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1. Introduction and statement of the main results

Let us consider the noncooperative elliptic system

(ES)


−∆u = αu− δv + Fu(u, v) in Ω,

∆v = −δu− γv + Fv(u, v) in Ω,

u = v = 0 on ∂Ω,

where Ω is a bounded open domain in RN with smooth boundary, α ≥ 0, δ ≥ 0,
γ ≥ 0 are three real parameters and F ∈ C1(R2, R).

The solutions of (ES) represent the steady state solutions of reaction-diffusion
systems which are derivedfrom several applications, such as mathematical biol-
ogy or chemical reactions (see for instance [18] and [22]). The following examples
are, for instance, particular cases of (ES).

λ−ω systems. This kind of system has been widely used as a prototype of
reaction-diffusion system

(λ− ω)


−∆u = λ(r)u− ω(r)v in Ω,

∆v = −ω(r)u− λ(r)v in Ω,

u = v = 0 on ∂Ω,

1991 Mathematics Subject Classification. 35J50.
Key words and phrases. Elliptic systems, multiplicity of solutions.

c©1998 Juliusz Schauder Center for Nonlinear Studies

27



28 D. Lupo

where r = u2 + v2 and λ(r), ω(r) are given functions.

FitzHugh–Nagumo system. The following system provides a diffusive
extension of the FitzHugh–Nagumo reduction of the Hodgkin–Huxley model for
electrical signaling by nerve cells,

(FN)


−∆u = −δv + f(u) in Ω,

∆v = −δu− γv in Ω,

u = v = 0 on ∂Ω,

where f(u) = u(a − u)(u − 1) and 0 < a < 1 is a fixed constant. We will refer
to (FN) as to a FitzHugh–Nagumo type system when considering a nonlinearity
f(u), different from the above mentioned example.

Note that since we impose that the first order interaction factor (represented
by δ) is the same for the two variables, then (ES) presents a variational structure;
nevertheless, such a restriction seems to be a reasonable geometric assumption
in applications and, furthermore, we allow for different interaction ratios in the
higher order terms given by the potential of the nonlinearity F (u, v).

Under such hypotheses it is well known that solutions of (ES) are critical
points of the functional I : H1

0 ×H1
0 → R defined by

I(u, v) =
1
2

∫
Ω

|∇u|2 dx− 1
2

∫
Ω

|∇v|2 dx− α

2

∫
Ω

u2 dx

+
γ

2

∫
Ω

v2 dx + δ

∫
Ω

uv dx−
∫

Ω

F (u, v) dx.

The existence and multiplicity of solutions for elliptic systems of the (ES) type
have been found by several authors under various hypotheses on the parameters
and the nonlinearity F , (see for instance [1], [2], [5]–[8], [11], [12] and [7], [9], [13],
[20], [21] in the particular case in which Fu(u, v) = f(u) and Fv(u, v) = g(v)).

That is, the existence of a nontrivial solution has been shown, under various
hypotheses at infinity on the nonlinearity F (u, v), which roughly can be thought
of as belonging to one of the following classes: a weakening of the Rabinowitz
growth condition at infinity (see (F1) below) as for instance in [5], [7], [21], an
imposition of a different growth in the two variables (cf. [8]) or a consideration
of critical Sobolev exponent growth (cf. [12]). In all these approaches the kind
of hypotheses brought difficulties both for the compactness condition and for
the geometry of the problem. A second kind of investigation is related to the
multiplicity of nontrivial solutions. In this case, to the best of our knowledge, the
known results, except for [16], concern the simplified problem in which Fu(u, v) =
f(u) and Fv(u, v) ≡ 0, i.e. the FitzHugh–Nagumo type problem, and in such
a situation several strong results were proved for instance in [9] and [21]. In
this paper, we will extend the result found in [16] for the case of γ = 0 = δ,
by proving the multiplicity of solutions of the complete system (ES) when the
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nonlinearity satisfies the usual Rabinowitz superquadratic growth condition by
exploiting the classical linking structure. Other comparisons with the literature
will be given in the remarks following main Theorems.

We suppose that F ∈ C1(R2, R) satisfies

(F1) ∃µ : 2 < µ < 2N/(N − 2) if N > 2, µ > 2 otherwise, such that

0 < µF (u, v) ≤ uFu(u, v) + vFv(u, v) for every (u, v) 6= (0, 0).

Furthermore, suppose that

(F2) ∃a1 > 0, s.t. |Fu(u, v)|+ |Fv(u, v)| ≤ a1(|u|r + |v|r) where r = µ− 1.

Let’s that from (Fi), i = 1, 2 it follows

(F3)
1

‖u‖2 + ‖v‖2

∫
Ω

F (u, v) → 0 for ‖u‖+ ‖v‖ → 0,

(see Remark 3.7), thus (F3) is redundant, but is used throughout the proofs and
hence listed explicitly.

Examples. (1) Let N = 5. F (u, v) = (u2 +5v2)3/2 satisfies hypotheses (Fi)
for i = 1, 2 with µ = 3. Note that in this case we have a different interaction
between the two species (for example) when the number of individuals in the
two species is “large”. If F (u, v) = (u2 + v2)3/2 is used, (ES) becomes a λ − ω

system.
(2) Let N = 3. F (u, v) = u4 + v4. Such a function satisfies (Fi) for i = 1, 2

with µ = 4.

Our main results are stated below.

Theorem A. We suppose that (Fi), i = 1, 2 hold. If α, γ, δ are such that

(a1) 0 ≤ α < λ1,
(a2) there exists j ≥ 1 such that λj < γ < λj+1,
(a3) 0 ≤ δ < δ0 = min{λ1 − α, (γ − λj)λ1/λj},

hold, then there exists at least one nontrivial solution of (ES). Furthermore, there
exists α∗ ∈ R, α∗ < λ1 such that for any α ∈ (α∗, λ1), δ ∈ (0, δ0/2), (ES) admits
at least two nontrivial solutions.

Remark 1.1. (a) We see that in the general FitzHugh–Nagumo type prob-
lem, with f regular, our parameter α coincides with f ′(0).

(b) By the monotonicity with respect to the domain of the eigenvalues of
the Laplace operator, the hypothesis α < λ1 can be read in this contest as
a compatibility condition between the existence of two nontrivial solutions for
(ES) and the size of the domain.
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(c) In [21] the case Fu(u, v) = f(u), Fv(u, v) ≡ 0 and f ′(0) = 0 (i.e. α = 0)
has been considered. Under such hypotheses and assuming some kind of su-
perquadratic growth on f (more general than the usual Rabinowitz condition
and which doesn’t impose a sign condition on the primitive) and assuming a
condition on the primitive of f in the direction of tφ1, the author proved the
existence of one solution under the same restriction on the range of possible δ’s.

(d) In [16] the existence of two nontrivial solutions for (ES) was proved for
the case γ = 0 = δ.

(e) For the limited aim of proving the existence of one nontrivial solution, it
would be sufficient to require

(F1)∗ ∃M > 0, ∃ µ : 2 < µ < 2N/(N − 2) if N > 2, µ > 2 otherwise,

such that 0 < µF (u, v) ≤ uFu(u, v) + vFv(u, v), for every u2 + v2 ≥ M,

condition (F3) and the sign condition F (0, v) ≥ 0 for every v ∈ R, hence showing
the existence of one nontrivial solution for the FitzHugh–Nagumo problem. A
similar result has been proved in [7]. For example, if N = 3 the nonlinearity
F (u, v) = u4 satisfies conditions (F1)∗ and (F2).

Theorem B. Let’s suppose that (Fi), i = 1, 2 hold. If α, γ, δ are such that

(b1) there exists k ≥ 1 such that λk < α < λk+1,
(b2) there exists j ≥ 1 such that λj < γ < λj+1,
(b3) 0 ≤ δ < δ0 = min{λj+1 − γ, λk+1 − α, λ1(α− λk)/λk, λ1(γ − λj)/λj},
(b4) k ≤ j,

hold, then there exists at least one nontrivial solution of (ES). Furthermore, there
exist an α∗ ∈ R with α∗ < λk+1 and a γ∗ ∈ R with λj < γ∗ such that (ES) admits
at least two nontrivial solutions provided α ∈ (α∗, λk+1) or γ ∈ (λj , γ

∗), when
δ ∈ (0, δ0/2).

Remark 1.2. (a) Such range of parameters has not been considered in [21],
even when considering the special case Fu(u, v) = f(u), Fv(u, v) ≡ 0, since there,
when γ > λ1, it is assumed that α = 0.

(b) Here and in all the following results for proving the existence of one
solution, it would be sufficient to assume (F1)∗ and the sign condition F (u, v) ≥ 0
everywhere, which is classical in the linking geometry situation. For example, if
N = 3, F (u, v) = u2v2 satisfies this sign condition and (F1)∗.

(c) When k = j and α = γ, this result is applicable to λ− ω systems.
(d) We note that for α 6= γ and, for instance, F (u, v) = (u2 + v2)3/2 the

system (ES) describes a “generalized λ− ω system” given by
−∆u = λ1(r)u− ω(r)v in Ω,

∆v = −ω(r)u− λ2(r)v in Ω,

u = v = 0 on ∂Ω,



Variational Elliptic Systems 31

where λ1, λ2, ω are given functions.

Theorem C. Let’s suppose that (Fi), i = 1, 2 hold. If α, γ, δ are such that

(c1) there exists k ≥ 1 such that λk < α < λk+1,
(c2) 0 ≤ γ < λ1,
(c3) 0 ≤ δ < δ0 = min{λ1 − γ, (α− λk)λ1/λk},

hold, then there exists at least one nontrivial solution of (ES). If furthermore,

(c4) δ < min{δ0, λk+1 − α},

then there exists α∗ ∈ R, α∗ < λk+1 such that, for any α ∈ (α∗, λk+1), (ES)
admits at least two nontrivial solutions.

Remark 1.3. If one supposes, as in [21], [9], [13], [7], [20], that Fu = f(u),
Fv ≡ 0, the system becomes the FitzHugh–Nagumo type system. As pursued
in [20], [13], [9], in this case the second equation can be solved with respect to
v, reducing in such a way the study of an integral differential equation. Several
results have been obtained in this context. For example, in [9] the existence of
a positive and a negative solution is shown for a suitable range of parameters,
while in [21] the existence of three nontrivial solutions, under suitable growth
conditions on f and F and the hypotheses γ + δ < λ1, γ + 2δ < λ̂1 < λ1 +
δ2/(λ1 − γ), where f ′(0) = λ̂1 (i.e. λ̂1 = α), has been proved.

The main results follow from a critical point theorem (see Theorem 2.1)
whose proof is based on the use of the limit relative category defined in [10] and
provides a simplified form, suitable for our applications, of Theorem 2.1 of [16].

Remark 1.4. The main idea underlying the critical point result is due to
Marino, Micheletti and Pistoia (see [17, Theorem 8.4]) in the case in which one
of the two spaces is finite dimensional.

2. Basic definitions and the critical point result

We now recall some basic definitions, the critical point result, and set up
some terminology.

Let H be an Hilbert space, together with a sequence of closed subspaces Hn.
If A is any subset of H we denote by An the set A∩Hn, and given I ∈ C1(H, R)
we set In = I|Hn

.

Definition 2.1. Given c ∈ R we say that I satisfies the Palais–Smale condi-
tion at level c, with respect to the sequence Hn, if every sequence {xn} satisfying

xn ∈ Hn, dIn(xn) → 0, In(xn) → c,

has a convergent subsequence which converges in H to a critical point of I. We
will then say that {xn} satisfies the (PS)∗c condition with respect to Hn.
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Let’s suppose that H = W ⊕ Z and let Hn = Wn ⊕ Zn be a sequence of
closed subspaces of H such that

(2.1) 1 ≤ dim Hn < ∞ for each n ∈ N.

Moreover, we suppose that there exist e1 ∈
⋂∞

n=1 Zn and e2 ∈
⋂∞

n=1(Z 	 Re1)n

with ‖e1‖ = ‖e2‖ = 1.
For any Y subspace of H, we consider Bρ(Y ) := {u ∈ Y | ‖u‖ ≤ ρ} and

denote by ∂Bρ(Y ) the boundary of Bρ(Y ) relative to Y . Furthermore, we define,
for any e ∈ H,

QR(Y, e) := {u + ae ∈ Y ⊕ Re | u ∈ Y a ≥ 0, ‖u + ae‖ ≤ R},

and denote by ∂QR(Y ) its boundary relative to Y ⊕ Re.
Let us restate, in simpler terms, the critical point result proved in [16].

Theorem 2.1. We suppose that I satisfies the (PS)∗ condition with respect
to Hn. In addition, we assume that there exist ρi, Ri, i = 1, 2, such that 0 <

ρi < Ri and

sup
∂QR1 (W,e1)

I < inf
∂Bρ1 (Z)

I,(2.2)

sup
QR1 (W,e1)

I < ∞, inf
Bρ1 (Z)

I > −∞,(2.3)

sup
∂QR2 (W⊕Re1,e2)

I < inf
∂Bρ2 (Z	Re1)

I,(2.4)

sup
QR2 (W⊕Re1,e2)

I < ∞, inf
Bρ2 (Z	Re1)

I > −∞.(2.5)

If R1 < R2, then there exist at least 3 critical levels of I. Moreover, the critical
levels satisfy the following inequalities

inf
Bρ1 (Z)

I ≤ c1 ≤ sup
∂QR1 (W,e1)

I < inf
∂Bρ1 (Z)

I ≤ c2 ≤ sup
QR1 (W,e1)

I

≤ sup
∂QR2 (W⊕Re1,e2)

I < inf
∂Bρ2 (Z	Re1)

I ≤ c3 ≤ sup
QR2 (W⊕Re1,e2)

I.

Proof. It is presented in [16] and it is based on the remark that in any
linking geometrical situation one can define two different classes of admissible
minimax sets

Γ1 = {A | A closed, Y1 = ∂QR ⊂ A, cat∞H,Y1
(A) ≥ 1},

and

Γ2 = {A | A closed, Y2 = ∂Bρ ⊂ A, cat∞H,Y2
(A) ≥ 1},

and thus one gets two distinct critical levels, (see [14, Theorem 1]).
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In our situation, hence the first set of linking hypotheses (2.2), (2.3), gives
rise to the existence of two critical levels ĉ1, ĉ2 such that

(2.6) inf
Bρ1

I ≤ ĉ1 ≤ sup
∂QR1

I < inf
∂Bρ1

I ≤ ĉ2 ≤ sup
QR1

I,

and analogously the second set of linking hypotheses (2.4), (2.5), gives rise to
the existence of č1, č2 satisfying

(2.7) inf
Bρ2

I ≤ č1 ≤ sup
∂QR2

I < inf
∂Bρ2

I ≤ č2 ≤ sup
QR2

I.

But since R1 < R2 one gets

sup
QR1

I ≤ sup
∂QR2

I,

and hence, combining (2.6) and (2.7) we get the result. �

3. Proof of the main results

We recall that a (PS) type condition is needed in order to get a deformation
lemma, which will allow us to use the minimax principle. In our situation we
use, as minimax classes, sets with limit relative category bigger than one, and
hence a (PS)∗ condition is needed to get the right kind of deformation lemma.

Let H = H1
0 (Ω) × H1

0 (Ω). It is very easy to see that if we denote by
−∆ = (−∆,∆), the eigenvalues of −∆ on H are given by λ±i = ±λi(−∆)
and the associated eigenfunctions by e+

i = (ei, 0), e−i = (0, ei), where λi(−∆)
denotes the i-th eigenvalue of the Laplace operator on H1

0 , with the associated
eigenfunction ei.

Proposition 3.1. If (F1) and (F2) hold, then for any α ≥ 0, γ ≥ 0, δ ≥ 0
the functional I satisfies the (PS)∗ condition with respect to the family of finite
dimentional subspaces

En = Span{e−n , . . . , e−1 , e+
1 , . . . , e+

n }, for n ≥ 1.

Proof. The proof of the a priori bounds and the strong convergence of the
(PS)∗ sequence follows the standard superquadratic growth arguments, see for
instance [19] or [14]. That the strong limit is a critical point of the complete
functional follows the argument in Proposition 7 of [16]. �

We remark that, as shown in [1], in order to get a deformation lemma suitable
to get all the limit relative category results, one could have assumed a weaker
kind of (PS) condition parallel in this context to the one introduced in [3], which
would have allowed a weaker kind of hypotheses on the nonlinearity introduced
in [4] in the case of a single equation and hence applied in [5], [7], [1].
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Now we only have to prove that the geometrical conditions of Theorem 2.1
are satisfied for suitable choices of the splitting of the space H. To this end let
us consider the quadratic form associated to I,

(Q) Q(u, v) =
1
2
‖u‖2 − α

2

∫
Ω

u2 dx− 1
2
‖v‖2 +

γ

2

∫
Ω

v2 dx + δ

∫
Ω

uv dx.

Geometrical conditions of Theorem A. We define W = {0} × V + and
Z = H1

0 × V −, where V − = Span{e1, . . . , ej} and V + = H1
0 	 V −.

Proposition 3.2. If the parameters α, γ, δ satisfy

(a1) 0 ≤ α < λ1,
(a2) there exists j ≥ 1 such that λj < γ < λj+1,
(a3) 0 ≤ δ < δ0 = min{λ1 − α, (γ − λj)λ1/λj},

then Q is positive definite on Z = H1
0 × V − and negative definite on W =

{0} × V +.

Proof. In fact, on W and taking into account condition (a2) and the
Poincarè inequality we get

Q(0, v) ≤ 1
2

(
− 1 +

γ

λj+1

)
‖v‖2 ≤ 0.

On the other hand, on Z we have by conditions (ai) for i = 1, 2, 3, by means of
the Poincarè and Young inequalities, that

Q(u, v) ≥ 1
2

(
1− α

λ1
− δ

λ1

)
‖u‖2 +

1
2

(
− 1 +

γ

λj
− δ

λ1

)
‖v‖2,

and hence the result follows by condition (a3). �

Proposition 3.3. If conditions (a2) and (F1) hold, then

sup
W

I ≤ 0.

Proof. Indeed, by Proposition 3.2 and (F1) one has

I(0, v) = Q(0, v)−
∫

Ω

F (0, v) dx ≤ 0. �

Proposition 3.4. If the conditions (ai), with i = 1, 2 and (F1) hold, then
for any subspace X ⊂ V − there exists R∗ > 0 such that for every R > R∗

sup
∂BR(W⊕Z∗)

I < 0,

where Z∗ = X × {0}.

Proof. First of all, by (F1) we can deduce that there exists a positive
constant b1 such that for every (u, v) ∈ R2 it holds that

(3.1) F (u, v) ≥ b1(|u|µ + |v|µ).
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Since all the norms are equivalent on X and
∫
Ω

uv = 0, for every u ∈ X, for
every v ∈ V + by applying (3.1) one has for each (u, v) ∈ W ⊕ Z∗,

I(u, v) = Q(u, v)−
∫

Ω

F (u, v) dx ≤

≤ 1
2
‖u‖2 +

1
2

(
− 1 +

γ

λj+1

)
‖v‖2 − b1

∫
Ω

|v|µ − b1

∫
Ω

|u|µ

≤ 1
2
‖u‖2 +

1
2

(
− 1 +

γ

λj+1

)
‖v‖2 − c1‖u‖µ.

Hence, we have that

I(u, v) → −∞ for ‖u‖2 + ‖v‖2 →∞. �

Proposition 3.5. If (F1), (F2) and conditions (ai) with i = 1, 2, 3 hold,
then there exists ρ > 0 such that

inf
∂Bρ(Z)

I > 0.

Proof. Indeed, by (F3), one knows that for any z = (u, v) ∈ Z and for any
ε > 0 there exists ρ = ρ(ε) > 0 such that

(3.2) ‖u‖+ ‖v‖ ≤ ρ ⇒
∫

Ω

F (u, v) dx ≤ ε(‖u‖2 + ‖v‖2).

By Proposition 3.2 one gets

I(u, v) ≥ 1
2

(
1− α

λ1
− δ

λ1

)
‖u‖2 +

1
2

(
− 1 +

γ

λj
− δ

λ1

)
‖v‖2 −

∫
Ω

F (u, v) dx.

Since, by condition (a3),

A =
1
2

min
{

1− α

λ1
− δ

λ1
,−1 +

γ

λj
− δ

λ1

}
> 0,

we get, by applying (3.2) with any 0 < ε1/2 < A/2, that there exists a ρ > 0
such that for any (u, v) ∈ Z with ‖u‖+ ‖v‖ = ρ

(3.3) I(u, v) ≥ (A− ε1/2)(‖u‖2 + ‖v‖2) ≥ (A/2)ρ2 > 0. �

Theorem 3.6. If (F1), (F2) and (ai), i = 1, 2, 3 hold, then there exists at
least one non trivial solution of (ES).

Proof. In fact, Proposition 3.4 and 3.5 imply the geometrical conditions
(2.2), (2.3) for suitable ρ1 and R1. Thus, by the linking theorem, there exists at
least two critical levels, thus a nontrivial solution. �

Remark 3.7. It is obvious that the result of Proposition 3.5 will hold on any
subset Ẑ of Z. Furthermore, it is clear that for γ fixed, there exists α1 ∈ (0, λ1)
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such that, for any α ∈ (α1, λ1) one has δ0 = λ1 − α. Hence, for δ ∈ (0, δ0/2), we
can say that (3.3) holds with

(3.4)
λ1 − α

4λ1
< A ≤ λ1 − α

2λ1
.

Furthermore, by (F1) and (F2), we can precisely estimate that

1
‖u‖2 + ‖v‖2

∫
Ω

F (u, v) ≤ C1(‖u‖+ ‖v‖)µ−2,

with C1 = µ−1a123−µ and hence, fixing ε1/2, the corresponding ρ is given by

ρ = ε1/2(µ−2)/C1.

Therefore, for 0 < ε = A2/4, we can estimate precisely (3.3) by means of (3.4) as

inf
∂Bρ(Z	Re+

1 )
I(u, v) ≥ 1

8λ1C2
1

(λ1 − α)(µ−1)/(µ−2) > 0.

Proposition 3.8. If (Fi), (ai), i = 1, 2 hold, then there exists α∗ ∈ R,
0 < α∗ < λ1 such that for any α ∈ R, α ∈ (α∗, λ1) and δ ∈ (0, δ0/2), there exists
a ρ > 0 such that

inf
∂Bρ(Z	Re+

1 )
I > sup

W⊕Re+
1

I.

Proof. In fact, by (3.1), for any a ∈ R, for every v ∈ V +, since
∫
Ω

e1v dx = 0
one has

I(ae1, v) ≤ a2

2
‖e1‖2 +

1
2

(
− 1 +

γ

λj+1

)
‖v‖2 − α

2

∫
Ω

(ae1)2 dx

− b1

∫
Ω

|ae1|µ dx− b1

∫
Ω

|v|µ dx

≤ a2

2

(
1− α

λ1

)
‖e1‖2 +

1
2

(
− 1 +

γ

λj+1

)
‖v‖2 − b1|a|µ

∫
Ω

|e1|µ

≤ +
1
2

(
− 1 +

γ

λj+1

)
‖v‖2 + a2K1 − |a|µK2,

where

K1 =
(λ1 − α)

2λ1
‖e1‖2 and K2 = b1

∫
Ω

|e1|µ.

Let us consider, for any α ∈ (0, λ1), the smooth real valued function gα defined by

gα(a) = K1a
2 − |a|µK2.

Since, for any α ∈ (0, λ1), gα(a) → −∞ for a → ∞, it will admit a maximum
point

aα
max =

(
2K1

µK2

)1/(µ−2)

,
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and we get

sup
W⊕Re+

1

I ≤ g(aα
max) =

(
2

µK2

)2/(µ−2)(
1− 2

µ

)
K

µ/(µ−2)
1 = C2(λ1 − α)µ/(µ−2),

with

C2 =
(

2
µK2

)2/(µ−2)(
1− 2

µ

)
‖e1‖2µ/(µ−2)

(2λ1)µ/(µ−2)
.

Thus

(3.5) gα(aα
max) = C2(λ1 − α)µ/(µ−2) ↘ 0 for α ↗ λ−1 ,

with the same speed of (λ1 − α)µ/(µ−2). On the other hand, by the Remark 3.7
it is clear that, for any α ∈ (α1, λ1), there exists ρ > 0 such that, denoting by
C3 = 1/(8λ1C

2
1 )

inf
Bρ(Z	Re+

1 )
I ≥ C3(λ1 − α)(µ−1)/(µ−2) > 0,

and hence, by (3.5), the lemma follows for α∗ sufficiently near to λ1, since

µ/(µ− 2) > (µ− 1)/(µ− 2). �

Proof of Theorem A. By Theorem 3.6 we can find R1 > 0 and ρ1 > 0
such that (2.2) and (2.3) hold. On the other hand, by Propositions 3.4, 3.5,
Remark 3.7 and Proposition 3.8, we can find R2 > 0 and ρ2 > 0 such that (2.4)
and (2.5) hold and, by Proposition 3.4, we can fix R1 < R2, and thus the result
follows. �

Geometrical conditions of Theorem B. We define W = U− × V + and
Z = U+ × V −, where U− = Span{e1, . . . , ek}, U+ = Span{ek+1, . . . }, and
V − = Span{e1, . . . , ej}, V + = Span{ej+1, . . . }.

Lemma 3.9. If the parameters α, γ, δ satisfy the following hypotheses

(b1) there exists k ≥ 1 such that λk < α < λk+1,
(b2) there exists j ≥ 1 such that λj < γ < λj+1,
(b3) 0 ≤ δ < δ0 = min{λj+1 − γ, λk+1 − α, λ1(α− λk)/λk, λ1(γ − λj)/λj},

then Q is negative definite on W = U− × V + and positive definite on Z =
U+ × V −.

Proof. By the Poincarè inequality and (b3) for all (u, v) ∈ W we get

Q(u, v) ≤ 1
2

(
1− α

λk
+

δ

λ1

)
‖u‖2 +

1
2

(
− 1 +

γ

λj+1
+

δ

λj+1

)
‖v‖2 < 0,
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while, for every (u, v) ∈ Z, it hold that

Q(u, v) ≥ 1
2

(
1− α

λk+1
− δ

λk+1

)
‖u‖2 +

1
2

(
− 1 +

γ

λj
− δ

λ1

)
‖v‖2

> A(‖u‖2 + ‖v‖2) > 0,

where

A =
1
2

min
{

1− α

λk+1
− δ

λk+1
,−1 +

γ

λj
− δ

λ1

}
,

thus the result is found. �

We now have to analyze the behaviour of the complete functional.

Proposition 3.10. If (F1), (F2), (bi), i = 1, 2, 3 and

(b4) k ≤ j

hold, then supW I ≤ 0 and there exists ρ > 0 such that inf∂Bρ(Z) I > 0.

Proof. Indeed for all (u, v) ∈ W , by Lemma 3.9 and (F1),

I(u, v) = Q(u, v)−
∫

Ω

F (u, v) ≤ 0.

On the other hand, by (3.2) and Lemma 3.9, we get, for any 0 < ε1/2 < A/2
there exists ρ > 0 such that for any (u, v) ∈ Z, ‖u‖+ ‖v‖ = ρ,

I(u, v) = Q(u, v)−
∫

Ω

F (u, v) ≥ (A− ε1/2)(‖u‖2 + ‖v‖2) ≥ (A/2)ρ2 > 0. �

Remark 3.11. Following ideas similar to those in Remark 3.7 one can get
that there exists α2 < λk+1 such that for α ∈ (α2, λk+1) and δ ∈ (0, δ0/2), the
estimate

λk+1 − α

4λk+1
< A ≤ λk+1 − α

2λk+1
,

holds and hence for 0 < ε = A2/4 there exists ρ > 0 such that

inf
∂Bρ(Z	Re+

k+1)
I(u, v) ≥ λk+1 − α

8λk+1
ρ2 ≥ 1

8λk+1C2
1

(λk+1 − α)(µ−1)/µ−2) > 0,

where C1 is defined in Remark 3.7.
Similarly, there exists γ1 > λj such that, for any γ ∈ (λj , γ1) one has

γ − λj

4λj
< A ≤ γ − λj

2λj
,

and hence for 0 < ε = A2/4 there exists ρ > 0 such that

inf
∂Bρ(Z	Re−j )

I(u, v) ≥ γ − λj

8λjC2
1

(γ − λj)(µ−1)/(µ−2) > 0.
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To end the proof of the linking theorem we have to find a suitable direction
z1 ∈ Z such that it is possible to build the set Q(W, z1) on which (2.2) is satisfied.
We prove

Proposition 3.12. Let (bi), i = 1, 2, 3, 4 and (F1), (F2) hold. If we con-
sider e+

k+1 ∈ Z and e−j ∈ Z; then there exists R > 0 such that

(3.6a) sup
∂QR(W,e+

k+1)

I ≤ 0,

and

(3.6b) sup
∂QR(W,e−j )

I ≤ 0.

Furthermore,

(3.7a) sup
W⊕Re+

k+1

I ↘ 0 for α ↗ λ−k+1,

and

(3.7b) sup
W⊕Re−j

I ↘ 0 for γ ↘ λ+
j .

Proof. The idea behind the proof of (3.6a) and (3.6b) is the same. For
simplicity we will just show the first case. First, we suppose that k < j. One
knows that

∫
Ω
(u− + ek+1)v = 0, for every v ∈ V +, a ∈ R, u− ∈ U− by (b4).

Therefore, for every (u, v) ∈ W ⊕ Re+
k+1 we get

I(u, v) = I(u− + aek+1, v)
1
2
‖u−‖2 +

a

2
‖ek+1‖2 −

α

2

∫
Ω

(u− + aek+1)2

+
1
2

(
− ‖v‖2 + γ

∫
Ω

|v|2
)
−

∫
Ω

F (u, v).

Hence, by (F1) and the Hölder inequality, we get

(3.8) I(u−+aek+1, v)

≤ 1
2

(
1− α

λk

)
‖u−‖2 +

1
2

(
− 1 +

γ

λj+1

)
‖v‖2

+
a2

2

(
1− α

λk+1

)
‖ek+1‖2 − b1

∫
Ω

|u− + aek+1|µ − b1

∫
Ω

|v|µ

≤ 1
2

(
1− α

λk

)
‖u−‖2 +

1
2

(
− 1 +

γ

λj

)
‖v‖2

+
a2

2

(
1− α

λk+1

)
‖ek+1‖2 − b∗1

( ∫
Ω

|u−|2 + a2|ek+1|2
)µ/2

,
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where b∗1 is a suitable positive constant. Therefore

I(u− + aek+1, v) ≤ a2

2

(
1− α

λk+1

)
‖ek+1‖2 − b∗1|a|µ

( ∫
Ω

|ek+1|2
)µ/2

≤ a2K1 − |a|µK2,

where

(3.9) K1 =
1
2

(
λk+1 − α

λk+1

)
‖ek+1‖2 and K2 = b∗1

( ∫
Ω

|ek+1|2
)µ/2

,

are positive constants. Hence from (3.8)

I(u− + aek+1) → −∞ for ‖u + aek+1‖+ ‖v‖ → ∞,

and hence this proves (3.6a) in the case where k < j.
On the other hand, the case k = j can be handled in a similar way, taking into

account that in this case it is not true that
∫
Ω
(u−+aek+1)v = 0 for every v ∈ V +.

In conclusion, in this case one gets that for every (u− + aek+1, v) ∈ W ⊕ Re+
k+1

it holds

I(u− + aek+1, v) ≤ 1
2

(
1− α

λk

)
‖u−‖2 +

a2

2

(
1− α

λk

)
‖ek+1‖2

+
1
2

(
− 1 +

γ

λk+1

)
‖v‖2 +

γ

2

∫
Ω

v2

+ δ

∫
Ω

(u− + aek+1)v −
∫

Ω

F (u, v)

≤ 1
2

(
1− α

λk

)
‖u−‖2 +

a2

2

(
1− α

λk+1
+

δ

λk+1

)
‖ek+1‖2

+
1
2

(
− 1 +

γ

λk+1
+

δ

λk+1

)
‖v‖2 − b∗1|a|µ

( ∫
Ω

|ek+1|2
)µ/2

≤ a2K1 − |a|µK2,

where in this case, by (b3)

(3.10) 0 < K1 =
1
2

(
1− α

λk+1
+

δ

λk+1

)
‖ek+1‖2 <

λk+1 − α

λk+1
,

and K2 is given as before and, as before, this proves (3.6a).
The idea behind the proof of (3.7a) and (3.7b) is the same. For simplicity we

will just show the case a. As in the proof of Proposition 3.11 denoting by

gα(a) = K1a
2 −K2|a|µ,
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where K2 is given in (3.9) and K1 in (3.10), we take into account the last in-
equality in (3.10)

(3.11) sup
W⊕Re+

k+1

I ≤ g(aα
max) = K

2/(µ−2)
1

(
2

µK2

)2/(µ−2)(
1− 2

µ

)
< C3(λk+1 − α)µ/(µ−2),

where

C3 =
(

2
µK2

)2/(µ−2)(
1− 2

µ

)
1

λ
µ/(µ−2)
k+1

.

By (3.9) or (3.10) it is then clear that

(3.12) gα(aα
max) = C3(λk+1 − α)µ/(µ−2) ↘ 0 for α ↗ λ−k+1,

and hence (3.7a) follows. �

Theorem 3.13. If (F1), (F2) and (bi), for i = 1, 2, 3, 4 hold, then there
exists at least one solution of (ES).

Proof. Proposition 3.10 and (3.6) provide the necessary estimates to apply
the linking theorem, which will give rise to the existence of a nontrivial solution.�

Proposition 3.14. If we suppose (F1), (F2) and (bi) with i = 1, 2, 3, 4 hold,
then there exists α∗ < λk+1 such that for any α∗ < α < λk+1 there exists a ρ ∈ R
for which

(3.13) inf
∂Bρ(Z	Re+

k+1)
I > sup

W⊕Re+
k+1

I,

and there exists a γ∗ > λj such that any λj < γ < γ∗ there exists a ρ ∈ R for
which

(3.14) inf
∂Bρ(Z	Re−j )

I > sup
W⊕Re−j

I.

Proof. Inequality (3.13) follows immediately from (3.7a) and the second
inequality in Remark 3.11, while (3.14) follows from (3.7b) and the last inequality
in Remark 3.11. �

Proposition 3.15. If (F1) and (bi) with i = 1, 2, 3, 4 hold, then there exists
R∗ such that for every R > R∗

sup
∂BR(W⊕Re+

k+1⊕Re−j )

I ≤ 0.

Proof. If k < j, by (b4) for every u− ∈ U−, v ∈ V +, a ∈ R∫
Ω

(u− + aek+1)v = 0 =
∫

Ω

u−ej .
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By the Poincaré and Hölder inequalities and (F1) we have

I(u−+aek+1, bej + v)

≤ 1
2

(
1− α

λk

)
‖u−‖2 +

1
2

(
− 1 +

γ

λj+1

)
‖v‖2

+
a2

2

(
1− α

λk+1
+

δ

λk+1

)
‖ek+1‖2 +

b2

2

(
− 1 +

γ

λj
+

δ

λj

)
‖ej‖2

− b1

( ∫
Ω

|u−|2 + a2e2
k+1

)µ/2

− b1

( ∫
Ω

b2e2
j + |v|2

)µ/2

≤ 1
2

(
1− α

λk

)
‖u−‖2 +

1
2

(
− 1 +

γ

λj+1

)
‖v‖2 + K1a

2‖ek+1‖2

+ K2b
2‖ej‖2 −K3|a|µ‖ek+1‖µ −K4|b|µ‖ej‖µ,

where K1, K2, K3, K4 are suitable positive constants and hence, taking into
account (b1) and (b2),

I(u− + aek+1, bej + v) → −∞ for ‖u− + aek+1‖+ ‖bej + v‖ → ∞,

and thus the result is found. On the other hand, if k = j, for every (u, v) ∈
W ⊕ Re+

k+1 ⊕ Re−k = (U− ⊕ Rek+1 × (Rek ⊕ U+) one has∫
Ω

uv =
∫

Ω

(
u− + aek+1

)(
bek + v+

)
= b

∫
Ω

u−ek + a

∫
Ω

ek+1v
+,

thus, with the usual kind of computations one gets

I(u, v) ≤ 1
2

(
1− α

λk
+

δ

λk

)
‖u−‖2 +

1
2

(
− 1 +

γ

λk+1
+

δ

λk+1

)
‖v+‖2

+
a2

2

(
1− α

λk+1
+

δ

λk+1

)
‖ek+1‖2 +

a2

2

(
− 1 +

γ

λk
+

δ

λk

)
‖ek‖2

− b1

∫
Ω

|u− + aek+1|µ − b1

∫
Ω

|bek + v+|µ,

and as before I(u, v) → −∞ for ‖u− + aek+1‖+ ‖bek + v+‖ → ∞ and hence the
result is inferred. �

Proof of Theorem B. By Theorem 3.13 we can find R1 > 0 and ρ1 > 0
such that (2.2) and (2.3) hold. On the other hand, by Propositions 3.10, 3.14
and 3.15, we can find R2 > 0 and ρ2 > 0 such that (2.4) and (2.5) hold, and by
Proposition 3.15 we can fix R1 < R2, and thus we find the result. Obviously one
has to consider (3.13) for obtaining the result relative to α ↗ λ−k+1, while (3.14)
for the result relative to γ ↘ λ+

j . �

Geometrical conditions of Theorem C. We define W = U−×H1
0 , Z =

U+ × {0}, where U− = Span {e1, . . . , ek} while U+ = H1
0 	 U−.
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Proposition 3.16. If (F1), (F3) and

(c1) λk < α < λk+1,
(c2) 0 ≤ γ < λ1,
(c3) 0 ≤ δ < δ0 = min{λ1 − γ, (α− λk)λ1/λk},

hold, then supW I ≤ 0 and there exists ρ > 0 such that inf∂Bρ(Z) > 0.

Proof. In fact (F1), (c1)–(c3) imply that for every (u, v) ∈ W it holds that

I(u, v) ≤ 1
2

(
1− α

λk
+

δ

λ1

)
‖u‖2 +

1
2

(
− 1 +

γ + δ

λ1

)
‖v‖2 −

∫
Ω

F (u, v) ≤ 0,

while (F3), (c1) and (c3) imply that for every 0 < ε1/2 = (λk+1 − α)/(4λk+1)
there exists a ρ > 0 such that for every (u, 0) ∈ Z with ‖u‖ = ρ one gets

I(u, 0) ≥ 1
2

(
1− α

λk+1

)
‖u‖2 − ε1/2‖u‖2 =

1
4λk+1

(λk+1 − α)‖u‖2 > 0,

and hence the proof is completed. �

Proposition 3.17. Let (ci), i = 1, 2, 3 and (F1) hold. If we consider e+
k+1 ∈

Z, then there exists R > 0 such that

(3.15) sup
∂QR(W,e+

k+1)

I(u, v) ≤ 0,

and if

(c4) 0 ≤ δ < min{δ0, λk+1 − α},

holds, then

(3.16) sup
W⊕Re+

k+1

I(u, v) ↘ 0 for α ↗ λ−k+1.

Proof. Indeed for any u− ∈ U−, a ∈ R, v ∈ H1
0 it holds, using the Poincaré

and Hölder inequalities,

I(u−+aek+1, v)

≤ 1
2

(
1− α

λk
+

δ

λ1

)
‖u−‖2 +

a2

2

(
‖ek+1‖2 + (δ − α)

∫
Ω

e2
k+1

)
+

1
2

(
− 1 +

γ + δ

λ1

)
‖v‖2 − b1

∫
Ω

|u + aek+1|µ ≤

≤ 1
2

(
1− α

λk
+

δ

λ1

)
‖u−‖2 +

1
2

(
− 1 +

γ + δ

λ1

)
‖v‖2

+
a2

2

(
1− α

λk+1
+

δ

λk+1

)
‖ek+1‖2 − b∗1

( ∫
Ω

|u− + aek+1|2
)µ/2

≤ 1
2

(
1− α

λk
+

δ

λ1

)
‖u−‖2 +

1
2

(
− 1 +

γ + δ

λ1

)
‖v‖2 + a2K1 − |a|µK2,
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where b∗1 is suitable positive constant and

(3.17) K1 =
1
2

(
λk+1 − α + δ

λk+1

)
‖ek+1‖2 and K2 = b∗1

( ∫
Ω

|ek+1|2
)µ/2

.

Hence (3.15) follows for ‖u− + aek+1‖+ ‖v‖ → ∞.
To prove (3.16), we define g(a) = a2K1− |a|µK2 where K1 and K2 are given

in (3.17) and by (c4) one has 0 < K1 < (λk+1 − α)/λk+1. Thus the usual
argument gives the needed result. �

Theorem 3.18. If (F1) and (ci), for i = 1, 2, 3 hold, then there exists at
least one solution of (ES).

Proof. Proposition 3.16 and (3.15) provide the necessary estimates to apply
the linking theorem. �

Proposition 3.19. If (F1) and (ci) with i = 1, 2, 3, 4 hold, then there exists
R∗ such that for every R > R∗

sup
∂BR(W⊕Re+

k+1⊕Re+
k+2)

I ≤ 0.

Proof. Completing the usual estimates for every (u, v) ∈ W⊕Re+
k+1⊕Re+

k+2

we get that

I(u−+aek+1 + bek+2, v)

≤ 1
2

(
1− α

λk+1
+

δ

λ1

)
‖u−‖2 +

1
2

(
− 1 +

γ

λ1
+

δ

λ1

)
‖v‖2

+
a2

2

(
1− α

λk+1
+

δ

λk+1

)
‖ek+1‖2 +

b2

2

(
1− α

λk+2
+

δ

λk+2

)
‖ek+2‖2

− b∗1

( ∫
Ω

|u− + aek+1 + bek+2|2
)µ/2

≤ 1
2

(
1− α

λk+1
+

δ

λ1

)
‖u−‖2 +

1
2

(
− 1 +

γ

λ1
+

δ

λ1

)
‖v‖2

+ a2K1 − |a|µK2 + b2K3 − |b|µK4,

where Ki, i = 1, 2, 3, 4 are suitable positive constants. From the above the result
follows directly. �

Proposition 3.20. We suppose (F1), (F2) and (ci) with i = 1, 2, 3 hold.
Then there exists α∗ < λk+1 such that for any α ∈ (α∗, λk+1) there exists ρ ∈ R
for which

(3.16) inf
∂Bρ(Z	Re+

k+1)
I > sup

W⊕Re+
k+1

I.
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Proof. It follows immediately from (3.16), and Proposition 3.16 and the
usual comparison between the different speed with which the two quantities go
to zero. �

Proof of Theorem C. By Theorem 3.18 we can find R1 > 0 and ρ1 > 0
such that (2.2) and (2.3) hold. On the other hand, by Proposition 3.20 we can
find R2 > 0 and ρ2 > 0 such that (2.4) and (2.5) hold and, by Proposition 3.19,
we can fix R1 < R2, and thus the result is found. �
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