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1. Introduction

The motivation for our problem comes from permanence theory, which plays
an important role in mathematical ecology. Roughly speaking, a flow f on
Rn× [0,∞) is said to be permanent (or uniformly persistent) whenever Rn×{0}
is a repeller (see [7]). Other closely related terminology includes cooperativity,
persistence and ecological stability. For a discussion of how these terms are
related, see [1], [9]. The criterion of permanence for biological systems is a
condition ensuring the long-term survival of all species. Sufficient conditions for
permanence have been given for a wide variety of models. For more details and
extensive bibliographies concerning the problem, we refer the reader to [2], [8].

In this paper we show that if S ⊂ Rn × {0} is an isolated invariant set with
nonzero homological Conley index, then there exists an x in Rn × (0,∞) such
that ω(x) is contained in S. This may be understood as a strong violation of
permanence.

We first give a brief account of the Conley index theory.

1991 Mathematics Subject Classification. Primary 58G10; Secondary 54H20.

Key words and phrases. Dynamical systems, topological invariants.
Research supported by the KBN grant 2 P03A 040 10.

c©1998 Juliusz Schauder Center for Nonlinear Studies

153



154 K. Wójcik

2. Isolating blocks and Conley index

The Conley index theory is a very elegant and useful tool in the study of
qualitative properties of nonlinear dynamical systems. Generalizing the Morse
index of a non-degenerate critical point of a differentiable function it associates
with an isolated invariant set of a flow a homotopy type of a space with base
point.
Let X be a locally compact, metric space. By a flow on X we mean a

continuous function
X × R 3 (x, t)→ xt ∈ X

such that x0 = x and x(s+ t) = (xs)t. The backward flow is defined as the map

X × R 3 (x, t)→ x(−t) ∈ X.

A set S ⊂ X is called invariant if SR = S. If N ⊂ X, then the set inv (N) =
{x ∈ N : xR ⊂ N} is the maximal invariant set contained in N . N is called
an isolating neighborhood if inv (N) ⊂ intN . An invariant set S is said to be
isolated if there exists an isolating neighborhood N such that S = inv (N). The
basis of the Conley index theory is the notion of an isolating block. We recall
that a set Σ ⊂ X is called a δ-section provided Σ(−δ, δ) is an open set in X and
the map

Σ× (−δ, δ) 3 (x, t)→ xt ∈ Σ(−δ, δ)
is a homeomorphism. Let B be a compact subset X. B is called an isolating
block if there exists a δ > 0 and two δ-sections Σ+ and Σ− such that

cl (Σ+ × (−δ, δ)) ∩ cl (Σ− × (−δ, δ) = ∅,(i)

B ∩ (Σ+(−δ, δ)) = (B ∩ Σ+)[0, δ),(ii)

B ∩ (Σ−(−δ, δ)) = (B ∩ Σ−)(−δ, 0],
∀x ∈ ∂B \ (Σ+ ∪ Σ−) ∃µ < 0 < ν : xµ ∈ Σ+, xν ∈ Σ−(iii)

and x[µ, ν] ⊂ ∂B.

We put B+ = B ∩ Σ+, B− = B ∩ Σ−, a+ = {x ∈ B+ : x[0,∞) ⊂ B}, a− =
{x ∈ B− : x(−∞, 0] ⊂ B}, A+ = {x ∈ B : x[0,∞) ⊂ B} and A− = {x ∈ B :
x(−∞, 0] ⊂ B}.

Theorem 1. If S is an isolated invariant set, then each isolating neigh-
borhood of S contains a block which is a neighborhood of S. If B1 and B2
are two blocks which isolate S then the homotopy types of the pointed spaces
(B1/B−1 , [B

−
1 ]) and (B2/B

−
2 , [B

−
2 ]) coincide.

For the proof see [4], [5].
The homotopy type determined by Theorem 1 is denoted by h(S) and is

called the Conley index of S. Unfortunately, working with homotopy classes
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of spaces is difficult. To get around this, it is useful consider the homological
Conley index. If H denotes an arbitrary homology or cohomology functor, then
H(h(S)) ∼= H(B,B−). This is proved in [11, p. 57]. By h∗(S) we denote the
Conley index of S with respect to the backward flow. Obviously H(h∗(S)) =
H(B,B+). In this paper we denote by H the singular homology functor with
coefficients in Z (or any field), but this is not an essential assumption.

3. Main result

For brevity, we write E+ = Rn× [0,∞). The main result of this paper is the
following

Theorem 2. Assume that f is a continuous flow on E+ (observe that ∂E+

is invariant for f). Let S ⊂ ∂E+ be an isolated invariant set (in E+) with
nonzero homological Conley index (in the whole phase space E+). Then there
exists an x in intE+ = Rn × (0,∞) such that ∅ 6= ω(x) ⊂ S.

Remark 3. The same problem was first investigated by A. Capietto and
B. M. Garay in [3]. Their approach works for flows induced by vector fields
and with the assumption that S is a saturated invariant set with nontrivial
Conley index with respect to the flow f restricted to ∂E+. Geometrically, the
saturatedness of S means that there is a neighbourhood N of S such that the
trajectories run downward inside N \ ∂E+. By application of the time-duality
of the Conley index (see [10]), the results of [12] extend Theorem 1 of [3] to the
case in which the set S is of attracting type (see definition below) with nonzero
Conley index on the boundary and any continuous flow. Actually, Proposition
11 of [12] is a special case of our Theorem 2. Indeed, for attracting type sets the
Conley indices with respect to f and f restricted to the boundary are the same,
by Remark 9 of [12].
We use the notion of the repelling type set introduced in [12]. An isolated

invariant set S ⊂ ∂E+ is called of repelling type if and only if the stable set
W+(S) = {x ∈ E+ : ∅ 6= ω(x) ⊂ S} is contained in ∂E+. Set of attracting type
are defined by reversal of time.
We shall need the following fact:

Lemma 4. Assume S ⊂ ∂E+ is an isolated invariant set for f and B is an
isolating block such that S = invB. Then

(1) H(B,B \ S) = 0,
(2) if S is of repelling type then H(B+, B+ \ a+) = 0.

Proof. (1) Using excision property we have H(B,B \ S) ∼= H(E+, E+ \ S)
and any point p ∈ int E+ is a strong deformation retract of both E+ and E+ \S
(by radial deformation).
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(2) Let Σ+ be a δ-section from the definition of the isolating block (hence
B+ = Σ+ ∩B). Since a+ ⊂ intB+(rel Σ+) (see [4]), we have

H(B+, B+ \ a+) ∼= H(Σ+,Σ+ \ a+),

by the excision property. We show that H(Σ+,Σ+ \a+) = 0. As S is of repelling
typ, a+ ⊂ intB+∩∂E+ and there is a compact neighborhood K of a+ such that
K ⊂ intB+ ∩ ∂E+. For 0 < δ1 < δ we put

U = Σ+(−δ, δ) ∩ intE+,
V = K(−δ1, δ1) ⊂ ∂E+,
W = (K \ a+)(−δ1, δ1) ⊂ ∂E+.

We define

N = U ∪ V, N1 = U ∪W and K+ = (Σ+ ∩ intE+) ∪K.

It follows by the definition of δ-section that K+ is a strong deformation retract
of N and K+ \ a+ is a strong deformation retract of N1, so

H(N,N1) ∼= H(K+,K+ \ a+).

By the excision property we have

H(K+,K+ \ a+) ∼= H(Σ+,Σ+ \ a+),
H(N,N1) ∼= H(intE+ ∪ V, intE+ ∪W ).

Hence
H(Σ+,Σ+ \ a+) ∼= H(intE+ ∪ V, intE+ ∪W ) = 0,

because any point p ∈ intE+ is a strong deformation retract of both intE+ ∪ V
and intE+ ∪W (by radial deformation).
Theorem 2 is a simple consequence of the following

Proposition 5. If S ⊂ ∂E+ is of repelling type then H(h(S)) = 0.

Proof. Let B be any isolating block for S. By Proposition 3.7 of [4], B−

(or B+) is a strong deformation retract of B \ A+ (B \ A−, respectively) so we
must prove that H(h(S)) ∼= H(B,B−) ∼= H(B,B \ A+) is trivial. Consider the
Mayer–Vietoris exact sequence for the triple (B,B \A+, B \A−) (see [6]):

· · · → H(B,B \A)→ H(B,B \A+)⊕H(B,B \A−)→ H(B,B \ S)→ · · · ,

where A = A+ ∪A−.
By Lemma 4, H(B,B \ S) = 0, so that

H(B,B \A) ∼= H(B,B \A+)⊕H(B,B \A−).

We show that H(B,B \ A) ∼= H(B,B \ A−) and this gives H(B,B \ A+) = 0
because we are dealing with finitely generated abelian groups. By Proposition
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3.5 of [4] B+ \ a+ is a strong deformation retract of B \ A, so it is sufficient to
prove that H(B,B+ \ a+) is isomorphic to H(B,B+). For this we take the long
exact sequence of the triple (B,B+, B+ \ a+):

· · · → H(B+, B+ \ a+)→ H(B,B+ \ a+)→ H(B,B+)→ · · · ,

in which the first term is trivial by Lemma 4.

Remark 6. In [12] it was proved that the Euler characteristic of the Conley
index of a repelling type set is zero.

Remark 7. Let (X, d) be a locally compact, metric space and ∅ 6= E be
a closed subset of X. Assume that f is a flow on E with invariant boundary
∂E. Suppose that an isolated invariant set S ⊂ ∂E admits an isolating block for
which there are a set K ⊂ B ∩ intE and a deformation F : B × [0, 1]→ B such
that:

(1) F0 = idB ,
(2) F1(B) = K,
(3) Ft(x) = x for all x ∈ K, t ∈ [0, 1],
(4) Ft(x) ∈ B \ ∂E for all x ∈ B, t ∈ (0, 1].

Then, if the homological Conley index H(hE(S)) of S in E is nontrivial then
there is an x in E \ ∂E such that ∅ 6= ω(x) ⊂ S. For the proof suppose that
W+(S) ⊂ ∂E. Then H(hE(S)) ∼= H(B,B−) ∼= H(B,B \ A+). But A+ is
contained in ∂E, so K is a strong deformation retract of both B and B \ A+,
hence H(hE(S)) = 0.
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