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MULTIPLICITY FOR SYMMETRIC
INDEFINITE FUNCTIONALS:

APPLICATION TO HAMILTONIAN AND ELLIPTIC SYSTEMS

Patricio Felmer1 — Zhi-Qiang Wang2

0. Introduction

In this article we study the existence of critical points for certain superqua-
dratic strongly indefinite even functionals appearing in the study of periodic
solutions of Hamiltonian systems and solutions of certain class of Elliptic Sys-
tems.

We first present two abstract critical point theorems for even functionals.
These results are well suited for our applications, but they are interesting by their
own. These theorems are then applied to the specific problems we mentioned,
when the corresponding Hamiltonians are superquadratic. Critical points theory
for even indefinite functionals was studied by Benci in [2], where he developed a
general pseudo index theory, a variant of the classical genus theory (c.f. [10]). We
want to point out that our approach is totally different from [2]. Taking advan-
tages of the even nature of the functional we shall construct a geometric linking
structure which does not require conditions near the origin (see [10] for examples
of some standard linking and compare the set up of our linking in Theorem 1.1).
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Using this linking structure we first establish a critical point theorem for even
functionals in a semi-definite setting, using only usual deformation arguments
and the degree theory for odd operators. Then a Galerkin approximation gives a
version of our theorem for strongly indefinite functionals. Since the linking con-
ditions for our functionals are not in a standard form it seems unclear whether
one could check the assumptions in [2] in our settings. Furthermore, when ap-
plied to specific problems, our theory gives better estimates for the energy level
of the obtained critical points.

Next, let us start discussing our results for the case of a Hamiltonian system

(0.1)
ṗ = −Hq(p, q, t),

q̇ = Hp(p, q, t),

where H : R2N × R is a C1 function, T -periodic in the variable t. We are
interested in finding T -periodic solutions in a case when the Hamiltonian is
superquadratic and even in the space-momentum variables.

A usual growth hypothesis on the Hamiltonian, under which results for (0.1)
has been obtained, is

(S) There exist R > 0, µ > 2 such that

1
µ
Hz(z, t) · z ≥ H(z, t) > 0 ∀z ∈ R2N , |z| ≥ R, ∀t ∈ R.

This condition requires H to be superquadratic in all components of the
variable z. For example, this condition excludes the case of a Hamiltonian of the
form

H(p, q, t) =
1
2
|p|2 + V (q, t),

which corresponds to a second order Hamiltonian system. Usually this case is
treated separately. In [5] the first author gave a condition that includes both
situations considered above under which the existence of a nontrivial T -periodic
solution of (0.1) is proved. The condition given in [5] (see (H2) below) requires
only a combined effect of superquadratic nature in p and q with z = (p, q).

On the other hand, for Hamiltonians satisfying the superquadratic condition
(S) and being even in space-momentum variables, results showing the existence
of infinitely many T -periodic solutions are given by Benci [2].

Thus, an interesting question is whether the new superquadratic condition
proposed in [5] with even Hamiltonian is enough to obtain these multiplicity
results. In this paper we show that the answer is yes.

Let us consider next our result on Hamiltonian systems in a precise way. We
assume that the Hamiltonian satisfies the following hypotheses

(H1) H is of class C1 and H(z, t + T ) = H(z, t) for all z ∈ R2N and for all
t ∈ R.
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(H2) There exists R > 0, α > 1, β > 1, where 1/α+ 1/β < 1, such that

1
α
Hp(p, q, t) · p+

1
β
Hq(p, q, t) · q ≥ H(p, q, t) > 0

for all z = (p, q) ∈ R2N , |z| ≥ R and all t ∈ R.
(H3) There exists b > 0, c ≥ 0 and α′ > 2 such that

|Hz(z, t)| ≤ b|z|α
′−1 + c

for all z = (p, q) ∈ R2N and all t ∈ R.
(H4) H(z, t) = H(−z, t) for all z ∈ R2N , t ∈ R.

We will prove the following

Theorem 0.1. Assume the hypotheses (H1)–(H4) are satisfied. Then the
Hamiltonian system (0.1) possesses infinitely many solutions {(pk, qk)} such that
‖(pk, qk)‖∞ → ∞ as k → ∞. Moreover, ‖(pk, qk)‖∞ ≥ ck1/(α′−2), for some
c > 0.

Remark 0.2. Hypothesis (H3) can be weakened. We can consider the fol-
lowing assumption instead

(H3’) There exists b > 0, c ≥ 0 such that

|Hz(z, t)| ≤ b

(
1
α
Hp(p, q, t) · p+

1
β
Hq(p, q, t) · q

)
+ c

for all z = (p, q) ∈ R2N and for all t ∈ R.

See remark at the end of Section 2.

Finally, as another application of our abstract theory we present the results
obtained in the case of a class of elliptic systems. Precisely we are interested in
the existence of solutions for the system

−∆u =
∂H

∂v
(u, v, x) in Ω,(0.2)

−∆v =
∂H

∂u
(u, v, x) in Ω,(0.3)

u = 0, v = 0 on ∂Ω,(0.4)

where Ω is a bounded open subset of RN , with smooth boundary ∂Ω, and the
function H : R2 × Ω → R, which we call the Hamiltonian, is of class C1. For
easy reference we call this system (ES).

This system has been already studied from the variational point of view
by many authors. We mention the work of Hulshof and van der Vorst [8] where
assumptions were made onH allowing the existence of positive solutions for (ES).
In a paralell work de Figueiredo and Felmer [6] obtained similar results, however
here the full superquadratic range was reached. With respect to multiplicity of
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solutions when the Hamiltonian is even we only know the work by Angenent and
van der Vorst [1] covering the case both Hu and Hv are superlinear, but the not
whole superquadratic range. In [1], a Morse Index Theory is developed based on
Floer Cohomology Theory.

Now we describe precisely our hypotheses on H.

(E1) H : R2 × Ω → R is of class C1.

Let us consider real constants

p ≥ α > p− 1 > 0 and q ≥ β > q − 1 > 0

such that

(i)
1
α

+
1
β
< 1,

(ii)
{

2
(

1
p

+
1
q

)}
max

{
p

α
,
q

β

}
< 1 +

2
N

,

(iii)
p− 1
p

q

β
< 1 and

q − 1
q

p

α
< 1.

In this paper we will always assume N ≥ 3. If N = 2 or N = 1 less restrictive
assumptions can be made. Furthermore, in case N ≥ 5, we also impose

(iv)
(

1− 1
p

)
max

{
p

α
,
q

β

}
<
N + 4
2N

and
(

1− 1
q

)
max

{
p

α
,
q

β

}
<
N + 4
2N

.

With these constants α, β, p, q satisfying the above conditions (i)–(iv) we now
state the other hypotheses on the Hamiltonian H:

(E2) There exists R > 0 such that

1
α

∂H

∂u
(u, v, x) · u+

1
β

∂H

∂v
(u, v, x) · v ≥ H(u, v, x) > 0

for all (u, v) ∈ R2, |(u, v)| ≥ R and x ∈ Ω.
(E3) There exists a2 > 0 such that∣∣∣∣∂H∂u (u, v, x)

∣∣∣∣ ≤ a2(|u|p−1 + |v|(p−1)q/p + 1),

∣∣∣∣∂H∂v (u, v, x)
∣∣∣∣ ≤ a2(|v|q−1 + |u|(q−1)p/q + 1).

(E4) H(u, v, x) = H(−u,−v, x) for all u, v ∈ R, x ∈ RN .

Under these general hypotheses on the Hamiltonian H we can prove the
following existence result.
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Theorem 0.3. If H satisfies (E1)–(E4) then system (ES) possesses a se-
quence of strong solutions {(uk, vk)} such that ‖(uk, vk)‖ → ∞ as k → ∞.
Here ‖ · ‖ represents the norm in the space W 2,p/(p−1)(Ω) ∩ W

1,p/(p−1)
0 (Ω) ×

W 2,q/(q−1)(Ω) ∩W 1,q/(q−1)
0 (Ω).

Remark 0.4. If H(u, v) = |u|α + |v|β then one could use a fourth order
approach and then assumption (iv) would not be necessary; we do not carry the
details (see [3]). We do not know if (iv) can be avoided for general Hamiltonians.

This paper is organized in three sections. In Section 1 we present our critical
point theorems. Assuming that the functional satisfies some linking condition
that does not involve the origin we prove our first theorem on the existence
of critical points. This requires a semi-finite dimensional splitting. Next the
infinite dimensional case is studied using a Galerkin approximation. In Section 2
we study T -periodic solutions of the Hamiltonian system (0.1). We show the
existence of infinitely many solutions by applying the general theorems from
Section 1. Finally, in Section 3, we analyze the elliptic system (ES) and we show
the existence of infinitely many strong solutions.

Acknowledgement. Z.-Q. Wang thanks the hospitality of the faculty mem-
bers of Departamento de Ingenieŕıa Matemática, F.C.F.M., Universidad de Chile,
where this work was initiated during his visit.

1. Abstract critical points theorems

In this section we prove two critical point theorems for even functionals.
The proofs of these theorems are based on usual deformation arguments and
degree theory applied to odd operators. These theorems can be used to find
multiple critical points for strongly indefinite functionals as we see in the next
two sections.

Let us consider a Hilbert space E with inner product 〈 · , · 〉 and norm ‖ · ‖.
Assume E has a splitting E = X ⊕ Y with k = dimX <∞.

Then we define the basic sets over which we define later a linking. For ρ > 0
we define

(1.1) Sρ = {y ∈ Y | ‖y‖ = ρ},

and for some fixed y1 ∈ Y with ‖y1‖ = 1 and subspaces X1 and X2, we consider

X ⊕ span{y1} = X1 ⊕X2.

We assume that y1 ∈ X2. Next we define for M,σ > 0

(1.2) DM,σ = {x1 + x2 ∈ X1 ⊕X2 | ‖x1‖ ≤M, ||x2|| ≤ σ}.

Now we can state our first abstract theorem.
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Theorem 1.1. Let I ∈ C1(E,R) be an even functional satisfying the Palais-
-Smale condition. Assume there are two linear bounded, invertible operators
L1, L2 : E → E, and choose ρ > 0 and σ > 0, such that σ‖L−1

1 L2y1‖ > ρ.
Further assume there are numbers α ≤ β such that

inf
L1(Sρ)

I ≥ α,(1.3)

sup
L2(∂DM,σ)

I < α,(1.4)

sup
L2(DM,σ)

I ≤ β,(1.5)

then I has a critical value c ∈ [α, β].

Proof. Suppose for contradiction that I has no critical values in the interval
[α, β]. Then given ε > 0 so that

sup
L2(∂DM,σ)

I < α− 2ε,

there is a deformation η : [0, 1]× E → E satisfying:

(i) η(t, · ) is an odd homeomorphism for all t ∈ [0, 1],
(ii) η(0, x) = x for all x ∈ E,
(iii) η(t, x) = x for all x ∈ Iα−2ε and
(iv) η(1, Iβ+ε) ⊂ Iα−ε,

(see [10]). Here, and in what follows, Iα−ε = {x ∈ E | I(x) ≤ α − ε} is the
level set, and we drop the subindices from Sρ and DM,σ.

Now we first choose a ≥ 1 such that ay1 ∈ D \ ∂D, a||L−1
1 L2y1|| > ρ, and

I(L2(ay1)) ≤ α − 2ε. By the assumption on ρ and σ and (1.4) this is possible.
Then we define a minimax value

(1.6) c = inf
γ∈Γ

sup
z∈Q

I(η1(γ(L2z))),

where η1( · ) = η(1, · ), Q = {z ∈ D | z = x+ sy1, s ≥ 0} and

Γ = {γ ∈ C(L2Q,E) | γ|L2(∂Q) = Id, γ|L2(Q)∩Iα−2ε = Id}.

Next we claim that the following intersection property holds:

η1(γ(L2Q)) ∩ L1S 6= ∅ for all γ ∈ Γ.

Let’s assume for the moment that the claim is true. Then we get c ≥ α and, by
the definition of η1, we have for any γ ∈ Γ,

sup
∂Q

I(η1(γ(L2z))) = sup
∂Q

I(η1(L2z)) ≤ α− ε.
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Then, by a usual deformation argument, c is a critical value of I (see [10]).
Moreover, using the properties of deformation η1, it is easy to see that we have

c ≤ sup
Q
I(η1(L2x)) ≤ sup

Q
I(L2x) ≤ β.

This is a contradiction. Thus it only remains to prove the claim. If the claim is
not true, then there exists γ0 ∈ Γ, such that η1(γ0(L2Q)) ∩ L1S = ∅, that is

(1.7) L−1
1 η1(γ0(L2Q)) ∩ S = ∅.

For t ∈ [0, 1], let us consider a homotopy map Ft : Bρ × ∂Q→ E defined as

Ft(y, z) = y − L−1
1 η1γ0L2ψ(tϕ(z)),

where Bρ = {y ∈ Y | ‖y‖ ≤ ρ}, ψ : Bk+1 → Q and ϕ : Q → Bk+1 are
homeomorphisms such that ψ(0) = ay1 and ψ◦ϕ = Id, with Bk+1 = {u ∈ Rk+1 |
‖u‖ ≤ 1}. By (1.7), we have that for all t ∈ [0, 1] and (y, z) ∈ ∂(Bρ × ∂Q) =
S × ∂Q,

Ft(y, z) 6= 0.

Therefore the Leray–Schauder degree

deg(Ft, Bρ × ∂Q, 0) = c for all t ∈ [0, 1],

for some c ∈ Z. With the choices of ρ, σ and a, we have ‖L−1
1 L2(ay1)‖ 6= ρ.

Thus, for t = 0, we have

F0(y, z) = y − L−1
1 η1γ0L2(ay1) = y − L−1

1 L2(ay1) 6= 0,

so that
deg(F0, Bρ × ∂Q, 0) = 0.

On the other hand, at t = 1, we have

F1(y, z) = y − L−1
1 η1γ0L2z = y − L−1

1 η1L2z.

Setting T = {z ∈ ∂Q | z = x+ sy1, s > 0} we have

sup
L2T

I = sup
L2(∂D)

I < α− 2ε.

Thus, for (y, z) ∈ Bρ × T ,

F1(y, z) = y − L−1
1 L2z 6= 0.

We can then apply the excision property of the Leray–Schauder degree, to obtain

deg(F1, Bρ × ∂Q, 0) = deg(F1, Bρ ×B1 ×B2, 0),

where B1 × B2 = ∂Q \ T , with B1 = {x1 ∈ X1 | ‖x1‖ ≤ M} and B2 = {x2 ∈
X̃2 | ‖x2‖ ≤ σ}. Here X1 ⊕ X̃2 = X. Note that Bρ × B1 × B2 is a symmetric
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neighbourhood of 0 and that F1(y, z) = y − L−1
1 η1L2(z) is an odd map and a

compact perturbation of identity there. Then, by the Borsuk–Ulam Theorem,

deg(F1, Bρ ×B1 ×B2, 0) 6= 0,

giving a contradiction. The proof is now complete. �

In our application we will need an infinite dimensional variant of Theorem 1.1
based on the Galerkin approximation. Let E = X ⊕Y be a splitting of E where
both X and Y are infinite dimensional. Assume we have sequences of finite
dimensional subspaces Xn ⊂ X, Yn ⊂ Y , En = Xn ⊕ Yn for n ≥ 1 so that
∞⋃

n=1
En = E. Let L1, L2 be as before and S, D, ∂D as defined earlier with ρ, σ,

M , and y1 not depending on n. Instead of the Palais–Smale condition we will
require that I satisfies the (PS)∗ condition that we recall next: I ∈ C1(E,R)
satisfies (PS)∗ condition on E with respect to {En}, if any sequence z` ∈ En`

with n` → ∞ as ` → ∞, satisfying (I|En
)′(zn) → 0 and I(zn) → c has a

convergent subsequence in E.

Theorem 1.2. Let I ∈ C1(E,R) be an even functional satisfying the (PS)∗

condition on E with respect to {En}. Assume LiEn = En, for i = 1, 2 and
n large and let ρ > 0, σ > 0 such that σ‖L−1

1 L2y1‖ > ρ. Assume there are
constants α ≤ β such that for all n large

inf
L1(S∩En)

I ≥ α,(1.8)

sup
L2((∂D)∩En)

I < α,(1.9)

sup
L2(D∩En)

I ≤ β,(1.10)

then I has a critical value c ∈ [α, β].

Proof. Note first that since I satisfies (PS)∗ condition on E with respect
to {En} I satisfies (PS) condition on En for n large. Applying Theorem 1.1 on
each subspace En, for n large, we get a sequence of points zn ∈ En satisfying

I(zn) ∈ [α, β] and (I|En
)′(zn) = 0.

By the (PS)∗ condition, zn has a convergent subsequence which converges to a
critical point of I in the range [α, β]. �

Remark 1.3. Looking at the proof of Theorem 1.1, we see that it suffices
to assume L1, L2 are odd homeomorphisms of E. Similar idea of the proof was
used in [9] and [11].
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2. Superquadratic Hamiltonian systems

This section is devoted to a proof of Theorem 0.1, that is we prove the
existence of infinitely many solutions of the Hamiltonian System (0.1). For this
purpose we use Theorem 1.2. Let us start introducing some basic notation.

Let E = W 1/2,2(S1,R2N ) be the Sobolev space of functions z ∈ L2(S1,R2N )
satisfying

π
∑
j∈Z

|j||aj |2 <∞,

where z(t) =
∑

j∈Z aje
ijt, with a−j = aj ∈ C2N . For z, η ∈ E we consider the

inner product

(2.1) 〈z, η〉 = π
∑

j∈Z\{0}

|j|aj · bj + 2πa0 · b0,

where η(t) =
∑

j∈Z bje
ijt with b−j = bj ∈ C2N . We denote by ‖ · ‖ the norm

associated to the inner product 〈 · , · 〉.
For given smooth z = (p, q) and η = (φ, ψ) in E we define the bilinear and

quadratic form B and Q as

(2.2) B(z, η) =

2π∫
0

(p · ψ̇ + φ · q̇) dt and Q(z) =
1
2
B(z, z).

Both Q and B can be extended continuously to the whole space E, and the
bilinear form B induces a linear, bounded, selfadjoint operator L : E → E

defined by

(2.3) B(z, η) = 〈Lz, η〉 for all z, η ∈ E.

We consider following subspaces of E

(2.4) Ej
+ = span{sin(jt)ek − cos(jt)ek+N , cos(jt)ek + sin(jt)ek+N ,

k = 1, . . . , N},
(2.5) Ej

− = span{sin(jt)ek + cos(jt)ek+N , cos(jt)ek − sin(jt)ek+N ,

k = 1, . . . , N},

for j ∈ N \ {0}, and

(2.6) E0 = span{e1, . . . , e2N}.

Here {e1, . . . , e2N} is the canonical basis in R2N . Defining the subspaces E+

and E− as

(2.7) E+ =
⊕
j≥1

Ej
+ and E− =

⊕
j≥1

Ej
−,
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we have the splitting E = E+ ⊕E− ⊕E0. We observe that E+, E−, and E0 are
the positive, negative, and null eigenspace of the linear operator L, respectively.
Consequently Q is positive on E+, negative on E−, and it vanishes on E0. We
see that on the space E the norm can be written as

(2.8) ‖z‖2 = Q(z+)−Q(z−) + |z0|2,

where z = z+ + z− + z0 with z+ ∈ E+, z− ∈ E− and z0 ∈ E0.
In order to find 2π-periodic solutions of (0.1) we consider the functional

I : E → R defined as

(2.9) I(z) = Q(z)−
2π∫
0

H(z, t) dt,

which is of class C1 in E thanks to hypotheses (H1) and (H3) (see [10]). It is
well known that the 2π-periodic solutions of (0.1) are the critical points of the
functional I.

Next we show that I satisfies the necessary compactness assumptions. We
consider the subspaces En =

⊕
1≤j≤n(Ej

+ ⊕ Ej
−) ⊕ E0, for n ≥ 1, and we see

that
⋃∞

n=1En = E. We study the (PS)∗ condition for I on E with respect to
this sequence of subspaces.

Lemma 2.1. The functional I satisfies (PS)∗ condition on E with respect to
the family of subspaces {En}.

Proof. The proof is similar to Lemma 1.2 in [5], where (PS) condition is
proved for a related functional. Thus we will be sketchy here. Let z` ∈ En`

be
such that I(z`) → c and (I|En`

)′(z`) → 0 as ` → ∞. We write z` as z = (p, q)
for simplicity. For ` large we have

c+ o(1) + o(1)‖p‖ = I(z)− (I|En`
)′(z) · p = −

2π∫
0

H(z, t)−Hp(z, t) · p,

and similarly,

c+ o(1) + o(1)‖q‖ = −
2π∫
0

H(z, t)−Hq(z, t) · q.

Here o(1) → 0 as `→∞. Then, using (H2), we get

(2.10)
1
α
‖p||+ 1

β
‖q‖ ≥

(
1−

(
1
α

+
1
β

)) 2π∫
0

H(z, t) dt− C,

where C denotes here and in what follows an appropriate constant.
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On the other hand, it is proved in [5] that (H2) implies

(2.11) H(p, q, t) ≥ C(|p|α + |q|β)− C, for all (p, q) ∈ R2N , t ∈ R.

Thus, from (2.10) and (2.11), we find

‖p‖+ ‖q‖ ≥ C(‖p‖α
α + ‖q‖β

β)− C.

Here ‖ · ‖p denotes the usual norm in Lp(S1). Next, using that |(I|En`
)′(z)z+| ≤

‖z+‖, where z = z+ + z− + z0 with z+ ∈ E+, z− ∈ E−, z0 ∈ E0 we find that

‖z+‖ ≤ C(1 + ‖p‖α−1
α + ‖q‖β−1

β ).

Similarly we find

‖z−‖ ≤ C(1 + ‖p‖α−1
α + ‖q‖β−1

β ).

Putting all this together, we obtain that z` is bounded in E. Note that

(2.12) (I|En`
)′(z) = Lz − Pn`

g′(z),

where Pn`
is the orthogonal projection from E to En`

and

g(z) = −
2π∫
0

H(z, t) dt

satisfies that g′(z) is compact. Since z` is bounded we have that (z`)0 has a
convergent subsequence in E0. Then from (2.12) and the fact that g′ is compact
we get z` − (z`)0 has a convergent subsequence in E. �

To use Theorem 1.2 we need to check the linking conditions (1.8)–(1.10). To
that end, let k be a fixed integer and, for n ≥ k, let us consider the subspaces in
En

Xn =
⊕

1≤j≤n

Ej
− ⊕ E0 ⊕

⊕
1≤j≤k−1

Ej
+,(2.13)

Yn =
⊕

k≤j≤n

Ej
+.(2.14)

We observe that En = Xn ⊕ Yn. We start proving the (1.8) and for this we
consider the operator L1 as the identity.

Lemma 2.2. There exist αk > 0 and ρk > 0 both independent of n ≥ k such
that for all n ≥ k,

(2.15) inf
z∈L1(Sρk

∩Yn)
I(z) ≥ αk
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where Sρk
= {y ∈ E+ | ‖y‖ = ρk}. Furthermore, we have αk →∞ as k →∞.

Proof. We first recall that E is embedded in Lγ(S1,R2N ) for any γ ∈
[1,∞), so that there is a(γ) > 0 such that

(2.16) ‖z‖γ ≤ a(γ)‖z‖ for all z ∈ E,

and also that for all z ∈
⊕

k≤j E
j
+, we have

(2.17) ‖z‖ ≥
√
k‖z‖2.

We see from (H3) that for all (p, q) ∈ R2N , t ∈ R we have

(2.18) |H(p, q, t)| ≤ C(|z|α
′
+ 1).

Now consider z = (p, q) ∈ Yn. Then, for a constant a > 0 depending only on α′,
we have

‖z‖α′

α′ ≤ ‖z‖2‖z‖α′−1
2(α′−1) ≤

a√
k
‖z‖‖z‖α′−1.

So, for z = L1(p, q), we have

I(z) ≥ ‖z‖2 − C(‖z‖α′

α′ + 1) ≥ ‖z‖2 − C

(
a√
k
‖z‖α′ + 1

)
.

Then we choose ρk as

(2.19) ρk =
( √

k

2Ca

)1/(α′−2)

.

For z ∈ Sρk
∩ Yn we find that

(2.20) I(z) ≥ 1
2

( √
k

2Ca

)2/(α′−2)

− C.

Defining αk as the right hand side of (2.20) and noting that both ρk and αk are
independent of n ≥ k, we complete the proof of the lemma. �

Our next goal is to prove (1.9) and (1.10). For that purpose let us define the
operator Lσ : E → E as

(2.21) Lσ(z) = (σu−1p, σv−1q),

for z = (p, q) ∈ E, and given numbers σ > 0, u > 1, v > 1. It is easy to see that
the operator Lσ is linear, bounded and invertible. Using Fourier series it is also
easy to prove the following lemma.

Lemma 2.3. Lσ(En) ⊂ En for any n ≥ 1.

Now we choose the numbers u > 1, v > 1 satisfying

1
α
<

u

u+ 1
and

1
β
<

v

v + 1
,

where α and β are given in (H2). We have
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Lemma 2.4. There exist positive numbers βk, σk and Mk satisfying σk > ρk

and all independent of n ≥ k, such that for all n ≥ k

(2.22) sup
Lσk

(∂D∩En)

I ≤ 0 and sup
Lσk

(D∩En)

I ≤ βk,

where

(2.23) D =
{
z ∈ E− ⊕ E0 ⊕

⊕
1≤j≤k

Ej
+

∣∣∣∣ ‖z− + z0‖ ≤Mk, ‖z+‖ ≤ σk

}
.

Proof. From (H2) and (2.11) we see that for all z = (p, q) ∈ E we have

2π∫
0

H(z, t) dt ≥ C(‖p‖α
α + ‖q‖β

β)− 2πC.

Let z = Lσ(p, q) with (p, q) ∈ D where Mk and σ = σk are determined in a
moment. Then z = (σu−1p+, σv−1q+) + (σu−1p−, σv−1q−) + (σu−1p0, σ

v−1q0),
and

(2.24) I(z) ≤σu+v−2(‖(p+, q+)‖2 − ‖(p−, q−)‖2)

− C(σ(u−1)α‖p+ + p− + p0‖α
α + σ(v−1)β‖q+ + q− + q0‖β

β) + 2πC.

By continuity of the corresponding projections given by (p, q) = w = w0 +w+ +
w− with w0 ∈ E0, w+ ∈ E+, w− ∈ E−, we have

‖p0‖α ≤ Cα‖p‖α, ‖q0‖β ≤ Cβ‖q‖β

and
‖p+ + p−‖α ≤ Cα‖p‖α, ‖q+ + q−‖β ≤ Cβ‖q‖β .

Thus, from (2.24), it follows that

I(z) ≤σu+v−2(‖(p+, q+)‖2 − ‖(p−, q−)‖2)− C{σ(u−1)α(‖p+ + p−‖α
α + |p0|α)

+ σ(v−1)β(‖q+ + q−‖β
β + |q0|β)}+ 2πC.

Assume, without lose of generality, that α ≤ β. Then, by Hölder inequality, we
have

‖p+‖α ≤
1
2
‖p+ + p−‖α + C‖p+ − p−‖β .

Then, using a theorem of M. Riesz, we find that

(2.25) ‖p+‖α ≤
1
2
‖p+ + p−‖α + C‖q+ + q−‖β

(see [4]). Note that p+ = q+ and p− = −q−, conjugate in the sense given in [4].
Since p+ ∈

⊕
1≤j≤k(Ej

+ + Ej
−) is a finite dimensional subspace, there exists

C(k) > 0 such that

(2.26) ‖p+‖ ≤ C(k)‖p+‖α.



220 P. Felmer — Z.-Q. Wang

Then we get from (2.25) and (2.26) that

‖p+‖ ≤ C(‖p+ + p−‖α + ‖q+ + q−‖β),

where C depends on k. This implies the existence of a constant C > 0 such that
either

(2.27) ‖q+ + q−‖β ≥ C‖p+‖

or

(2.28) ‖p+ + p−‖α ≥ C‖p+‖.

Setting σ = ‖(p+, q+)‖, if (2.27) holds, we get

I(z) ≤ σu+v − C(σuα − 1),

or, if (2.28) holds,
I(z) ≤ σu+v − C(σvβ − 1).

In both cases we can choose σk = σ such that if ‖(p+, q+)‖ = σk then

I(z) ≤ 0.

We may assume σk > ρk (given in Lemma 2.2). For this fixed σk > 0, we have

I(z) ≤ σu+v
k − σu+v−2

k ‖(p−, q−)‖2 − C(σ(u−1)α
k |p0|α + σ

(v−1)β
k |q0|β).

Thus we may choose Mk large enough so that, when

‖(p−, q−)‖2 + |p0|2 + |q0|2 = M2
k ,

I(z) ≤ 0 also holds. Thus we have proved the first inequality in (2.22)
Finally, for fixed Mk > 0, σk > 0 as above, take βk simply as the maximum

value of I over Lσk
(D ∩ En). Note that all these arguments are independent of

n ≥ k. This finishes the proof. �

Now we are in a position to prove Theorem 0.1.

Proof of Theorem 0.1. For a given k ≥ 1, Lemmas 2.1–2.4 allow us to
use Theorem 1.2. First we choose y1 ∈ Ek

+ with ||y1|| = 1. Then it is easy to
check that with L1 = Id and L2 is given in (2.21) with σ = σk we have

σk||L−1
1 L2y1|| = (σk)(u+v)/2 ≥ σk > ρk.

Then the functional I possesses a critical value ck ∈ [αk, βk]. Since αk → ∞ as
k → 0, we get infinitely many critical values of I and therefore infinitely many
solutions of (0.1). �

Remark 2.5. As mentioned in Remark 0.3, hypothesis (H3) can be replaced
by (H3’). In order to prove this theorem we need to redefine the Hamiltonian
outside a given ball in R2N , to obtain a polynomial growth at infinity. Then
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using (H3’), one can show that the obtained critical point is inside the given
ball. We do not carry out the details (see [5]).

3. Superquadratic elliptic systems

In this section we give the proof of Theorem 0.2. We follow the pattern used
in Section 2, with some modifications, that is we set up a functional analytic
framework where strong solutions of (ES) correspond to critical points of a func-
tional. Then we show that this functional satisfies the compactness assumption
of Theorem 1.2 and also the geometric conditions (1.8)–(1.10).

We shall consider the spaces Es, which are obtained as the domains of frac-
tional powers of the operator

−4 : H2(Ω) ∩H1
0 (Ω) ⊂ L2(Ω) → L2(Ω),

where 4 denotes the Laplacian and H2(Ω), H1
0 (Ω) are the usual Sobolev spaces.

Namely Es = D((−4)s/2) for 0 ≤ s ≤ 2, and the corresponding operator is
denoted by As

As : Es → L2(Ω).

The spaces Es are Hilbert spaces with inner product

(3.1) (u, v)Es =
∫

Ω

AsuAsv dx.

Its associated norm is denoted by ‖u‖2
Es . In Es we find the Poincaré’s inequality

for the operator As

(3.2) ‖Asu‖L2(Ω) ≥ λ
s/2
1 ‖u‖L2(Ω) for all u ∈ Es,

where λ1 is the first eigenvalue of −4.
Next we define the spaces on which we set up the problem. For numbers

s > 0 and t > 0 with s+ t = 2 we define the Hilbert space E = Es ×Et and the
bilinear form B : E × E → R by the formula

(3.3) B((u, v), (φ, ψ)) =
∫

Ω

AsuAtψ +AsφAtv dx.

The form B is continuous and symmetric and there exists a selfadjoint bounded
linear operator L : E → E so that

(3.4) B(z, η) = (Lz, η)E

for all z, η ∈ E. Here ( · , · )E denotes the natural inner product in E induced by
Es and Et. We can also define the quadratic form Q : E → R associated to B
and L as

(3.5) Q(z) =
1
2
(Lz, z)E =

∫
Ω

AsuAtv dx
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for all z = (u, v) ∈ E. We can define the subspaces

E+ = {(u,A−tAsu) | u ∈ Es} and E− = {(u,−A−tAsu) | u ∈ Es},

which give a natural splitting E = E+ ⊕ E−. The spaces E+ and E− are the
positive and negative eigenspaces of L, they are consequently orthogonal with
respect to the bilinear form B, that is we also find that

(3.6)
1
2
‖z‖2

E = Q(z+)−Q(z−)

where z = z+ + z−, z± ∈ E±.
Next we define the functional associated to the Hamiltonian. Now we will

choose the numbers s and t defining the orders of the Sobolev spaces involved.
From inequality (ii) in the Introduction we see the existence of s, t ∈ R, s+ t = 2
such that

(3.7)
(

1− 1
p

)
max

{
p

α
,
q

β

}
<

1
2

+
s

N
,

and

(3.8)
(

1− 1
q

)
max

{
p

α
,
q

β

}
<

1
2

+
t

N
.

Using (iii) and (iv) if N ≥ 5, we can choose s > 0 and t > 0. From the fact that
p/α ≥ 1 and q/β ≥ 1 we find, following from (3.7) and (3.8) that

(3.9)
1
p
>

1
2
− s

N
and

1
q
>

1
2
− t

N
.

These last inequalities and Sobolev Embedding Theorem give the compact in-
clusions

Es → Lp(Ω), Et → Lq(Ω).

Now we can define a functional Φ : E → R as

(3.10) I(z) = Q(z)− g(z) =
∫

Ω

AsuAtv dx−
∫

Ω

H(u(x), v(x), x) dx,

for z = (u, v) ∈ E. The functional I is of class C1 and the functional g has
a compact gradient. We refer the reader for details and proof of the aspects
discussed so far to [6]. In particular, see in [6] that critical points of I correspond
to the strong solutions of (ES).

Now we define a Galerkin scheme in order to apply Theorem 1.2. We consider
a basis of L2(Ω) constituted by eigenfunctions {φj} of

−4φ = λφ in Ω,

φ = 0 on ∂Ω,
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with associated eigenvalues {λj}. If u ∈ L2(Ω) we write

u =
∞∑

j=1

ajφj ,

its Fourier series with respect to the basis {φj}. Then, for n ≥ 1, we define

(3.11)

Es
n =

{
u ∈ L2(Ω)

∣∣∣∣ n∑
j=1

λs
j |aj |2 <∞

}
,

Et
n =

{
u ∈ L2(Ω)

∣∣∣∣ n∑
j=1

λt
j |aj |2 <∞

}
.

Then we consider En = Es
n ×Et

n, and we see that
⋃∞

n=1En = E. The following
lemma gives the compactness needed for I.

Lemma 3.1. The functional I satisfies (PS)∗ condition on E with respect to
the family of subspaces {En}.

Proof. The proof of this lemma is easily obtained with minor modifications
of Proposition 2.1 in [6]. We omit the details. �

Next we fix a k ∈ N and define a splitting of space En for n ≥ k. Let

Xn =
⊕

1≤j≤n

Ej
− ⊕

⊕
1≤j≤k−1

Ej
+ and Yn =

⊕
k≤j≤n

Ej
+,

where

Ej
+ = {(u,A−tAsu) |u = ajφj} and Ej

− = {(u,−A−tAsu) |u = ajφj}.

We observe that En = Xn ⊕ Yn. As in Section 2, we consider the operator L1

as the identity. We have

Lemma 3.2. There exist αk > 0 and ρk > 0 independent of n ≥ k such that
for all n ≥ k,

inf
z∈L1(Sρk

∩Yn)
I(z) ≥ αk,

where Sρk
= {y ∈ E+ | ‖y‖ = ρk}. Furthermore, αk →∞ as k →∞.

Proof. The proof is obtained by minor modifications of Lemma 2.2. We
note that we need to replace (2.17) by the following: given z ∈

⊕
k≤j≤nE

j
+ then

‖z‖E ≥ max{λs
k, λ

t
k}‖z‖L2 .

We note that the sequence of eigenvalues λk diverges to ∞ as k →∞. �

Next we define the operator Lσ : E → E as

(3.12) Lσ(z) = (σµ−1u, σν−1v),
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for z = (u, v) ∈ E, and where σ will be given later and µ and ν are chosen so
that

1
α
<

µ

µ+ 1
and

1
β
<

ν

ν + 1
,

where α and β are given in (H2). It is easy to see that Lσ(En) ⊂ En for any
n ≥ 1. We have

Lemma 3.3. There exist positive numbers βk, σk and Mk, which are all
independent of n ≥ k and satisfy σk > ρk, such that

(3.13) sup
Lσk

(∂D∩En)

I ≤ 0 and sup
Lσk

(D∩En)

I ≤ βk,

where

(3.14) D =
{
z ∈ E− ⊕

⊕
1≤j≤k

Ej
+

∣∣∣∣ ‖z−‖E ≤Mk, ‖z+‖E ≤ σk

}
.

Proof. Let us consider z = Lσ(u, v) with (u, v) ∈ D. Then we can write
z = (σµ−1u+, σ

ν−1v+)+ (σµ−1u−, σ
ν−1v−). Then, using the definition of Q and

the spaces E+ and E−, we have

(3.15) Q(z) = σµ+ν−2(‖z+‖2
E − ‖z−‖2

E).

On the other hand, from (E2), we have

(3.16)
∫

Ω

H(z, x) dx

≥ C

{ ∫
Ω

(σα(µ−1)|u+ + u−|α + σβ(ν−1)|v+ + v−|β) dx− |Ω|
}
.

The functions u+ and u− can be written as

u+ =
k∑

i=1

αiφi and u− =
k∑

i=1

γiφi + û−,

where û− is orthogonal to φi, i = 1, . . . , k in the L2 sense. Then using Hölder
inequality we obtain

k∑
i=1

λs−t
i (α2

i + αiγi) =
∫

Ω

(u+ + u−)As−tu+(3.17)

≤ ‖u+ + u−‖Lα(Ω)‖As−tu+‖Lα′ (Ω).

Then, there exists a constant Ck such that

(3.18)
k∑

i=1

λs−t
i (α2

i + αiγi) ≤ Ck‖u+ + u−‖Lα(Ω)‖u+‖L2(Ω).
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Similarly, since v+ = As−tu+ and v− = −As−tu−, we have

(3.19)
k∑

i=1

λs−t
i (α2

i − αiγi) =
∫

Ω

(v+ + v−)u+ ≤ ‖v+ + v−‖Lβ(Ω)‖u+‖Lβ′ (Ω).

Then there is a constant Ck, so that

(3.20)
k∑

i=1

λs−t
i (α2

i − αiγi) ≤ Ck‖v+ + v−‖Lβ(Ω)‖u+‖L2(Ω).

Depending on the sign of
∑k

i=1 λ
s−t
i αiγi we use (3.18) or (3.20) to conclude that

‖u+‖L2(Ω) ≤ Ck‖u+ + u−‖Lα(Ω) or ‖u+‖L2(Ω) ≤ Ck‖v+ + v−‖Lβ(Ω),

and then

I(z) ≤ σµ+ν−2(‖z+‖2
E − Ckσ

α(µ−1)‖u+‖α
L2(Ω)) + C|Ω|

or
I(z) ≤ σµ+ν−2(‖z+‖2

E − Ckσ
β(ν−1)‖u+‖β

L2(Ω)) + C|Ω|.
Thus, we may choose ‖z+‖E = σk large enough, so that σk > ρk and I(z) ≤ 0.
Then, taking ‖z+‖E ≤ σk,

I(z) ≤ ‖z+‖µ+ν
E − ‖z+‖µ+ν−2

E ‖(u−, v−)‖2
E + C|Ω|

and then chosing ‖(u−, v−)‖2
E = Mk large enough we find that

I(z) ≤ 0.

In this way we finished with the proof of the first part of Lemma 3.3. Next we
choose βk so the second inequality holds. �

Proof of Theorem 0.3. For a given k ≥ 1, Lemmas 3.1–3.3 allow us to
use Theorem 1.2. Then the functional I possesses a critical value ck ∈ [αk, βk].
Since αk → ∞ as k → ∞, we get infinitely many critical values of I, therefore
infinitely many solutions of (ES). �
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