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EXISTENCE OF ENTIRE SOLUTIONS FOR
SEMILINEAR ELLIPTIC PROBLEMS ON RN

Norimichi Hirano

Abstract. In this paper, we consider the existence of positive and nega-
tive entire solutions of semilinear elliptic problem

(P) −∆u + u = g(x, u), u ∈ H1(RN )

where N ≥ 2 and g : RN ×R → R is a continuous function with superlinear
growth and g(x, 0) = 0 on RN .

1. Introduction

Our purpose in this paper is to show the existence of positive and negative
solutions of the problem

(P)

{
−∆u + u = g(x, u) x ∈ RN ,

u ∈ H1(RN ),

where N ≥ 2 and g : RN × R → R is a continuous function with superlinear
growth and g(x, 0) = 0 on RN . Throughout this paper, we fix a positive number
p such that p > 1 when N = 2 and 1 < p < (N + 2)/(N − 2) when N ≥ 3. Let
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g : R → R be a continuous odd function satisfying the following condition:

(g0)



(1) there exists C > 0 such that

0 ≤ |g(t)| ≤ C|t|p for all t ∈ R;

(2) there exists a number 0 < θ < 1/2 such that

θg(t)t ≥ G(t) =
∫ t

0
g(t) dt for all t ≥ 0,

(3) g(t)/t is increasing on [0,∞) with limt→∞ g(t)/t = ∞.

It is well known that problem

(P0) −∆u + u = g(u), u ∈ H1(RN )

has a positive solution (cf. [1]). In case that g(t) = |t|p−1t, it is also known that
the positive solution of problem (P0) is unique up to translation (cf. Kwong [6]).
The uniqueness of the positive solution of problem (P0) for more general func-
tion g has been studied by several authors (cf. [9], [12]). The positive solution
u of problem (P0) is characterized as the ground state solution. That is if we
consider a functional I defined by

I(v) =
∫

RN

1
2
(|∇v|2 + |v|2) dx−

∫
RN

∫ v(x)

0

g(t) dt dx for v ∈ H1(RN ),

then c = I(u) is the minimal positive critical level of I. On the other hand,
the existence of positive entire solution of problem (P) in the case that g(x, t) =
Q(x)|t|p−1t has been studied by several authors (cf. [1]–[4]), where Q : RN → R
is a continuous function. That is the existence of positive solutions of problem

(PQ)

{
−∆u + u = Q(x)|u|p−1u for x ∈ RN ,

u ∈ H1(RN ),

was considered under the assumption that Q(x) satisfies Q(x) → Q as |x| →
∞. In case that Q(x) ≥ Q in RN , the existence of a solution of (PQ) was
established by Lions [8] using the concentrate compactness method. Lions’s
result was improved by Zhu [13] and Cao [2]. The case that Q(x)|t|p−1t is
replaced by a more general function g(x, t), the existence of positive solutions
was proved in [5].

The method employed so far for problem (PQ) is, as well as for problem
(P0), to find the ground state solution. Then one has to impose conditions
for the existence of the ground state solution, such as Q(x) ≥ Q on RN . Our
method employed in this paper is based on the calculation of homology groups
for the level sets of functionals and we need not conditions for the existence of
the ground state solution.

We impose the following conditions on g ∈ C(R; R) and g ∈ C(RN ×R; R):

(g1) the positive solution of problem (P0) is unique up to translation,
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(g2) for each x ∈ RN , g(x, t)/t is increasing on [0,∞),
(g3) lim|x|→∞ g(x, t)/g(t) = 1 uniformly on closed bounded subsets of (0,∞),
(g4) there exists ρ > 0 such that

|g(x, t)− g(t)| ≤ ρ|g(t)| for all x ∈ RN and t ∈ R.

We can now state our main result.

Theorem 1.1. Assume that (g0)–(g3) hold. Then there exists a positive
number ρ0 such that if (g4) holds with 0 < ρ < ρ0, problem (P) possesses at least
one positive and one negative solution.

Remark 1.2. In the case that g(t) = |t|p−1t, we proved the existence of
positive solution of (P) by using the singular homology groups for level sets
of functionals associate with problem (P) in [5]. The argument in [5] deeply
depends on the shape of the function |t|p−1t, and also needs assumtions on the
derivatives gt(x, t), gtt(x, t).

In case that g(x, t) is given by the form g(x, t) = Q(x)g(t), conditions (g3)
and (g4) are rewritten as

lim
|x|→∞

Q(x) = 1,(g3’)

|Q(x)− 1| ≤ ρ for all x ∈ RN .(g4’)

That is we have

Corollary 1.3. Assume that (g0), (g1) and (g3’) hold. Then there exists
a positive number ρ0 such that if (g4’) holds with 0 < ρ < ρ0, problem

(PQ)

{
−∆u + u = Q(x)g(u) for x ∈ RN ,

u ∈ H1(RN ),

possesses at least one positive and one negative solution.

2. Preliminaries

We denote by Dn and Sn−1 the unit disk and unit sphere of n-dimensional
Euclidian space. For simplicity, we put H = H1(RN ). By | · |q we denote the
norm of Lq(RN ), (q > 1). | · | stands for the norm of H1(RN ) defined by |z|2 =
|∇z|22 + |z|22 for z ∈ H. 〈 · , · 〉 stands for the inner products in L2(RN ). For each
function v : RN → R, we put v+(x) = max{v(x), 0} and v−(x) = min{v(x), 0}
for x ∈ RN . We put A = −∆+I. For each a ∈ R and each functional F : H → R,
we denote by Fa the set Fa = {v ∈ H : F (v) ≤ a}. We call a real number d

a critical value of a functional F if there exists a sequence {vn} ⊂ H such that
limn→∞ F (vn) = d and limn→∞ |∇F (vn)| = 0. For a pair of topological space
(X, Y ) with Y ⊂ X, we denote by H∗(X, Y ) the relative singular homology
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groups (cf. Spanier [10]). For z ∈ H, D ⊂ H and x ∈ RN , we denote by zx

and Dx,

zx(y) = z(y − x) for y ∈ RN and Dx = {zx : z ∈ D}.

Let u ∈ H be the unique positive solution of problem (P0). Then c = I(u) is the
minimal positive critical value of I. From the invariance of functional I under
translation, we have that for each x ∈ RN , the function ux is a solution of I with
I(ux) = c. It is also known that there exist no critical value of I in (0, 2c) \ {c}.
Then as a direct consequence of the concentrate compactness lemma (cf. [7],
[8], [13]), we have that

(∗)


{vn} ⊂ H, limn→∞ ‖∇I(vn)‖ = 0 and limn→∞ I(vn) = c

implies that there exist{xn} ⊂ RN and {in} ⊂ {0, 1}
such that limn→∞ ‖ vn − (−1)inuxn

‖= 0.

We define a functional J∞ on H1(RN ) by

J∞(v) =
∫

RN

1
2
(|∇v|2 + |v|2) dx−

∫
RN

G(x, v(x)) dx,

for v ∈ H1(RN ). We put

M =
{

v ∈ H \ {0} : |v|2 =
∫

RN

g(v(x))v(x) dx

}
.

Noting that

(2.1) c = I(u) = min
{

I(v) : |v|2 =
∫

RN

g(u(x))u(x) dx

}
,

we have that

(2.2) I(v) ≥ c on M.

It is also easy to see from (3) of (g0) that

M ∩ {λv : v ∈ H \ {0}, λ ≥ 0} is a unique point,(2.3)

I(v) = max{I(λv) : λ ≥ 0} for each v ∈ M(2.4)

and each critical point of I is contained in M (cf. [13]).
We will work on a neighbourhood V1 of the set M ∩ I3c/2 and try to find

solution of (P) in V1. For this purpose, we transform the functional J∞ outside
of V1.

The following results is well known.
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Lemma 2.1. For each ε > 0 with ε < c, there exists Vε ⊂ M such that

Ic+ε ∩M = Vε ∪ −Vε, Vε ∩ −Vε = φ.

Proof. For completeness, we give a proof. Let p : [0, 1] → M be a path
such that p(0) = u and p(1) = −u. Since u is positive and −u is negative, there
exists t0 ∈ (0, 1) such that

|p(t0)+|2 =
∫

RN

g(p(t0)+)p(t0)+ dx

and
|p(t0)−|2 =

∫
RN

g(p(t0)−)p(t0)− dx.

Then, by (2.1), we have that

I(p(t0)) = I(p(t0)+) + I(p(t0)−) ≥ 2c.

Let 0 < ε < c and Vε be the component of Ic+ε ∩M containing u. Then from
the observation above, we find that Vε ∩ V−ε = φ. Suppose that there exists
a component V of Ic+ε∩M which is disjoint from Vε∪V−ε. It is easy to see that

(2.5) K0 = {ux : x ∈ RN} ⊂ intVε.

Let {un} ⊂ V be a sequence such that limn→∞ I(un) = inf{I(v) : v ∈ V }.
Then it follows that limn→∞∇I(un) = 0. Since c is the unique critical value in
(0, 2c), we have that limn→∞ I(un) = c. Then by (∗), we have that there exist
{xn} ⊂ RN and {in} ⊂ {0, 1} such that limn→∞ |vn − (−1)inuxn

| = 0. This
implies by (2.5) that un ∈ Vε∪−Vε for n sufficiently large. This is a contradiction.
Thus we have that Ic+ε ∩M = Vε ∪ −Vε. �

Here we put
X1/2 = {µv ∈ M, µ ≥ 1/2}

Then M ⊂ int X1/2. Let V0, V1 be bounded neighbourhoods of V3c/2(⊂ M ∩
I3c/2) such that

V0 ⊂ intV1 ⊂ X1/2 and V1 ⊂ I−1[c/2, 3c/2].

Then we have that

δ0 = inf{|∇I(v)| : v ∈ I−1[c/2, 3c/2] \ V0} > 0.

We next define a functional J . Let α(x) : H → [0, 1] be a continuous function
such that

α(x) =

{
1 for x ∈ V c

1 ,

0 for x ∈ V0,

and we put

J(v) = α(v)I(v) + (1− α(x))J∞(v) for all v ∈ H.
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Then from the definition, J ≡ J∞ on V0 and J ≡ I on V c
1 . Here we note that

(2.6) lim
ρ→0

|I(v)− J∞(v)| = lim
ρ→0

|∇I(v)−∇J∞(v)| = 0 uniformly on V1.

Then there exists ρ1 > 0 such that if ρ ≤ ρ1,

|I(v)− J(v)| < c/2 on V1

and
|∇J∞(v)−∇I(v)| < δ0/2 on V1.

Therefore we have that

|∇J(v)| > δ0/2 for all v ∈ I−1[c/2, 3c/2] \ V0.

This implies that

if ρ ≤ ρ1, |∇J(v)| < δ0/2 and 3c/2 > J(v) > 0, then v ∈ V0

and therefore J(v) = J∞(v). This implies that if we find a critical point v of J

with 2c > J(v) > 0, then v is a critical point of J∞ in V0.

3. Homology groups

Our purpose in this section is to calculate homology groups H∗(Ic+ε, Ic−ε)
for 0 < ε < c/2. To calculate the homology groups H∗(Ic+ε, Ic−ε), we will find
subsets K and U of V0 satisfying

(a) K ⊂ int U ,
(b) ±K0 = ±{ux : x ∈ RN} ⊂ intK,
(c) there exists ε1 > 0 such that Ic/2 is a strong deformation retract of

Ic+ε \K for 0 < ε < ε1.

In fact, for U and K satisfying (a), (b) and (c) , we have the following lemma.

Lemma 3.1. Suppose that U and K satisfy (a), (b) and (c). Then for each
0 < ε < ε1.

H∗(Ic+ε, Ic−ε) = H∗(U ∩ Ic+ε, (U \K) ∩ Ic+ε)

Proof. Assume that (a), (b) and (c) hold. Then by the exactness of singular
homology groups (cf. [3], [10]) to the triple (Ic+ε, Ic+ε \K, Ic/2):

· · · → Hq(Ic+ε \K, Ic/2) → Hq(Ic+ε, Ic/2)

→ Hq(Ic+ε, Ic+ε \K) → Hq−1(Ic+ε \K, Ic/2) →

and the fact that Hq(Ic+ε \K, Ic/2) ∼= 0, we find

H∗(Ic+ε, Ic/2) ∼= H∗(Ic+ε, Ic+ε \K).

Recalling that the interval [c/2, c− ε] contains no critical value, we have

H∗(Ic+ε, Ic/2) ∼= H∗(Ic+ε, Ic−ε)
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and then
H∗(Ic+ε, Ic−ε) ∼= H∗(Ic+ε, Ic+ε \K).

Since U ∩ Ic+ε is an neighbourhood of K ∩ Ic+ε in Ic+ε, we have by the excision
property of homology groups that

H∗(Ic+ε, Ic+ε \K) ∼= H∗(U ∩ Ic+ε, (U \K) ∩ Ic+ε).

Then the assertion follows. �

We will define subsets U and K of V0 satisfying (a), (b) and (c).

Lemma 3.2. For each neighbourhood V of K0 ∪ −K0 in M , there exists
εV > 0 such that

IM
c+ε ⊂ V for each 0 < ε < εV ,

where IM denotes the restriction of I on M .

Lemma 3.2 is a direct consequence from (∗) and then we omit the proof.

Lemma 3.3. For each 0 < ε < c/2,

IM
c+ε

∼= {u} ∪ {−u}.

Proof. Let 0 < ε < c/2. Recalling that ±K0 = {±ux : x ∈ RN} ⊂ int Ic+ε,
we find that there exists a neighbourhood U1 of K0 such that

K0 ⊂ intU1 ⊂ int Ic+ε, U1 ∩ −U1 = φ and U1
∼= {ux : x ∈ RN} ∼= {u}.

By Lemma 3.2, we can choose k ≥ 1 so large that

(3.1) IM
c+ε/k ⊂ int (U1 ∪ −U1).

Similarly, we choose a neighbourhood U2 of K0 such that

K0 ⊂ int U2 ⊂ int Ic+ε/k, U2 ∩ −U2 = φ and U2
∼= {ux : x ∈ RN} ∼= {u}.

Then we find that
U1 ∪ −U1

∼= U2 ∪ −U2
∼= IM

c+ε/k.

Let γ1 : [0, 1] × IM
c+ε → IM

c+ε/k be the strong deformation retraction from IM
c+ε

onto IM
c+ε/k. Also let γ2 be the the strong deformation retraction from U1 ∪−U1

onto U2 ∪ −U2. We put

γ(t, v) =

{
γ1(2t, v) for t ∈ [0, 1/2],

γ2(2t− 1, γ1(1, v)) for t ∈ [1/2, 1],

for each v ∈ IM
c+ε. Then γ is a strong deformation retraction from IM

c+ε to
U2 ∪ −U2. This proves the assertion. �
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We next define U and K. Here we fix positive numbers r1, r2 with r1 > r2.
We assume that r1 is so small that

(3.2) c/2 < I(v + λv) for all v ∈ K0 and λ ∈ R with |λ| ≤ 2r1.

By (2.4), we have that there exists ε̃ > 0

(3.3) I(v + λv) < I(v)− 2ε̃ for v ∈ K0 and r2 ≤ |λ| ≤ r1.

Then we can choose a neighbourhood Ṽ of K0 ∪ −K0 in M such that for each
v ∈ Ṽ ,

(3.4) c/2 < I(v+λv) for |λ| ≤ r1 and I(v+λv) < c− ε̃ for r2 ≤ |λ| ≤ r1.

By Lemma 3.2, we can choose a positive number ε0 < c/2 so small that IM
c+2ε0

⊂
Ṽ . Then by (3.4), we have that

(3.5) c/2 < I(v + λv) for all v ∈ IM
c+2ε0

and |λ| ≤ r1

and

(3.6) I(v + λv) < c− ε̃ for all v ∈ IM
c+2ε0

and r2 ≤ |λ| ≤ r1.

We put Ũ = IM
c+2ε0

and K̃ = IM
c+ε0

. Then it follows that

(3.7) inf{I(v) : v ∈ Ũ \ K̃} ≥ c + ε0.

Now we set

U = {v + λv : v ∈ Ũ , |λ| ≤ r1}, K = {v + λv : v ∈ K̃, |λ| ≤ r2}.

Then it is obvious that U and K satisfies (a) and (b). Moreover, we have

Lemma 3.4. For each 0 < ε < ε0, Ic/2 is a strong deformation retract of
Ic+ε \K.

Proof. Let V be a closed subset of U such that

K ⊂ intV ⊂ V ⊂ intU.

We first define a pseudogradient vector field Φ on U by

Φ(z) = λv for z = v + λv, v ∈ Ũ , |λ| ≤ r1.

Then recalling that I(v + tλv) is decreasing as t increases on [0, 1], we have

(3.8) 〈∇I(z),Φ(z)〉 ≤ 0.

In (3.8), the equality holds if and only if z ∈ Ũ . Then by (3.7), we have that for
each 0 < ε < ε0,

(3.9) sup{〈∇I(v),Φ(v)〉 : v ∈ (U \K) ∩ Ic+ε} < 0.
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On the other hand, we denote by Ψ a pseudogradient vector field on H associate
with functional I (cf. [3]). Since inf{|∇I(v)| : v ∈ V0 \K} > 0, we have that

(3.10) sup{〈∇I(v),−Ψ(v)〉 : v ∈ V0 \K} < 0.

Define h(v) = d(x, V )/(d(x, V ) + d(x, U c)) for v ∈ H. Then h(v) = 0 on V and
h(v) = 1 on U c. We now set

(3.11) Γ(v) = −h(v)Ψ(v) + (1− h(v))Φ(v) for v ∈ H.

Let consider the ordinary differential equation

dη

dt
= Γ(η), η(0, v) = v.

Then we have by (3.9) and (3.10) that there exists a positive number δ and

(3.12) I(η(t, v))− I(η(0, v))

=
∫ t

0

〈∇I(η(τ, v),−h(v)Ψ(v) + (1− h(v))Φ(v)〉 dt < −δt

for t > 0. It also follows from the definition of Γ that

(3.13) if v ∈ Kc, then η(t, v) ∈ Kc for all t > 0.

Therefore, from (3.12) and (3.13), we have that there exists m > 0 such that
for any v ∈ Ic+ε \ K, η(t, v) ∈ Ic/2 for all t > m. Then we can construct a
deformation retraction from Ic+ε \K onto Ic/2 from η by a standard argument.�

Lemma 3.5. For each 0 < ε < 2ε0,

U ∩ Ic+ε
∼= U ∼= {u} ∪ {−u}.

Proof. Let 0 < ε < 2ε0. Since Ũ = IM
c+2ε0

, there exists a strong deforma-
tion retraction γ from Ũ onto IM

c+ε. Let z ∈ U ∩ Ic+ε with z = v + w, v ∈ Ũ and
w = λv for some λ ∈ R. For each v(t) = γ(t, v), t ∈ [0, 1], we put

αt = min{s ∈ [0, 1] : v(t) + s · sgn(λ)v(t) ∈ Ic+ε},

where we put sgn(λ) = 0 if λ = 0. We note that if α0 = 0, then αt = 0 for all
t ∈ [0, 1]. We put now

w(t) = (λαt/α0)v(t)

where we put αt/α0 = 1 when α0 = 0. Since λ/α0 ≥ 1, we have that v(t)+w(t) ∈
U ∩ Ic+ε for t ∈ [0, 1] and that

v(1) + w(1) ∈ U1 = {v + λv : v ∈ IM
c+ε, |λ| ≤ r1} ⊂ Ic+ε.

We put now
η(t, z) = v(t) + w(t) for z ∈ U and t ∈ [0, 1].
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Then from the argument above, we have that η is a strong deformation retraction
from U ∩ Ic+ε onto U1. Then since

U1
∼= IM

c+ε ×D1 ∼= {u,−u} ×D1 ∼= {u} ∪ {−u},

the assertion follows. �

For each v ∈ Ũ . We put

Uv = {v + λv : |λ| ≤ r1}, Kv =

{
{v + λv : |λ| ≤ r2} if v ∈ K̃,

{φ} if v 6∈ K̃.

Then

Lemma 3.6. Let 0 < ε < ε0. Then, for each v ∈ Ũ ,

(3.14) (Uv \Kv) ∩ Ic+ε
∼= v + {−r1v, r1v} ∼= S0.

Proof. Let v ∈ Ũ . If v ∈ K̃, then from the definition, we have that

Uv \Kv = {v + λv : r2 ≤ |λ| ≤ r1} ∼= S0.

Since {v + λv : r2 ≤ |λ| ≤ r1} ⊂ Ic by (3.6), we have that

(Uv \Kv) ∩ Ic+ε
∼= Uv \Kv

∼= S0.

Suppose that v 6∈ K̃. Then

Uv \Kv = Uv = {v + λv : |λ| ≤ r1}.

Here we recall that I(v) > c + ε0. Then since for λ ∈ R with |λ| = r1, the
mapping t → I(v + tλv) is decreasing on [0, 1] with I(v + λv) < c, we find that
{v + tλv : t ∈ [0, 1]} ∩ Ic is an interval which does not contains 0. Therefore

(Uv \Kv) ∩ Ic+ε
∼= v + {−r1v, r1v} ∼= S0. �

Lemma 3.7. For 0 < ε < ε0,

H∗(U ∩ Ic+ε, (U \K) ∩ Ic+ε) = H∗(D1, S0)⊕H∗(D1, S0).

Proof. Let 0 < ε < ε0. By Lemma 3.5 and the definition, we have that

U ∩ Ic+ε
∼= U ∼= Ũ ×D1 ∼= {u} ×D1 ∪ {−u} ×D1.

On the other hand, by Lemma 3.6, we have that

(U \K) ∩ Ic+ε
∼= Ũ × S0 ∼= {u} × S0 ∪ {−u} × S0.

Then the assertion follows. �

By Lemma 3.1 and Lemma 3.7, we have
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Proposition 3.8. For each 0 < ε < c

Hn(Ic+ε, Ic−ε) =

{
2 for n = 1,

0 otherwise.

4. Proof of Theorem 1.1

In this section, we calculate the homology groups for J and prove Theo-
rem 1.1. To find a positive(negative) solution of (P), we may assume without
any loss of generality that g(x,−t) = −g(x, t)(g(x, t) = −g(x,−t)) for all t ≥ 0
and x ∈ RN . Then, in the following, we assume that g(x,−t) = −g(x, t) holds
for t ≥ 0 and x ∈ RN . From (2.6), we have that there exists ρ2 > 0 such that if
0 < ρ < ρ2, then

(4.1) H∗(Ic+ε, Ic/2) ∼= H∗(Jc+ε, Jc/2) for 0 < ε < c/2.

We next define a manifold M by

M =
{

v ∈ H \ {0} : |v|2 =
∫

RN

g(x, v(x))v(x) dx

}
.

By (g2) and (g3), we can see that the following assertion holds.

(g2’) For each x ∈ RN , g(x, t)/t is increasing on [0,∞] and

lim
t→∞

g(x, t)/t = ∞ uniformly in RN .

Then by (g2’), we can see that for each v ∈ H \ {0}, the set {λv : λ ≥ 0}
intersect to M at exactly one point. It is also obvious that each critical point of
J is in M. By (2.6), we may assume that ρ2 is so small that

(4.2) inf{J(v) : v ∈M} > 3c/4.

By the inequality (4.2), we have that if v ∈ H is a critical point of J with
J(v) < 3c/2, then v is positive or negative. In fact, if v is a sign changing
solution of (P), it follows that

|v+|2 =
∫

RN

g(x, v+(x))v+(x) dx and |v−|2 =
∫

RN

g(x, v−(x))v−(x) dx.

Then since J(v) = J(v+) + J(v−) < 3c/2, we find that J(v+) < 3/4 or J(v−) <

3c/4 holds. This contradicts to (4.2).
Now assume that 0 < ρ < min{ρ1, ρ2}. Then from the definition of ρ1, there

exists no critical point of J with critical value in (0, c/2] ∪ [3c/2, 2c). Then as
a direct consequence from Lions’s concentrate compactness lemma, we have
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Lemma 4.1. Let {un} ⊂ H be a sequence such that

lim
n→∞

∇J(un) = 0 and 0 < lim
n→∞

J(un) < 3c/2 exists.

Then there exists a subsequence (still denoted by {un}) for which the one of the
following conditions holds:

(a) there exists a critical point u of J and un → u as n →∞,
(b) there exist a sequence {xn} ⊂ RN and a sequence {in} ⊂ {0, 1} such

that

J(un) → c as n →∞,

un − (−1)inuxn
→ 0 as n →∞,

|xn| → ∞ as n →∞ for i = 1, 2.

Lemma 4.1 is just a modification of Proposition 2.1 of [13] (cf. also [7], [14]).
Then we omit the proof.

We will prove Theorem by contradiction. That is we assume in the following
that J possesses no critical point with critical value in (0, 2c).

For each x ∈ R, we define a positive number αx by αxux ∈ M. From
condition (g3), we have that

(4.3) lim
|x|→∞

αx = 1.

for r > 0, we put
Kr = {αxux : x ∈ RN , |x| ≥ r}.

Then Kr
∼= SN−1 for r > 0, and

(4.4) lim
r→∞

sup{J(v) : v ∈ Kr} = c.

Lemma 4.2. For each ε > 0 with ε < c/2, there exists rε > 0 and

JMc+ε
∼= Krε ∪ −Krε

∼= SN−1 q SN−1,

where q denotes disjoint union of sets.

Proof. We first see that

(4.5) inf{J(v) : v ∈M} = c and J(v) > c for all v ∈M.

Let {un} ⊂ M such that

lim
n→∞

J(un) = c0 = inf{J(v) : v ∈M} ≤ c.

Then it follows that limn→∞∇J(un) = 0. Since we are assuming that J possesses
no critical point with critical value in (0, 2c), (b) of Lemma 4.1 holds. That is
c0 = c. If c is attained by a element v of M, v is a critical point of J . This
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contradicts to our assumption. Then we have that the second assertion of (4.5)
holds. Now let ε > 0 with ε < c/2. Then we can choose a positive number γ1

such that

Kγ1 ∪ −Kγ1 ⊂ intJMc+ε.

Here we choose neighbourhoods V+,1 of Kγ1 and V−,1 of of −Kγ1 such that

V+,1 ∩ V−,1 = φ, V+,1
∼= Kγ1

∼= −Kγ1
∼= V−,1

and

V+,1 ∪ V−,1 ⊂ intJMc+ε.

By (b) of Lemma 4.1, we have that there exist k > 1, γ2 > γ1 such that

Kγ2 ∪ −Kγ2 ⊂ JMc+ε/k ⊂ V+,1 ∪ V−,1.

Then since JMc+ε/k
∼= JMc+ε and Kγ2 ∪ −Kγ2

∼= V+,1 ∪ V−,1
∼= Kγ1 ∪ −Kγ1 , we

obtain that

JMc+ε
∼= Kγ1 ∪ −Kγ1

∼= SN−1 q SN−1. �

Again by (2.6) , we can choose a positive number ρ0 < min{ρ1, ρ2} so small
that if ρ < ρ0, (3.5) and (3.6) hold with I and M replaced by J and M, respec-
tively.

Now we assume that ρ < ρ0 and put K̃ = JMc+ε and Ũ = JMc+2ε. We also set

U = {v + λv : v ∈ Ũ , |λ| ≤ r1}, K = {v + w : v ∈ Ũ , w|λ| ≤ r2}.

Then by a parallel argument as in the proof of Lemma 3.4, we can see that Jc/2

is a strong deformation retract of Jc+ε \ K for each 0 < ε < ε0. That is we have

(4.6) H∗(Jc+ε, Jc/2) = H∗(U ∩ Jc+ε, (U \ K) ∩ Jc+ε),

for each 0 < ε < ε0.
We also have, by Lemma 4.2, that

Lemma 4.3. For each 0 < ε < 2ε0,

U ∩ Jc+ε
∼= U ∼= Kr ∪ −Kr

∼= SN−1 q SN−1 for all r > 0.

The proof of Lemma 4.3 is the same as that of Lemma 3.5. Then we omit
the proof.

As in Section 3, we put

Uv = {v + λv : |λ| ≤ r1}, Kv =

{
{v + λv : |λ| ≤ r2} if v ∈ K̃,

{φ} if v 6∈ K̃,

for each v ∈ Ũ . Then, by the same argument as in Section 3, we have
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Lemma 4.4. Let 0 < ε < ε0. Then for each v ∈ Ũ ,

(4.7) (Uv \ Kv) ∩ Ic+ε
∼= v + {−r1v, r1v} ∼= S0.

Then, using Lemmas 4.3 and 4.4, we obtain

Lemma 4.5. For each 0 < ε < ε0,

H∗(U ∩ Jc+ε, (U \ K) ∩ Jc+ε)

= H∗(SN−1 ×D1, SN−1 × S0)⊕H∗(SN−1 ×D1, SN−1 × S0).

Thus we obtain, by (4.6) and Lemma 4.5, that

Proposition 4.6.

Hn(Jc+ε, Jc/2) =

{
2 for n = 1 or n = N ,

0 otherwise.

We can now complete the proof of Theorem.

Proof of Theorem 1.1. By (4.6), we have that if ρ ≤ ρ0, then for each
0 < ε < c,

(4.8) H∗(Jc+ε, Jc/2) ∼= H∗(Ic+ε, Ic/2) ∼= H∗(Ic+ε, Ic−ε).

But we can see from Proposition 3.8 and Proposition 4.6 that the equality does
not holds. This is a contradiction. Thus we obtain that there exists a positive
solution of (P). The existence of negative solution is obtained by the same way.�

References

[1] H. Berestycki and P. L. Lions, Nonlinear scalar field equations, I, II, Arch. Rational

Mech. Anal. 82 (1982), 313–376.

[2] D-M Cao, Positive solutions and bifurcation from the essential spectrum of a semilinear
elliptic equations on RN , Nonlinear Anal. 15 (1990), 1045–1052.

[3] K. C. Chang, Indefinite dimensional Morse theory and its applications, Séminaire de
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