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TRAVELLING WAVES FOR AN INFINITE LATTICE:
MULTIBUMP TYPE SOLUTIONS

Didier Smets

1. Introduction

We consider a one dimensional infinite lattice of particles with nearest neigh-
bour interaction

(1) q̈k(t) = V x(t, qk+1(t)− qk(t))− V x(t, qk(t)− qk−1(t)), k ∈ Z.

A solitary wave is a solution of (1) of the form

qk(t) = u(k − ct), k ∈ Z.

Substituting in (1), we obtain the conditions

c2u′′(k − ct) =V x(t, u(k + 1− ct)− u(k − ct))(2)

− V x(t, u(k − ct)− u(k − 1− ct)), k ∈ Z, t ∈ R.

Assuming further that V ( · , x) is 1/c-periodic for each x ∈ R, equations (2)
reduce to the second order forward-backward differential-difference equation:

(3) c2u′′(t) = V x(−t/c, u(t + 1)− u(t))− V x(−t/c, u(t)− u(t− 1)).
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In a preceding work (see [9]), we studied the autonomous case corresponding to
V (t, x) = V (x). Under the assumptions:

(V1)

{
V (x) = λ

x2

2
+ W (x), W ∈ C1(R, R),

W (0) = 0, W ′(x) = o(|x|), x → 0,

and

(V2)

{
supR W > 0 and there exists α > 2 such that

for all x ∈ R, αW (x) ≤ xW ′(x),

we proved:

Theorem 1.1. For every c such that c2 > max(0, λ), equation (3) has a non-
trivial classical solution u such that u′ ∈ L2(R).

This theorem extends without any change in the setting that will be our.
The solutions were found as critical points of the functional

ϕ(u) :=
∫

R

[
c2

2
(u′(t))2 − V (u(t + 1)− u(t))

]
dt

defined on the space

X := {u ∈ H1
loc(R) : u′ ∈ L2(R), u(0) = 0}.

To overcome the non-compactness due to “translation” invariance, we used
a weak convergence argument together with Lieb’s lemma. These arguments are
the first steps to establish the caracterisation of Palais–Smale sequences for ϕ.

In this work, we will prove a multiplicity result in the non-autonomous case.
More precisely, we will search for infinitely many solutions of (3) of multibump
type.

The methods we use are originated in the works of Coti Zelati, Ekeland,
Séré (see [3], [7]) and after refined by Rabinowitz, Coti Zelati ([4], [5]), Arioli,
Caldiroli, Gazzola, Montecchiari and Terracini ([1], [2]).

In all these works, the functionals are invariant under a non compact but
discrete group (or the product of such a group with a compact one). In the au-
tonomous case, our problem is invariant under a group isomorphic to R for which
the above methods don’t seem to work.

Moreover, in the special case of the integrable Toda lattice, it is known from
scattering theory that solitons are found in relation with bound states of a linear
spectral problem, those of which are of finite number. Of course, solitary waves
are not necessarily solitons but this argument shows it seems difficult to find
multibump solutions in the general autonomous setting.

From the physical point of view, the assumption of time periodic dependence
for the potential is not without any sense. Many phenomenons related to a lattice
are affected by periodic changes such as luminosity, temperature or others.
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2. Functional seting and some previous results

From now on, we will asume that

(V3) V (t, x) := p(t)V (x),

with V satisfying (V1), (V2) and p ∈ C(R, R) is positive, 1/c-periodic and
|p|∞ = 1.

For simplicity, we will denote P (t) := p(−t/c), thus obtaining a 1-periodic
function. We also define the linear operator A by Au(t) := u(t + 1)− u(t), and
the energy functional by:

ϕ(u) :=
∫

R

[
c2

2
(u′)2 − P · V (Au)

]
on the space

X := {u ∈ H1
loc(R) : u′ ∈ L2(R), u(0) = 0},

endowed with the norm ‖u‖ := |u′|2.

Notations. For a set A and a positive number δ, Aδ will denote the points
whose distance to A is less or equal than δ. When A is finite or at least discrete,
we will also use B(A, δ) to represent the same set. For a real functional ϕ, ϕd

will denote the points x in the domain of ϕ such that ϕ(x) ≤ d. Finally, supp(u)
denotes the support of the function u.

The following results have been proved in [8], [9] or are trivial adaptations
of some therein.

Lemma 2.1. Any critical point u of ϕ is a classical solution of (3).

Lemma 2.2. The functional ϕ belongs to C1(X, R) and satisfies the assump-
tions of the Mountain Pass Lemma, i.e. there exist r > 0, e ∈ X with ‖e‖ > r

and
b := inf

‖u‖=r
ϕ(u) > ϕ(0) ≥ ϕ(e).

The corresponding inf max value will be denoted by d.

Lemma 2.3. If (un) ⊂ X is a Palais–Smale sequence for ϕ at level l then
l ≥ 0.

Lemma 2.4. There exists C1 > 0 such that any non trivial critical point u

of ϕ satisfies ϕ(u) ≥ C1.
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Lemma 2.5. There exists C2 > 0 such that any non trivial critical point u

of ϕ satisfies ‖u‖ ≥ C2.

For a function u ∈ X, we define

τau(t) := u(t− a)− u(−a).

It is clear from the definition that ϕ is invariant under the group (τk)k∈Z. The fol-
lowing lemma characterises the non-compactness of the Palais–Smale sequences.

Lemma 2.6. Let (un) ⊂ X a Palais–Smale sequence for ϕ at level l. Then
there exist a subsequence (still denoted by un), an integer k ≤ l/C1 − l, k se-
quences (yi

n)1≤i≤k ⊂ Zk and k + 1 critical points v0, . . . , vk of ϕ such that

(a) |yi
n| → ∞ for all i,

(b) |yi
n − yj

n| → ∞ for all i 6= j,
(c) l =

∑k
i=0 ϕ(vi),

(d)
∥∥un − v0 −

∑k
i=1 τyi

n
vi

∥∥ → 0.

Remark 2.7. In [8], Lemma 2.6 was proved under the supplementary as-
sumption that V ∈ C2.

3. Multibump solutions

Following Coti Zelati, Ekeland and Séré [3], we will assume a “non-degene-
racy” condition for ϕ, more precisely:

(∗) there exists ε0 > 0 such that F/Z is finite,

where F := {u ∈ X \ {0} : ϕ′(u) = 0, ϕ(u) < d + ε0} and the quotient is
understood in connection with the invariance under the (τk)k∈Z group.

Remark 3.1. Notice that if condition (∗) fails, then by Lemma 2.1, equa-
tion (3) admits infinitely many solutions up to symmetries.

We pick up one element in each equivalence class of F/Z and call F the re-
sulting set. Following Caldiroli and Montecchiari [2], we will say that a critical
point u is a multibump solution of kind (n, ρ) if there exists k1, . . . , kn ∈ Z
such that

u ∈ B

( n∑
i=1

τki
F, ρ

)
.

Our main theorem writes

Theorem 3.2. Suppose (V1)–(V3), (∗) are satisfied and

(V4) there exists ε1 > 0 such that V is concave in [−ε1, ε1].
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Then for every ρ > 0, k1 < . . . < kn ∈ Z there exist N ∈ N and a critical point
u of ϕ such that

u ∈ B

( n∑
i=1

τkiNF, ρ

)
.

In particular, for every ρ > 0, n ∈ N, there exist infinitely many multibump
solutions of kind (n, ρ).

This theorem will be proved in the next section.

4. Proof of the main result

Henceforth, we assume that the assumptions of Theorem 3.2 are satisfied. We
start this section by a lemma that somewhat says that non convergent Palais–
Smale sequences are not too close to critical points.

Lemma 4.1. Let G := {
∑l

i=1 τkiui : 1 ≤ l ≤ (d + ε0)/C1, ki ∈ Z, ui ∈ F}.
Then we have 0 < ε2 := infu,v∈G

u 6=v
‖u− v‖.

Proof. If not, there exist sequences kn
i , hn

i , un
i and vn

i such that:

0 6=
∥∥∥∥ l1∑

i=1

τkn
i
un

i −
l2∑

i=1

τhn
i
vn

i

∥∥∥∥ → 0.

By invariance, we can suppose that kn
1 = 0. Moreover, we can assume going if

necessary to a subsequence that

(1) un
i = um

i = ui for all m,n ∈ N,
(2) kin = km

i = ki if (kj
i )j∈N is bounded,

(3) kn
i →∞ if (kj

i )j∈N is unbounded,

and the same for vn
i and hn

i . Thus we have,

0 = lim
n→∞

∥∥∥∥ l1∑
i=1

τkn
i
un

i −
l2∑

i=1

τhn
i
vn

i

∥∥∥∥2

=
∥∥∥∥∑

τki
ui −

∑
τhi

vi

∥∥∥∥2

+ lim
n→∞

∥∥∥∥∑
τkn

i
ui −

∑
τhn

i
vi

∥∥∥∥2

so that { ∑
τki

ui =
∑

τhi
vi,

0 6= |
∑

τkn
i
ui −

∑
τhn

i
vi‖ → 0.

At this level, we repeat the preceding operations, that is translating by invariance
and going to a subsequence. After at most 2(d + ε0)/C1 cycles, we will get
the contradiction:

l1∑
i=1

τkiui =
l2∑

i=1

τhivi,

whereas the initial sequence was made of non-zero elements only. �
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Let ρ and k1 < . . . < kn as given in Theorem 3.2. As F is finite, there exists
C3 > 0 such that B(F,C3) ⊂ ϕ−1 [0, d + ε0[. Without loss of generality, we can
assume ρ < min(ε1, ε2, C2, C3)/2. Define δ := ρ/15n.

Lemma 4.2. There exists 0 < ε < ε0/2 such that

for every u ∈ ϕ−1 [0, d + ε0[ ∩ (X \Gδ), ‖ϕ′(u)‖ > 8ε/δ.

Proof. If not, there would exist a Palais–Smale sequence (un) ⊂ X \Gδ ∩
ϕ−1 [0, d + ε0[. But by Lemmas 2.6 and 2.4 (un) → G, a contradiction. �

Lemma 4.3. There exist γ : [0, 1] −→ F5δ and R1 > 0 verifying:

(a) ϕ(γ(0)) ≤ d− ε, ϕ(γ(1)) ≤ d− ε,
(b) maxt∈[0,1] ϕ(γ(t)) ≤ d + ε/n,
(c) supp[γ(t)]′ ⊂ [−R1, R1] for every t ∈ [0, 1].
(d) infeγ∈Γ maxt∈[0,1] ϕ(γ̃(t)) ≥ d,

where Γ := {γ̃ : [0, 1] → X, γ̃(0) = γ(0), γ̃(1) = γ(1)}.

Proof. Let S := X\F3δ. As ρ < ε2/2, one has Sδ\S = F3δ\F2δ ⊂ X\G2δ,
Lemma 4.2 gives

‖ϕ′(u)‖ ≥ 8ε/δ, for all u ∈ ϕ−1[d− ε, d + ε] ∩ (Sδ \ S).

By Lemmas 2.6 and 4.1, any Palais–Smale sequence at a level b ∈ [d− 2ε, d+2ε]
such that ‖un+1 − un‖ → 0 contains a subsequence converging to an element
u ∈ F . Besides, S2δ ∩ F = ∅.

Let η the deformation given by Lemma 4.9 and γ0 : [0, 1] → X such that

(1) γ0(0) = 0, γ0(1) = e,
(2) maxt∈[0,1] γ0(t) ≤ d + ε/n.

We will denote γ1 the deformed path, i.e. γ1(t) = η(1, γ0(t)). There exists
t ∈ [0, 1] with γ0(t) ∈ F3δ and ϕ(γ0(t)) ≥ d. Indeed, otherwise we would have
maxt∈[0,1] γ1(t) < d, a contradiction.

Let A1, . . . , Am be the largest intervals in [0, 1] satisfying γ0(Ai) ⊂ F3δ for
each i. There is at least one i ∈ {1, . . . , m}, say i0, such that:

inf
eγ1∈Γi

max
t∈Ai

ϕ(γ̃1(t)) ≥ d,

where Γi := {γ̃1 : Ai → X, γ̃1 = γ1 on ∂Ai}.
Let l ∈ N such that τlγ0(Ai0) ⊂ F3δ, define γ2 : [0, 1] → X so that γ2([0, 1]) =

τlγ1(Ai0). As F4δ\F3δ ⊂ X\Gδ, it is clear that γ2([0, 1]) ⊂ F4δ. By construction
and Lemma 4.9, γ2 satisfies properties (a), (b) and (d). By compactness, we can
choose R1 sufficiently large such that if

[γ(t)]′(x) := [γ2(t)]′(x) · χ[−R1,R1](x),
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then γ satisfies (a)–(d) and γ([0, 1]) ⊂ F5δ. �

Suppose that N is fixed and define, for 1 ≤ i ≤ n− 1,

Ij := [N · kj + N/3, N · kj+1 −N/3].

We will note MB := B(
∑n

i=1 τkiNF, ρ).

Lemma 4.4. If N is sufficiently large, there exists a continuous “dissociat-
ing” function D : MB → (X)n such that if we note D(u) ≡ (u1, . . . , un) then
for all u ∈ MB {

u =
∑n

i=1 ui,

ϕ(u) ≥
∑n

i=1 ϕ(ui)− ε/2n.

Moreover, if u =
∑n

i=1 wi with supp[wi]′ ⊂ [ki−N/3, ki +N/3] then ui = wi for
each i.

Proof. Fix j ∈ {1, . . . , n− 1}. As F is finite, for N large enough we have:[ ∫
R\[−N/3,N/3]

(u′)2
]1/2

<
ρ

n
for all u ∈ F.

Thus, for every u ∈ MB, there exist tuj ∈ Ij ∩ Z and an open neighbourhood
Ou

j ⊂ X of u with: [ ∫ tu
j +1

tu
j−1

|ω′|2
]1/2

<
12ρ

N
for all ω ∈ Ou

j .

The familly {Ou
j , u ∈ MB} forms an opening covering of MB. Let {Ov

j , v ∈ Vj}
a locally finite covering of MB finer than the previous one and {pv

j , v ∈ Vj}
a continuous partition of unity associated to it. We define, for 2 ≤ j ≤ n− 1,

(uj)′(t) := u′(t) ·
{ ∑

Vj

pv
j (u)χ]−∞,tv

j [(t)
}
·
{ ∑

Vj−1

pv
j−1(u)χ[tv

j−1,∞[(t)
}

,

and

(u1)′(t) := u′(t) ·
{ ∑

V1

pv
1(u)χ]−∞,tv

1 [(t)
}

,

(un)′(t) := u′(t) ·
{ ∑

Vn−1

pv
n−1(u)χ[tv

n−1,+∞[(t)
}

.

Clearly, u =
∑n

i=1 ui and the continuity of D is a consequence of the one of
the (pv

j ). It remains to prove that ϕ(u) ≥
∑n

i=1 ϕ(ui) − ε/2n. For u ∈ MB,
denote V u

j := {v ∈ Vj s.t. pv
j (u) 6= 0}.

(a) As u′, (uj)′ have equal signs, |u′(t)|2 ≥
∑

j |(uj)′(t)|2 and thus,

(4)
∫

R

c2

2
(u′)2 ≥

∑
j

∫
R

c2

2
((uj)′)2.
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(b) If t ∈ Ij \
⋃

V u
j

[tvj − 1, tvj ],

(5) V (Auj(t)) = V

( ∑
V u

j

pv
j

∫ t+1

t

u′(s)χ]−∞,tv
j [(s) ds

)

≥
∑
V u

j

pv
j V

( ∫ t+1

t

u′(s)χ]−∞,tv
j [(s) ds

)
=

∑
V u

j

tv
j≥t

pv
j V (Au(t)),

where we used ρ < ε1 and the concavity of V in [−ε1, ε1].
Similarly, we obtain

(6) V (Auj+1(t)) ≥
∑
V u

j

tv
j≤t

pv
j V (Au(t))

and thus V (Auj(t)) + V (Auj+1(t)) ≥
∑

V u
j

pv
j V (Au(t)) = V (Au(t)). Observe

also that, if i 6= j or j + 1, then V (Aui(t)) = V (0) = 0.
(c) If t ∈ [tvj − 1, tvj ],

V (Auj(t)) + V (Auj+1(t))− V (Au(t))

≥
∑
V u

j

pv
j V

( ∫ t+1

t

u′(s)χ]−∞,tv
j [(s) ds

)

+
∑
V u

j

pv
j V

( ∫ t+1

t

u′(s)χ[tv
j ,−∞[(s) ds

)
− V

( ∫ t+1

t

u′(s) ds

)

=
∑

tv
j≥t+1

pv
j V (Au(t)) +

∑
tv
j∈[t,t+1[

pv
j V

( ∫ t+1

t

u′(s)χ]−∞,tv
j [(s) ds)

+
∑
tv
j≤t

pv
j V (Au(t)) +

∑
tv
j∈[t,t+1[

pv
j V

( ∫ t+1

t

u′(s)χ[tv
j ,∞[(s) ds

)
− V (Au(t))

=
∑

tv
j∈[t,t+1[

pv
j

[
V

( ∫ t+1

t

u′(s)χ]−∞,tv
j [(s) ds

)

+ V

( ∫ t+1

t

u′(s)χ[tv
j ,−∞[(s) ds

)]
−

∑
tv
j∈[t,t+1[

pv
j V (Au(t))

≥ 0−
∑

tv
j∈[t,t+1[

pv
j · 2 · (|λ|+ 1) ·

∫ t+1

t

(u′(s))2 ds

≥ − 2(|λ|+ 1)
(

ρ

15N

)2( ∑
tv
j∈[t,t+1[

pv
j

)
.
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Integrating on [tvj − 1, tvj ] and summing for tvj ∈ V u
j we get

(7)
∫
S

tv
j
∈V u

j
[tv

j−1,tv
j ]

P · [V (Auj) + V (Auj+1)− V (Au)]

≥ −2(|λ|+ 1)
(

ρ

15N

)2

.

Then summing on j an collecting the result with points (a) and (b)

(10) ϕ(u) ≥
∑

j

ϕ(uj)− 2(n− 1)(|λ|+ 1)
(

ρ

15N

)2

.

It suffices then to take N sufficiently large so that 2(n− 1)(|λ|+ 1)(ρ/15N)2 <

ε/2n. �

Using similar arguments, we obtain

Lemma 4.5. If N is sufficiently large, there exists a “dissociating” func-
tion (no longer continuous) D : MB → (X)n such that if we note D(u) ≡
(u1, . . . , un) then for all u ∈ MB{

u =
∑

i ui and ‖u‖ =
∑

i ‖ui‖,
‖ϕ′(u)‖ ≥ ‖ϕ′(ui)‖ − 4ε/δ 1 ≤ i ≤ n.

Moreover, if u =
∑

i τkiNwi ∈
∑

i τkiNF then ‖ui − τkiNwi‖ ≤ δ for each
1 ≤ i ≤ n.

Henceforth, we will assume that N has been chosen large enough so that
Lemmas 4.4, 4.5 are valid and R1 < N/3. We will prove that for this N ,
equation (3) admits a solution u ∈ MB. Define the n-surface

Ψ : [0, 1]n → B
( ∑

i

τkiNF, ρ/3
)

(x1, . . . , xn) 7→
∑

i

τkiNγ(xi)

(γ is defined in (4.3)). Clearly, for every x ∈ ∂[0, 1]n, ϕ(Ψ(x)) ≤ (d− ε) + (d +
ε/n) + . . . + (d + ε/n) = nd− ε/n. Also define

Θ := {Ψ : [0, 1]n → MB continuous with Ψ = Ψ on ∂[0, 1]n},

and

θ := inf
Ψ∈Θ

max
x∈[0,1]n

ϕ(Ψ(x)).

Lemma 4.6. θ ≤ nd + ε.

Proof. maxx∈[0,1]n ϕ(Ψ(x)) ≤ n(d + ε/n) = nd + ε. �
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Lemma 4.7. θ ≥ nd− ε/2n.

Proof. Let Ψ ∈ Θ and li : [0, 1] → [0, 1]n a path joining the two faces
{xi = 0} and {xi = 1}. Define li : [0, 1] → X by li(t) := [Ψ(li(t))]i. We
have, li(0) = τkiNγ(0) and li(1) = τkiNγ(1). By Lemma 4.3 and invariance,
maxt∈[0,1] li(t) ≥ d. Hence, the sets Ei := {x ∈ [0, 1] s.t. [Ψ(x)]i ≥ d} separate
the two faces {xi = 0} and {xi = 1}. By a theorem of Hurewicz [6],

⋂
i Ei 6= ∅.

Now, if x ∈
⋂

i Ei, Lemma 4.4 gives

ϕ(Ψ(x)) ≥
∑

i

ϕ([Ψ(x)]i)− ε

2n
≥ nd− ε

2n
. �

Lemma4.8. For every u ∈ B(
∑

i τkiNF, 2ρ/3) \B(
∑

i τkiNF, ρ/3),

‖ϕ′(u)‖ ≥ 4ε/δ = 60nε/ρ.

Proof. Let v =
∑

i τkiNwi ∈
∑

i τkiNF with ‖v − u‖ ≤ 2ρ/3 + δ. As

ρ

3
≤ ‖v − u‖ =

∥∥∥∥∑
i

vi − ui

∥∥∥∥ =
∑

i

‖vi − ui‖,

there is at least one i ∈ {1, . . . , n} verifying ‖vi − ui‖ ≥ ρ/3n. By Lemma 4.5,
‖vi−τkiNwi‖ ≤ ρ/15n so that ‖ui−τkiNwi‖ ≥ 4ρ/15n = 4δ and ‖ui−τkiNwi‖ ≤
ρ ≤ C3. As a consequence, ui ∈ X \ Gδ ∩ ϕ−1 [0, d + ε0[, and Lemmas 4.2, 4.5
give

‖ϕ′(u)‖ ≥ ‖ϕ′(ui)‖ − 4ε/δ ≥ 4ε/δ. �

We can now prove the claim of Theorem 3.2.

Main theorem. There exists u ∈ MB satisfying ϕ′(u) = 0.

Proof. Let S := B(
∑

i τkiNF, ρ/3), δ := ρ/3, ε := (2n + 2)ε/4n, and
d := nd + (2n− 1)ε/4n. If the theorem is false, then

(9) ‖ϕ′(u)‖ > 0 for all u ∈ S2δ.

By Lemma 4.8, for all u ∈ (Sδ \S), ‖ϕ′(u)‖ ≥ 60nε/ρ ≥ 8ε/δ. As ρ/3+2δ < C2,
S2δ is contained in a finite union of balls of radius smaller than C2 and thus there
is no Palais–Smale sequence (un) inside S2δ. Indeed otherwise, by Lemma 2.6,
(un) would converge to a critical point u ∈ S2δ, contradicting (9). Let η be
the deformation given by Lemma 4.9 and Ψ := η(1,Ψ). As Ψ([0, 1]n) ⊂ S,
Ψ([0, 1]n) ⊂ Sδ ⊂ MB, so that Ψ ∈ Θ. We get the contradiction to Lemma 4.7:

Ψ([0, 1]n) ⊂ η(1, ϕ−1
]
−∞, d + ε

]
) ⊂ ϕ−1(

]
−∞, d− ε

]
)

=ϕ−1( ]−∞, nd− 3ε/4n]). �
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Appendix

In this appendix, we establish a deformation lemma which has been used
twice in the preceding section. In a “clasical” deformation lemma (see e.g. [10])
one asks a lower bound for ‖ϕ′‖ on a certain subset. This condiction has two
consequences: on the one hand it garanties the existence of the flow for any
positive time and on the other hand it implies a sufficient decrease of level along
this flow. For this last consequence only, the requested condition is too strong
and can be reduced (the second one will still be valid at the price of another
condition introduced in [3] under the name PS).

Lemma 4.9. Let X be a Banach space, ϕ ∈ C1(X, R), S ⊂ X, d ∈ R, and
ε, δ > 0 such that

(1) for all u ∈ ϕ−1[d− 2ε, d + 2ε] ∩ S2δ : ‖ϕ′‖ > 0,
(2) for all u ∈ ϕ−1[d− ε, d + ε] ∩ Sδ \ S) : ‖ϕ′‖ > 8ε/δ,
(3) for any Palais–Smale sequence (un) for ϕ at a level b ∈ [d− 2ε, d + 2ε]

and such that ‖un+1 − un‖ → 0 there exists n0 ∈ N : un0 /∈ S2δ.

Then there exists η ∈ C([0, 1]×X, X) such that

(a) η(t, u) = u if t = 0 or if u /∈ ϕ−1[d− 2ε, d + 2ε] ∩ S2δ.
(b) η(1, ϕd+ε ∩ S) ⊂ ϕd−ε.
(c) ϕ(η( · , u) is non increasing for every u ∈ X.
(d) η(1, S) ⊂ Sδ.

Proof. The proof is identical to the one that can be found in [10] except
for one point: the vector field is no longer bounded and we have to prove that
the flow is well defined for any positive time.

If not, there exist u ∈ X and T > 0 such that η(t, u) is defined only for
t ∈ [0, T [. Let l(t) be the length of the integral curve starting from u, we thus
have limt→T l(t) = ∞. Define the 1-speed equivalent of this curve

η(t) := η(l−1(t), u),

and observe that by change of variable formula,∫ ∞

0

‖ϕ′(η(t)‖ dt =
∫ ∞

0

‖ϕ′(η(l−1(t), u))‖ dt

≤
∫ T

0

‖ϕ′(η(s, u))‖ ·
√

1 + ‖g(η(s, u))‖2 ds ≤ 2T < ∞,

where g is the pseudo-gradient field associated to ϕ. As a consequence, for every
k ∈ N there exists Rk > 0 and a sequence (tkj )1≤j such that

(1) tkj ∈ [Rk + j/k, Rk + (j + 1)/k],
(2) ‖ϕ′(η(tkj ))‖ ≤ 1/k 1 ≤ j.
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(Without loss of generality we can assume that Rk > Rj if k > j.)
Define

t
k
j := tkj while tkj < Rk+1,

and let (tj)j≥1 be the sequence obtained by concatenation of the (tkj ). By con-
struction, (η(tj))j≥1 is a Palais–Smale sequence for ϕ at a level b ∈ [d−2ε, d+2ε]
such that

‖η(tj+1)− η(tj)‖ ≤ |tj+1 − tj | → 0 (η is a 1-speed curve).

But then by condition (3), there exists j0 ≥ 1 such that η(t0) /∈ S2δ. This is
a contradiction because the vector field is zero outside S2δ and the integral curve
would stay there for any positive time. �
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Université Catholique de Louvain.

[9] D. Smets and M. Willem, Solitary waves with prescribed speed on infinite lattices,
J. Funct. Anal. 149, 1 (1997), 266–275.

[10] M. Willem, Minimax Theorems, Birkhäuser, Basel, 1996.
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