left\{\begin{array}{l}
u_{t}(x, t)=\frac{\partial \alpha\left(x, u_{x}\right)}{\partial x}+g(x, u), \quad(x, t) \in(0,1) \times(0, \infty), \\
\left(\alpha\left(0, u_{x}(0, t)\right),-\alpha\left(1, u_{x}(1, t)\right)\right) \in \beta(u(0, t), u(1, t)), \\
u(x, 0)=u_{0}(x),
\end{array}\right.
$$

1991 Mathematics Subject Classification. 35A05, 35B35, 35B65, 47H17, 47H20.
Key words and phrases. m-dissipative operators, method of lines.
where β is a maximal monotone graph in $\mathbb{R} \times \mathbb{R}$, containing the origin $(0,0)$. We apply the evolution equation theory [1]-[5], [8], [14], [16], [17] to show that (1) has a unique strong solution. Finally, a difference scheme from the method of lines [11], [20] is employed to obtain a strong solution u, which coincides with the solution from the evolution equation theory and has the property:

$$
\sup _{t \in[0, T]}\|u(x, t)\|_{C^{1+\nu}[0,1]}
$$

is uniformly bounded for $0<\nu<1$ and finite $T>0$.
When $\alpha(x, \xi)=\sigma(x) \xi$, a case in [18] follows, where a more general linear equation of order $2 n$ is considered and many other nice results are obtained. When $\beta(x, y)=\left(\beta_{0} x, \beta_{1} y\right)$ and β_{0} and β_{1} are maximal monotone graphs in \mathbb{R}, containing the origin, we obtain a case in [9]. Both [18] and [9] use the evolution equation theory. Elliptic problems corresponding to (1) are studied in [21], [22] with less nonlinearity. Nonlinear monotone boundary conditions of this sort in (1) are very general, from which follows all the traditional ones, such as Dirichlet, Neumann, Robin, and periodic; the derivation of these results can be seen in e.g. [17], [18], [21], [22].

There are many ways to tackle parabolic problems. The traditional one for solving quasilinear equations with linear boundarey conditions is detailed quite well in [13]. Linear evolution equation (operator semigroup) approach is used in e.g. [6], [15] and the nonlinear counterpart is applied in e.g. [1]-[5], [8], [9], [14], [16]-[18].

The nonlinear evolution equation (operator semigroup) approach is to rewrite (1) as an abstract ODE

$$
\begin{equation*}
\frac{d u}{d t}=A u, \quad u(0)=u_{0} \tag{2}
\end{equation*}
$$

in a Banach space $(X,\|\cdot\|)$. If the nonlinear operator A satisfies conditions:
(i) Dissipativity condition. $\|u-v\| \leq\|(u-v)-\lambda(A u-A v)\|$ for $\lambda>0$ and $u, v \in D(A)$.
(ii) Range condition. The range of $(I-\lambda A) \supset D(A)$ for small $\lambda>0$,
then A generates a nonlinear operator semigroup

$$
T(t) u_{0} \equiv \lim _{n \rightarrow \infty}\left(I-\frac{t}{n} A\right)^{-n} u_{0}
$$

for $u_{0} \in D(A)$ by the Crandall-Liggett theorem [5] or the Komura theorem [12] in the case of Hilbert spaces, and $u(t) \equiv T(t) u_{0}$ for $u_{0} \in D(A)$ is the unique generalized solution to (2). The notion of a generalized solution is due to Benilan [2]. When X is reflexive, u is a strong solution which satisfies (2) for almost every t. If A satisfies (i) and
(iii) The range of $(I-\lambda A)=X$ for small $\lambda>0$,
A is called m-dissipative.
The method of lines [11], [20] is to time-discretize (2) and construct the Rothe's functions. In doing so, some crucial apriori estimates need to be derived.

The rest of this paper is organized as follows. Section 2 contains some basic assumptions and preliminary results. The proof by the evolution equation (operator semigroup) approach is given in Section 3 and Section 4 deals with the the difference scheme from the method of lines.

2. Some basic assumptions and preliminary results

From here on, k denotes a generic constant, which can vary with different situations.

We make the following assumptions.
(2.1) β is a maximal monotone graph in $\mathbb{R} \times \mathbb{R}$, such that the range of β contains the origin $(0,0)$.
(2.2) α is a continuously differentiable function on $[0,1] \times \mathbb{R}$, such that $\alpha_{\xi}(x, \xi)$ $\geq k>0$ and $\alpha(x, 0) \equiv 0$ for all x and ξ.
(2.3) $\alpha_{x} / \alpha_{\xi}$ has at most linear growth in ξ, so that there is a continuous function $M(x) \geq k>0$, for which

$$
\left|\frac{\alpha_{x}}{\alpha_{\xi}}\right| \leq M(x)(1+|\xi|) .
$$

(2.4) g is a continuous function on $[0,1] \times \mathbb{R}$, such that $g(x, \xi)$ is monotone non-increasing in ξ and $g(x, 0) \equiv 0$ for all x.
Define a nonlinear operator $A: D(A) \subset L^{2}(0,1) \rightarrow L^{2}(0,1)$ as follows

$$
D(A)=\left\{u \in W^{2,2}(0,1):\left(\alpha\left(0, u^{\prime}(0)\right),-\alpha\left(1, u^{\prime}(1)\right)\right) \in \beta(u(0), u(1))\right\}
$$

and

$$
A u=\frac{d \alpha\left(x, u^{\prime}\right)}{d x}+g(x, u) \quad \text { for } u \in D(A)
$$

Proposition 1. For each $h \in C[0,1], \lambda>0$, and $a, b \in \mathbb{R}$, there is a unique solution to the equation

$$
\left\{\begin{array}{l}
u-\lambda \frac{d \alpha\left(x, u^{\prime}\right)}{d x}-\lambda g(x, u)=h \tag{3}\\
u(0)=a, \quad u(1)=b
\end{array}\right.
$$

Proof. Since the properties of α and g are not affected when multiplied by λ, it suffices to consider only the case of $\lambda=1$.

Let $w \in C^{1}[0,1]$ and let $T w$ be the unique solution to

$$
\left\{\begin{array}{l}
u-\alpha_{x}\left(x, w^{\prime}\right)-\alpha_{\xi}\left(x, w^{\prime}\right) u^{\prime \prime}-g(x, w)=h, \tag{4}\\
u(0)=a, \quad u(1)=b,
\end{array}\right.
$$

by linear ordinary differential equation theory [10], for all u.

We show that the nonlinear operator $T: C^{1}[0,1] \rightarrow C^{1}[0,1]$ satisfies $\|u\|_{C^{1}} \leq$ k for which, $\sigma T u=u, \sigma \in[0,1]$, and that T is compact and continuous.

Let $\sigma T u=u$. Then (4) gives that

$$
\left\{\begin{array}{l}
u-\sigma \alpha_{x}\left(x, u^{\prime}\right)-\alpha_{\xi}\left(x, u^{\prime}\right) u^{\prime \prime}-\sigma g(x, u)=\sigma h \tag{5}\\
u(0)=\sigma a, \quad u(1)=\sigma b
\end{array}\right.
$$

If the maximum of u occurs at end points, then $\|u\|_{\infty}$ is uniformly bounded from (5); if instead, it occurs at some interior point x_{0} in $(0,1)$, then we have that $u^{\prime}\left(x_{0}\right)=0$ and $u\left(x_{0}\right) u^{\prime \prime}\left(x_{0}\right) \leq 0$ by the first and second derivative tests. With those plugged into (5), we have that, by the monotonicity assumption of g,

$$
u^{2}\left(x_{0}\right) \leq \sigma\left[u\left(x_{0}\right) \alpha_{x}\left(x_{0}, 0\right)+h\left(x_{0}\right) u\left(x_{0}\right)\right]
$$

and so again, $\|u\|_{\infty}$ is uniformly bounded.
We continue to estimate u^{\prime}. Equation (5) gives that

$$
\begin{equation*}
u^{\prime \prime}+\sigma \frac{\alpha_{x}\left(x, u^{\prime}\right)}{\alpha_{\xi}\left(x, u^{\prime}\right)}=\frac{(u-\sigma g(x, u)-\sigma h)}{\alpha_{\xi}\left(x, u^{\prime}\right)} . \tag{6}
\end{equation*}
$$

The assumptions (2.2) and (2.3) imply that (6) is a uniformly elliptic equation with bounded coefficients and bounded right side, and so, $\left\|u^{\prime}\right\|_{\infty}$ and $\left\|u^{\prime \prime}\right\|_{\infty}$ are all uniformly bounded by linear ordinary differential equations theory [10]. Thus $\|u\|_{C^{2}} \leq k$.

Next, let w_{n} be a bounded sequence in $C^{1}[0,1]$. By the definition of T, we have that

$$
\left\{\begin{array}{l}
u_{n}-\alpha_{x}\left(x, w_{n}^{\prime \prime}\right)-\alpha_{\xi}\left(x, w_{n}^{\prime}\right) u^{\prime \prime}-g\left(x, w_{n}\right)=h, \tag{7}\\
u_{n}(0)=a, \quad u_{n}(1)=b,
\end{array}\right.
$$

if $u_{n}=T w_{n}$. By the above arguments, we have that $\left\|u_{n}\right\|_{C^{2}} \leq k$, and so, u_{n} has a convergent subsequence in $C^{1}[0,1]$ by the Ascoli-Arzela theorem. Therefore, T is compact.

Next, let w_{n} converge to w in $C^{1}[0,1]$ (and so, w^{n} is uniformly bounded in $\left.C^{1}[0,1]\right)$. Then $u_{n} \equiv T w_{n}$ has a convergent subsequence $u_{n_{k}}$, converging to some u in $C^{1}[0,1]$ since T is compact. It follows that (7) converges to (3) with $\lambda=1$ through the subsequences $u_{n_{k}}$ and $w_{n_{k}}$, and so, $T w_{n_{k}}=u_{n_{k}}$ converges to $u=T w$. Here we have used the fact that the first differential operator $d / d x$ with $C^{1}[0,1]$ as its domain is closed in $C[0,1]$. This arguments, when repeated, shows that every subsequence of $T w_{n}$ has, in turn, a convergent subsequence conveging to $T w$, and so, T is continuous.

With the above properties, T has a fixed point by the Schauder fixed point theorem [7], which is a solution to (3) with $\lambda=1$.

We continue to prove uniqueness. Let u_{1} and u_{2} satisfy (3) with $\lambda=1$. Then

$$
\begin{gather*}
\left(u_{1}-u_{2}\right)-\frac{\alpha\left(x, u_{1}^{\prime}\right)-\alpha\left(x, u_{2}^{\prime}\right)}{d x}-\left[g\left(x, u_{1}\right)-g\left(x, u_{2}\right)\right]=0, \tag{8}\\
\left(u_{1}-u_{2}\right)(0)=\left(u_{1}-u_{2}\right)(1)=0 .
\end{gather*}
$$

Integrating (8) gives that

$$
0 \leq \int_{0}^{1}\left(u_{1}-u_{2}\right)^{2} d x=\sum_{i=1}^{3} I_{i}
$$

where

$$
I_{1}=\int_{0}^{1}\left(u_{1}-u_{2}\right)\left[g\left(x, u_{1}\right)-g\left(x, u_{2}\right) d x, \leq 0\right.
$$

since $g(x, \eta)$ is monotone non-increasing in η,

$$
I_{2}=\left.\left(u_{1}-u_{2}\right)\left[\alpha\left(x, u_{1}^{\prime}\right)-\alpha\left(x, u_{2}^{\prime}\right)\right]\right|_{0} ^{1}=0,
$$

by the boundary condition in (3),

$$
I_{3}=-\int_{0}^{1}\left(u_{1}^{\prime}-u_{2}^{\prime}\right)\left[\alpha\left(x, u_{1}^{\prime}\right)-\alpha\left(x, u_{2}^{\prime}\right)\right] d x \leq 0
$$

by the assumption (2.2).
Thus, $\int_{0}^{1}\left(u_{1}-u_{2}\right)^{2} d x=0$, and so, $u_{1} \equiv u_{2}$ since $u_{1}, u_{2} \in C^{1}[0,1]$.

3. The evolution equation approach

We rewrite (1) as

$$
\left\{\begin{array}{l}
\frac{d u}{d t}=A u \quad \text { for } t>0 \\
u(0)=u_{0}
\end{array}\right.
$$

in the Hilbert space $\left(L^{2}(0,1),\|\cdot\|\right)$, where the nonlinear operator A is defined Section 2.

Lemma 1. The nonlinear operator A has the dissipativity condition (i) on $L^{2}(0,1)$.

Proof. Let $u_{i} \in D(A), \lambda>0$, and $h_{i}=u_{i}-\lambda A u_{i}$, where $i=1,2$. Using integration by parts, we have that

$$
\int_{0}^{1}\left(u_{1}-u_{2}\right)\left(\left(h_{1}-h_{2}\right) d x=\int_{0}^{1}\left(u_{1}-u_{2}\right)^{2} d x+\lambda \sum_{i=1}^{3} J_{i}\right.
$$

where

$$
J_{1}=-\int_{0}^{1}\left(u_{1}-u_{2}\right)\left[g\left(x, u_{1}\right)-g\left(x, u_{2}\right) d x, \geq 0\right.
$$

since $g(x, \eta)$ is monotone non-increasing in η,

$$
J_{2}=\int_{0}^{1}\left(u_{1}^{\prime}-u_{2}^{\prime}\right)\left[\alpha\left(x, u_{1}^{\prime}\right)-\alpha\left(x, u_{2}^{\prime}\right)\right] d x \geq 0
$$

by the uniformly elliptic assumption of (2.2),

$$
J_{3}=-\left.\left(u_{1}-u_{2}\right)\left[\alpha\left(x, u_{1}^{\prime}\right)-\alpha\left(x, u_{2}^{\prime}\right)\right]\right|_{0} ^{1} \geq 0
$$

using the monotonicity assumption (2.1) of β and the boundary condition in $D(A)$. Thus,

$$
\left\|u_{1}-u_{2}\right\|^{2} \leq \int_{0}^{1}\left(u_{1}-u_{2}\right)\left(h_{1}-h_{2}\right) d x \leq\left\|u_{1}-u_{2}\right\|\left\|h_{1}-h_{2}\right\|
$$

by the Hölder inequality, and so, $\left\|u_{1}-u_{2}\right\| \leq\left\|h_{1}-h_{2}\right\|$. This proves the dissipativity of A.

Proposition 2. For $\lambda>0$, the range of $(I-\lambda A)$ contains $C[0,1]$ and so, is dense in $L^{2}(0,1)$.

Proof. It suffices to consider only the case of $\lambda=1$. Let $h \in C[0,1]$ and $a, b \in \mathbb{R}$. Consider the equation

$$
\left\{\begin{array}{l}
u-\frac{d \alpha\left(x, u^{\prime}\right)}{d x}-g(x, u)=h \tag{9}\\
u(0)=a, \quad u(1)=b
\end{array}\right.
$$

Proposition 1 implies that (9) has a unique solution u. Define the nonlinear operator $S: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ by

$$
S(a, b)=\beta(a, b)+B(a, b),
$$

where

$$
B(a, b)=-\left(\alpha\left(0, u^{\prime}(0)\right),-\alpha\left(1, u^{\prime}(1)\right)\right) .
$$

We show that B is monotone and hemicontinuous, and that S is coercive.
Let u_{1} be the solution to (9), corresponding to the pair (a_{1}, b_{1}). Similarly, let u_{2} correspond to the pair $\left(a_{2}, b_{2}\right)$ through (9). Here, $a_{i}, b_{i} \in \mathbb{R}, i=1,2$. Then

$$
\left\{\begin{array}{l}
u_{i}-\frac{d \alpha\left(x, u_{i}^{\prime}\right)}{d x}-g\left(x, u_{i}\right)=h \tag{10}\\
\left(u_{i}(0), u_{i}(1)\right)=\left(a_{i}, b_{i}\right), \quad i=1,2
\end{array}\right.
$$

Integration by parts applied to (10) gives that

$$
\begin{aligned}
C \equiv & \left.\left(u_{1}-u_{2}\right)\left[\alpha\left(x, u_{1}^{\prime}\right)-\alpha\left(x, u_{2}^{\prime}\right)\right]\right|_{0} ^{1} \\
= & \int_{0}^{1}\left(u_{1}-u_{2}\right)^{2} d x+\int\left(u_{1}^{\prime}-u_{2}^{\prime}\right)\left[\phi\left(x, u_{1}^{\prime}\right)-\phi\left(x, u_{2}^{\prime}\right)\right] d x \\
& -\int_{0}^{1}\left(u_{1}-u_{2}\right)\left[g\left(x, u_{1}-g\left(x, u_{2}\right)\right] d x \geq 0\right.
\end{aligned}
$$

by the arguments as in proving Lemma 1 . Let $\langle\cdot, \cdot\rangle$ be the inner product in $\mathbb{R} \times \mathbb{R}$. Then

$$
\left\langle\left(a_{1}-b_{1}\right)-\left(a_{2}-b_{2}\right), B\left(a_{1}-b_{1}\right)-B\left(a_{2}-b_{2}\right)\right\rangle=C \geq 0,
$$

and so, B is monotone.
Next, let $t \in[0,1]$ and u_{t} be the unique solution to (9), corresponding to the pair $(a+t c, b+t d)=(a, b)+t(c, d)$, that is, let u_{t} satisfy

$$
\left\{\begin{array}{l}
u_{t}-\frac{d \alpha\left(x, u_{t}^{\prime}\right)}{d x}-g\left(x, u_{t}\right)=h \tag{11}\\
u_{t}(0)=a+t c, \quad u_{t}(1)=b+t d
\end{array}\right.
$$

Similarly, let u correspond to the pair (a, b) through (9). Then, it follows from as in proving Proposition 1 that $\left\|u_{t}\right\|_{C^{2}[0,1]} \leq k$ for $t \in[0,1]$. Therefore, we can use the Ascoli-Arzela theorem to derive that (11) converges to (9) through some subsequence of u_{t} as $t \rightarrow 0$ and then, through the very sequence u_{t} as in proving Proposition 1. Consequently, we have that

$$
-\left(\alpha\left(0, u_{t}^{\prime}(0)\right),-\alpha\left(1, u_{t}^{\prime}(1)\right)\right) \rightarrow-\left(\alpha\left(0, u^{\prime}(0)\right),-\alpha\left(1, u^{\prime}(1)\right)\right),
$$

that is, $B((a, b)+t(c, d))$ converges to $B(a, b)$, and so, B is hemicontinuous.
Next, let $x=(u(0), u(1))=(a, b)$. Then $\langle S x, x\rangle=J_{1}+J_{2}$, where

$$
J_{1}=\langle\beta(u(0), u(1)),(u(0), u(1))\rangle \geq 0
$$

by the monotonicity assumption (2.1) of β,

$$
\begin{aligned}
J_{2} & =\left\langle-\left(\alpha\left(0, u^{\prime}(0)\right),-\alpha\left(1, u^{\prime}(1)\right)\right),(u(0), u(1))\right\rangle \\
& =\left.u \alpha\left(x, u^{\prime}\right)\right|_{0} ^{1}=\int_{0}^{1}\left(u^{2}+u^{\prime} \alpha\left(x, u^{\prime}\right)-u g(x, u)-u h\right) d x
\end{aligned}
$$

by integrating (9), which we denote as $\sum_{i=1}^{4} I_{i}$. Here,

$$
\begin{aligned}
& I_{1}=\int_{0}^{1} u^{2} d x \geq 0 \\
& I_{2}=\int_{0}^{2} u^{\prime} \alpha\left(x, u^{\prime}\right) d x \geq k \int_{0}^{1}\left(u^{\prime}\right)^{2} d x
\end{aligned}
$$

by the uniform elliptic assumption (2.2) of α,

$$
I_{3}=-\int_{0}^{1} u g(x, u) d x \geq 0
$$

by the monotone non-increasing assumption (2.4) of g together with $g(x, 0)=0$ and by the Hölder inequality

$$
\begin{aligned}
I_{4} & =-\int_{0}^{1} u h d x \geq-\int_{0}^{1}|u h| d x \\
& \geq-\left(\int_{0}^{1}|u|^{2} d x\right)^{1 / 2}\left(\int_{0}^{1}|h|^{2} d x\right)^{1 / 2} \geq \frac{\|u\|+\|h\|}{-2} .
\end{aligned}
$$

So, if we let $M=\|u\|^{2}$ and $N=\left\|u^{\prime}\right\|^{2}$, then we have that

$$
\langle S x, x\rangle \geq k(M+N)-\|h\|^{2} / 2
$$

We estimate further. By the fundamental theorem of calculus, for $0 \leq x \leq 1$, we have that

$$
|b|=|u(1)|=\left|u(x)+\int_{x}^{1} u^{\prime}(t) d t\right|, \leq|u|+\int_{0}^{1}\left|u^{\prime}\right| d x
$$

and so, by the Hölder inequality,

$$
\begin{aligned}
|b|^{2} & \leq|u|^{2}+\left(\int_{0}^{1}\left|u^{\prime}\right| d x\right)^{2}+2|u| \int_{0}^{1}\left|u^{\prime}\right| d x \\
& \leq|u|^{2}+\left(\int_{0}^{1}\left|u^{\prime}\right| d x\right)^{2}+\left[|u|^{2}+\left(\int_{0}^{1}\left|u^{\prime}\right| d x\right)^{2}\right] \leq 2|u|^{2}+2\left\|u^{\prime}\right\|^{2} .
\end{aligned}
$$

Integrating both sides gives that $|b|^{2} \leq 2(M+N)$. Similarly, we have that $a^{2}=|u(0)|^{2} \leq 2(M+N)$. So, we obtain that

$$
\frac{\langle S x, x\rangle}{|x|}=\frac{\langle S x, x\rangle}{\sqrt{a^{2}+b^{2}}} \geq \frac{2 k\left(a^{2}+b^{2}\right)-\|h\|^{2}}{2 \sqrt{a^{2}+b^{2}}}
$$

which converges to ∞ as $|x|=|(a, b)| \rightarrow \infty$. So, S is concercive.
Now, we have shown that B is monotone and hemicontinuous and that S is coercive and so, S is onto [1]; in particular, we have that $(0,0) \in S(a, b)$ for some $(a, b) \in \mathbb{R} \times \mathbb{R}$. Thus, given $h \in C[0,1]$, there exists a solution u to

$$
\left\{\begin{array}{l}
u-\frac{d \alpha\left(x, u^{\prime}\right)}{d x}-g(x, u)=h \tag{12}\\
\left(\alpha\left(0, u^{\prime}(0)\right),-\alpha\left(1, u^{\prime}(1)\right)\right) \in \beta(u(0), u(1))
\end{array}\right.
$$

which implies that the range of $(I-A)$ contains $C[0,1]$.
Since A satisfies the dissipativity condition (i) and the range of $(I-\lambda A) \supset$ $C[0,1] \supset D(A)$ for $\lambda>0$, we have by the Crandall-Liggett theorem or the Komura theorem in the Hilbert space case that

Theorem 1. Problem (1) (written as (2) on $L^{2}(0,1)$) has a unique strong solution for every $u_{0} \in D(A)$.

Remark. In fact, A is m-dissipative on $L^{2}(0,1)$. For this, it suffices to show that A is closed in $L^{2}(0,1)$ since $C[0,1]$ is dense in $L^{2}(0,1)$.

Let $w_{n} \in D(A) \rightarrow w$ and $A w_{n} \rightarrow v$. We need to show that $w \in D(A)$ and $A w=v$. Let

$$
\begin{equation*}
v_{n}=A w_{n}=\frac{d}{d x} \alpha\left(x, w_{n}^{\prime}\right)+g\left(x, w_{n}\right) . \tag{13}
\end{equation*}
$$

Since $A w_{n} \rightarrow v$ in $L^{2}(0,1)$, we have $\left\|v_{n}\right\| \leq k$. Multiplying (13) by w_{n} and using integration by parts, we have

$$
\int_{0}^{1} w_{n}^{\prime} \alpha\left(x, w_{n}^{\prime}\right) d x-\int_{0}^{1} w_{n} g\left(x, w_{n}\right) d x+\left.w_{n} \alpha\left(x, w_{n}^{\prime}\right)\right|_{1} ^{0}=-\int_{0}^{1} w_{n} v_{n} d x
$$

which gives that

$$
k\left\|w_{n}^{\prime}\right\| \leq \int_{0}^{1} w_{n}^{\prime} \alpha\left(x, w_{n}^{\prime}\right) d x \leq\left\|w_{n}\right\|\left\|v_{n}\right\|
$$

by (2.2), (2.4), and the boundary condition in $D(A)$. So we have $\left\|w_{n}^{\prime}\right\| \leq k$.
Now, as in proving the coerciveness of S, we have that

$$
\left(w_{n}(1)\right)^{2} \leq 2\left(\left\|w_{n}\right\|^{2}+\left\|w_{n}^{\prime}\right\|^{2}\right)
$$

and so, $\left|w_{n}(1)\right| \leq k$. By the fundamental theorem of calculus, we have

$$
\left|w_{n}(x)\right| \leq\left|w_{n}(1)\right|+\int_{0}^{1}\left|w_{n}^{\prime}\right| d x \leq k+\left\|w_{n}^{\prime}\right\|
$$

and so, $\left\|w_{n}\right\|_{\infty} \leq k$. Next, (13) gives that

$$
\left\|w_{n}^{\prime \prime}\right\| \leq \frac{\left\|v_{n}\right\|+\left\|g\left(x, w_{n}\right)\right\|}{k}+k\left\|1+w_{n}^{\prime}\right\|
$$

by using (2.2) and (2.3) and so, $\left\|w_{n}^{\prime \prime}\right\| \leq k$. Now as in proving the coerciveness of S, we have

$$
\left(w_{n}^{\prime}(1)\right)^{2} \leq 2\left(\left\|w_{n}^{\prime}\right\|^{2}+\left\|w_{n}^{\prime \prime}\right\|^{2}\right)
$$

and so $\left|w_{n}^{\prime}(1)\right| \leq k$. Then as above, $\left\|w_{n}^{\prime}\right\|_{\infty} \leq k$. It follows from (13) that $\left\|w_{n}^{\prime \prime}\right\|_{\infty} \leq k$. Thus by the Ascoli-Arzela theorem, we have $w_{n} \rightarrow w$ in $C^{1+\nu}[0,1]$ for $0<\nu<1$ and so, w satisfies the boundary condition in $D(A)$ since $(I-\beta)^{-1}$: $\mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ is nonexpansive (and so continuous) and w_{n} satisfies the boundary condition in $D(A)$.

Next, for each $\phi \in L^{2}(0,1)$, (13) gives formally that

$$
\begin{aligned}
\int v_{n} \phi d x= & \int\left(\alpha_{x}\left(x, w_{n}^{\prime}\right)+\alpha_{\xi}\left(x, w_{n}^{\prime}\right) w_{n}^{\prime \prime}+g\left(x, w_{n}\right)\right) \phi d x \\
= & \int\left(\alpha_{x}\left(x, w_{n}^{\prime}\right)-\alpha_{x}\left(x, w^{\prime}\right)\right) \phi d x \\
& +\int\left(\alpha_{\xi}\left(x, w_{n}^{\prime}\right) w_{n}^{\prime \prime}-\alpha_{\xi}\left(x, w^{\prime}\right) w^{\prime \prime}\right) \phi d x \\
& \left.+\int g\left(x, w_{n}\right)-g(x, w)\right) \phi d x \\
& +\int\left(\frac{d}{d x} \alpha\left(x, w^{\prime}\right)+g(x, w)\right) \phi d x
\end{aligned}
$$

which we denote as $\sum_{i=1}^{4} I_{i}$. Here the integration range $[0,1]$ is omitted.
Since w_{n} converges to w in $C^{1+\nu}[0,1]$ and $\alpha_{x}(x, \xi)$ is continuous in ξ, we have $\left|I_{1}\right| \rightarrow 0$.

Next, rewrite I_{2} as

$$
\int \alpha_{\xi}(x, w)\left(w_{n}^{\prime \prime}-w^{\prime \prime}\right) \phi d x+\int\left(\alpha_{\xi}\left(x, w_{n}^{\prime}\right)-\alpha_{\xi}\left(x, w^{\prime}\right)\right) w_{n}^{\prime \prime} \phi d x
$$

which we denote as $J_{1}+J_{2}$. We have $\left|J_{2}\right| \rightarrow 0$ since

$$
\left|J_{2}\right| \leq\left\|\alpha_{\xi}\left(x, w_{n}^{\prime}\right)-\alpha_{\xi}\left(x, w^{\prime}\right)\right\|_{\infty}\left\|w_{n}^{\prime \prime}\right\|\|\phi\|
$$

and $\left\|w_{n}\right\|_{C^{2}[0,1]} \leq k$.
On the other hand, we have $\left|J_{1}\right| \rightarrow 0$ since w_{n} converges weakly in $W^{2,2}(0,1)$ by the Alaoglu theorem and since $\alpha_{\xi}\left(x, w^{\prime}\right) \phi \in L^{2}(0,1)$.

Next, to see $\left|I_{3}\right| \rightarrow 0$, we note that w_{n} converges in $C^{1+\nu}[0,1]$ and g is continuous and the Lebesgue convergence theorem applies.

Thus, we have shown

$$
\int v_{n} \phi d x \rightarrow I_{4}=\int\left(\frac{d}{d x} \alpha\left(x, w^{\prime}\right)+g(x, w)\right) \phi d x
$$

for each $\phi \in L^{2}$ and so, $w \in D(A)$ and $A w=v$. This shows that A is closed in $L^{2}(0,1)$.

4. The difference scheme from the method of lines

Let $T>0$ and $n \in \mathbb{N}$ large. Time-discretize (2) to have

$$
\begin{equation*}
u_{i}-\varepsilon A u_{i}=u_{i-1}, \quad u_{i} \in D(A) \tag{14}
\end{equation*}
$$

where $\varepsilon=T / n$ and $i=1$ to n.
We assume that $u_{0} \in D(A)$. Proposition 2 applied to (14) gives the existence of a u_{1}. The dissipativity proof for Lemma 1 shows immediately that u_{1} exists uniquely. By induction, u_{i} exists uniquely for $i=1$ to n. For convenience, we define

$$
u_{-1}=u_{0}-\varepsilon A u_{0} .
$$

Next, we estimate u_{i}. From (14), we have that

$$
\begin{equation*}
\frac{u_{i}-u_{i-1}}{\varepsilon}-\left(A u_{i}-A u_{i-1}\right)=\frac{u_{i-1}-u_{i-2}}{\varepsilon} \tag{15}
\end{equation*}
$$

Multiplying (15) by $\left(u_{i}-u_{i-1}\right) / \varepsilon$ and using integration by parts, we have, as in proving dissipativity of A, that $\left\|v_{i, \varepsilon}\right\| \leq\left\|v_{i-1, \varepsilon}\right\|$, if we let $v_{i, \varepsilon}=\left(u_{i}-u_{i-1}\right) / \varepsilon$, and so, $\left\|v_{i, \varepsilon}\right\|$ is uniformly bounded since $\left\|v_{0, \varepsilon}\right\|=\left\|A u_{0}\right\| \leq k$. Here, $\|\cdot\|$ is the norm in $L^{2}(0,1)$. The same arguments also show that $\left\|u_{i}\right\| \leq\left\|u_{0}\right\| \leq k$.

Now, rewrite (14) as

$$
\begin{equation*}
\frac{d \alpha\left(x, u_{i}^{\prime}\right)}{d x}+g\left(x, u_{i}\right)=v_{i, \varepsilon}, \quad u_{i} \in D(A) \tag{16}
\end{equation*}
$$

Multiplying (16) by u_{i} and using integration by parts, we have that

$$
\int_{0}^{1} u_{i}^{\prime} \alpha\left(x, u_{i}^{\prime}\right) d x+\int_{0}^{1}\left(-u_{i}^{\prime}\right) g\left(x, u_{i}\right) d x+\left.u_{i} \alpha\left(x, u_{i}^{\prime}\right)\right|_{1} ^{0}=-\int_{0}^{1} u_{i} v_{i, \varepsilon} d x
$$

which gives that

$$
k\left\|u_{i}^{\prime}\right\|^{2} \leq \int_{0}^{1} u_{i}^{\prime} \alpha\left(x, u_{i}^{\prime}\right) d x \leq\left\|u_{i}\right\|\left\|v_{i, \varepsilon}\right\|
$$

by the uniformly elliptic assumption (2.2) of α, the monotone non-increasing assumption (2.4) of g, and the boundary condition in $D(A)$. Therefore, we have that $\left\|u_{i}^{\prime}\right\| \leq k$.

Now, as in proving the coerciveness of S in Section 3, we have that

$$
\left(u_{i}(1)\right)^{2} \leq 2\left(\left\|u_{i}\right\|^{2}+\left\|u_{i}^{\prime}\right\|^{2}\right)
$$

and so, $\left|u_{i}(1)\right| \leq k$. By the fundamental theorem of calculus formula

$$
u_{i}(x)=u_{i}(1)+\int_{1}^{x} u_{i}^{\prime}(t) d t
$$

we have that

$$
\left|u_{i}(x)\right| \leq\left|u_{i}(1)\right|+\int_{0}^{1}\left|u_{i}^{\prime}\right| d x \leq k+\left\|u_{i}^{\prime}\right\|,
$$

by the Hölder inequality, and so $\left\|u_{i}\right\|_{\infty}$ is uniformly bounded.
Next, rewrite (16) as

$$
\begin{equation*}
u_{i}^{\prime \prime}=\frac{v_{i, \varepsilon}-g\left(x, u_{i}\right)}{\alpha_{\xi}\left(x, u_{i}^{\prime}\right)}-\frac{\alpha_{x}\left(x, u_{i}^{\prime}\right)}{\alpha_{\xi}\left(x, u_{i}^{\prime}\right)}, \tag{17}
\end{equation*}
$$

which implies that

$$
\left\|u_{i}^{\prime \prime}\right\| \leq \frac{\left\|v_{i, \varepsilon}\right\|+\left\|g\left(x, u_{i}\right)\right\|}{k}+k\left\|1+u_{i}^{\prime}\right\|,
$$

by the uniformly elliptic assumption (2.2) of α and the most possible linear growth assumption (2.3) of $\alpha(x, \xi)$ in ξ. So, $\left\|u_{i}^{\prime \prime}\right\|$ is uniformly bounded.

Next, again as in proving the coerciveness of S in Section 3, we have that

$$
\left(u_{i}^{\prime}(1)\right)^{2} \leq 2\left(\left\|u_{i}^{\prime}\right\|^{2}+\left\|u_{i}^{\prime \prime}\right\|^{2}\right),
$$

and so, $\left|u_{i}^{\prime}(1)\right|$ is uniformly bounded. Thus, by the fundamental theorem of calculus, we have that

$$
\left|u_{i}^{\prime}(x)\right| \leq\left|u_{i}^{\prime}(1)\right|+\int_{0}^{1}\left|u_{i}^{\prime \prime}\right| d x
$$

which is less than or equal to $\left(k+\left\|u_{i}^{\prime \prime}\right\|\right)$ by the Hölder inequality. Thus, $\left\|u_{i}^{\prime}\right\|_{\infty}$ is uniformly bounded. With this, (17) implies that $\left\|u_{i}^{\prime \prime}\right\|_{\infty}$ is uniformly bounded. Therefore, we have shown that $\left\|u_{i}\right\|_{C^{2}}$ is uniformly bounded.

Next, we construct the Rothe's functions [11], [20]. Let

$$
\chi^{n}(0)=u_{0}, \quad \chi^{n}(t)=u_{i}
$$

for $t \in\left(t_{i-1}, t_{i}\right]$, and let

$$
\begin{equation*}
u^{n}(t)=u_{i-1}+\frac{u_{i}-u_{i-1}}{\varepsilon}\left(t-t_{i-1}\right) \quad \text { for } t \in\left[t_{i-1}, t_{i}\right] \tag{18}
\end{equation*}
$$

where, as before, $n \in \mathbb{N}$ is large, $\varepsilon=T / n$, and $i=1$ to n. By the definition of $\chi^{n}(t)$ and $u^{n}(t)$, and by $\left\|v_{i, \varepsilon}\right\| \leq k$, we have that

$$
\begin{gather*}
\sup _{t \in[0,1]}\left\|u^{n}(t)-\chi^{n}(t)\right\|_{\infty} \rightarrow 0 \\
\left\|u^{n}(t)-u^{n}(\tau)\right\| \leq k|t-\tau| \quad \text { for } t, \tau \in\left[t_{i-1}, t_{i}\right] \tag{19}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{d u^{n}(t)}{d t}=A \chi^{n}(t), \quad u^{n}(0)=u_{0} \tag{20}
\end{equation*}
$$

where the last equation has values in $B\left([0,1] ; L^{2}(0,1)\right)$, the real Banach space of all bounded functions from $[0,1]$ to $L^{2}(0,1)$ since $\left\|u_{i}\right\|_{C^{2}}$ is uniformly bounded.

Next, we show convergence of $u^{n}(t)$. Since $\left\|u_{i}\right\|_{C^{2}} \leq k$, we have that

$$
\sup _{t \in[0, T]}\left\|u^{n}(t)\right\|_{C 2} \leq k
$$

and so, $u^{n}(t)$ has a t-uniformly convergent subsequence in $C^{1+\nu}[0,1]$ (and so in $\left.L^{2}(0,1)\right)$ by using the Ascoli-Arzela theorem. Here, $0<\nu<1$. Thus, for each $t, u^{n}(t)$ is relatively compact in $L^{2}(0,1)$. Since $u^{n}(t)$ is also equi-continuous in $C\left([0,1] ; L^{2}(0,1)\right)$ by (19), we have that $u^{n}(t)$ (actually, its some subsequence) converges to, say $u(t) \in C\left([0,1] ; L^{2}(0,1)\right)$ by using the Ascoli-Arzela theorem [19] again.

Since $(I+\beta)^{-1}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \times \mathbb{R}$ is nonexpansive (and so continuous), $u^{n}(t)$ converges t-uniformly in $C^{1+\nu}[0,1]$ to $u(t)$, and u_{i} satisfies the boundary condition in (1), we see easily that $u(t)$ also satisfies the boundary condition in (1). Here we notice, from the above, that $\sup _{t \in[0, T]}\|u(t)\|_{C^{1+\nu}[0,1]} \leq k$.

Next, from (20), we have formally that for each $\phi \in L^{2}(0,1)$,

$$
\begin{aligned}
\int \frac{d u^{n}}{d t} \phi d x= & \int\left[\alpha_{x}\left(x, \frac{d \chi^{n}}{d x}\right)+\alpha_{\xi}\left(x, \frac{d \chi^{n}}{d x}\right) \frac{d^{2} \chi^{n}}{d x^{2}}+g\left(x, \chi^{n}\right)\right] \phi d x \\
= & \int\left[\alpha_{x}\left(x, \frac{d \chi^{n}}{d x}\right)-\alpha_{x}\left(x, \frac{d u}{d x}\right)\right] \phi d x \\
& +\int\left[\alpha_{\xi}\left(x, \frac{d \chi^{n}}{d x}\right) \frac{d^{2} \chi^{n}}{d x^{2}}-\alpha_{\xi}\left(x, \frac{d u}{d x}\right) \frac{d^{2} u}{d x^{2}}\right] \phi d x \\
& +\int\left[g\left(x, \chi^{n}\right)-g(x, u)\right] \phi d x+\int\left[\frac{d \alpha(x, d u / d x)}{d x}+g(x, u)\right] \phi d x
\end{aligned}
$$

which we denote as $\sum_{i=1}^{4} I_{i}$. Here, we omit the integration range $[0,1]$.
Now, we estimate I_{i}. Since u^{n} converges t-uniformly to u in $C^{1+\nu}[0,1]$ and $\alpha_{x}(x, \xi)$ is continuous in ξ, we have that $\left|I_{1}\right| \rightarrow 0 t$-uniformly.

Next, rewrite I_{2} as
$\int \alpha_{\xi}\left(x, \frac{d u}{d x}\right)\left(\frac{d^{2} \chi^{n}}{d x^{2}}-\frac{d^{2} u}{d x^{2}}\right) \phi d x+\int\left[\alpha_{\xi}\left(x, \frac{d \chi^{n}}{d x}\right)-\alpha_{\xi}\left(x, \frac{d u}{d x}\right)\right] \frac{d^{2} \chi^{n}}{d x^{2}} \phi d x$,
which we denote as $J_{1}+J_{2}$. We have that $\left|J_{2}\right| \rightarrow 0$ since

$$
\left|J_{2}\right| \leq\left\|\alpha_{\xi}\left(x, \frac{d \chi^{n}}{d x}\right)-\alpha_{\xi}\left(x, \frac{d u}{d x}\right)\right\|_{\infty}\left\|\frac{d^{2} \chi^{n}}{d x^{2}}\right\|\|\phi\|
$$

and $\left\|u^{n}\right\|_{C^{2}} \leq k$. On the other hand, we have that $\left|J_{1}\right| \rightarrow 0$ since $u^{n}(t)$ converges weakly in $W^{2,2}(0,1)$ by the Alaoglu's theorem and since $\alpha_{\xi}(x, d u / d x) \phi \in$ $L^{2}(0,1)$.

Next, to see that $\left|I_{3}\right| \rightarrow 0$, we note that $u^{n}(t)$ converges to $u(t) t$-uniformly in $C^{1+\nu}[0,1]$ and g is continuous and the Lebesgue dominated convergence theorem applies. Thus, we have shown that

$$
\int \frac{d u^{n}}{d t} \phi d x \rightarrow I_{4}=\int\left[\frac{d}{d x} \alpha\left(x, \frac{d u}{d x}\right)+g(x, u)\right] \phi d x
$$

for each $\phi \in L^{2}(0,1)$, which we rewrite as

$$
\left(\frac{d u^{n}(t)}{d t}, \phi\right) \rightarrow(B u(t), \phi)
$$

t-uniformly, where (\cdot, \cdot) is the inner product in $L^{2}(0,1)$. So, by the Fubini theorem, we have that

$$
\left(u^{n}(t)-u^{n}(0), \phi\right)=\left(\int_{0}^{t} \frac{d u^{n}}{d t} d t, \phi\right)=\int_{0}^{t}\left(\frac{d u^{n}}{d t}, \phi\right) d t
$$

which converges to

$$
\left(u(t)-u_{0}, \phi\right)=\int_{0}^{t}(B u(\tau), \phi) d \tau
$$

by the Lebesgue dominated convergence theorem since

$$
\left|\left(\frac{d u^{n}(t)}{d t}, \phi\right)\right| \leq\left\|\frac{d u^{n}(t)}{d t}\right\|\|\phi\| \leq k
$$

Now, by the Fubini theorem again, we have that

$$
\left(u(t)-u_{0}, \phi\right)=\left(\int_{0}^{t} B u(\tau) d \tau, \phi\right)
$$

for each $\phi \in L^{2}(0,1)$, and so,

$$
u(t)-u_{0}=\int_{0}^{t} B u(\tau) d \tau
$$

Hence, by the fundamental theorem of calculus, we have that

$$
\left\{\begin{array}{l}
\frac{d u}{d t}=B u(t) \quad \text { almost everywhere in } t \tag{21}\\
u(0)=u_{0}
\end{array}\right.
$$

To prove uniqueness of solution, let u_{1} and u_{2} be two solutions of (21). By integration by parts, we have that

$$
\begin{aligned}
\frac{1}{2} \frac{d\left\|u_{1}(t)-u_{2}(t)\right\|^{2}}{d t} & =\frac{1}{2} \frac{d \int_{0}^{1}\left(u_{1}(t)-u_{2}(t)\right)^{2} d x}{d t} \\
& =\int_{0}^{1}\left(B u_{1}(t)-B u_{2}(t)\right)\left(u_{1}(t)-u_{2}(t)\right) d x \leq 0
\end{aligned}
$$

and so,

$$
0 \leq\left\|u_{1}(t)-u_{2}(t)\right\|^{2} \leq\left\|u_{1}(0)-u_{2}(0)\right\|^{2}=0
$$

and so, $u_{1} \equiv u_{2}$ in $L^{2}(0,1)$ for almost every t. Thus, we have proved that
Theorem 2. If $u_{0} \in D(A)$, then there is a unique solution u satisfying (1) on $(0, T)(T \in \mathbb{R}$ is given) almost everywhere in t, with the properties that

$$
\left\|\frac{d u}{d t}\right\| \leq k \quad \text { for almost every } t
$$

and

$$
\sup _{t \in[0, T]}\|u(t)\|_{C^{1+\nu}[0,1]} \leq k .
$$

Here $0<\nu<1$.
Remark. Since $u_{i}=(I-\varepsilon A)^{-[t / \varepsilon]} u_{0}$ for each $t \in\left[t_{i}, t_{i+1}\right)$, we have the solution u from the difference scheme coincides with the solution from the CrandallLiggett theorem or the Komura theorem in the Hilbert space case.

References

[1] V. Barbu, Semigroups and Differential Equations on Banach Spaces, Leyden, Noordhoff, 1976.
[2] Ph. Benilan, Equations d'Evolution dans an Espace de Banach Quelconque et Applications, Ph. D. Thesis, Univ. Paris, Orsay, 1972.
[3] H. Brezis, Op'erateurs Maximaux Monotone et Semigroupes de Contractions les Espaces de Hilbert, North Holland, Amserdam, 1973.
[4] M. G. Crandall, An introduction to evolution equations governed accretive operators, Dynamical Systems (L. Cesari, H. K. Hale, and J. P. Lassale, eds.), vol. 1, Academic, New York, 1976, pp. 131-165.
[5] M. G. Crandall and T. M. Liggett, Generation of semigroups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 256-298.
[6] G. Da Prato and P. Grisvard, Equations d'Evolution abstraites de type parabolique, Ann. Mat. Pura Appl. 120 (1979), 329-396.
[7] D. Gilbarg and N. S. Trudinger, Elliptic Particial Differential Equations of Second Order, Springer, Berlin, 1983.
[8] J. A. Goldstein, Semigroups of Nonlinear Operators and Applications (to appear).
[9] J. A. Goldstein and C.-Y. Lin, An L^{p} semigroup approach to degenerate parabolic boundary value problems, Ann. Mat. Pura Appl. 159 (1991), 221-227.
[10] P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964.
[11] J. Kacur, Method of Rothe in evolution equations, Teubner-Texte Math. 80 (1985).
[12] Y. Komura, Nonlinear semigroups in Hilbert space, J. Math. Soc. Japan 19 (1967), 493-507.
[13] O. A. Ladyzhenskaya, V. Solonnikov, and N. N. Ural'tseva, Linear and quasilinear equations of parabolic type, Transl. Math. Monogr. (1968), Amer. Math. Soc., Providence, R. I.
[14] V. Lakshmikantham and S. Leela, Nonlinear Differential Equations in Abstract Spaces, Pergaman Press, Oxford, 1981.
[15] A. Lunardi, Maximal space regularity in nonhomogeneous initial boundary parabolic problem, Numer. Funct. Anal. Optim. 10 (1989), 323-349.
[16] I. Miyadera, Nonlinear Semigroups, Kinokunniya Bookstore, Tokyo, 1977. (Japanese)
[17] G. Morosanu, Nonlinear Evolution Equations and Applications, D. Riedel Publishing Company, 1988.
[18] G. Morosanu and D. Petrovanu, Nonlinear monotone boundary conditions for parabolic equations, Rend. Istit. Mat. Univ. Trieste (1986), 137-155.
[19] J. R. Munkres, Topology, A First Course, Prentice-Hall Inc., Englewood Cliffs, N. J., 1975.
[20] E. Rothe, Zweidimensionale parabolische Randwertaufgaben als Grenfall eindimensionale Rentwertaufgaben, Math. Ann. 102 (1930), 650-670.
[21] D. Tiba, Nonlinear boundary value problems for second order differential equations, Funkcial. Ecvac. 20 (1977).
[22] , General boundary value problems for second order differential equations, Nonlinear Anal. 2 (1978), 447-455.

Chin-Yuan Lin

Department of Mathematics
National Central University
Chung-Li, TAIWAN
E-mail address: cylin@wangwei.math.ncu.edu.tw

