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EQUIVARIANT DEGREE FOR ABELIAN ACTIONS.
PART III: ORTHOGONAL MAPS

Jorge Ize – Alfonso Vignoli

Abstract. The main goal of this paper is to define an equivariant degree

theory for orthogonal maps. We apply our degree to study of bifurcations
and existence of solutions of equivariant nonlinear problems.

Introduction

This paper represents the third part of the study of the equivariant degree
for abelian actions and constitutes another development of the theory given in
[11]–[14]. Here we study orthogonal equivariant maps, in particular gradients
and Hamiltonians, using the results of [13] and [14].

The basic setting is the following: let Γ be a compact abelian group acting
linearly and via isometries on the finite dimensional space V . Let Ω be an open,
bounded, invariant subset of V and Φ : Ω → R a C1-invariant map, such that
its gradient is non-zero on ∂Ω.

Now, if Γ = Tn×Zm1×. . .×Zms , with the torus Tn generated by (ϕ1, . . . , ϕn),
ϕj ∈ [0, 2π], it is clear, from the fact that Φ(γx) = Φ(x), for all γ ∈ Γ, that
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F (x) ≡ ∇Φ(x) is equivariant, i.e., F (γx) = γF (x) and that if

Ajx =
∂

∂ϕj
(γx)
∣∣∣∣
γ=Id

,

one has

F (x) ·Ajx = 0, j = 1, . . . , n.

Hence, ∇Φ(x) is an orthogonal map, i.e. a Γ-equivariant map which satisfies
these n orthogonality conditions.
The main goal of this paper is to define an equivariant degree theory for such

maps, i.e. defined on invariant sets and with equivariant orthogonal homotopies.
In [3], Dancer has defined a Fuller-like degree, i.e. a rational, for gradient

S1-maps, using the restriction on the range of ∇Φ(x) and a genericity argument.
In [11] and [12] the case of an S1-orthogonal map was studied with the S1-degree
of F (x)+λAx on the set [−1, 1]×Ω, a rational in the first paper and a sequence
of integers in the second. In these papers one had to assume that FΓ(x) 6= 0
on ΩΓ.
This last assumption was removed by Rybicki in [18] with the degree de-

veloped in [4] and [8] applied to F̃ (x) + λAx, where F̃ (x) is a “normal map”.
Finally, Gęba, in [7], has defined a degree of Γ-gradients, for a general (non-
necessarily abelian) Γ: the idea is to approximate the gradient by a gradient
“normal” map and define, in this generic case, indices on the different isotropy
subspaces via Poincaré sections, in a spirit similar to [3]. For an abelian Γ,
our degree will coincide with Gęba’s and will “classify” all possible degrees for
orthogonal maps.
In the present paper we shall follow the suggestion, given in [10], to study

for a general Γ, the problem

F (x) +
n∑
1

λjAjx = 0.

In fact, by taking the scalar product of this equation with F (x), one has F (x) = 0
and
∑n
1 λjAjx = 0. Thus, if the Ajx are linearly independent, one gets λj = 0

and one can use the Γ-degree of the above map on In×Ω. Of course this simple
idea will not work if the Ajx are not linearly independent. Thus, one needs to
work up on the isotropy subspaces, with the right number of linearly independent
vector fields and modifying the map F (x) along the way.
Section 1 is devoted to the construction of the degree, first for gradients and

then for orthogonal maps. As in [11], one “suspends” the map in order to get
a fixed reference framework,

∏Γ
∇ and

∏Γ
⊥ respectively, for maps which are Γ-

gradients on I×B or Γ-orthogonal from I×B into R×V . Here B is a large ball,
centered at the origin and containing Ω. The associated map will be non-zero on
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∂(I ×B) and its Γ-homotopy class will be the Γ-degree. The set
∏Γ
⊥ is a group

and the degree will have all the properties of a degree.
Section 2 constitutes our main result, i.e. that

∏Γ
⊥ is a product of as many Z

as there are isotropy subgroups of Γ. In Section 3 we extend the degree to infinite
dimensions and compare it to the “normal map” approach. We also study the
reduction of the symmetry and products. In Section 4 we compute the index
of an isolated orbit and, in Section 5, we study bifurcation. Finally, Section 6
treats Hamiltonians.
In this paper we shall use freely the results of [13] and [14] but we shall recall

the appropriate version of them as we proceed.

1. Construction of the degree

In this section we shall construct the equivariant degree, first for gradient
maps and then for orthogonal maps.

(A) Gradient maps. Let Φ : Ω→ R be a C1-function such that Φ(γx) =
Φ(x) for all γ in Γ ∼= Tn × Zm1 × . . . × Zms and with F (x) ≡ ∇Φ(x), non-
zero on ∂Ω. As noted in the introduction one has that F (γx) = γF (x) and
F (x) ·Ajx = 0.
Let B = B(0, R) be a large ball containing Ω. From the Dugundji–Gleason

lemma, [11, p. 439], Φ has an invariant extension Φ̃(x) : B → R. By using
mollifiers, one may assume that Φ̃ is C1 and that ∇Φ̃(x) = F̃ (x) is arbitrarily
close to F (x). In fact, if ϕ(ρ) : R+ → R+ is decreasing, C∞, with values
A for ρ < ε0 and 0 for ρ ≥ 1, where A is such that

∫
V
ϕ(|x|) dx = 1, then

Φ̃ε(x) = ε−N
∫
V
ϕ(|y − x|/ε)Φ̃(y) dy, where dimV = N , is C∞ and invariant

(since |y − γx| = |γT y − x| and γ is an isometry). Furthermore, since Φ̃ε(x) =∫
V
ϕ(|z|)Φ̃(x + εz) dz, Φ̃ε approximates uniformly Φ̃ in B and its gradient F̃ε

does approximate F on Ωε0 ≡ {x ∈ Ω : dist(x, ∂Ω) ≥ ε0}, for ε < ε0. Since F is
non-zero on ∂Ω, one may choose ε0 such that F (x) 6= 0 on Ω\Ωε0 and replace Ω
by Ωε0 .
As in [11], the next step is to construct an invariant neighbourhood N of ∂Ω,

on which F̃ (x) is non-zero, and an invariant C1-function ϕ, from B into [0, 1],
such that ϕ is 0 on Ω and 1 outside Ω ∪N : if N is an ε1-neighbourhood, let N1
and N2 be ε1/3 and 2ε1/3 neighbourhoods of ∂Ω. One may choose ϕ1 to have
values 0 in Ω ∪N1 and 1 outside Ω ∪N2. By taking mollifiers ϕε, then one will
have the required properties for ε < ε1.
Let next 0 < ε be such that 4ε|∇ϕ(x)| ≤ |F̃ (x)|, for all x ∈ N , and for

t ∈ [0, 1] define
Φ̂(t, x) = ε(t2 + t(2ϕ(x)− 1)) + Φ̃(x).

Then, ∇Φ̂ = (ε(2t+ 2ϕ(x)− 1), F̃ (x) + 2εt∇ϕ(x))T and its zeros are such that
F (x) = 0 for x ∈ Ω and t = 1/2.
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It is clear that if one has a gradient Γ-homotopy on ∂Ω, the corresponding
gradients Φ̃ will be Γ-homotopic as maps from ∂(I ×B) into R×V \{0}. Hence,
if
∏Γ
∇ is the set of Γ-homotopy gradients from SV ∼= ∂(I × B) into R× V \{0},

one may define

deg Γ∇(Φ;Ω) ≡ [∇Φ̃]∇ ∈
∏Γ

∇
.

(B) Orthogonal maps. The construction for orthogonal maps follows si-
milar lines: let F : Ω→ V be a Γ-equivariant map, with F non-zero on ∂Ω and
F (x) ·Ajx = 0, j = 1, . . . , n.
Choose B as above and let F̃0(x) be any equivariant extension of F to B.

Since F̃0 is not necessarily orthogonal to Ajx, we shall use the Gram–Schmidt
orthogonalization in the following form: let

Ã1(x) =

{
A1x/‖A1x‖ if A1x 6= 0,
0 if A1x = 0,

Âj(x) = Ajx−
j−1∑
1

(Ajx, Ãi(x))Ãi(x),

and

Ãj(x) =

{
Âj(x)/‖Âj(x)‖ if Âj(x) 6= 0,
0 if Âj(x) = 0.

Clearly the Ãj(x) are orthogonal and Âj(x) = 0 if and only if Ajx is a
linear combination of A1x, . . . , Aj−1x. Furthermore, since Γ is abelian, Aj is
Γ-equivariant as well as Ãj(x) and Âj(λx) = λÂj(x), for λ in R. All these facts
can be easily proved by induction. Recall also that, if Tn acts on a complex
coordinate z as exp (i

∑
Njϕj), then Ajz = iNjz. Let

F̃ (x) = F̃0(x)−
n∑
1

(F̃0(x), Ãj(x))Ãj(x).

Lemma 1.1.

(a) F̃ (x) is an orthogonal Γ-extension of F (x),
(b) F̃ (x) is continuous.

Proof. By construction F̃ (x) is orthogonal to Ãj(x) for all j and hence to
all Ajx, which are linear combinations of them. Furthermore, if x is in Ω, then
F̃0(x) = F (x) is orthogonal to all Ajx, hence to all Ãj(x), and F̃ (x) = F (x).
Thus, the more delicate part is the continuity of (F̃0(x), Ãj(x))Ãj(x). Let

xn be a sequence converging to x0 such that Âj(xn) is non-zero and converges
to 0 (the other cases are trivial). Then, since Ãj(xn) has norm 1, there is a
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subsequence such that Ãj(xn) converges to some v, with norm 1, and the above
expression converges to (F̃0(x0), v)v.
Now, since Âj(x0) = 0, then Ajx0 =

∑j−1
1 λiAix0, i.e. x0 belongs to

ker (Aj −
∑j−1
1 λiAi) ≡ V1. But V1 is invariant under Γ and in fact V1 = V T ,

where T is the torus (−λ1ϕ, . . . ,−λj−1ϕ,ϕ, 0, . . . , 0). Hence, from the equivari-
ance, F̃0(x0) belongs to V1 and one will have proved the continuity if one shows
that v is in V2 = V ⊥1 .
Assume first that j is the first index for which Ãj(x0) = 0 and write any

x in V as x1 + x2, with xi in Vi. Since Ãi is equivariant, one has that Âi(x1)
is in V1 and, since Ajx1 is a linear combination of A1x1, . . . , Aj−1x1, one has
Âj(x1) = 0. Now

(Âkx)1 − Âk(x1) = −
k−1∑
1

(Akx1, Ãi(x)1)(Ãi(x)1 − Ãi(x1))

−
k−1∑
1

(Akx2, Ãi(x)2)Ãi(x)1 −
k−1∑
1

(Akx1, Ãi(x)1 − Ãi(x1))Ãi(x1)

and

‖(Ãkx)1 − Ãk(x1)‖ ≤‖Âk(x)2‖2/‖Âk(x)‖2

+ 2‖(Âkx)1 − Âk(x1)‖/‖Âk(x1)‖,

where one uses
∣∣|a|−1 − |b|−1∣∣ = |(b+ a, b− a)| /|a||b|(|a|+ |b|) ≤ |b− a|/|a||b|.

From the fact that ||Ãk(x)2|| ≤ C‖x2‖, it is easy to prove by induction
that ‖(Âkx)1 − Âk(x1)‖, ‖(Ãkx)1 − Ãk(x1)‖ ≤ Ck‖x2‖2, where Ck depends on
‖Âl(x)‖−1 and ‖Âl(x1)‖−1 for l < k. Again by induction, these norms are close
to those for x0, hence non-zero. Hence, ‖(Âjx)1‖ ≤ Cj‖x2‖2 and (Âjx)2 =
Ajx2 −

∑j−1
i=1 λiAix2 + 0(‖x2‖2), when x tends to x0. In this case, if for some

subsequence, one has that x2/‖x2‖ converges to X2, then Ãj(x) converges to
v = w2/‖w2‖, with w2 = AjX2 −

∑j−1
1 λiAiX2, which is non-zero by definition

of V1.
If Âj(x0) is not the first zero vector, let

Âj(x) = Ajx−
∑
1

(Ajx, Ãi(x))Ãi(x)−
∑
2

(Ajx, Ãi(x))Ãi(x),

where the first sum corresponds to i with Ãi(x0) 6= 0 and the second sum to
−B̂2(x), with Ãi(x0) = 0. Then, Âj(x) = B̂1(x)+ B̂2(x), with B̂1(x) orthogonal
to B̂2(x).
By induction one has that B̂2(x) goes to 0 and, from the previous argument,

B̂1(x) goes also to 0, when x goes to x0. Note that x0 belongs to ker (Aj −∑
i=1 λ

j
iAi) and, for each i in the second sum, to ker (Ai −

∑
λkiAk), that is x0
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is in the fixed point subspace of a (n+ 1)-torus, T , where n is the cardinality of
the second sum.
Now if, for subsequences, B̂1(x)/‖B̂1(x)‖ goes to u1, Ãi(x) to wi, for i in

the second sum, ‖B̂1(x)‖/‖Âj(x)‖ to α1, αi(x)/‖Âj(x)‖ to βi, with αi(x) =
(Ajx, Ãi(x)) which, by induction, goes to 0, then Ãj(x) goes to α1u1+

∑
2 βiwi,

with α21 +
∑
β2i = 1. From the above argument, one has that u1 is orthogonal

to ker (Aj −
∑
1 λ
j
1Ai) and wi to ker (Ai −

∑
λkiAk). Hence v is orthogonal to

V T , proving the lemma. �

Note that the above lemma can be used in order to prove that if a Γ-map F
is such that F (x) is not a linear combination of the Ajx, for any x in ∂Ω, then
F is Γ-homotopic on ∂Ω to an orthogonal map F (x)−

∑
(F (x), Ãj(x))Ãj(x) via

a linear deformation: if it is zero, then F (x) is a linear combination of the Ãj(x)
and hence of the Ajx. The lemma shows that the resulting map is continuous.
The rest of the construction of the degree is then easy: let N be an invariant

neighbourhood of ∂Ω, on which F̃ (x) is non-zero, and let ϕ(x) be an invariant
partition of unity, with value 0 in Ω and 1 in the complement of Ω ∪N , then

F̂ (t, x) = (2t+ 2ϕ(x)− 1, F̃ (x))

is non-zero an ∂(I ×B) and is an orthogonal Γ-map on I ×B.
Furthermore, it is clear that if F and G are homotopic on ∂Ω, via an orthog-

onal Γ-map, then F̂ (t, x) and Ĝ(t, x) are homotopic via an orthogonal Γ-map.
Hence, one may define

deg⊥(F ; Ω) ≡ [F̂ ]⊥,
where [F̂ ]⊥ is the homotopy class of F̂ in

∏Γ
⊥, the set of all Γ-homotopy classes

of orthogonal Γ-maps from ∂(I ×B) into R× V \ {0}.
As in [11, Proposition 2.1], the class of F̂ is independent of the construction,

i.e. of ϕ,N and F̃ . Furthermore, if Ω is a ball, one may take a radial extension
(hence non-zero on B \Ω) and one has [F̂ ]⊥ =

∑
0[F ]⊥, the suspension of [F ]⊥.

We shall prove later on that
∑
0 is an isomorphism.

Another important fact is that the Equivariant Borsuk homotopy extension
theorem, [11, p. 439], is valid for orthogonal Γ-maps.

Lemma 1.2.
∏Γ
⊥ is an abelian group.

Proof. It is enough to check that the arguments given in [11, Proposi-
tions A.1 and A.4] are still valid. In particular, by using the equivariant Borsuk
theorem, one may deform any F in

∏Γ
⊥ to a map with values (1, 0) for t = 0

or 1. This enables one to define the sum in
∏Γ
⊥. �

Theorem 1. deg⊥ has all the properties of a degree, i.e., non-triviality,
additivity, excision, and the Hopf property (if Ω is a ball and F has a zero
degree then there is a non-zero orthogonal Γ-extension).
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Proof. It is enough to go over the proofs of [11]. The fact that the suspen-
sion is an isomorphism gives the additivity without suspension. �

One has then the following situation:∏Γ

∇
⊥∗−−−−→

∏Γ

⊥

Q
∗−−−−→
∏Γ

SV
(SV ),

where the first map consists in taking a gradient Γ-map as an orthogonal one
and
∏
∗ is the morphism given by forgetting the orthogonality. From [13] the

last group is a product of Z, one for each isotropy subgroup H with Tn < H.
Furthermore, it is also

∏Γ
SV 1 (S

V 1), where V 1 = V T
n

and [F ] = [FT
n

, Z],
where Z is in the orthogonal complement of V 1 (see [13, Corollary 5.1]). Now,
since ATj + Aj = 0 (by differentiating the equality (γx, γy) = (x, y)), the map
(FT

n

(x), Z) is an orthogonal map. Hence
∏
∗ is onto.

Note that Parusiński has proved that, if Γ = {e}, the map ⊥∗ is one to one
and onto, see [17]. This could lead to the conjecture that, in general, ⊥∗ is also
one to one and onto.

Remark 1. If one has F (λ, x) : Rk × V → V , Γ-orthogonal to Ajx, or
Φ(λ, x) : Rk×V → R, Γ-invariant, such that on the boundary of a bounded, open
and invariant subset Ω of Rk × V , one has F (λ, x) 6= 0, or ∇xΦ(λ, x) 6= 0, then
one may perform the same constructions and define two Γ-degrees, deg Γ∇(Φ;Ω)
in
∏Γ
∇(S

Rk×V , SV ) and deg Γ⊥(Φ;Ω) in
∏Γ
⊥(S

Rk×V , SV ). This last set will be an
abelian group and one will have a degree with the usual properties (additivity
here will be up to one suspension). One may also define the maps ⊥∗ and

∏
∗

into
∏Γ
SRk×V (SV ), which has been studied in [13].

2. Main theorem

The following constitutes the main abstract result of the paper. Its proof
will be by modifying the original map on subspaces with orbits of increasing
dimension: in fact, if Γx = H with dimΓ/H = k, then the orbit Γx is a k-
dimensional manifold with tangent space at x generated by k of the Ajx.

Theorem 2.

(1)
∏Γ
⊥
∼= Z× Z× . . .× Z, with one Z for each isotropy subgroup of Γ.

(2) [F̂ ]⊥ =
∑
H dH [FH ]⊥, with explicit generators FH . If dH 6= 0, then F̂

has a zero in V H .
(3) Any sequence of dH is the degree of some orthogonal Γ-map defined
on Ω, provided dH is taken to be 0 if ΩH is empty.

Proof. Let F be an orthogonal Γ-map, from B into V , which is non-zero
on ∂B (in order to make lighter the writing, I ×B is denoted by B).
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Step 1. As indicated above, [FT
n

], as an element of
∏Γ
SV 1 (S

V 1), is∑
Tn≤H dH [FH ]. Note that Ajx = 0 on V

1 = V T
n

. Hence, [F1]⊥ ≡ [F ]⊥ −
[FT

n

, Z]⊥ has a non-zero orthogonal Γ-extension to BT
n

. Thus, F1(X,Z) =
(FT

n

1 (X,Z), F⊥(X,Z)), with F1(X, 0) 6= 0 and F⊥(X,Z) is orthogonal to AjZ.
Step 2. Recall that the action of Tn on the kth coordinate of Z is of the

form exp i(
∑
njkϕj). Assume, without loss of generality, that n

1
1 6= 0 and let

λj ≡ nj1/n11 for j = 2, . . . , n. Let

V1 = V T
n

× {zk : n1k 6= 0 and n
j
k = λjn

1
k, j ≥ 2}.

Then, on V1, one has Ajx = λjA1x and V1 = V T1 , where T1 is the (n− 1)-torus
(−
∑n
2 λjϕj , ϕ2, . . . , ϕn). Let B1 be the ball B

V1 , then, the map F1(x) + λA1x
is non-zero on ∂(I × B1), where λ is in I = [−1, 1], since F1(X, 0) 6= 0 and,
from the fact that F1 is orthogonal to A1x, a zero of the above map is such that
F1(x) = 0 and λA1x = 0. That is, if Z 6= 0, then λ = 0, since A1zk = in1kzk.
We are assuming here that n11 > 0. If not one changes λA1x to −λA1x. Thus,
F1(x) + λA1x defines an element of

∏Γ
SV1×R(SV1) ∼= A × Z × . . . × Z, see [13,

Corollary 5.1], where A =
∏Γ
SR×V 1 (SV

1
) and there is one Z for each isotropy

subgroup H of Γ acting on V1, with dimΓ/H = 1. Since FT
n

1 6= 0, one has that
[F1 + λA1z] = 0 +

∑
dH [F̃H ]. Here T1 ≤ H < Tn and F̃H is the following map

[13, p. 394]:

F̃H(λ, x) = F̃H(λ, t,X0, yj , uj , z1, . . . , zj , . . . )

=
(
2t+ 1− 2

∏
|xj ||z1|α, |z1|X0, (Qj − 1)yj |z1|,

|z1|(Pj − 1)uj , |z1|((2t− 1)η + iλ)z1, . . . , |z1|(Rj − 1)zj , . . .
)
,

where Γ/H = (Γ/H1) . . . (H̃j−1/H̃j) . . . , with H̃j = H1∩. . .∩Hj ,Hj the isotropy
subgroup of xj , the jth coordinate. Here X0 is in V T

n

, Γ/Hj ∼= Z2 for
yj , Γ/Hj ∼= Zm for uj and Γ/Hj ∼= S1 for zj . If kj = |H̃j−1/H̃j |, then kj
is finite, except for z1. The product in the first component is only for those kj
which are strictly bigger than 1. Qj = y2j if kj = 2 and Qj = 2 if kj = 1. Pj
is an invariant monomial of x1, . . . , xj = uj , with exponent kj in uj if kj > 1
and Pj = 2 if kj = 1. The same definition holds for Rj (for instance if Γ = S1

and n1 is the largest common divisor of all nj , then kj = 1). For other cases
see [12]. The exponent α is chosen in such a way that when Qj = Pj = Rj = 1
and hence |zj | = |z1|qj , for some qj , then α +

∑
qj 6= 0. This implies that the

zeros of FH are for λ = 0, t = 1/2, |xj | = |z1| = 1 if kj > 1 and that one has,
for z1 = 1, exactly

∏
kj zeros and exactly one in the fundamental cell for V H :

CH ≡ {xj , 0 ≤ |xj | < R, 0 ≤ Arg xj < 2π/kj}. Each zero, for z1 in R+, has
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index 1: η = ±1 is chosen in such a way that, given the basic orientation, this
index is 1.

Let

FH(x) = F̃H(0, x)− (F̃H(0, x), Ã1(x))Ã1(x).

By construction FH is an orthogonal Γ-map, with z1-component |z1|(2t − 1 −
iα(x)n11)z1 and the same first component as F̃H . Thus, the zeros of FH are those
of F̃H and FH defines an element of

∏Γ
⊥. Furthermore, F̃H(λ, x) is Γ-homotopic

to FH(x) + λA1x: deform λ − α in the zj-component to 0 and then α in the
z1-component to 0 and n11 to 1. Note that FH(x) + λA1x is zero only if λ = 0
and FH(x) = 0, since FH is orthogonal to Ajx. Hence, FH(x) + λA1x can be
taken as generators of

∏Γ
SR×V1 (S

V1).

Complementing FH by the identity of V ⊥1 , one has that

[F2]⊥ ≡ [F1]⊥ −
∑

T1≤H<Tn
dH [FH ]⊥

is orthogonal to Ajx and F2(x) + λA1x, on ∂(I ×B1)∪BT
n

, is Γ-extendable to
a non-zero Γ-map F (λ, x) on I ×B1.
We claim that this fact implies that F2(x) itself has a non-zero orthogonal

Γ-extension to B1, i.e., that [F2]⊥ = 0.

The proof of the claim follows the lines of [13, Theorem 3.1], by working on
V H1 , for H in decreasing order. Thus, if H is maximal (hence any K > H must
contain Tn), one may extend [F ′2]⊥ = [F1]⊥ − dH [FH ]⊥ in such a way that the
resulting orthogonal map is non-zero on ∂CH : this is true on V K , for K > H,
since there FK1 is non-zero, and by a dimension argument, since dim ∂CH =
dimV H − 2, as in [14, Lemma 4.1]. Thus, one may assume that F ′2(x)+λA1x is
non-zero on ∂(I × CH) and has a zero degree with respect to I × CH (this is the
obstruction degree which characterizes [F ′2 + λA1x]Γ).

Now, in CH one has the component z1 in R+ and, since F ′2(x) 6= 0 for
z1 = 0, one may compute this obstruction degree on the ball A ≡ I × CH∩
{z1 > ε}, for some small ε. If F ′2 = (f1, f2, F⊥), where f1 + if2 corresponds to
the z1-component, one may perform on ∂A the homotopy F ′2(x)+λ(τA1x+(1−
τ)A1z1): in fact, taking the scalar product with F ′2(x), one has |F ′2|2 + λ(1 −
τ)(F ′2, A1z1) = 0 at a zero of the homotopy, that is, from the orthogonality:
|F ′2|2−λ(1−τ)(F⊥, A1y) = |F ′2|2+λ2τ(1−τ)|A1y|2 on a zero. Hence, F ′2(x) = 0,
λA1z1 = 0 and, since z1 > ε, λ = 0; that is, the zeros are inside A. The
resulting map (f1, f2 + λn11z1, F⊥) is linearly deformable on ∂A, to (f1, λ, F⊥),
since from the orthogonality one has f2z1 = −(F⊥, A1y), assuming n11 > 0.
From the product theorem, one obtains that deg (f1, F⊥; CH ∩ {z1 ≥ ε}) = 0,
i.e., (f1, F⊥) has a non-zero extension, (f̃1, F̃⊥), to CH ∩ {z1 ≥ ε}. Defining, on



114 J. Ize — A. Vignoli

this set, f̃2 = −(F̃⊥, A1y)/z1, one obtains a non-zero orthogonal extension F̃ ′2(x)
of F ′2(x), first on CH and then, by the action of the group Γ, on V H1 .
For a general H, one assumes by induction that [F ′2]⊥ = [F1]⊥ −

∑
K≤H

dK [FK ]⊥ has been extended, as a non-zero orthogonal map to all V K1 , forK < H,
that is, together with a dimension argument, one has a non-zero map on ∂CH , in
particular for the corresponding z1 = 0. Then, one repeats the above argument
in order to obtain a non-zero orthogonal extension of F ′2 on V

H
1 .

Step 3. On V ⊥1 consider the first coordinate zk with n
1
k 6= 0 and repeat the

above construction in order to get Ṽ1 = V
eT1 . Clearly Ṽ1 ∩ V1 = V T

n

and one
obtains a non-zero orthogonal extension on Ṽ1 of FT

n

. Since the generators
for F2 are trivial on V ⊥1 , one obtains a compatible extension. One repeats this
construction until all coordinates with n1k 6= 0 are exhausted and then with
V2 = V T

n × {zk : n1k = 0, n2k 6= 0 and n
j
k = λjn

2
k, j > 2; λj = n

j
k0
/n2k0}, and so

on.
Hence, if H is such that dimΓ/H = 1 one has one z1 with dimΓ/H1 = 1

and |H1/H| < ∞, one has an extension [F2]⊥ of [F ]⊥ −
∑
dimΓ/H=1 dH [FH ]⊥,

which is orthogonal and non-zero on
⋃
dimΓ/H=1 V

H .
Step 4. The next stage is for two-dimensional Weyl groups. Assume

det
(
n11 n21
n12 n22

)
= detA 6= 0

and define, for j ≥ 3, λj1 and λ
j
2 by(
nj1
nj2

)
= A
(
λj1
λj2

)
.

Let V2 = {zk : njk = λ
j
1n
1
k + λ

j
2n
2
k, j ≥ 2}.

Then, on V2, one has Ajx = λj1A1x + λ
j
2A2x for j ≥ 3 and V2 = V T2 ,

where T2 is the (n − 2)-torus (−
∑
λj1ϕj ,−

∑
λj2ϕj , ϕ3, . . . , ϕn). In particular

any isotropy subgroup H for V2 has dimΓ/H ≤ 2. The action of Tn on zk is
exp i(n1kψ1 + n

2
kψ2), where ψ1 = ϕ1 +

∑
λj1ϕj , ψ2 = ϕ2 +

∑
λj2ϕj .

Consider the map F2(x) + λ1A1x + λ2A2x, λ1, λ2 ∈ I = [−1, 1], where
F2(x) 6= 0 if dimΓ/Γx ≤ 1 and F2 is an orthogonal Γ-extension of F (x). Hence,
a zero of this map will give a zero of F2 and hence λ1 = λ2 = 0: it is clear
that Ajx is tangent to the orbit Γx, here at most two dimensional, and that
F2(x) 6= 0 if Γx is one-dimensional. Hence, on zeros of F2, A1x and A2x are
linearly independent. We are assuming here that det A > 0. If this is not the
case, one changes λ1A1x to −λ1A1x.
Thus, [F2(x) + λ1A1x + λ2A2x]Γ is an element of

∏Γ
SR2×V2 (S

V2), the group
of all Γ-homotopy classes of maps from ∂(I2 × B2) into V2 \ {0}, where B2 is
the ball BV2 . Now this group is A × Z × . . . × Z, with A corresponding to
isotropy subgroups H on V2 with dimΓ/H ≤ 1 and there is one Z for each H
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with dimΓ/H = 2, see [13, Theorem 5.1]. Then, [F2(x) + λ1A1x + λ2A2x]Γ =
0 +
∑
dH [F̃H ]Γ, where T2 ≤ H and dimΓ/H = 2. F̃H is the following map:

F̃H(λ, x) =
(
2t+ 1− 2

∏
|xj ||z1|α|z2|, |z1z2|X0, |z1z2|(Qj − 1)yj ,

|z1z2|(Pj − 1)uj , |z1z2|(i(n11λ1 + n21λ2) + (|z2|2 − 1))z1,

|z1z2|(i(n12λ1 + n22λ2) + η(2t− 1))z2, |z1z2|(Rj − 1)zj , . . .
)

where xj , X0, yj , uj , Qj , Pj , Rj are as in the first step. The exponent α has
the role of fixing the zeros at |xj | = 1 = |z1| = |z2|, t = 1/2, λ1 = λ2 = 0. The
factor |z1z2| is such that F̃H = (2t+ 1, 0) if z1 or z2 is 0. For z1 and z2 real and
positive the index of each zero is equal to ηSign detA, that is F̃H can be taken
as generator, by the appropriate choice of η. Let

FH(x) = F̃H(0, x)− (F̃H(0, x), Ã1(x))Ã1(x)− (F̃H(0, x), Ã2(x))Ã2(x).

By construction FH is an orthogonal Γ-map. Writing FH(x) = F̃H(0, x) −
α|z1z2|A1x−β|z1z2|A2x, one sees easily that the zeros of FH are those of F̃H(0, x)
and that one has for them α = β = 0. Furthermore, as a Γ-map, FH(x)+λ1A1x+
λ2A2x is linearly deformable to F̃H(0, x) + λ1A1x + λ2A2x (the zeros are for
λ1 = τα|z1z2|, λ2 = τβ|z1z2| and F̃H(0, x) = 0 for which α = β = 0). Then, this
last map is deformable to F̃H(λ, x) = F̃H(0, x) + |z1z2|(λ1A1Z + λ2A2Z), with
ZT = (z1, z2). This means that one may take FH(x) + λ1A1x + λ2A2x as the
generator in

∏Γ
SR2×V2 (S

V2). Let then

[F3]⊥ ≡ [F2]⊥ −
∑

T2≤H, dimΓ/H=2

dH [FH ]⊥,

then F3 is an orthogonal Γ-map and F3(x) + λ1A1x + λ2A2x, on ∂(I2 × B2)⋃
dimΓ/H≤1V

H is Γ-extendable to a non-zero map F (λ, x) on I2 ×B2.
As before, we claim that this implies that [F3]⊥ = 0: one proceeds on isotropy

subspaces of increasing dimension by considering on the fundamental cell CH
an orthogonal map F ′3 which, by induction and dimension arguments, is non-
zero on ∂CH . In particular F ′3(x) 6= 0 for 0 ≤ z1 ≤ ε or 0 ≤ z2 ≤ ε, and
the obstruction degree dH is the degree of F ′3(x) + λ1A1x + λ2A2x on the ball
A = I2 × CH ∩ {z1, z2 ≥ ε}. If F ′3(x) = (f1 + if2, g1 + ig2, F⊥) = (F, F⊥),
then one may deform linearly F ′3(x) + λ1A1x + λ2A2x to F ′3(x) + λ1A1Z +
λ2A2Z, with ZT = (z1, z2): by taking the scalar product one obtains, on a
zero of the homotopy |F ′3|2 + (1 − τ)(λ1(F,A1Z) + λ2(F,A2Z)) = 0. But, by
the orthogonality, (F,AiZ) = −(F⊥, AiY ) and, on a zero, F⊥ = −τ(λ1A1Y +
λ2A2Y ), hence |F ′3|2 + τ(1− τ)(λ21|A1Y |2 + 2λ1λ2(A1Y,A2Y ) + λ22|A2Y |2) = 0,
which implies, since the quadratic form is non-negative, F ′3(x) = 0, λ1A1Z +
λ2A2Z = 0 which implies λ1 = λ2 = 0, since on A the vectors A1Z and A2Z
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are linearly independent and the zeros of the deformation are inside A. The
resulting map (

f1, g1, A

(
λ1z1
λ2z2

)
+
(
f2
g2

)
, F⊥

)
is linearly deformable to (

f1, g1, A

(
λ1
λ2

)
, F⊥

)
,

since from the orthogonality

A

(
z1f2
z2g2

)
= −
(
(F⊥, A1Y )
(F⊥, A2Y )

)
and a zero of F⊥ on A, will give f2 = g2 = 0.
This last map is a product and since the extension degree is 0 one has that

(f1, g1, F⊥) has degree equal to 0 on CH ∩ {z1, z2 > ε} and therefore a non-zero
extension (f̃1, g̃1, F̃⊥) to this set. Defining f̃2 and g̃2 on this set via

A

(
z1f̃2
z2g̃2

)
= −
(
(F̃⊥, A1Y )
(F̃⊥, A2Y )

)
,

one obtains a non-zero orthogonal extension F̃ ′3(x) of F
′
3(x) first on CH and then,

by the action of the group Γ, on V H2 .

The rest of the proof in then clear: exhaust all isotropy subgroups H with
dimΓ/H = 2 and then go on to higher dimensional Weyl groups.

Now, if [F ]⊥ =
∑
dH [FH ]⊥, then [FK ]⊥ =

∑
dH [FKH ]⊥ and, in fact, the sum

reduces to those H ≥ K, since FKH 6= 0 if K is not a subgroup of H, in which
case V H ∩ V K is a strict subspace of V H : there is at least one xj = 0 and the
first component of FKH is non-zero. For K ≤ H, it is easy to see that FKH is the
generator for the group

∏Γ
⊥(S

K , V K \ {0}). Hence, if FK 6= 0 one has dH = 0,
for all K ≤ H.
In order to complete the proof of the theorem, it remains to prove (3). Let

H be an isotropy subgroup such that ΩH 6= φ and dimΓ/H = l. Assume that
one has the components z1, . . . , zl such that the matrix A, with Aij = n

j
i , 1 ≤ i,

j ≤ l, is non singular. For j = l + 1, . . . , n one defines λj1, . . . , λ
j
l vian

j
1
...
njl

 = A
λ

j
1
...
λjl


and Vl = {zk : njk =

∑l
1 λ
j
sn
s
k, j > l}. If dimVl = N and one writes the action

of Tn on Vl, in matricial form as
∑n
1 n
j
kϕj , for k = 1, . . . , N , let C be the N × l
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matrix, with Cij = n
j
i , (A corresponds to the first l rows of C), then one has

C

ϕ1...
ϕl

+ C
λ

l+1
1
...

λl+1l

ϕl+1 + . . .+ C
λ

n
1
...
λnl

ϕn = C
ψ1...
ψl

 ,

where ψj = ϕj +
∑n
l+1 λ

i
jϕi gives a new parametrization of T

n (the action of
ψl+1, . . . , ψn on Vl is trivial) and Vl = V Tl , where Tl is the (n − l)-torus given
by ψj , j = l + 1, . . . , n.

Now, if dimV Γ ≥ 1, let the point (x00, X̃00 , y0j , u0j , z0j ) be in ΩH , where (x00, X̃00 )
is in V Γ (by translation we shall assume it to be (0,0)) and (yj , uj) is in V T

n

.
By perturbing a little one may assume that y0j , u

0
j , z
0
j are non-zero provided they

are components of V H . Let x′j = xj/|x0j | for these components and x′0 = x0/R,
where Ω ⊂ BR. Let

f0(x) =
(
x′0 − 2

(
a
∏
|x′j ||z′1|α − 1

)
, aX̃0, a(Qj − 1)yj , a(Pj − 1)uj ,

a(|z′2| − 1)z1, . . . , a(|z′l| − 1)zl−1, ax′0zl, a(Rj − 1)zj , . . .
)
,

with a = |z′1| . . . |z′l|, where Qj , Pj , Rj are as above but with the variables
y′j , u

′
j , z

′
j , so that the only zeros of f0(x) in Ω (hence with |x′0| < 1) are for

(x0, X̃0) = (0, 0), |y′j | = |u′j | = |z′j | = 1, hence on the orbit of the chosen
point. If one adds to the zj-component for j = 1, . . . , l, the term iλjzj , one
obtains a Γ-map f0(λ, x) which has a single component, corresponding to H in
deg Γ(f0(λ, x); I l × Ω) : 1 or d if for some j one replaces Pj or Rj by P dj or Rdj
(conjugates for negative d): see [13, p. 411].

Since A is invertible, it is clear that f0(λ, x) is Γ-homotopic to f0(x) +∑j=l
1 λjAjx, with zeros at the above orbit and λ = 0: in fact, A, if detA > 0, is
deformable to I and, if detA < 0, changing λ1 to −λ1, one still has a generator.
Replace a by a function of |z′1|, . . . , |z′l| with value 0 if some |z′j | < ε and value 1
if all |z′j | > 2ε. Then f0(x) = (2t+ 2, 0) if some |z′j | < ε.

Choose λj(x) such that (f0(x) +
∑l
1 λjAjx,Akx) = 0, for k = 1, . . . , l: if

all |z′j | > ε, the Ajx are linearly independent, hence the matrix (Ajx,Akx) is
invertible. If some |z′j | < ε, then (f0(x), Akx) = 0 and the only solution is

λ = 0. The map f0(x) +
∑l
1 λj(x)Ajx is an orthogonal Γ-map, with zeros in Ω

at the orbit of the original point (there λj(x) = 0) and with orthogonal degree
non-trivial only at dH = 1 (or d).

If l = 0, there are no z′i and one follows the same construction with yi and ui.
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If dimV Γ = 0, then one has to take Ω with ΩΓ = φ and, for V H , the map

f0(λ, x) =
(
(|z′2|Qj − 1)j), (|z′2|Pj − 1)uj , (iλ1 + |z′2| − 1)z1, . . . ,

(iλl−1 + |z′l| − 1)zl−1,
(
iλl/R+ 2i

∑
(|x′j | − 1)2

+ |z′1| − 1)d
)
zl, (|z′l|Rj − 1)zj , . . .

)
see [13, p. 411]: if f0(λ, x) = 0 and zl = 0 then yj = uj = zj = 0, that is x = 0,
which is not in Ω. While if zl 6= 0, then |z′j | = 1, |y′j | = |u′j | = 1 and λ = 0. As
above f0(λ, x) is Γ-homotopic on I l × Ω to f0(0, x) +

∑l
1 λjAjx (if detA > 0,

if not change λ1 to −λ1), and one may choose λj(x) such that f0(λ(x), x) is an
orthogonal Γ-map: replace |z′l| by a and

∑
(|x′j | − 1)2 by a

∑
(|x′j | − 1)2, where

a is as above and ε such that the ball B(0, 2ε) is not in Ω. Then f0(0, x) is
orthogonal to Ajx whenever |z′j | < ε for some j and λi(x) = 1 there.
The resulting map has orthogonal degree equal to d for H and 0 otherwise.
For any sequence dH one either follows the construction of [13, p. 386], to

get maps FH as above with degree dH and a map F such that

deg⊥(F ; Ω) =
∑
deg⊥

(
FH ; ΩH \

⋃
K>H

ΩK
)
,

or one uses the argument of [12, p. 73]: if dimV Γ ≥ 1, take as many 0 = x00 <

x1 < . . . < xN with N =
∑
|dH | and xj − xj−1 = 4ε. Take fj the above map,

where x′0 is changed to x
′
0 − xj , then if ϕj has value 1 if |x′0 − xj | < ε and 0 if

|x′0 − xj | > 2ε, define f(x) as (ϕjfj(x) + (1 − ϕj)(1, 0)) for |x′0 − xj | ≤ 2ε and
(1, 0) outside. If dimV Γ = 0, one follows the construction of [12, p. 74]. �

Remark 2. For the case of parameters, one should follow the same lines
in order to compute

∏Γ
⊥(S

Rk×V , SV ): If F (µ, x) is an element of this group,
then FT

n

belongs to
∏Γ
SRk×V (SV ) and [F1]⊥ = [F ]⊥ − [FT

n

, Z]⊥ has a non-
zero orthogonal Γ-extension to BT

n

and, on Rk × V1, the map F1(µ, x) + λA1x
defines an element of

∏Γ
SRk+1×V1 (S

V1). However, the generators of this last group
are not explicit, except for the case k = 1. Hence, it is not clear that these
generators can be written as FH(µ, x) + λA1x. Then, the extension on ∂CH
meets obstructions on the walls of the fundamental cell (the dimension argument
doesn’t work anymore) and the suspension (which replaces the product theorem)
is not an isomorphism if dimV H is too low. Thus, we shall not pursue this study
here, except in the special case of bifurcation.

3. Operations

In this section we study the relationship with the normal map approach,the
extension to infinite dimension, the reduction of the group and products.
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3.1. Normal maps. As in [11] and [13], this construction, together with
the index computations, will enable to relate our degree to Rybicki’s in [18] and
Gęba’s in [7]. It will turn out that they coincide, if Γ = S1 in the first case and
if Γ is abelian in the second case.
Let H be an isotropy subgroup and define ψ : (V H)⊥ → [0, 1], be such that

ψ(x⊥) is 1 if |x⊥| < ε and 0 if |x⊥| > 2ε. If F (x) = (FH(xH , x⊥), F⊥(xH , x⊥)) is
an element of

∏Γ
⊥ or it is non-zero on ∂Ω, then F (x) is orthogonally Γ-homotopic

to the map (FH(xH , (1−ψ)x⊥), (1−ψ)F⊥(XH , (1−ψ)x⊥)+ψx⊥), since Ajx is
orthogonal to x⊥ and to F (x). Since F⊥(xH , 0) = 0 and FH(xH , 0) is non-zero
on ∂ΩH , one chooses ε so small that FH(xH , x⊥) 6= 0 for |x⊥| < 2ε.
In the case of a gradient, if F (x) = ∇Φ(x), let

Φ̃(x) = ψ(x⊥)(Φ(xH) + |x⊥|2/2) + (1− ψ(x⊥))Φ(xH , x⊥).

Then ∇Φ̃(x) = (FH(x)+ψ(FH(xH)−FH(x)), (1−ψ)F⊥(x)+ψx⊥+(Φ(xH)−
Φ(x) + |x⊥|2/2)∇ψ).
If |x⊥| > 2ε, then ∇Φ̃(x) = F (x) while if |x⊥| < ε, one has ∇Φ̃(x) =

(FH(xH), x⊥). If on ∂ΩH one has that |FH(xH)| > η, one chooses ε so small
that on ∂ΩH × {x⊥ : |x⊥| ≤ 2ε}, one has |FH(x)− FH(xH)| < η/2. Thus, ∇Φ
is Γ-homotopic to ∇Φ̃.
Working in stages, as in [13, Theorem 5.4], one gets that F is orthogonally

Γ-homotopic to FN , where FN (xH , x⊥) = (FHN (xH), x⊥) for any H provided
|x⊥| < ε, i.e. a normal map. Similarly, for the case of gradients, ∇Φ is Γ-
homotopic to ∇ΦN .
In [18] and [7], the authors use this homotopy to reduce the definition of the

degree to that of a normal map and a direct sum on all isotropy subgroups. For
each such subgroup the index is then defined in a generic situation, via Poincaré
sections. As pointed out in the Introduction, our approach classifies all possible
degrees.

3.2. Extension to infinite dimension. If F (x) = x −K(x), or Φ(x) =
|x|2/2 − Ψ(x), with K compact and Γ-orthogonal to Ajx, or ∇Ψ(x) compact,
then the extension of the degree to this case requires, following the classical
approximation by finite-dimensional maps KN , that these maps can be taken
to be Γ-orthogonal and that the suspension by any representation V0 is one to
one. Since K is compact and F (x) 6= 0 on ∂Ω, one has a uniform approximation
of K on ∂Ω by KN , so that the degree of x −K(x) will be that of x −KN (x):
the averaging on the compact group Γ and the orthogonalization of Lemma 1.1
(restricted to the finite dimensional subspace) will give a small perturbation. On
the other hand, the suspension by V0 is one to one on the generators of

∏Γ
⊥ and

an orthogonal map, as well as a gradient. Hence, from [13, Theorem 9.1] one
may take the direct limit of these groups.
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Theorem 3.1. In the above situation, both degrees are well defined for infi-
nite dimensional spaces and compact maps, or gradients. The degree for orthog-
onal maps has the same properties listed in Theorem 2, except that any map has
almost all dH ’s equal to 0.

3.3. Reduction of the group. Let Γ0 < Γ, with Γ0 ∼= Tn0 × . . . . Let

P⊥ :
∏Γ

⊥
−→
∏Γ0

⊥
,

be the restriction morphism.
According to [14, Lemma 6.1], any isotropy subgroup H0 of Γ0 is of the form

H0 = H ∩ Γ0, where H is an isotropy subgroup of Γ. Furthermore, there is
a minimal H ≤ H, such that H0 = H ∩ Γ0 and V H0 = V H . One also has
that dimΓ0/H0 = k0 ≤ dimΓ/H = k and, in case of equality, if H̃00 > H0 and
H̃0 > H are the maximal isotropy subgroups with dimΓ0/H̃00 = dimΓ/H̃0 = k,
then |H̃00/H0| divides |H̃0/H| and

P∗

[
FH +

k∑
1

λiAix

]
Γ
= |H̃0/H|/|H̃00/H0|

[
FH0 +

k∑
1

λiAix

]
Γ0

(see [14, Proposition 6.1]), where P∗ is the restriction morphism∏Γ

SRk×V
(SV ) −→

∏Γ0

SRk×V
(SV ).

Here we shall prove:

Theorem 3.2.

P⊥

( ∑
H<Γ

dH [FH ]⊥
)
=
∑
H0<Γ0

(∑
1

dH
|H̃0/H|
|H̃00/H0|

)
[FH0 ]⊥,

where the sum
∑
1 is over all H with H0 = H ∩ Γ0 and dimΓ/H = dimΓ0/H0.

In particular P⊥([FH ]⊥) = 0 if k0 < k.

Proof. From the proof of Theorem 2, it is clear that one may take the
generators for the parametrized problem as FH +

∑
λiAix. If k = k0, then one

has A1x, . . . , Akx linearly independent for x with Γx = H and Γ0x = H0, hence
one may take these generators, for which [14, Proposition 6.1], applies and one
has part of the answer.
Note that if k0 < k, for some H, then, since H < H, one has dimΓ/H ≥

dimΓ/H and, since V H = V H0 , the only possibility is that n0 < n and the action
of Tn0 on V H reduces the number of linearly independent Ajx from k to k0.
Assume then that A1x, . . . , Ak0x correspond to Γ0 and are linearly independent
if Γ0x = H0, while A1x, . . . , Akx correspond to Γ and are linearly independent
if Γx = H (and a fortiori if Γx = H). Consider the map FH(x) + Ãk0+1(x)
on V H0 . By construction, it is orthogonal to Ajx, j = 1, . . . , k0 and its zeros
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are such that FH(x) = (FHH (xH), Z) = 0 and Ak0+1x is a linear combination of
A1x, . . . , Ak0x. But then, Z = 0, xH has isotropy H, by construction of FH ,
and A1xH , . . . , AkxH are linearly independent. Hence, the map has no zeros,
but P⊥[FH ]⊥ = [FH + Ãk0+1(x)]⊥ = 0. �

3.4. Products. Let V1, V2 be two Γ-representations, Ω = Ω1 × Ω2 be an
open, bounded invariant product, fi(xi) be orthogonal Γ-maps, which are non-
zero on ∂Ωi, i = 1, 2. As in [14, Lemma 6.2], it is easy to see that, if Fi are the
maps constructed in

∏Γ
⊥(Vi), then

[F1, F2]⊥ =
∑
0
deg⊥((f1, f2); Ω1 × Ω2),

where
∑
0 is a trivial suspension. Furthermore, [14, Lemma 6.3], any isotropy

subgroup H for the product is of the form H = H1 ∩ H2, where, as before,
there are minimal Hi with V

H
i = V

Hi
i . If ki = dimΓ/Hi, k = dimΓ/H, then

ki ≤ k ≤ k1 + k2.

Theorem 3.3. If H̃0j is the maximal isotropy subgroup containing Hj,
Γ/H̃0j ∼= T kj , then, if [Fi]⊥ =

∑
diH [F

i
H ]⊥, one has

[F1, F2]⊥ =
∑

dH1dH2
|H̃01/H1||H̃02/H2|
|H̃01 ∩ H̃02/H1 ∩H2|

[FH1∩H2 ]⊥

where the sum is over all H1, H2, with dimΓ/H1+dimΓ/H2 = dimΓ/(H1∩H2).

Proof. It is clearly enough to compute the class [FH1 , FH2 ]⊥ for the gener-
ators. Writing V H as (V H11 ×V

H2
2 )×(V

H1
1 )

⊥×(V H22 )⊥ one has, for the action of

Γ/H = Γ/H1 ×H1/H1 ∩H2,

k1 coordinates of V
H1
1 , z1, . . . , zk1 , giving A1x1, . . . , Ak1x1 linearly indepen-

dent, and k − k1 coordinates of V H22 , z̃1, . . . , z̃k−k1 for the action of H1 on that
space. Note that, given the order chosen in V H , the coordinates of (V H11 )

⊥

and of (V H22 )
⊥ do not contribute, in a non-trivial way, to the fundamental cell.

Now, as in the proof of Theorem 2, one may write the action of Tn on V H11 as
C(ψ1, . . . , ψk1)

T , hence Ajx1 = 0 for j > k1 by changing the parametrization
of Tn from the ϕ to the ψ. Assume that ψk1+1, . . . , ψk−k1 give Ajx2 linearly
independent for the action of H1 on V

H2
2 , then, one may suppose, changing the

parametrization, that Ajx2 = 0 for j > k and that Ajx2, k1 < j ≤ k, are linearly
independent, (there are also k1 + k2 − k linearly independent vectors Ajx2 for
j ≤ k1).
Now, if k = k1 + k2, then [F1 +

∑k1
1 λjAjx1, F2 +

∑k
k1+1 λjAjx2] has been

computed in [14, Proposition 6.3], giving α[FH +
∑k
1 λjAjx] where α is the

coefficient of the theorem. On the other hand, if k < k1 + k2, one has to add
to F2 +

∑k
k1+1 λjAjx2 the sum

∑
λjAjx2, for j in a subset J of k1 + k2 − k



122 J. Ize — A. Vignoli

elements of {1, . . . , k1}. But, for this second sum, one may deform λj to 0 and
then to a fixed εj 6= 0, without affecting the class but giving a zero extension
degree. In that case, [F1, F2]⊥ = 0. �

Remark 3 (Composition). In [14] we derived a formula for part of the equi-
variant degree of a composition. In the case of orthogonal maps, it is easy
to see that the composition of such maps is not necessarily orthogonal. How-
ever, following the case of gradients, one may study the situation of a map
h(x) = Df(x)T g(f(x)), where g is orthogonal, f is C1 and only equivariant
(for instance g(y) = ∇Φ(y), then h(x) = ∇x(Φ(f(x))). Then, from the rela-
tions Df(γx)γ = γDf(x) and Df(x)Ajx = Ajf(x), (obtained by differentiating
f(γx) = γf(x)), one has that h(x) is an orthogonal Γ-map.
If f(∂Ω) ⊂ ∂Ω1, 0 /∈ ∂Ω1 and 0 /∈ g(∂Ω1), one may look at degΓ(f ; Ω),

deg⊥(g; Ω1) and deg⊥(h; Ω) provided h is non-zero on ∂Ω (for instance if Df(x)
is invertible on ∂Ω). In this case, by choosing the neighbourhood N of ∂Ω such
that N ⊂ f−1(N1), N1 neighbourhood of ∂Ω1 where g̃ is non-zero, one has, for
F (t, x) = (2t+2ϕ(x)−1, f̃(x)) and G(t1, y) = (t1+2ψ(y), g̃(y)), with t1 ∈ [−1, 1],
that

[2t+ 2ϕ(x)− 1, Df̃(x)T g̃(f̃(x))]⊥ = [DF (t, x)TG(F (t, x))]⊥,
(one may assume that f̃ is C1).

Note that the presence of DF (t, x)T does not allow to distribute the class of
[DFTGoF ]⊥ with respect to [F ]Γ or with respect to [G]⊥ except, as done in [14],
if [G]⊥ =

∑
dH [GH ]⊥ provided DF is invertible on the boundary of the cylinder.

Since for deg⊥(h; Ω), DF =
( 2 (∇ϕ)T
0 Dx ef(x)

)
, invertibility of DF means that Df̃(x)

is invertible in B, let us consider the following particular case:

Proposition 3. Assume Ω = B, f(0) = 0, Df(x) invertible in B, g(y) 6= 0
if |y| ≥ R1 and |f(x)| ≥ R1 if x ∈ ∂B. Then

deg⊥((Df)T g(f(x));B) = deg⊥(g(y);B(0, R1)).

Proof. Since Ω = B and Ω1 = B(0, R1), the construction of F and G
are not necessary: one may compute directly the class of h(x) and of g(y).
Note also that in the non-equivariant case, if the zeros of h are isolated then
Dh(x) = (Df)T (x)Dg(y)Df(x) whenever g(f(x)) = 0. Hence in this case the
Brower degree of h is that of g. Note that the invertibility of Df implies that
the zeros of f have to be in V Γ and thus 0 is the only zero of f(x).
Now one may deform orthogonally h(x) on ∂B to the following map Df(x)T

|f(x)|2g(R1f(x)/|f(x)|), via (τ + (1 − τ)|f |2)h(x) first and then via |f(x)|2g·
(f(x)(τ + (1 − τ)R1/|f(x)|)). The new map has its only zero at x = 0. Then,
one may deform x on ∂B to εx, for ε small and use the homotopy where f(εx)
is replaced by τf(εx)+(1− τ)Df(0)εx and Df(εx) by τDf(εx)+(1− τ)Df(0):
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since Df(0) commutes with any γ ∈ Γ (and hence with Aj) the deformation is
clearly Γ-orthogonal and, for ε small enough, the path from Df(0) to Df(εx)
consists of invertible matrices, that is the only zero is at x = 0. Furthermore,
in GLΓ(V ) the matrix Df(0) is deformable to A ≡ diag (εΓ, εZ2 , . . . , I), where
εΓ = diag (Sign detDf(0)Γ, I) on V Γ, εZ2 is a similar matrix on V

H∩(V Γ)⊥, for
each H with Γ/H ∼= Z2, and the last I is on the other irreducible representations,
see [10, Theorem 1.2, p. 407]. Finally, by undoing the above homotopies, one has
that [h]⊥ = [Ag(AX)]⊥ =

∑
dH [AGH(Ax)]⊥. But, from the form of GH(x) =

( · , X0, (y2 − 1)y, . . . ) one has that AGH(Ax) = GH(x). �

4. Poincaré sections and index of an isolated orbit

As in [14], we shall study first the following situation: let H be an isotropy
subgroup such that dimΓ/H = k, then there are complex coordinates z1, . . . , zk
with isotropy H0 > H and |H0/H| < ∞. Assume that the orthogonal map F ,
from B into V , is non-zero on ∂B and on each set given by zj = 0, for each
j = 1, . . . , k. If one takes all H̃ < H0 such that |H0/H̃| < ∞, then there
is a minimal one H, an (n − k)-torus, [14, p. 377]. Furthermore, if C̃ is the
N × n matrix with C̃ij = nji , i = 1, . . . , N = dimV

H , j = 1, . . . , n, then C̃
has rank k and has an invertible submatrix A, for instance nji for i = 1, . . . , k,
j = 1, . . . , k corresponding to z1, . . . , zk and ϕ1, . . . , ϕk. Then if (λ

j
1, . . . , λ

j
k)
T =

A−1(nj1, . . . , n
j
k)
T for j > k, as in the proof of Theorem 2, the subspace V H is

given by those coordinates zl which satisfy n
j
l =
∑k
1 λ
j
sn
s
l for j > k (if, for some

j and l, one doesn’t have equality then C̃ would have rank bigger than k). Note
that Ajx =

∑k
1 λlAlx, for j > k and x in V H , and A1x, . . . , Akx are linearly

independent if x has its coordinates z1, . . . , zk non-zero.

Proposition 4.1. Let F be as above, then [F ]⊥ =
∑
Hj<H0

dj [Fj ]⊥. If

Bjk ≡ BHj ∩{z1, . . . , zk ∈ R+}, then for Hi > H, the corresponding di are given
by the formula

deg
((

F +
k∑
1

λlAlx

)Hi
;Bik

)
=

∑
Hi<Hj<H0

dj |H0/Hj |.

Proof. If K is not a subgroup of H0, then for some j, j = 1, . . . , k, one has
that zj = 0 in V K . Hence, from Theorem 2, the corresponding dK is 0. Also, one
has that [FH ]⊥ =

∑
dj [F

H
j ]⊥, where the sum is on those j with H < Hj < H0

(for the others [FHj ]⊥ = 0). From the construction of Theorem 2 and [14,
Theorem 2.1], one has the above formula. �

Note that the above formula can be arranged as a lower triangular invertible
matrix which will yield dj for H < Hj < H0. The other components dj , with
dimΓ/Hj > k, have to be computed in special cases as for an isolated orbit. Note
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also that if F comes from the construction of the orthogonal degree for a map
f , then, by the product theorem for the ordinary degree of (2t+2ϕ(x)− 1, f̃Hi)
on I × (ΩHi ∩ {z1, . . . , zk ∈ R+}), one has that:

deg
((

F +
k∑
1

λlAlx

)Hi
;Bik

)
= deg

((
f +

l∑
1

λlAlx

)Hi
; Ωik

)
where Ωik = Ω

Hi ∩ {z1, . . . , zk ∈ R+}.
Let us then consider the case of an isolated orbit: assume that Γx0 is an iso-

lated zero-orbit of the orthogonal map f on Ω, with Γx0 = H and dimΓ/H = k.
Then, as above, there are z1, . . . , zk with isotropy H0 and non-zero at x0, with
|H0/H| <∞. As in [14, p. 379], one may choose a neighbourhood Ω of the orbit
such that the corresponding ϕ(x) is 1 whenever x has a coordinate xl = 0 and
x0 has the same coordinate x0l 6= 0. Hence, (2t+ 2ϕ(x)− 1, f̃(x))K 6= 0 for any
K which is not a subgroup of H. Thus,

[F ]⊥ = Index⊥(f ; Γx0) =
∑
Hj<H

dj [Fj ]⊥.

One may assume that Ajx0 are linearly independent for j = 1, . . . , k and
that z0j ∈ R+, for j = 1, . . . , k. Then, from Proposition 4.1, for Hj > H, one
may compute dj from

deg
((

f +
k∑
1

λlAlx

)Hi
; Ωik

)
= |H0/H|Index

((
f +

k∑
1

λlAlx

)Hi
;x0

)
(see [14]).

Lemma 4.1. Assume that f is C1 at x0 and let A ≡ Df(x0), then:
(1) A is H-equivariant and for any K < H, AK = diag (AH , A⊥K), with

AK = DfK(x0). For K < H, then AK = diag (AH , A⊥H , A′⊥K) and
A′⊥K is self-adjoint as a complex matrix and H-orthogonal.

(2) Ajx0, for j = 1, . . . , k, are in kerA and are orthogonal to RangeA. In
particular, if dimkerA = k, then A⊥K is invertible for any K < H,
A|Bk is invertible and Γx0 is hyperbolic in the sense of [14, p. 383].

Proof. Since Df(γx)γ = γDf(x), then A is H-equivariant and has the
block-diagonal structure. In particular, if K < H, then, since H < Tn, A′⊥K
is a complex matrix and dimH/K ≥ 1. Hence, if Ãjx are the generators for
the action of H, for j = k + 1, . . . , n, then on any irreducible representation of
(V H)⊥ one has at least one Ãj which is invertible.
Note that if one reparametrizes Tn by letting ψj = ϕj+

∑n
l+1 λ

i
jϕi, as in the

proof of Theorem 2, then H corresponds to ψ1, . . . , ψk ≡ 0, [2π] and one may
choose ψk+1, . . . , ψn acting trivially on V H and Ãj corresponds to the derivative
with respect to ψj , j = k + 1, . . . , n.
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Now, since f is Γ-orthogonal it is also H-orthogonal. If fK = (fH , f⊥), then
fK(x) · Ãjx = f⊥(x) · Ãjx⊥ = 0, for x = xH + x⊥. Since f⊥(xH) = 0, one has
(Df⊥(xH)x⊥ + R(x⊥)) · Ãjx⊥ = 0, with R(x⊥) = o(|x⊥|). Dividing by |x⊥|2

and taking the limit when x⊥ tends to 0, one has that Df⊥(xH)x⊥ · Ãjx⊥ = 0
and, in particular A′⊥K is H-orthogonal.
Take K corresponding to an irreducible representation such that Ãj ≡ Ã is

invertible on it. Let B ≡ A′⊥K , then one has BÃ = ÃB and BX · ÃX = 0 for
any X in that representation. Then, since B(X +X0) · Ã(X +X0) = 0, for all
X, X0, one has ÃTB+BT Ã = 0. But, as we have seen before, ÃT = −Ã, hence
BT = ÃBÃ−1 = BÃÃ−1 = B.
Now, since the action of H on X is as S1, B is in fact of the form

(
A −B
B A

)
as a real matrix. Then, B = BT implies A = AT and B = −BT , that is
(A+ iB)∗ = A+ iB.
For the second part of the lemma, differentiating with respect to ϕj the

relation f(γx0) = 0 one has AAjx0 = 0. Furthermore, from f(x) ·Ajx = 0. one
obtains, for all x and x0

Df(x0)x ·Ajx0 + f(x0) ·Ajx = 0.

In particular, if f(x0) = 0, then Ajx0 is orthogonal to RangeA. Also, if dimkerA
= k, since Ajx0 are independent, then V = kerA⊕RangeA, the algebraic multi-
plicity of A is k and kerD(λ,x)(f(x) +

∑
λjAjx)|(0,x0) is generated by (0, Ajx0).

Since the other two properties of hyperbolicity are clearly satisfied, one has, from
[14, Proposition 3.2], the rest of the lemma. �

Theorem 4. Let Γx0 be an isolated orbit of dimension k and assume that
dimkerDf(x0) = k. Then, the orthogonal index of the orbit is well defined and
is equal to the product:

[F (x);x0]⊥ = i⊥(fH(xH);x0)i⊥(Df⊥(x0)X; 0),

where H is the minimal isotropy subgroup contained in H such that |H/H| <∞
and Df⊥(x0)X is the linearization on (V H)⊥, which is complex self-adjoint and
H-orthogonal. Furthermore,

i⊥(fH) = dH [FH ]⊥ +
∑

H/Hi∼=Z2

dHi [FHi ]⊥ +
∑

H/ eHi∼=Z2×...×Z2

d eHi [F eHi ]⊥,

with dH = (−1)nH , where nH is the number of negative eigenvalues of DfH(x0),
dHi = dH((−1)nHi − 1)/2, where nHi is the number of negative eigenvalues of
DfHi⊥ (x0) and d eHi is given by dH and dHj by the formula in [14, p. 381]. Also

i⊥(Df⊥(x0)X) = [FΓ]⊥ −
∑

ni(Ki)[FKi ]⊥ −
n−k∑
s=2

∏
nj(Kj)[F∩Kj ]⊥,
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where Ki are the irreducible representations of H in (V H)⊥, i.e. H/Ki ∼= S1 and
Df⊥(x0), which is block-diagonal on these representations, has a complex Morse
number n(Ki). In the second sum one has the product n(Ki1) . . . n(Kis) with
dimH/Ki1 ∩ . . .∩Kis = s. Finally, [FHi ]⊥[FKj ]⊥ = [FHi∩Kj ]⊥. The generators
used here are those of Theorem 2 with η = 1.

Note that dHi = 0 unless V
Hi contains a real coordinate y with a Z2-action

of Γ (and y not in V H). In fact, if z is a complex coordinate in V Hi ∩ (V H)⊥,
then real eigenvalues come in pairs. Note also that if two complex coordinates
z1 and z2 have the same isotropy subgroup K of H, with dimH/K = 1, then
either z1 and z2 or z1 and z2 belong to the same irreducible representation of H.
By taking conjugates if necessary, we shall assume that one has only the first
case and that the formula includes the sum of the Morse numbers for the z and
the z: as real representations they are the same, via the linear map: z → z.

Proof. The first step in the computation of the index is to find the Poincaré
indices for K with H < K < H. For k = 0, one has to use [14, Theorem 3.2],
while for k ≥ 1, one uses [14, Theorem 3.3]. Hence, iH = (−1)nH where nH is
the number of real negative eigenvalues of Df(x0)H . In fact iH(f) = ε(−1)nH ,
where ε is a factor which depends on the orientation chosen and on the sign
of the determinant of the matrix A with Aij = nji , i, j = 1, . . . , k. But, from
Proposition 4.1, one has iH(f) = dHiH(FH). By construction iH(FH) is 1, since
sign det(DFH)k = 1, hence ε = 1. From the product formula, iK = iH(−1)nK ,
for K < H, where nK is the number of real negative eigenvalues, counted with
multiplicities, of A⊥K , hence iK = i′K ifK < K ′ andK ′/K doesn’t contain a Z2-
factor. From Proposition 4.1, one gets dH = iH , dKj = (iKj−iH)/2 ifH/Kj ∼= Z2
and dK is completely determined by the above integers if H/K ∼= Z2 × . . .× Z2
and dK = 0 otherwise.

Before computing dK forK with dimH/K > 0, let us look at some examples.

1. Let Z2 act on y as an antipodal map and S1 act on z by eiϕ. Then,
the map f(y, z) = (−y, (|z2| − 1)z) is equivariant with respect to Γ = Z2 × S1

and has the isolated zero-orbit y = 0, |z| = 1, with H = Z2 and K = {e}.
DfH(0, z = 1) =

(
2 0
0 0

)
and since k = 1 one has iH = −1, iK = 1. Note that

f = ∇Φ, with Φ(y, z) = −y2/2 + (|z|2/2− 1)|z|2/2.
2. Let Γ = S1 act on (z1, z2) by (eiϕz1, e2iϕz2) and let f(z) = f0(z)−λ(z)Az,

with f0(z) = (z2z1, (|z2|2− 1)z2), Az = (iz1, 2iz2) and λ(z) = f0(z) ·Az/|Az|2 =
(z2z21−z21z2)/2i(|z1|2+4|z2|2), which is real. Note that if F = (f1, . . . , fN ) ∈ CN

and Ax = (in1z1, . . . , inNzN ), then F ·Ax = Im (n1f1z1+. . .+nNfNzN ). Thus,
here if f(z) = 0, then from the orthogonality, z2z1 = 0 and (z1 = 0, |z2| = 1) is
an isolated orbit, for which DfH(0, 1) =

(
2 0
0 0

)
. It is then easy to compute the
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index of f(z) + λAz at λ = 0, z1 = 0, z2 = 1, by deforming λ(z) to 0, getting
iH = −1, iK = 1, with H = Z2,K = {e}.
3. If f is in normal form, then f⊥(xH , x⊥) = x⊥, for |x⊥| < ε and

Df⊥(xH , 0) = Id, hence iK = iH for any K < H. In this case dH = iH , dK = 0
for K < H, K ≥ H. Then, [FH ]⊥ − dH [FHH ]⊥ ≡ [F

H
1 ] is non-zero and, since F

is normal, one may complement FH1 by x
⊥
H , obtaining that [F ]⊥−dH [FH ]⊥ = 0,

i.e., dK = 0 for any other K. Thus, Gęba’s degree and ours coincide.

We may now go to the second step of the proof. Let λj(x) = Dx⊥f⊥(xH)x⊥ ·
Ãj(x), for j = 1, . . . , k, where Ãj(x) are orthonormal as in Lemma 1.1 but
starting the orthogonalization process from j = n, i.e. in reverse order. Here
we are assuming that one has reparametrized the torus Tn in such a way, as in
Lemma 4.1, that AjxH = 0 for j = k + 1, . . . , n. Hence, for j > k, Ãj(x) are in
(V H)⊥ and orthogonal to Dx⊥f⊥(xH)x⊥ since AjxH = 0 and Dx⊥f⊥(xH)x⊥ is
H-orthogonal. Furthermore, for j ≤ k, since Ãj(x) = Ãj(xH) + 0(x⊥), then, in
the neighbourhood of x0 where Ajx0 are linearly independent, one has λj(x) =
0(|x⊥|2) and Ãj(x)⊥ = 0(x⊥). Consider the homotopy

(fH(xH , τx⊥), τf⊥(xH , τx⊥)) + (1− τ2)
(
Dx⊥f⊥(xH)x⊥ −

k∑
1

λj(x)Ãj(x)
)
,

on the tubular neighbourhood of the orbit Γx0. It is clear that the first term
in the homotopy is Γ-orthogonal, while the second term is built so that it is
orthogonal to Ajx. The equivariance is clear. If the neighbourhood Ω of Γx0
is of the form {(xH , x⊥) : dist(xH ,Γx0) < η, |x⊥| < ε}, since the homotopy
reduces, for x⊥ = 0, to (fH(xH , 0), 0) which is non-zero on the boundary of Ω
(since Γx0 is isolated) and the second component is linearized toDx⊥f⊥(xH)x⊥+
τ2o(x⊥)+(1−τ2)0(|x⊥|3), hence one may choose ε so small that this component
is non-zero for |x⊥| = ε (recall that Dx⊥f⊥(xH) is invertible at x0 and hence
in Ω).

Now, Dx⊥f⊥(xH) has the form (B(xH), B(xH)), where B is complex self-
adjoint and has a block diagonal structure on the equivalent irreducible rep-
resentations of H. On each block, B(xH) is similar to a diagonal real matrix
Λ(xH), with a well defined Morse index nK (i.e. the number of negative eigen-
values. Note that, as a real matrix, the Morse number of B(xH) is 2nK). If
v is an eigenvector of B(xH), then γv is an eigenvector of B(γxH) with the
same eigenvalue, hence if B(xH) = U(xH)Λ(xH)U∗(xH), with U unitary, then
U(γxH) ≡ γU(xH)γ∗,Λ(γxH) = γΛ(xH)γ∗ = Λ(xH) will diagonalize B(γxH),
since Λ and γ are diagonal, hence commute. Note that U(xH) is continuous in xH
if the eigenvalues of B(x0) are simple. In general, for xH in CH , the fundamental
cell for H, and close to x0, define Ũ(xH) = U(x0) and Ũ(γxH) = γU(x0)γ∗. Let
Λ̃(xH) = Ũ∗(xH)B(xH)Ũ(xH), then Λ̃(γxH) = γΛ̃(xH)γ∗ is close to Λ(x0) for
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xH close to x0, but not necessarily diagonal. Now, the space of unitary complex
matrices is path-connected, hence one may choose a path Uτ (x0) from U(x0) to
I and therefore, from Ũ(γxH) to I and from B(xH) to Λ̃(xH) which is linearly
deformable to Λ(x0). By modifying λj(x) along the deformations, one obtains
an equivariant and Γ-orthogonal homotopy to

(fH(xH), B(xH)X,ΛX)−
k∑
1

λ̃j(x)Ãj(x),

where x⊥ is written as X +X and λ̃j(x) = B(xH)X · Ãj(x) since Λ is real and
diagonal hence orthogonal to Ajx for all j and to the corresponding components
of Ãj(x). This last fact implies that one may take X to 0 in Ãj(x) and still get
an orthogonal homotopy. Hence one has arrived to the map:

(fH(xH), B(xH)X,ΛX)−
k∑
1

λ̃j(xH)Ãj(xH)

or, equivalently to (fH(xH),ΛX), which is a product map. Note that, if one
had linearized f at xH , instead of xH , then the matrix DfX(xH) would be H-
equivariant and would give larger blocks, however the end result would be the
same.

Now, the orthogonal Γ-index of fH(xH) at x0 has been computed in the first
step. It remains to compute the orthogonal index of ΛX at 0 and to apply the
product Theorem 3.3.

It is clear that Λ may be deformed to diag (−I, I), where one deforms linearly
each eigenvalue of B(x0) to −1 or 1 according to its sign. The I-part acts as
a suspension and does not affect the degree, while any −z can be changed to
(1 − |z|2)z and one gets the sum of degrees on sets of the form {|zj | < 1/2,
j = 1, . . . , l, |zj | > 1/2 for j > l}. For |zj | < 1/2 one may deform back to zj and
obtain a suspension. Hence one is reduced to compute the orthogonal degree on
sets of the form Ω̃ ≡ {|zj | > 1/2, j = 1, . . . , l} of the map (. . . , (1−|zj |2)zj , . . . ).
Let Hj be the isotropy subgroup of zj (by construction Γ/Hj ∼= S1), let K =⋂l
1Hj , with dimΓ/K = s, and let K0 be the intersection of s of the Hj such
that dimΓ/K0 = s (say the first s). Then, from Proposition 4.1, the orthogonal
degree with respect to Ω̃ is given by [F ]⊥ =

∑
K<Kj<K0

dj [Fj ], where dj is given
by the relations:

deg ([(1− |z1|2)z1, . . . , (1− |zl|2)zl]Ki +
s∑
1

λl(Alx)Ki ; Ω̃ik)

=
∑

Ki<Kj<K0

dj |K0/Kj |,
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as a map (λ1, . . . , λs, z1 > 0, . . . , zs > 0, z ∈ Ω̃Ki). Since on Ω̃ all zj are
non-zero, all the degrees on the left are 0, except for Ki = K. For K, since
A1x

K0 , . . . , Asx
K0 are linearly independent, one may deform Alzj to 0 for j >

s (if of course s < l) and to (1 − |zl|2)zl one may add iτzl. Hence dj are
all 0 if s < l, while if s = l, one has to compare the indices of the maps
(2t + 1 − 2

∏
|zi|, (|z2|2 − 1)z1, . . . , (|zs|2 − 1)zs−1, η(2t − 1)zs) +

∑
λjAjx and

(2t+ 2ϕ(x)− 1, (1− |z1|2)z1, . . . , (1− |zs|2)zs) +
∑
λjAjx, where the first map

is the generator and η is chosen such that the index is 1 and where ϕ(x) is
1 if one of the zi has norm less than 1/4 and is 0 if all zi have norm larger
than 1/2. An easy deformation, for zi real and positive, of the first map to
(1−z1, z2−1, . . . , zs−1, η(2t−1)) and of the second to (2t−1, 1−z1, . . . , 1−zs)
will give an index of the first map equal to the number −(−1)sηε Sign detA and
of the second equal to (−1)sε Sign detA, where ε is an orientation factor. Hence
i(f) = dK0i(FK0) and dK0 = −η.
Thus, [F ]⊥ = −[FK0 ]⊥, where the generator FK0 is chosen with η = 1.

Collecting all terms, one obtains:

i⊥(ΛX) = [FΓ]⊥ −
∑

ni[FKi ]⊥ −
∑
s>1

(∏
ni

)
[FTKi ]⊥,

where Ki is the isotropy subgroup of the ith coordinate in (V H)⊥ (by construc-
tion dimΓ/Ki = 1), the first sum takes into account the Ki which are different
and ni is the number of those coordinates, with the same Ki, for which Λ con-
tributes a −1. The second sum is over those Ki such that dimΓ/Ki1∩. . .∩Kis =
s. The map FΓ = (2t − 1, X) corresponds to the degree on the set where all z
are small.

It is then enough to apply Theorem 3.3 for the product, noting that H̃02 =
H2 = Kj or Ki1 ∩ . . .∩Kis so that one has the usual product of integers. Finally,
since Hi < H, if K < H gives an irreducible representation of H in (V H)⊥ and
a block for B(x0) with complex Morse index n(K), then for any Kj isotropy
subgroup of Γ of a coordinate zj in the block, one has Hi ∩Kj = Hi ∩K and∑
nj = n(K) with dimΓ/Hi ∩K = k + 1. �

Remark 4. Instead of using the product theorem, one could have followed
the arguments of [13], that is replace B(xH) by terms, on each of its blocks,
of the form (1− ψi)Bi(xH)Xi + ψiXi, with the corresponding modifications of
λ̃j(xH). Since [FH ]⊥ =

∑
dj [F

H
j ]⊥ for H < Hj < H, one may consider

F̃j = (F
H
j , (1− ψi)Bi(xH)Xi + ψi(Xi) +

∑
λj(x)Ãj(x)i),
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then [F ]⊥ =
∑
dj [F̃j ]⊥ and it is enough to compute [F̃j ]⊥, which turns out to

be

[Fj ]⊥ −
∑
i

n(Ki)[FHj∩Ki ]⊥ −
∑
s>1

∏
n(Ki)[FHj∩Ki1∩...∩Kis ]⊥

via a direct, but very lengthy, computation of the generators.

5. Bifurcation

Consider a family f(λ, x) of orthogonal C1-maps, with f(λ, 0) = 0, λ ∈ Rk,
x ∈ V . As seen in Lemma 4.1, if one writes f(λ, x) = Df(λ, 0)x + R(λ, x) =
B(λ)x + R(λ, x), then B(λ)x and R(λ, x) are both equivariant and orthogonal.
B(λ) has a block-diagonal structure on the irreducible representations of Γ and
is complex self-adjoint on (V T

n

)⊥.
Assume that B(λ) is invertible for λ 6= 0 in a neighbourhood of 0, then

deg⊥((|x| − ε, f(λ, x));B2% × B2ε) is well defined, where B2% = {λ : |λ| < 2%}
and B2ε = {x : |x| < 2ε}. Furthermore, one may deform linearly R to 0 (this is
an orthogonal deformation). Then,

deg⊥((|x| − ε,B(λ)x);B2% ×B2ε) = deg⊥((%2 − |λ|2, B(λ)x);B2% ×B2ε)

will give the standard results on local and global bifurcation (see [10]).
If k = 1, this degree is deg⊥(B(−%)x;B2ε) − deg⊥(B(%)x;B2ε), from the

product theorem. Hence, one has to compare the orthogonal indices at 0 of
B(±%)x given in Theorem 4. For an invertible orthogonal matrix B, let σΓ ≡
Sign detBΓ, σH ≡ Sign detBH⊥ , if Γ/H ∼= Z2 and BH⊥ is B restricted to (V Γ)⊥∩
V H and nK be the complex Morse number of BK⊥ , where K is the isotropy for
some coordinate z, with dimΓ/K = 1, and BK⊥ is B restricted to (V

Tn)⊥ ∩V K .
Then,

i⊥(Bx) = (−1)σΓ
{
[FΓ]⊥ +

∑
Γ/Hi∼=Z2

((−1)σHi − 1)/2[FHi ]⊥

+
∑

Γ/ eHi∼=Z2×...×Z2

d eHi [F eHi ]⊥

}

×
{
[FΓ]⊥ −

∑
nKi [FKi ]⊥ −

∑∏
nKj [F

T
Kj ]⊥

}
.

Theorem 5.1. If k = 1, one has global bifurcation, i.e. the continuum of
non-trivial solutions emanating from (0, 0) is unbounded or returns to (λ, 0) with
λ 6= 0:

• in V Γ, if det BΓ changes sign, or
• in V Hi , if det BHi⊥ changes sign, or
• in V Ki , if nKi changes.
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Furthermore, if the continuum is bounded and the bifurcation points on it are
isolated, then the sum of the jumps of the orthogonal indices is 0. Finally, if
detBΓ, detBHi⊥ and nKi do not change, then there is an orthogonal nonlinearity
R̃(λ, x) such that B(λ)x+ R̃(λ, x) is zero only at x = 0.

Note that this result generalizes the results for an S1-action given in [12]
and [18]. Note also that the corresponding theorem in [14, Theorem 5.1], was
proved by using the J-homomorphism and phrased differently with respect to
the action of −y, but one may recover part of the present result by applying [14]
to B(λ)x+ µAx.

Note that nK changes if BK⊥ = λB and B has a non-zero signature, for exam-
ple, if B = I. Finally, for the correct application of this result, it is important to
assimilate complex conjugate representations (they are the same real representa-
tions) as the following example shows. Let Γ act on z1 as eiϕ and on z2 as e−iϕ.
Consider the orthogonal Γ-map (λz1 + tz2,−λz2 + tz1), with t = |z1|2 + |z2|2,
(here Az = i(z1,−z2)). It is easy to see that this map has no zeros except
z1 = z2 = 0, i.e. there is no bifurcation, although the Morse numbers for z1 and
z2 change but their sum remains invariant.

The last part of the theorem will be proved below together with the general
case.

Let us turn now to the case of several parameters. Consider the equation

f(λ, x) = Ax− T (λ)x− g(λ, x) = 0,

where x is in B, A is a Fredholm operator of index 0 from B into E, both
Hilbert Γ-spaces, B ⊂ E, ‖T (λ)‖ tends to 0 as λ goes to 0 and g(λ, x) = o(‖x‖)
uniformly in λ. The map f(λ, x) is assumed to be Γ-orthogonal (with respect
to the scalar product in E). Then, the Liapunov–Schmidt reduction, see [10,
p. 346], implies that for λ small enough:

f(λ, x) = (A−QT (λ))H(λ, x1, x2)⊕B(λ)x1+G(λ, x)−(I−Q)T (λ)H(λ, x1, x2)),

where x = x1+x2, with x1 in kerA, x2 in a complement, Q is a projection from
E into RangeA and

H(λ, x1, x2) = x2 − (I −KQT (λ))−1KQ(T (λ)x1 + g(λ, x)),
B(λ) = −(I −Q)T (λ)(I −KQT (λ))−1P,

G(λ, x) = −(I −Q)(I − T (λ)KQ)−1g(λ, x),

where K is the pseudo-inverse of A and Px = x1.

The equation f(λ, x) = 0, with g(λ, x) Lipschitz continuous in x, is equivalent
to H(λ, x1, x2) = 0, which is uniquely solved for x2(x1, λ) with a contraction
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argument, and the bifurcation equation

B(λ)x1 +G(λ, x1 + x2(x1, λ)) = 0.

Lemma 5.1. Under the above hypothesis, one may choose P and Q such that
the bifurcation equation is Γ-orthogonal.

Note that the gradient case was treated in [10, p. 358].

Proof. As above, the orthogonality of f(λ, x) implies that of A, T (λ) and
g(λ, x). In particular, A−T (λ) has a diagonal structure on equivalent irreducible
representations of Γ and, on (ET

n

)⊥, its restriction has a complex self-adjoint
form Ã − T̃ (λ) and the above space has the decomposition ker Ã ⊕ Range Ã.
As in [10, p. 413], one may choose P and Q equivariant, hence K and B(λ)
will be equivariant and will commute with Aj . Furthermore, one may choose
an orthogonal projection P̃ on ker Ã, with Q̃ = I − P̃ , hence the part of B(λ)
on kerA ∩ (ETn)⊥ will be B̃(λ) = −P̃ T̃ (I − K̃(I − P̃ )T̃ )−1P̃ which commutes
with Aj and is self-adjoint (expand the inverse in power series). Hence B(λ) is
orthogonal.
On the other hand,

−(G(λ, x), Ajx1) = (g,Ajx1) + (Q̃g, K̃T̃ (I − Q̃K̃T̃ )−1Ajx1),

by using the fact that Aj is 0 on ET
n

and has also a diagonal structure. Since
g is orthogonal, one may replace the first term by −(g,Ajx2). But x2(x1, λ) is
such that Qg = (A − QT )(x1 + x2), hence, using the fact that A is orthogonal
and Q commutes with Aj , one obtains (QTx1, Ajx2). The same substitution in
the second term yields

((I − T̃ K̃Q̃)−1T̃ K̃(A−QT )x2, Ajx1)− (x1, T̃ Q̃K̃T̃ (I − Q̃K̃T̃ )−1Ajx1),

where the first term reduces to (T̃ x2, Ajx1) and the second is 0 since it is of
the form (x1, LAjx1), with L self-adjoint (as we have seen orthogonality is
equivalent to self-adjointness for linear operators). Thus, one has (Tx1, Ajx2) +
(Tx2, Ajx1) = 0, since T is Γ-orthogonal. �

Assume that B(λ) is invertible for λ 6= 0 small, then if B = E, A = I −K
with K, T (λ) and g compact, so that the orthogonal degree is

JΓ⊥(f) ≡ deg⊥((‖x‖ − ε, f(λ, x));B2ε ×B%)

is well defined provided f(λ, x) is non-zero if x 6= 0 and ‖λ‖ = %, or by remaining
in the local context, one may deform linearly (hence orthogonally) f(λ, x) to
Ax2 ⊕ B(λ)x1 + G(λ, x1 + x2(x1, λ)) on the set {‖x‖ = ε, ‖λ‖ = %}, if one
chooses ε small enough: solving the first part one gets x2 = 0(‖x1‖‖λ‖) and
B(λ)x1 dominates the other terms. Then, on the same set, one may deform G

to 0. In particular, JΓ⊥(f) = J
Γ
⊥(Ax2 ⊕B(λ)x1).
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It is clear that the term Ax2 will act only as an orientation factor and as an
indicator for the different isotropy subspaces. It is needed in the global results.
Recall, from [10], that one has no linearized orthogonal local bifurcation if

there is an orthogonal Γ-nonlinearity G(λ, x1) such that the only zero of the
bifurcation equation is x1 = 0. Similarly, there is no linearized orthogonal global
bifurcation if there is a nonlinearity g(λ, x),Γ-orthogonal, such that the con-
tinuum of non-trivial solutions emanating from (0, 0) is bounded and does not
return to (λ, 0), with λ 6= 0 (it could reduce to (0, 0)).
From the fact that the Borsuk extension theorem is valid for orthogonal

maps, one has, as in [10, Propositions 6.1 and 6.3].

Lemma 5.2.

(1) One has no-linearized orthogonal local bifurcation if and only if the map
B(λ)η : Sk−1 × Sd−1 → V \ {0} has a non-zero orthogonal exten-
sion B(λ, η), to Bk × Sd−1, where Sk−1 = ∂Bk = {λ : ‖λ‖ = %},
Sd−1 = {η ∈ kerA : ‖η‖ = 1} and V is a complement of RangeA, of
dimension d.

(2) If k < d0, the dimension of kerAΓ, and if JΓ⊥(C(λ)
ΓX0, x0, B̃(λ)Z) = 0

implies that JΓ⊥(C(λ)
ΓX0, B̃(λ)Z) = 0, where (X0, x0) span kerAΓ and

Z is in the complement, then one has no linearized orthogonal local
bifurcation if an only if JΓ⊥(B(λ)x) = 0.

(3) If k < 2 dimEΓ − 2 (with equality possible if d0 < dimEΓ), then there
is no linearized orthogonal global bifurcation if and only if JΓ⊥((A −
T (λ))x) = 0.

Now, B(λ) has the form diag (BΓ, BR
j , B

C
l , B̃s) where B

R
j corresponds to

equivalent irreducible representations of Γ with Γ acting as Z2, BC
l where Γ

acts as Zp, and B̃s where Γ acts as S1 and B̃s = B̃∗s , because of the orthogo-
nality. Since B(λ) is invertible for λ 6= 0, each B̃s(λ) has a constant complex
Morse number ns (if k > 1). As noted after Theorem 5.1, complex conjugate
representations are assimilated.
Let GLS(Cn+m) be the set of self-adjoint invertible matrices with Morse

index n. Consider the mapping B : GLS(Cn+m) → Ω(GL(Cn+m),−I, I), the
set of paths in GL(Cn+m) from −I to I, given by B(B) = (1− µ2)iB + µI.

Lemma 5.3. Mapping B induces an isomorphism from
∏
k−1(GLS(Cn+m))

onto
∏
k(U(n+m)), provided 0 < k− 1 ≤ 2m, 2n and gives the Bott periodicity.

Proof. Since the spectrum of B is real and non-zero, it is clear that B(B)
is invertible for all µ. Let T be unitary such that B = T ∗ΛT , with Λ =
diag (λ1, . . . , λn+m). Let Λ̃ = diag (ε1, . . . , εn+m), with εj = signλj . Let
B̃ = (iπ/2)T ∗Λ̃T , then e(1−µ) eB is a path in U(Cn+m) from −I to I and in fact
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it is a minimal geodesic, [16, p. 127]. Furthermore, B(B) is linearly deformable
to e(1−µ) eB , since they are simultaneously diagonalizable, then the eigenvalues
for both paths are in the upper half plane if λj > 0. Conversely, for any skew-
hermitian matrix B̃, giving a minimal geodesic, one may constructB, for instance
with |λj | = 1, such that B(B) and e(1−µ)

eB are in the same homotopy class, where
B and −iB̃ have the same Morse number.
Furthermore, the assignment of the negative eigenspace of B (or of −iB̃) is

a strong deformation retract of GLS(Cn+m) to Gn(Cn+m) the complex Grass-
manian of n-planes in Cn+m, see [16, p. 127], [2, Lemma 4.3]. Bott’s theorem,
[16, Theorem 23.3], gives that, if n = m, the map B̃ → e(i−µ)

eB induces an
isomorphism from

∏
k−1(Gn(C2n)) onto

∏
k(SU(2n)), if k − 1 ≤ 2n, and onto∏

k(U(2n)), if k 6= 1. Also, the suspensions by I and −I induce isomorphisms
from

∏
k−1(GLS(Cn+m)) onto

∏
k−1(GLS(Cn+m+1)), provided k− 1 ≤ 2m and

k−1 ≤ 2n, respectively ([9, Theorem 8.2.6, p. 102]), where this result is phrased
in terms of Grassmanians. Note that changing B into −B, interchanges n and
m. Thus, by suspending by −Im−n if n < m, or by In−m if n > m, then∏

k−1

(GLS(Cn+m)) ∼=
∏
k−1

(GLS(C2α)) ∼=
∏
k

(U(2α)) ∼=
∏
k

(U(n+m))),

if k satisfies the conditions of the lemma and α = max(n,m), in particular one
is in the stable range for U(n + m), [16, Lemma 23.4]. Note also that, since
U(n +m) is a strong deformation retract of GL(Cn+m), then the path spaces
based on them have the same property. This gives the first part of the lemma.
Finally, using long exact sequences, [20, Theorem 10.16], one has that if

n ≤ m, then
∏
k−1(Gn(Cn+m)) ∼=

∏
k−1(Vn+m,n)×

∏
k−2(U(n)), where Vn+m,n

is the Stiefel manifold. Hence, for k−1 ≤ 2n, 2m, one has
∏
k−1(GLS(Cn+m)) ∼=∏

k−2(U(n)), [9, p. 83]. Hence, if 0 < k−1 ≤ 2n ≤ 2m, one gets an isomorphism
from

∏
k−2(U(n)) onto

∏
k(U(n + m)). These groups are 0 if k is even and

Z if k is odd. If k = 1, then GLS(Cn+m) is connected and SU(n + m) is
simply connected. The set of self-adjoint invertible matrices has its connected
components characterized by their Morse index: B is deformable to diag (−I, I)
by deforming Λ to that matrix and T to Id. �

We are now ready for the main result of this section. Because of space
considerations, we shall stick to the stable case. Recall that B̃s are complex
self-adjoint invertible matrices with Morse index ns and dimension ns +ms.

Theorem 5.2. Assume k−1 ≤ 2ns, 2ms for all s, then there is no linearized
orthogonal local bifurcation if and only if:

(1) There is no linearized equivariant local bifurcation in (kerA)T
n

.
(2) If k is odd, if B̃s(λ) is deformable in GLS(Cns+ms) to diag (−Ins , Ims).
If k is even, (1) is the only condition.
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Note that if k = 1, then (2) says that B̃s(±%) have the same Morse index,
i.e. the situation of Theorem 5.1. Furthermore, if BΓ is a d0 × dl matrix, BR

j is
dj × dj and BC

l is a complex dl × dl matrix, then, if k < d0, dj , k ≤ 2dl for all
j, l, one may apply [10, Theorem 6.1, p. 436], to verify (1). In particular, if k
is odd, one needs B0, Bj to be deformable to I, since BC

l is always deformable
to I.

Note also that, if one is not in the stable case, one may add the required
number of ±Zs, in order to get k − 1 ≤ 2ns, 2ms. Then, if k is odd and B̃s is
not stably deformable to diag (−I, I), one has local (in fact global) bifurcation.
The same sort of results holds for (kerA)T

n

.

Proof. If B(λ)η has an orthogonal extension B(λ, η), from Sk−1 × Sd to
Bk × Sd, then (B(λ)η)Tn ≡ B0(λ)η0 has the equivariant extension B(λ, η)T

n

=
B0(λ, η0), from Sk−1 × Sl to Bk × Sl, where η0 ∈ Sl in (kerA)T

n

. Hence,
from [10, Proposition 6.1, p. 431], (1) is verified. Furthermore, if T is any of the
(n−1)-tori used in Step 2 of the proof of Theorem 2, one has a similar orthogonal
extension for (B(λ)η)T = (B0(λ)η0, B̃(λ)η̃), where η0 belongs to (kerA)T

n

and
η̃ to its complement. The group Tn acts as S1 on η̃ and, for some j, one has
Aj η̃s = insη̃s, with ns > 0 by taking conjugates, and η̃s is in the respective space
of equivalent irreducible representations.

Now, (‖η0‖B0(λ, η0/‖η0‖), B̃(λ)η), has a non-zero orthogonal extension from
Sk−1 × ∂(Bl × B

ed) to Bk × ∂(Bl × B
ed), since, on the first set this map is

linearly (and orthogonally) deformable to (B0(λ)η0, B̃(λ)η̃). Furthermore, it is
easy to check that the arguments of [10, Proposition 6.2, p. 432 and Remark 6.3,
p. 434], are valid in the orthogonal case, by looking at the explicit construction
and using the fact that the orthogonality is used only on η̃ and that the Borsuk
extension theorem is valid for orthogonal maps. Hence, the above map has this
extension property if and only if it extends orthogonally from ∂(Bk×Bl0)×S

ed−1

to Bk × Bl0 × S
ed−1. Let then (B0(λ, η0, η̃), B̃(λ, η0, η̃)) be this extension. But

then, (B0(λ, η0, η̃), B̃(λ, η0, η̃) + µAj η̃) is equivariant and non-zero on Bk+1 ×
Bl0 × S

ed−1, where in Bk+1 we have added µ, with |µ| ≤ 1. This map is an
extension of its restriction on ∂(Bk+1×Bl0)×S

ed−1. Again, from [10, Remark 6.3],
which is true in this context, this last map has a non-zero Γ-extension if and
only if (‖η0‖B0(λ, η0/‖η0‖), B̃(λ)η̃ + µAj η̃)Γ-extends from Sk × ∂(Bl0 ×B

ed) to
Bk+1 × ∂(Bl0 ×B

ed). Furthermore, one may adapt [10, Theorem 6.1, p. 436], to
conclude that, in the stable case of the theorem, the family of matrices from Sk

into GL(Cds) given by B̃s(λ) + µAj must be deformable to the identity, since
k+ 1 ≤ 2(ns +ms), provided ns and ms are not 0. Then, from Lemma 5.3, one
has that B̃s(λ) is deformable to diag (−In, Im) in GLS(Cns+ms). Note that this
is always the case if k is even. If ns or ms is 0, then, from the conditions of the
theorem, one has k = 1, one has to replace U(n+m) by SU(n) and B̃s(λ)+µAj
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is trivial in
∏
1(U(n)) if and only if its complex determinant has zero winding

number, which is the net number of eigenvalues of B̃s(λ) which change sign as
λ goes from −% to %, that is, up to a sign, the difference of the Morse numbers.
This argument has been used extensively in our previous papers.
The converse follows from the fact that (B0(λ)η0, B̃(λ)η̃) is orthogonally

deformable to (B0(λ)η0, εsη̃s) on Sk−1 × Sd−1, where εs = diag (−Ins , Ims)
which has the orthogonal non-zero extension (‖η0‖B0(λ, η0/‖η0‖)), εsη̃s) to Bk×
Sd−1. The conclusion follows from the orthogonal Borsuk extension result and
Lemma 5.2. �

If f(λ, x) is a gradient and Γ = {e}, Bartsch, in [2], has found the same
increase of the number of parameters given in Lemma 5.3, for the Conley index
and the real Grassmanians and real Bott periodicity. In his case, as usual with
Conley index, one has no continua.

6. Periodic solutions of Hamiltonian systems

As an illustration of the preceding results, we shall give an idea of how to
study the problem of finding 2π-periodic solutions to

f(X) ≡ JX ′ +∇H(X) = 0,

where X ∈ R2N , J is the standard symplectic matrix and H is C2. (Note that
by rescaling time, there is no loss of generality when one looks for 2π-periodic
solutions instead of a fixed period T ).
Assume that the abelian group Γ0 acts symplectically on R2N , i.e. it com-

mutes with J or, if X = (Y,Z) with Y and Z in RN , then the action on Y and Z
are the same. If one of the complex irreducible representations of Γ0 associates
one coordinate of Y to its similar in Z, then J , on this pair, takes the form of
a multiplication by i. Assume that H is invariant under Γ0, hence ∇H(X) is
equivariant, as well as the term JX ′. Hence, if B = H1(S1) and E = L2(S1),
for 2π-periodic functions, the equation is Γ-equivariant, for Γ = S1 × Γ0, where
the action of S1 is by time translation.
The infinitesimal generators for Γ will be AX ≡ X ′ for the action of S1 and

AjX, j = 1, . . . , n, if the rank of Γ0 is n. It is easy to see that (f(X), AX) =∫ 2π
0 (JX

′ · X ′ + ∇H(X) · X ′) dt = 0, while ∇H(X) · AjX = 0 (since H is Γ0-
invariant) and (JX ′, AjX) =

∫ 2π
0 −(X

TJAjX)′ dt/2 = 0, where we have used
the relations JT = −J , ATj = −Aj , JAj = AjJ (since Γ0 commutes with J).
Thus, f(X) is Γ-orthogonal.
Note that for the equation X ′′ +∇V (X) = 0, one may take the same gener-

ators AX = X ′ and AjX, if V is Γ0-invariant. Of course B is then H2(S1).
As in [12, p. 119], assume there is an open, bounded ω ⊂ R2N , invariant

under Γ0, such that any 2π-periodic solution in ω is in fact in ω. Let then
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Ω ≡ {X ∈ H1(S1) : ‖X‖1 < R, X(t) ∈ ω}, where R is chosen so large that
any periodic solution in ω has ‖X‖1 < R/2 (R depends on bounds on ∇H on ω
and Sobolev constants). Then f(X) 6= 0 on ∂Ω and the orthogonal degree of f
with respect to Ω is defined. A word of caution is necessary here: we are dealing
with two infinite dimensional spaces (a setting different from the one given in the
present paper). The standard ways of reducing to a single space, i.e. looking at
the integral equation or working in H1/2(S1), have the inconvenient of obscuring
the orthogonality. A complete theory should follow either the steps of [6] and
study difference of degrees (as it is easily seen if ∇H(X) = AX, for a constant
matrix A, then the complex Morse index of inJ+A is N for large n, that is most
of the components of the orthogonal degree are non-zero). However, it is simpler
to restrict oneself to a large ball in H1(S1), hence X(t) will be bounded, as well
as D2H(X). Write X(t) =

∑
Xne

int, with Xn = X−n in C2N , or X = X1⊕X2,
where X1 ≡ PX corresponds to modes |n| ≤ N1 and X2 to the others. Since
JX ′ is a Fredholm operator of index 0, one may use a global Liapunov–Schmidt
reduction: the equation (I − P )JX ′ + (I − P )∇H(X) = 0 is uniquely solvable
for X2 as a C1-function of X1, for N1 large enough. In fact, the linearization at
any X0 in the ball has the property that

‖JX ′2 + (I − P )D2H(X0)X2‖L2 ≥ (1−M/N1)‖X2‖H1 ,

where M is a uniform bound for ‖D2H(X0)‖, hence the global implicit func-
tion theorem may be applied. Furthermore, since (∇H(X), AX) = 0, one has
that the scalar product (P∇H(X1 + X2(X1)), AX1) = −((I − P )∇H,AX2) =
((I − P )JX ′2, AX2) = 0, hence, the reduced equation is orthogonal and the de-
gree will be that of JX ′1 + P∇H(X1 +X2(X1)), in the finite dimensional space
PH1(S1), i.e. deg⊥(Pf(X1+X2(X1));PΩ). Note that the second term inherits
the gradient structure.

Remark 6.1. After the research for this paper was completed, we were
given the preprints of [6] and [19]. The first paper studies the non-autonomous
case and its relation to Maslov’s index. For the Hopf bifurcation, the change of
the invariant in [6] is the sum of the changes of the Morse indices, given below
(see also the different other Conley-like degrees mentionned in the bibliography
of [6]). The second paper uses the finite dimensional reduction of Amann and
Zendher and the orthogonal degree of [18] for S1-actions, (there Γ0 = {e}), and
computes these indices at different stationary points (including infinity, provided
there is no resonance there). See also [1] and [15].
In the case of Γ0 = {e}, one should also compare to the results of [12, p. 120

and p. 135–147], where the existence of a first integral (H(X(t)) here), was used
to add a parameter. It is clear that τX ′ + (1 − τ)J∇H is orthogonal to f(X)
and that the new parameter corresponds to part of the construction given here.
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Assume then that ΓX0 is an isolated orbit of dimension k, of solutions of
f(X) = 0, with kerDf(X0) of real dimension k and generated by k among
AX0 = X ′0, A1X0, . . . , AnX0. Then, if H is the isotropy subgroup of X0, one is
in the position of applying Theorem 4, provided one identifies H and computes
dH , dHi and nKi .
Note that the hyperbolicity conditions (i.e. the conditions on kerDf(X0))

imply that Df(X0) cannot commute with J , unless k = 0. (This does not
mean that pieces of Df(X0) can’t commute with J). In fact, if J commutes
with Df(X0), then if V belongs to the kernel so does JV , which has to be a real
linear combination of X ′0 and AjX0. On the nth mode Xn of X0, one would have
λ0nXn +

∑
λjNjXn = nJXn, where Nj = diag (N1j , . . . , N

N
j , N

1
j , . . . , N

N
j ),

(just one Nsj if J is multiplication by i on the pair of coordinates). This leads to
Xn = 0 for n 6= 0, and the same argument for AjX0, gives that this vector has
to be 0.
We shall consider three cases.

(a) Stationary solution. IfX0 is time stationary, then ΓX0 = H = S
1×H0

with H0 < Γ0 such that dimΓ0/H0 = k and H = S1 × Tn−k generated by
(ϕ,ϕj , j = k+1, . . . , n). As before, we shall reparametrize Tn in such a way that
the action on the first k complex non-zero variables of X0 is of the form eiNjϕjzj

(and also on JX0). Then, V H is contained in R2N , the constant functions,
B ≡ Df(X0) has the form diag (BH , B⊥), with B⊥ = diag (BR

m, B
C
l , B

C
s ), where,

on each Bm, the groupH acts as Z2, on the complex Bl as Zp and on the complex
Bs as S1. Each of these matrices is self-adjoint, since B = D2H(X0). The
hyperbolicity condition means that kerBH has dimension k, that B⊥ is invertible
and that, for n > 0, inJ +B is invertible. Furthermore, from Lemma 4.1, Bs is
complex self-adjoint and H-orthogonal. Note that since J commutes with Γ0, J
has also a diagonal structure diag (JH , Jm, Jl, Js)). By looking at Fourier series
(non-negative modes are enough), a straight application of Theorem 4.1 will give

Theorem 6.1. For a stationary hyperbolic orbit, the orthogonal index is
given by

(a) dH = (−1)nH , with nH the Morse index of BH ,
(b) dHj = dH((−1)

nHj − 1)/2, with (−1)nHj = Sign detBR
j ,

(c) the Morse index of inJ + B̃, where B̃ is any of the matrices BH (with
n > 0), BR

m (with n > 0), BC
l (with n > 0) or BC

s (with n ≥ 0) for
the mode n and the decomposition of C2N (induced by that of R2N ) in
irreducible representations of H.

Remark 6.2.

(a) If one has a family of hamiltonians f(λ,X), with f(λ,X0) = 0 and X0
hyperbolic for λ1 and λ2 and if any of the above numbers change, then
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one has a global Hopf bifurcation in the interval from λ1 to λ2, in V K ,
whereK < H is any of the isotropy subgroups for which dK has changed.
V K can be characterized as in [14, Lemma 3.1(a)]. In particular, if there
is no bifurcation in V H , then one has a bifurcation from a stationary
k-torus ΓX0 to a (k + 1)-torus, either stationary if the Morse index of
BC
s has changed, or, if there is no bifurcation of stationary solutions, to
a time-periodic solution, i.e. a pulsating k-torus.

(b) One may compute the Morse indices as in [12, p. 142].
(c) If J commutes with BR

j , then dHj = 0, since nHj is even. More generally,

if J commutes with B̃, then one may decompose the space into two-
dimensional subspaces, 〈Xk, JXk〉, corresponding to the eigenvalue λk
of B̃, orthogonal between them and invariant under J . The eigenvalues
of inJ+ B̃, on this subspace, are λk±n and the Morse index of inJ+ B̃
is a(n)+a(−n), where a(n) is half the number of eigenvalues of B̃ which
are less than n. This is also the case if J is multiplication by i, since
we are considering the complex Morse index.

(d) For the system X ′′ +∇V (X) = 0, with D2V (X0) = B, then the Morse
index of −n2I + B̃ is a(n2). Note that for the system, (X ′ = Y, Y ′ =
−∇V (X)), J commutes with D2(V (X) + ‖Y ‖2/2) only if B = I.

(b) Reduction to the stationary case. Assume that X ′0 is a linear
combination of the AjX0. Then for each coordinate zs of R2N , with a non-
trivial action of Tn, there is at most one mode ns such that X ′0 is non-zero
on that mode (ns is the same for JX0). As in [14, p. 387], consider the ma-
trix A(t) = diag (. . . , e−inst, . . . ), written this way according to the action of
Γ0 (each exponential corresponds to a rotation for a pair of real coordinates
of Y , and the same for the symmetric pair in Z, or to a single pair if J acts
as i). If Y (t) = A(t)X(t), then, Y ′0 = 0 since A

′X0 = −AX ′0. Furthermore,
Y ′ = A′(0)Y +A(t)J∇H(A−1(t)Y ). Using the equivariance of ∇H with respect
to Γ0 (and the fact that A(t) is defined that way) and the fact that J com-
mutes with A(t), one has that JY ′ − JA′(0)Y + ∇H(Y ) = 0 and a reduction
to the previous case: the rotating wave X0 has been frozen. Furthermore, from
Proposition 3 (and the fact AT = A−1 as real matrices), both orthogonal degrees
coincide.

For the case of X ′′ + ∇H(X) = 0, then the above transformation gives
Y ′′ +A′(0)2Y − 2A′(0)Y ′ +∇H(Y ) = 0, which is also orthogonal.

(c) Non-stationary solution. If X ′0, A1X0, . . . , Ak−1X0 are linearly inde-
pendent, we may assume, from case (b), that AkX0, . . . , AnX0 are linear com-
binations of A1X0, . . . , Ak−1X0 only. In particular, if k = 1, then AjX0 = 0
and X0 belongs to V T

n

. In general, one may reparametrize Tn such that on
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V H one has AjX = 0, for j ≥ k. Here H = Zp ×H0, with dimΓ0/H0 = k − 1,
H = H0 = Tn−k+1, if X0(t) is 2π/p-time periodic. Then, V H = {X(t) in
(R2N )H0 ≡ V0} and its complement is {X(t) in V ⊥0 }. In fact H = {(ϕ,Φ, L) :
nϕ + 〈N j ,Φ〉 + 〈Kj/M,L〉 is in Z, for each non-zero component Xjn of X0},
as in [14, p. 386]. The fact that N jl is a linear combination of N

j
m for l ≥ k

and m < k, allows to reparametrize Tn, as in the proof of Theorem 2, and
eliminate from H the phases Φl, l ≥ k. The fact that X ′0 is linearly inde-
pendent from AjX0, restricts Φm and ϕ to a discrete set, hence the claim on
H. From the compactness of Γ, there is a positive minimum ϕ0, such that
(ϕ0, ψ0, L0) is in H. From the congruences, ϕ0 (as well as each component
of ψ0) is a rational, of the form r/q. If r > 1, then there are integers k and
a such that kr + aq = 1 and, changing ϕ0 to kϕ0, one may take ϕ0 = 1/q.
Thus, X0(t) = γ0X0(t + 2π/q), where γ0 corresponds to (ψ0, L0). Now, any
other element of H gives X0(t) = γX0(t + 2πϕ). For such an element let k
be such that 0 ≤ ϕ − kϕ0 < ϕ0. Then, X0(t) = γγk0X0(t + 2π(ϕ − kϕ0)) and
(ϕ − kϕ0, ψ − kψ0, L − kL0) belongs to H, contradicting the minimality of ϕ0,
unless ϕ = kϕ0 and γ = γk0 .

LetH0 < Γ0 be the isotropy subgroup of the geometrical coordinates ofX0(t).
Then, since ϕ0 = 1/q, one has that γ

q
0 ∈ H0 and H = {k(ϕ0, ψ0, L0), k =

1, . . . , q} ∪ {(ψ,L) ∈ H0}. Let q0 be the smallest integer such that γq00 ∈ H0.
From the minimality q = pq0 and one has X0(t) = γ0X0(t + 2π/q), with
γq00 X0 = X0 and X0(t) is 2π/p-periodic.

Lemma 6.1. V H = {X(t) ∈ V H00 , X(t) = γ0X(t+ 2π/q)}.

Proof. On the component Xjn the action of H is as

exp 2πi(kn/q + k〈N j , ψ0〉+ k〈Kj/M,ψ0〉+ 〈N j , ψ〉+ 〈Kj/M,L〉)

with (ψ,L) in H0. Taking k = 0, one needs that (ψ,L) is in Hj , the isotropy
of the jth coordinate, i.e. H0 < Hj and X(t) is in V

H0
0 . In particular, γ

q0
0 acts

trivially on Xj . Hence, taking k = q0, n has to be a multiple of p. The converse
is clear. �

Consider now K such that H/K ∼= Z2. Since, K =
⋂
Hjn, the inclusions

K < H ∩Hjn < H imply that either H < Hjn or K = H ∩Hjn. In the second
case, one has that γ2 is in Hjn for any γ ∈ H. In particular, for ϕ = 0 and γ̃ in
H0, one needs γ̃2 ∈ Hj and H0/H0∩Hj has at most order 2. Let K0 = H0∩Hj ,
for all such j, then K0 = H0 or H0/K0 ∼= Z2. In the second case, there is
γ1 ∈ H0, with γ21 ∈ K0, i.e. γ1 acts as Id on V

H0
0 and as −Id on V K00 ∩ (V

H0
0 )

⊥.
Since γq00 ∈ H0, one has γ

2q0
0 acts as Id on V K00 . Let V

±
0 be the subspaces of

V K00 where γq00 acts as ±Id. Then V
+
0 ⊃ V

H0
0 .
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Lemma 6.2. V K consists of all 2π-periodic functions X(t) in V K00 of the
form X(t) = X+(t) +X−(t), with X±(t) = ±γ0X±(t + 2π/q). In particular, if
q is odd, then X±(t) is in V ±0 and both are 2π/p-periodic. If q is even and p is
odd, then X(t) is in V +0 and it is 2π/p-periodic. The components of X+(t) in
V +0 are 2π/p-periodic and those in V

−
0 are 2π/p-antiperiodic. The behavior of

the components of X−(t) differ by a factor (−1)q0 .

Proof. For the coordinate Xj , we know that 2q0(〈N j , ψ0〉+〈Kj/M , L0〉) =
aj , where aj is an integer, even if Xj is in V +0 and odd if Xj is in V

−
0 . Since

(2ϕ0, 2ψ0, 2L0) fixes Xjn, one has that 2n/q + aj/q0 = b is an integer. From
n = bq/2− ajp/2, one has that, if q is odd, then b has the parity of aj , while if
q is even and aj is odd, then p has to be even. Even b will give X+(t) and odd b
give X−(t). There are minimum n±j such that the modes of X

j
± are of the form

n± = n±j + cq, for any integer c. The numbers n
±
j are multiples of p, except if

p is even and, for Xj+, aj is odd or, for X
j
−, aj and q0 have opposite parities, in

which case n±j are odd multiples of p/2. The converse is clear. �

It remains to identify the irreducible representations of H in V ⊥0 . Since the
action of H on Xjn is

expπi(ns/q + s(〈N j , ψ0〉+ 〈Kj/M,L0〉) + 〈N j , ψ̃〉+ 〈Kj/M, L̃〉+ 〈N j , ψ〉),

where s = 0, . . . , q, (ψ̃, L̃) gives an element of H0 and 〈N j , ψ〉 =
∑n
k N

j
l ψl

is non-trivial, then one has the same action for different (n, j) if the following
happens: taking s = 0 and (ψ̃, L̃) = 0, then N jl has to be the same for all j, for
l = k, . . . , n. Taking s = 0 and ψ = 0, one needs the same action for all (ψ̃, L̃).
Hence, the different Xj are in the same irreducible representation of H0 in V ⊥0 .
If αj = 〈N j , ψ0〉 + 〈Kj/M,L0〉 gives the action of γ0, then, since γq00 is in H0,
one needs that q0(αj − αl) is an integer ajl. Then, for X

nj
j and X

nl
l , one has

that (nj − nl)/q + ajl/q0 is an integer bj . One has proved the following result.

Lemma 6.3. Assume X0, . . . , Xr are the coordinates of an irreducible rep-
resentation of H0 in V ⊥0 . Then, for each n0 = 0, . . . , [q/2], there is a differ-
ent irreducible representation of H in (V H)⊥ given by functions of the form
X(t) = Re(Xn0(t)Y (t)), where Y (t) is 2π/q-periodic and the j-component of
Xn0(t), j = 0, . . . , r, is exp(in

0
j t), and n

0
j is the minimum positive integer nj

such that nj = n0 − aj0p+ bjq = n0j + cjq for any integer cj.

Note that the facts that all integers cj are possible and that X(t) has to be
real will couple the modes corresponding to n0 and to q−n0, as real representa-
tions. Note also that for q = 1, then n0j = 0 and V

K = {Y (t), 2π-periodic in V ⊥0 }.
Let B(t) = D∇H(X0(t)), which is symmetric, 2π/p-periodic and H0-equiva-

riant. Hence, since γq00 and γ1 are in H0, one has a diagonal structure for B(t) =
diag (B0, B

j
+, B

j
−, . . . , BK0 , . . . ), where B0 corresponds to V

H0
0 , Bj± correspond
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to (V Kj0 )
±∩ (V H00 )⊥ with H0/Kj ∼= Z2 and γq00 acts as ±Id on (V

Kj
0 )

±, and BK0
is on an irreducible representation of H0 in V ⊥0 .

Lemma 6.4. The fact that X0(t) is in V H implies a further decomposition
of each of the components of B(t) as B1(t)+B2(t), where B1(t) is 2π/q-periodic
and in block-diagonal form on coordinates with the same action of γ0 and B2(t),
which is non-zero only if q0 is even, is 4π/q-periodic, e−qt/2B2(t) is 2π/q-periodic

and B2(t) has a block-diagonal form
(
0 A
A 0

)
on
(
X

Y

)
where γ0 has the same

action on X and the opposite on Y .

Proof. Since X0(t) = γ0X0(t + 2π/q) and Df(γX)γ = γDf(X), one has
γ0B(t + 2π/q) = B(t)γ0. Hence, for B(t) =

∑
Bne

int and if γ0 acts on the jth
coordinate as exp(2πiαj), then exp 2πi(αj − αl + n/q)Bjln = Bjln , for the entries
of Bn. Hence, whenever Bjln 6= 0, one has that αj − αl + n/q is an integer. In
particular, if, for some l, Blln 6= 0, then n is a multiple of q and for all (j, k) with
Bjkn 6= 0 one has αj − αk is an integer. Thus, Bn will contribute to B1(t). On
the other hand, if Blln = 0, for all l and B

jl
n 6= 0, then, since Bn is symmetric,

Bljn 6= 0 and 2n/q is an integer. If 2n is an even multiple of q, we are back
to the previous situation, while if 2n is an odd multiple of q (hence q is even),
then 2(αj − αl) is an odd integer, giving opposite actions of γ0 on Xj and Xl,
if Bjln 6= 0. Thus, Bn contributes to B2(t). Finally, since X0(t) is 2π/p-periodic,
one has γq00 B(t + 2π/p) = γq00 B(t) = B(t)γq00 . Thus, q0(αj − αl) is an integer,
which implies, for B2(t), that q0 is even. �

Now, recall that LX = JX ′ + B(t)X is a bounded Fredholm operator
of index 0, from H1(S1) into L2(S1) and self-adjoint on L2(S1), with kernel
generated by {X ′0, A1X0, . . . , Ak−1X0}. Hence, one has the decompositions
H1(S1) = kerL ⊕ RangeL ∩H1, L2(S1) = kerL ⊕ RangeL (orthogonal in L2)
and one has a bounded pseudo-inverse K from RangeL onto RangeL ∩H1.
Furthermore, the reduction to finite dimensions, on VN1 generated by all

modes less or equal to N1, was done by using the implicit function theorem on
the higher modes to solve the equation JX̃ ′N1 + (I − PN1)∇H(XN1 + X̃N1) = 0
for X̃N1 in V

⊥
N1
and reduce to JX ′N1 + PN1∇H(XN1 + X̃N1(XN1)) = 0, which

is the problem which we have studied. It is then not difficult to prove that the
linearization of this last equation is of the form

LN1XN1 = JX
′
N1 + PN1B(t)(XN1 + X̃N1),

where X̃N1 in V
⊥
N1
is the unique solution of the equation

JX̃ ′N1 + (I − PN1)B(XN1 + X̃N1) = 0.
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Then, ‖X̃N1‖1 ≤ C‖XN‖0 and ‖X̃N1‖0 ≤ ‖X̃N1‖1/N1. Furthermore, kerLN1 =
PN1(kerL) and has also dimension k, if N1 is large enough, and LN1 is self-
adjoint. In fact, one may use the gradient structure of the linearization of the
reduction, or see directly that

(LN1XN1 , ZN1)L2 − (XN1 , LN1ZN1)L2 = (BX̃N1 , ZN1)− (XN1 , BZ̃N1)
= (X,BZN1)− (XN1 , BZ),

using the symmetry of B. But, since JX̃ ′N1 = −(I − PN1)BX, then

(JX̃ ′N1 , Z̃N1) = −(BX, Z̃N1) = (X̃N1 , JZ̃
′
N1) = −(BZ, X̃N1),

hence the above difference is (Z,BX)− (X,BZ) = 0. The constant C depends
only on sup |B(t)|. Furthermore, if LN1XN1 = ZN1 , then L(XN1 + X̃N1) =
ZN1 + 0, i.e. RangeLN1 = RangeL ∩ VN1 and since LKZ = Z, for Z = ZN1
in VN1 , one has that KN1 , from RangeLN1 onto RangeLN1 ∩ H1, the pseudo-
inverse of LN1 is PN1KPN1 , in particular, as operator from L2 into H1, one has
‖KN1‖ ≤ ‖K‖.
Finally, if P is the projection onto kerL and I −P that on RangeL, one has

that PN1PPN1 will project on kerLN1 while PN1(I − P )PN1 will project onto
RangeLN1 and one has LN1P = PLN1 = 0.
Recall that σ(L), the spectrum of L, is discrete, since L−λI is also a Fredholm

operator of index 0 (the inclusion of H1 in L2 is compact) and self-adjoint in
L2 and K, as an operator from L2 into L2, is compact. Furthermore, if λ is
not in σ(L), then, since (L − λ)(XN1 + X̃N1) = (LN − λ)XN1 − λX̃N1 and
‖(L− λ)X‖0 ≥ ‖Kλ‖−1‖X‖1, with Kλ the inverse of L− λ, one has

‖(Lλ − λ)XN1‖0 ≥ ‖Kλ‖−1‖XN1‖0 − |λ|‖X̃N1‖0 ≥ (‖Kλ‖−1 −C|λ|/N1)‖XN1‖0.

Hence, for N1 large enough, λ is not in σ(LN1). Thus, if K is a compact subset
of R, with K ∩ σ(L) = φ, then for N1 large enough (depending on K), one has
that Kσ(LN1) = φ.
Conversely, if λ0 ∈ σ(L), then treating (LN1−λ)XN1 = (L−λ0)(XN1+X̃N1)+

(λ0−λ)XN1+λ0X̃N1 as a bifurcation problem by projecting on ker (L−λ0) and
Range (L− λ0), one obtains

(LN1 − λ)XN1 =(L− λ)((I − P0)(XN1 + X̃N1 +Kλ0 [(λ0 − λ)(I − P0)XN1
+ λ0(I − P0)X̃N1 ]⊕ (λ0 − λ)P0XN1 + λ0P0X̃N1 ,

where P0 projects on ker (L− λ0) and I −P0 on Range(L− λ0). Then, see [10],
ker (K − λ0) will give d eigenvalues for LN1 , close to λ0, with d = dimker (L −
λ0) ≤ 2N .
Note also that ‖LN1XN1 − PN1LXN1‖0 = ‖PN1BX̃N1‖0 ≤ C‖XN1‖0/N1,

hence the spectra of the matrices LN1 and PN1LPN1 are close, for N1 large.
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Theorem 6.2. The orthogonal index of PN1X0 is given by, for N1 large
enough,

(1) dH = (−1)nH , where nH is the real Morse number of LN1 restricted to
V H , where γq00 = Id and X(t) = γ0X(t + 2π/q). In particular, dH is
independent of N1, for N1 large enough.

(2) dHj = dH((−1)
nHj − 1)/2, where nHj is the real Morse number of LN1

restricted to V Hj ∩ (V H)⊥, where γ2q00 = Id and X(t) has the decompo-
sition given in Lemma 6.2. In particular, dHj is independent of N1, for
N1 large enough.

(3) nN1K the complex Morse number of LN1 restricted to one of the q different
irreducible representations of H in (V H)⊥, based on V1 an irreducible
representation of H0 in V ⊥0 and with functions given in Lemma 6.3, of
the form X(t) = Re(Xn0(t)Y (t)), with Y (t) of period 2π/q. One has
that nN1+qK = nN1K + dimV1, (dimV1 is even).

(4) The relations of Theorem 4.

Proof. From Theorem 4, the only thing to study is how the spectrum of
LN2 is related to that of LN1 , where N2 is the next integer after N1 where one
has to consider new modes. From the composition of the spaces one may take
N2 = N1+q, with XN2 = XN1⊕YN1 , where YN1 has two conjugate modes based
on an even dimensional (because of J) space V1. Then,

LN2XN2 =LN1XN1 + PN1B(X̃N2 − X̃N1 + YN1)
⊕ JY ′N1 + (PN2 − PN1)B(XN1 + YN1 + X̃N2).

But, since X̃N1 = X̃N2 ⊕ ỸN1 , with JỸ ′N1 + (PN2 −PN1)B(XN1 + X̃N1) = 0, one
has

LN2XN2 =LN1XN1 + PN1B(YN1 − ỸN1)⊕ J(Y ′N1 − Ỹ
′
N1)

+ (PN2 − PN1)B(YN1 − ỸN1).

Now, since LN2 and LN1XN1 ⊕JY ′N1 are self-adjoint, this is also the case for the
linear deformation

LτN2XN2 =LN1 [(I − P )XN1 + τKN1(I − P )PN1B(YN1 − ỸN1)]

⊕ τPPN1B(YN1 − ỸN1)⊕ JY ′N1 − τJỸ
′
N1

+ τ(PN2 − PN1)B(YN1 − ỸN1),

where we have used the decomposition of the space on kerLN2 ⊕ RangeLN2
induced by that for L. Then, if LτN2XN2 = 0, one may solve uniquely the
first and last terms in function of PXN1 , with ‖YN1‖0 ≤ C‖XN1‖0/N1, ‖(I −
P )XN1‖1 ≤ C‖PXN1‖0/N1 and hence ‖YN1‖0 ≤ C‖PXN1‖0/N1, where the
constant C is independent of N1. In particular if XN1 + YN1 is in RangeLN2 =
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RangeL ∩ VN2 , then PXN1 + PYN1 = 0 and one has that YN1 = 0 = XN1 , i.e.
RangeLN2 ∩ kerLτN2 = {0}. Hence, the non-zero eigenvalues of LN2 don’t cross
over 0. (One could also prove this fact by taking λ0 a mid-point between 0 and
the first negative eigenvalue of L. Then as seen above, LN1 − λ0 and LN2 − λ0
are invertible, for N1 large enough, with inverses bounded independently of N1.
then, it is not difficult to show that LτN2 − λ0I is also invertible, for N1 large).
Thus, n(LN2) = n(LN1) + n(JY

′
N1
).

Now, if JY ′N1 = λYN1 , then, since YN1 = (XM , X−M = XM ), one has
iMJXM = λXM , with XM = (X,Y ) in C2r, where 2r = dimVi, Vi = V H00 , or
V K00 , or V1. Then, λ = ±M , each with an eigenspace isomorphic to Cr, hence
taking into account X−M or writing YN1 = cosMtX + sinMtY , with X and Y
in R2r, one obtains that n(JY ′N1) = 2r. �

Remark 6.3. For the case of −X ′′+∇H(X), the linearization LX = −X ′′+
B(t)X is an elliptic operator and hence has a spectrum bounded from below.
The numbers n(H), n(Hj), n(K) are those for LX.

Remark 6.4. If JB̃ = B̃J for some block in B, then let Φ(t) be the funda-
mental matrix for X ′ = JB̃X, with Φ(0) = I. If JX ′ + B̃X = λX, then X(t) =
e−λJtΦ(t)X(0) and X(2π) = X(0) if and only if X(0) is in ker (I−e−λ2πJΦ(2π)).
Note that, since Φ′ = JB̃Φ = B̃JΦ, then JΦ and ΦJ are also fundamental matri-
ces and, being equal for t = 0, one has that J and Φ commute. Since ΦTJΦ = J
(by differentiating the left hand side), one has that Φ is an orthogonal matrix and
hence with spectrum on the unit disc. Furthermore eλJt preserves the generalized
eigenspaces of Φ(t). Thus, if Φ(2π)W = µW , one has (I − e−λ2πJΦ(2π))W = 0
if and only if eλ2πJW = µW = (cosλ2πI + sinλ2πJ)W , that is µ = e±iλ2π.

Note also that if JX ′+BX = λX then Y (t) = e−JtX(t) satisfies JY ′+BY =
(λ+ 1)Y and is 2π-periodic if X(t) is 2π-periodic. Similarly, if X(t) belongs to
V H or V Hj or V K , then Y (t) = e−qJtX(t) belongs to the same space. From
these last observations (with the fact that if X is in ker (L̃ − λI) also JX is in
the same kernel), one has that dHj = 0 for these subspaces and that n(K) is
even and the spectrum of L̃ is completely determined by its restriction to (−q, 0].
Note finally, that one may relate the spectrum of Φ(2π/q) to that of Φ(2π) as in
[14, p. 390] or as in [5].
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