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EXISTENCE OF ENTIRE SOLUTIONS FOR
SEMILINEAR ELLIPTIC PROBLEMS ON RV

NORIMICHI HIRANO

ABSTRACT. In this paper, we consider the existence of positive and nega-
tive entire solutions of semilinear elliptic problem

(P) —Au+u = g(z,u), ueHl(RN)

where N > 2 and g : RY xR — R is a continuous function with superlinear
growth and g(z,0) = 0 on RY.

1. Introduction

Our purpose in this paper is to show the existence of positive and negative

solutions of the problem

—Au+u=g(z,u) xeRV,

) u € HYRY),

where N > 2 and ¢ : RY x R — R is a continuous function with superlinear
growth and g(z,0) = 0 on RY. Throughout this paper, we fix a positive number
p such that p > 1 when N =2 and 1 <p < (N +2)/(N —2) when N > 3. Let
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g : R — R be a continuous odd function satisfying the following condition:
(1) there exists C' > 0 such that
0<|g(t) <CJtlP forall t € R;
(20) (2) there exists a number 0 < § < 1/2 such that
fg(t)t > G(t) = [) g(t)dt for all t > 0,
(3) g(t)/t is increasing on [0, 00) withlim;_ g(t)/t = co.

It is well known that problem
(Po) —Autu=g(u), ueH'RY)

has a positive solution (cf. [1]). In case that g(t) = [t|P~!t, it is also known that
the positive solution of problem (Py) is unique up to translation (cf. Kwong [6]).
The uniqueness of the positive solution of problem (Pg) for more general func-
tion g has been studied by several authors (cf. [9], [12]). The positive solution
u of problem (Pg) is characterized as the ground state solution. That is if we
consider a functional I defined by

v(x)
I(v) = / 1(|Vv|2 + v]?) dx 7/ / g(t)dtdzr for v e H'(RN),
Ry 2 Ry Jo

then ¢ = I(u) is the minimal positive critical level of I. On the other hand,
the existence of positive entire solution of problem (P) in the case that g(z,t) =

Q()|t|P~t has been studied by several authors (cf. [1]-[4]), where Q : RY — R
is a continuous function. That is the existence of positive solutions of problem

{ —Au+u=Q(z)|uP"tu for z € RV,

(Fe) ue HY(RV),

was considered under the assumption that Q(x) satisfies Q(z) — @ as |z| —
oo. In case that Q(z) > @ in RV, the existence of a solution of (Pg) was
established by Lions [8] using the concentrate compactness method. Lions’s
result was improved by Zhu [13] and Cao [2]. The case that Q(x)[t|P~ ¢ is
replaced by a more general function g(z,t), the existence of positive solutions
was proved in [5].

The method employed so far for problem (Pg) is, as well as for problem
(Po), to find the ground state solution. Then one has to impose conditions
for the existence of the ground state solution, such as Q(x) > Q on RY. Our
method employed in this paper is based on the calculation of homology groups
for the level sets of functionals and we need not conditions for the existence of
the ground state solution.

We impose the following conditions on g € C(R;R) and g € C(RY x R;R):

(gl) the positive solution of problem (Py) is unique up to translation,
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(g2) for each x € RN, g(z,t)/t is increasing on [0, 00),
(g3) lim|y|—o g(,t)/g(t) = 1 uniformly on closed bounded subsets of (0, cc),
(g4) there exists p > 0 such that

lg(z,t) — g(t)| < plg(t)] for all z € RN and t € R.

We can now state our main result.

THEOREM 1.1. Assume that (g0)—(g3) hold. Then there exists a positive
number po such that if (g4) holds with 0 < p < po, problem (P) possesses at least
one positive and one negative solution.

REMARK 1.2. In the case that g(t) = [t|P~1t, we proved the existence of
positive solution of (P) by using the singular homology groups for level sets
of functionals associate with problem (P) in [5]. The argument in [5] deeply
depends on the shape of the function [¢t[P~!t, and also needs assumtions on the
derivatives g;(x,t), gu(x,t).

In case that g(x,t) is given by the form g(x,t) = Q(x)g(t), conditions (g3)
and (g4) are rewritten as

(g3) am Q@) =1,
(g4") |Q(z) —1| < p forall z € RV,

That is we have

COROLLARY 1.3. Assume that (g0), (gl) and (g3’) hold. Then there exists
a positive number pg such that if (g4’) holds with 0 < p < pg, problem

_ —Au+u=Q(z)g(u) forzeRN,
(Fe) { u e HY(RN),

possesses at least one positive and one negative solution.

2. Preliminaries

We denote by D™ and S™~! the unit disk and unit sphere of n-dimensional
Euclidian space. For simplicity, we put H = H*(RY). By |- |, we denote the
norm of LY(RY), (¢ > 1). | - | stands for the norm of H*(R") defined by |z|? =
|Vz|3+|2|3 for z € H. (-, -) stands for the inner products in L*(RY). For each
function v : RY — R, we put v*(z) = max{v(z),0} and v~ (z) = min{v(z),0}
for x € RY. We put A = —A+1. For each a € R and each functional F : H — R,
we denote by F, the set F, = {v € H : F(v) < a}. We call a real number d
a critical value of a functional F' if there exists a sequence {v,} C H such that
lim,, o F(v,) = d and lim,,_,, |[VF(v,)| = 0. For a pair of topological space
(X,Y) with Y C X, we denote by H,(X,Y) the relative singular homology
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groups (cf. Spanier [10]). For z € H, D C H and z € RY, we denote by z,
and D,,

2:(y) =2(y—2) foryeRY¥ and D, ={z,:2¢€ D}.

Let u € H be the unique positive solution of problem (Py). Then ¢ = I(u) is the
minimal positive critical value of I. From the invariance of functional I under
translation, we have that for each € R”, the function u, is a solution of I with
I(u,) = c. It is also known that there exist no critical value of I in (0, 2c) \ {c}.
Then as a direct consequence of the concentrate compactness lemma (cf. [7],
[8], [13]), we have that
{vpn} C H, limy, o0 [VI(vy)]| =0 and lim,, oo I(vy,) =¢
(%) implies that there exist{x,} C R and {i,} C {0,1}

such that lim, o || v, — (=1)"u,, [|= 0.

We define a functional J> on H(RY) by

Jm(v):/ %(\Vv|2+|v|2)dx— G, v()) da,

RN RN

for v € HY(RY). We put

M = {v € H\{0}: |vJ* = /]RN g(v(x))v(z) dx}.

Noting that

(2.1) ¢ =I(u) :min{[(v) o2 :/

RN

slula))ute) do
we have that

(2.2) I(v)>c¢ on M.

It is also easy to see from (3) of (g0) that

(2.3) Mn{ :veH\{0},\ >0} is a unique point,
(2.4) I(v) = max{I(Av) : A >0} foreachve M

and each critical point of I is contained in M (cf. [13]).

We will work on a neighbourhood Vi of the set M N I3./» and try to find
solution of (P) in V;. For this purpose, we transform the functional J°° outside
of V1 .

The following results is well known.
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LEMMA 2.1. For each € > 0 with € < ¢, there exists V. C M such that

IexeNM =V.U=V,, VoN-V.=¢.

PROOF. For completeness, we give a proof. Let p : [0,1] — M be a path
such that p(0) = v and p(1) = —u. Since u is positive and —u is negative, there
exists to € (0,1) such that

plto) " = [ a(o(ta))ptto)” da
and

p(to) > = /RN g(p(to) ")p(te) ™ da.
Then, by (2.1), we have that

I(p(to)) = I(p(to)™) + I(p(to) ™) > 2c.

Let 0 < € < ¢ and V, be the component of I... N M containing u. Then from
the observation above, we find that V. N V_. = ¢. Suppose that there exists
a component V of I... N M which is disjoint from V;UV__. It is easy to see that

(2.5) Ko = {u, : x € RV} CintV,.

Let {u,} C V be a sequence such that lim, o I(u,) = inf{I(v) : v € V}.
Then it follows that lim, o, VI(u,) = 0. Since c is the unique critical value in
(0,2¢), we have that lim,_,o I(u,) = ¢. Then by (x), we have that there exist
{z,} C RN and {i,} C {0,1} such that lim, o |v, — (=1)*u,, | = 0. This
implies by (2.5) that w,, € V.U—V for n sufficiently large. This is a contradiction.
Thus we have that I... "M =V, U-V,. O

Here we put
Xijp={pv €M, pn=>1/2}
Then M C int X;/5. Let V5, Vi be bounded neighbourhoods of V. o(C M N
I3./2) such that

Vo CintVy C X1y and Vi C I7c/2,3¢/2).
Then we have that
So = inf{|VI(v)|:v € I [e/2,3¢/2]\ Vo} > 0.
We next define a functional J. Let a(x) : H — [0,1] be a continuous function

such that
1 forxz e Vf,
alz) =

0 for x € Vp,
and we put

J) =a@)I(v)+ (1 —alx))J(w) foralve H.
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Then from the definition, J = J* on V and J = I on V{°. Here we note that
(2.6) ;l,iir(l) [I(v) — J®((W)| = ;i_r% [VI(v) — VJ*®(v)| =0 uniformly on V;.
Then there exists p; > 0 such that if p < py,
[I(v) —J(v)] <¢/2 onVq
and
[VJI®(v) — VI(v)| < §p/2 on Vi.
Therefore we have that
|VJ(v)| > 60/2 forall v e I [c/2,3¢/2]\ Vh.
This implies that
if p < p1, [IVJ(v)| < 0p/2 and 3¢/2 > J(v) > 0, then v € Vj

and therefore J(v) = J°°(v). This implies that if we find a critical point v of J
with 2¢ > J(v) > 0, then v is a critical point of J* in Vj.

3. Homology groups

Our purpose in this section is to calculate homology groups Hy(Ieye, Io—¢)
for 0 < e < ¢/2. To calculate the homology groups H.(Ioyc, I.—c), we will find
subsets K and U of Vj satisfying

(a) K CintU,

(b) +Ko = +{u, : 2 e RV} Cint K,

(c) there exists e; > 0 such that I/, is a strong deformation retract of
Toie \ K for 0 <e <ey.

In fact, for U and K satisfying (a), (b) and (c) , we have the following lemma.

LEMMA 3.1. Suppose that U and K satisfy (a), (b) and (c). Then for each
O<e<er.
H*(IC+67 Icfa) = H*(U Nlcye, (U \ K) N Ic+6)

PROOF. Assume that (a), (b) and (c) hold. Then by the exactness of singular
homology groups (cf. [3], [10]) to the triple (Joqe, leye \ K, I./2):

= Hy(Iepe \ K, Io)2) = Hy(Ieye, 1o 2)
— Hy(leye, Iere \ K) — Hy—1(Iete \ K, 1cj2) —
and the fact that Hy(I.qc \ K, I./2) =0, we find
Hy(Ieve, Icj2) = Hilleqe, Ieve \ K).
Recalling that the interval [¢/2, ¢ — £] contains no critical value, we have

H, (Ic-i-av Ic/2) = H, (Ic+8a Ic—a)
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and then
H*(Ichaa Icfs) = H*(Icha; IchE \ K)

Since U N I.4. is an neighbourhood of K NI 4. in I.4., we have by the excision
property of homology groups that

Ho(Iye, Ioye \ K) = H (U N Loye, (U\ K) N Ly2).
Then the assertion follows. O
We will define subsets U and K of Vj satisfying (a), (b) and (c).

LEMMA 3.2. For each neighbourhood V' of Ko U —Ky in M, there exists

ey > 0 such that
I%—a CV foreach0<e<ey,
where IM denotes the restriction of I on M.
Lemma 3.2 is a direct consequence from (x) and then we omit the proof.

LEMMA 3.3. For each 0 < € < ¢/2,
M, = {u}u{-u}.

PROOF. Let 0 < ¢ < ¢/2. Recalling that £+ Ky = {+u, : x € RV} Cint I,
we find that there exists a neighbourhood U; of K such that

KoCintUy Cint Iy, UiN-Uy=¢and U; = {u, :x € RN} >~ {u}.
By Lemma 3.2, we can choose k& > 1 so large that
(3.1) 1M Cint (Uy U—Uh).
Similarly, we choose a neighbourhood U; of K such that
Ko CintUs CintIoqesp,, UsN—Us=¢ and Uy = {u, :x € RN} 22 {u}.

Then we find that
U U-U, U U=Uy = 1M _ ;.

Let v : [0,1] x IM_ — ch\fs/k be the strong deformation retraction from I _
onto [ é\j[rg Jk Also let 5 be the the strong deformation retraction from U; U —U;

onto Uy U —U,. We put
~v1(2t,v) for t € 0,1/2],
V(t,v) =
v2(2t — 1,71 (1,v)) for ¢ € [1/2,1],
for each v € Ié\fre. Then « is a strong deformation retraction from Ié‘j{a to
Us; U —U,. This proves the assertion. O
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We next define U and K. Here we fix positive numbers rq, 7y with rqy > rs.
We assume that r; is so small that

(3.2) ¢/2 <I(v+ Av) forallve Kyand A € R with |A] < 2ry.
By (2.4), we have that there exists € > 0
(3.3) I(v+ M) < I(v) —2¢ forv e Ky and ry < |A| <7y

Then we can choose a neighbourhood V of KyU —Kjy in M such that for each
veV,

(34) ¢/2 < I(v+Mv) for [A\|<r1 and I(v+M) <c—g forry <[\ <ry.

By Lemma 3.2, we can choose a positive number ¢ < ¢/2 so small that I, ﬂggo -
V. Then by (3.4), we have that

(3.5) ¢/2<I(v+v) forallveIM, and|\<r
and
(3.6) Ilv+ M) <c—¢ forallve Iﬁ%o and ro < |A| < rg.

We put U = IM,. and K=1IM

c+eo

. Then it follows that
(3.7) inf{I(v):ve U\ K} > c+eq.
Now we set
U={v+:velU,|N<r}, K={v+:veK, |\ <r}
Then it is obvious that U and K satisfies (a) and (b). Moreover, we have

LEMMA 3.4. For each 0 < ¢ < &g, I./2 is a strong deformation retract of
T\ K.

PROOF. Let V be a closed subset of U such that
KcintVcV cintU.
We first define a pseudogradient vector field ® on U by
d(z)=Xv forz=v+xv, vel, |\ <r.
Then recalling that I(v + tAv) is decreasing as t increases on [0, 1], we have
(3.8) (VI(z),®(2)) <0.

In (3.8), the equality holds if and only if z € U. Then by (3.7), we have that for
each 0 < ¢ < gg,

(3.9) sup{{VI(v),®(v)):v € (U\K)NI.q.} <O.
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On the other hand, we denote by ¥ a pseudogradient vector field on H associate
with functional I (cf. [3]). Since inf{|VI(v)|: v € V5 \ K} > 0, we have that

(3.10) sup{{VI(v),—=T(v)) :v e V\ K} <0.

Define h(v) = d(z,V)/(d(z,V) + d(z,U°)) for v € H. Then h(v) =0 on V and
h(v) =1 on U¢. We now set

(3.11) I'(v) = =h(v)¥(v) + (1 — h(v))®(v) forve H.
Let consider the ordinary differential equation
dn _
dt
Then we have by (3.9) and (3.10) that there exists a positive number ¢ and
(3.12)  I(n(t,v)) = I(n(0,v))

:/0 (VI(n(r,v), —h(v)T(0) + (1 — h(v)D()) dt < —6t

F(n)a 77(07U) = .

for ¢ > 0. It also follows from the definition of I" that
(3.13) if v e K¢ then n(t,v) € K¢ for all ¢t > 0.

Therefore, from (3.12) and (3.13), we have that there exists m > 0 such that
for any v € I.yc \ K, n(t,v) € I, for all t > m. Then we can construct a
deformation retraction from /.. \ K onto I,/ from 7 by a standard argument.(]

LEMMA 3.5. For each 0 < € < 2¢q,

UNl.=U={u}U{-ul.

PROOF. Let 0 < & < 2g0. Since U = IM,., . there exists a strong deforma-
tion retraction v from U onto ICIY{E. Let ze UNI.ye with z =v+w, v €U and

w = A for some A € R. For each v(t) = v(t,v), t € [0, 1], we put
oy = min{s € [0,1] : v(t) + s - sgn(N)v(t) € Iy},

where we put sgn(\) = 0 if A = 0. We note that if ag = 0, then a; = 0 for all
t € 10,1]. We put now

w(t) = (Aar/ao)o(t)
where we put o /ag = 1 when ap = 0. Since A/ag > 1, we have that v(¢)+w(t) €
UnNle. for t € [0,1] and that

v(1) +w(l) e Uy ={v+ v:ve M, [N <r}C Iy

We put now
n(t,z) =v(t) + w(t) for z € U and ¢ € [0,1].
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Then from the argument above, we have that 7 is a strong deformation retraction
from U N I 4. onto U;. Then since

Uy = 1M, x D' = {u,—u} x D' = {u} U {-u},
the assertion follows. O

For each v € U. We put
{v4Xv: A <} ifveK,

Uy={v+v: |\ <ri}, Kv:{{¢} ifve K.

Then
LEMMA 3.6. Let 0 < e < gg. Then, for each v € [7,
(3.14) (Uo\ Ko) N e =0+ {—ryv, ryo} 2= S°.
PROOF. Let ve U. If v € I~(, then from the definition, we have that
U, \ Ky ={v+Av:rg <A <ry=s0
Since {v 4+ v :ry <|A| <r1} C I, by (3.6), we have that
Uy \ Ky) N Ioye 2 U, \ K, =2 5°.
Suppose that v ¢ K. Then
UN\NK,=U, ={v+Xv: |\ <r}.

Here we recall that I(v) > ¢ + €p. Then since for A € R with |\| = r1, the
mapping ¢t — I(v + tAv) is decreasing on [0, 1] with I(v + Av) < ¢, we find that
{v+1tiv:te0,1]} NI, is an interval which does not contains 0. Therefore

(Up \ K) N Ioye 2 v+ {—riv,rv} = S°. O

LEMMA 3.7. For 0 < e < €y,
H (UNIye,(U\K)NIe) = H (D", 5% & H. (D", 5°).
PROOF. Let 0 < € < gg. By Lemma 3.5 and the definition, we have that
UNIee=U=Ux D"~ {u} x D' U{-u} x D
On the other hand, by Lemma 3.6, we have that
(UNK)N Ty 2 U x S = {u} x S U {—u} x S°.
Then the assertion follows. 0

By Lemma 3.1 and Lemma 3.7, we have
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PROPOSITION 3.8. For each0<e<c¢

2 forn=1,

0 otherwise.

Hn(lc-i-f;‘a Ic—s) = {

4. Proof of Theorem 1.1

In this section, we calculate the homology groups for J and prove Theo-
rem 1.1. To find a positive(negative) solution of (P), we may assume without
any loss of generality that g(z, —t) = —g(z,t)(g9(x,t) = —g(z,—t)) for all t > 0
and 2 € RY. Then, in the following, we assume that g(x, —t) = —g(x,t) holds
for t > 0 and z € RY. From (2.6), we have that there exists pa > 0 such that if
0 < p < po, then

(41) H*(Ic-‘r&)[c/Q) = H*(JCJ,_E, Jc/2) for 0 <e < C/2

We next define a manifold M by

M= {v € H\{0}:|v* = / g(z,v(z))v(x) d:z:}.
RN
By (g2) and (g3), we can see that the following assertion holds.

(g2') For each 2 € RN, g(x,t)/t is increasing on [0, 0o] and

tlim g(z,t)/t = oo uniformly in RY.

Then by (g2’), we can see that for each v € H \ {0}, the set {\v : A > 0}
intersect to M at exactly one point. It is also obvious that each critical point of
J is in M. By (2.6), we may assume that py is so small that

(4.2) inf{J(v) : v € M} > 3c/4.

By the inequality (4.2), we have that if v € H is a critical point of J with
J(v) < 3¢/2, then v is positive or negative. In fact, if v is a sign changing
solution of (P), it follows that

loT |2 :/ g(z, v (z))vt(x) dr and |v~ > :/ g(z, v (2)v™ (z) dx.
RN RN
Then since J(v) = J(vt) 4+ J(v™) < 3¢/2, we find that J(vT) <3/4 or J(v™) <
3c/4 holds. This contradicts to (4.2).
Now assume that 0 < p < min{p1, p2}. Then from the definition of p;, there
exists no critical point of J with critical value in (0,¢/2] U [3¢/2,2c¢). Then as

a direct consequence from Lions’s concentrate compactness lemma, we have
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LEMMA 4.1. Let {u,} C H be a sequence such that

lim VJ(up) =0 and 0 < lim J(u,) < 3¢/2 exists.

n—oo

Then there exists a subsequence (still denoted by {uy,}) for which the one of the
following conditions holds:

(a) there exists a critical point @ of J and u, — T as n — 00,
(b) there exist a sequence {x,} C RN and a sequence {i,} C {0,1} such
that

J(uy) — ¢ asn — oo,
Uy — (—1)"u,, — 0  asn — oo,

|| — o0 asn — oo fori=1,2.

Lemma 4.1 is just a modification of Proposition 2.1 of [13] (cf. also [7], [14]).
Then we omit the proof.

We will prove Theorem by contradiction. That is we assume in the following
that J possesses no critical point with critical value in (0, 2c).

For each x € R, we define a positive number «, by azu, € M. From
condition (g3), we have that

(4.3) lim a, =1.

|z]|— o0

for 7 > 0, we put
K, = {ogu, -z € RN, |z > r}.

Then K, = SV=! for r > 0, and
(4.4) rlggo sup{J(v) :v € K, } =c.

LEMMA 4.2. For each € > 0 with £ < ¢/2, there exists r. > 0 and

JM 2K, UK, =SNTlsN-t

where 11 denotes disjoint union of sets.

PrOOF. We first see that
(4.5) nf{J(v):veM}=cand J(v) >c forallve M.
Let {u,} C M such that

nh_)n;@ J(up) = co =inf{J(v) :v e M} <ec.

Then it follows that lim,,_,, VJ(u,) = 0. Since we are assuming that J possesses
no critical point with critical value in (0,2¢), (b) of Lemma 4.1 holds. That is
co = c. If ¢ is attained by a element v of M, v is a critical point of J. This
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contradicts to our assumption. Then we have that the second assertion of (4.5)
holds. Now let € > 0 with € < ¢/2. Then we can choose a positive number ~y;
such that

K, U-K, CintJM..

Here we choose neighbourhoods V ; of K, and V_ ; of of —K,, such that
V+71 n V_71 = qb, V+71 = K’h &~ _K’Yl =2V_4

and
V+71 U V_71 C int J;A_i/_ls
By (b) of Lemma 4.1, we have that there exist k > 1, 79 > = such that

Ky, U—Ky, CJIN , CVi UV

Then since Jé\fg/k > JgM and K,, U-K,, 2V, UV_; ¥ K, U-K, , we
obtain that

JM. 2K, U-K, 2SN st O

Again by (2.6) , we can choose a positive number py < min{py, p2} so small
that if p < pg, (3.5) and (3.6) hold with I and M replaced by J and M, respec-
tively.

Now we assume that p < po and put K= JC/\fE and U = Jg‘j%. We also set

U={v+ :vel,]N<r}, K={v+w:vel wl <r}

Then by a parallel argument as in the proof of Lemma 3.4, we can see that J./o
is a strong deformation retract of J.y. \ K for each 0 < € < g¢. That is we have

(4.6) H.(Jeye,Jep2) = HiUN Joye, UNK) N Jeye),

for each 0 < € < eg.
We also have, by Lemma 4.2, that

LEMMA 4.3. For each 0 < € < 2gq,
UNTere TUZK, U-K, =SNTTTSN"L forallr > 0.

The proof of Lemma 4.3 is the same as that of Lemma 3.5. Then we omit
the proof.

As in Section 3, we put
{v+ M |A <7} ifvek,

Uy = v+ dv: A <), ’Cv:{{qs} ifv g K,

for each v € U. Then, by the same argument as in Section 3, we have
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LEMMA 4.4. Let 0 < € < gg. Then for each v € Zj,

(4.7) UNK) N Toye Z v+ {—rv,rv} =250

Then, using Lemmas 4.3 and 4.4, we obtain

LEMMA 4.5. For each 0 < € < &g,

HoUN Joie, UNK) O Jure)

= H. (SN x D' SN x 89 g H, (SN~ x D!, SN~ x §9).
Thus we obtain, by (4.6) and Lemma 4.5, that

PROPOSITION 4.6.

2 forn=1o0orn=N,
Hn(JC+57 Jc/2) = .
0 otherwise.

We can now complete the proof of Theorem.

PrOOF OF THEOREM 1.1. By (4.6), we have that if p < pg, then for each

O<e<e,

(48) H*(Jc+5, Jc/2) = H*(Ic-i-aa Ic/2) = H*(IC+87IC—E)'

But we can see from Proposition 3.8 and Proposition 4.6 that the equality does

not holds. This is a contradiction. Thus we obtain that there exists a positive

solution of (P). The existence of negative solution is obtained by the same way.[J
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