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THE EFFECT OF THE GRAPH TOPOLOGY
ON A SEMILINEAR ELLIPTIC EQUATION
WITH CRITICAL EXPONENT

JAN CHABROWSKI — SHUSEN YAN

1. Introduction

The aim of this paper is to study the effect of the topological structure of
the graph of the coefficient Q(y) on the number of the positive solutions of the
following elliptic problem:

—Au=Q(y)u* '4eu yinQ,
(1.1) u>0 y in Q,

u=20 y on 0X),
where ¢ is a small nonnegative number, 2* = 2N/(N —2), N > 4, Q is a bounded
domain in RY with a smooth boundary 9 and Q(y) is a smooth positive function
in Q.

Problem (1.1) stems from differential geometry and has attracted a lot of
attention. In the case € > 0, the existence of at least one solution for (1.1) was
established by Brézis and Nirenberg [9] in the case @ = Const. and by Escobar
[12] for a continuous function Q(y) satisfying some additional assumptions. In
the case ¢ = 0, it follows from the Pohozaev identity that problem (1.1) has
no solution if Q is star shaped and (DQ(y),y) < 0. Thus we expect that a
solution of problem (1.1) will concentrate at some point as ¢ — 0+. So it is

1991 Mathematics Subject Classification. 35J65.
Key words and phrases. Critical exponent, multiple solutions, elliptic equations.

©1998 Juliusz Schauder Center for Nonlinear Studies



2 J. CHABROWSKI S. YAN

interesting to know where the concentration point is and to estimate the number
of the solutions if there are such points. In the case @ = Const., Rey [19], [20]
studied the role of the Green function in problem (1.1) and used the category
of the domain to estimate the number of the solutions of (1.1) for £ > 0 small.
For general Q(y), Cao and Noussair [10] proved that (1.1) has at least as many
solutions as the number of degenerate isolated global maximum points of Q(y)
if € is small.

In the case ¢ = 0 and Q(y) = 1, Bahri and Coron [2] investigated the effect
of the domain topology on the existence of a solution for (1.1). Thus another
problem to consider is the effect of the graph topology of Q(y) on the existence
result for (1.1) in the case € = 0 and the domain 2 is contractible.

The aim of this paper is two-fold. First, we construct a solution for (1.1)
which concentrates at an interior or a boundary local maximum point of Q(y)
as € — 0. We also estimate the number of such solutions using the category of
the set on which Q(y) attains its local maximum. Second, we study the effect
of the graph topology of Q(y) on the existence of a solution for (1.1) in the case
¢ = 0. Actually, we will construct a solution for (1.1) for £ > 0 small, such that
this sequence of solution converges strongly in H!(Q) as € — 0.

Before we introduce our main results, we give some notation. Let
AN=2)/2

o N-2)/4
Ura(y) = IN(N —2)](V=2/ 1+ N2y — 2Py V-2

It is well known that U, » satisfies
AU\ =UZT', yeRY.

Let P denote the projection from H!(Q) into H1(Q); that is, if w € H(Q), then
Pw is a unique solution of the following Dirichlet problem

Au=Aw yin ),
u=20 on 0f).
Let

(1.2) (u,v) = /QDuDv7 u,v € HE(Q),

(13 lull = ( /. |Du|2)1/2, ue (@),

(1.4)  Egy\= {v cv € HE(Q),

PU, PU, _
<’U7PU1,)\>:<'U, a)\7/\> :<Uaax_7)\>:0a ]:177N}
J

We now state the main results of this paper.
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THEOREM 1.1. Let M and M, be two connected closed sets compactly con-
tained in Q satisfying M C M., max,ecpm Q(x) > maxzconm, Q(x) and

Q(z) =: Qur = Const. for allxz € M,
(1.5) M.N{z: Qx)=Qum} =M,
M.n{z:Q(z) > Qun} =0.
Suppose that N > 4 and that D};Q(x) = 0, i,j = 1,...,N, for all x € M if

N > 5. Then there is an e, > 0, such that for each ¢ € (0,e,] problem (1.1) has
at least Catyy, (M) solutions of the form

(16) Ue = asPUxE,)\s + e,

where v. € E;_ »_, and as € — 0,

e’

(1.7) a. — QY
(1.8) [[ve]l — 0,
(1.9) Te — To € M,
(1.10) Ae — 00,

THEOREM 1.2. Suppose that N > 5. Let M be a connected closed set in 052,
satisfying
Q(z) =: Qu = Const. for allx € M,
(1.11) Q(x) < Qur — a(d(z, M)*  for all d(x, M) < 6,
|D'Q(z)| = O(d(z, M)*=%)  for all d(x,M) <6, i=1,...,[k],
where a is some positive constant, k is some constant satisfying k > 4/(N—4)+2.

Then there is an €, > 0, such that for each € € (0,¢5], problem (1.1) has at least
Catpr (M) solutions of the form

(1.12) Ue = Qe PUy_ 5. + e,

where v € Ey_ ., and as e — 0,

e’

(1.13) a: — Q2
(1.14) [oe]| — 0,

(1.15) Te — To € M,

(1.16) Ae = 00,  Acd(xe,00) — 0.
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THEOREM 1.3. Let M = {2 : Q(x) = Qmax}, where
Qmax = Iwneaéi Q(x).

Suppose that N > 5 and that the following conditions hold:

(i) M is not contractible in a small neighbourhood of itself, but M is con-
tractible in {x : Q(x) >t} for some constant t belonging to

272 WV=20Q 0, Qmax)

and such that maxgq Q(x) <t and
(i) for each x € Q satisfying DQ(x) = 0 and Qumax > Q(x) > t, we have

AQ(z) > 0.

Then for each € € [0,¢,], (1.1) has a solution u. such that u. converges (up to a
subsequence) strongly in H*(Q) as e — 0.

REMARK 1.4. From the proof of Theorem 1.3, we see that in the case N =4
and € = 0, if (i) and (ii) hold and for each x € Q satisfying DQ(z) = 0 and
Qmaz > Q(x) > t, we have
N?H(z, ) [on U027*f1

f]RN |y|2U37*1 ’

where H(y, z) is the regular part of the Green’s function, then (1.1) has a solu-

AQ(x) >

tion.

In order to obtain the existence of one solution for (1.1), conditions similar
to (1.5) or (1.11) were imposed on a global maximum point in [12]. The degener-
acy condition on the maximum point is necessary to get a solution concentrating
at that point. In fact, in the next section we will prove that there is no solu-
tion of the form (1.6) which concentrates at an interior critical point x, with
AQ(xo) # 0.

In the last several years, a number of results have been obtained concerning
the effect of the domain topology, the domain shape and the shape of the graph
of the coefficient on the number of the positive solutions for nonlinear elliptic
problem with nearly critical and critical exponent, see for example [3], [10], [11],
[18]-[20], [22]-24]. As far as the authors know, the first paper dealing with the
effect of the topological structure of the coefficient on the number of solutions
is due to Musina [18]. However, the method in [18], similar to that in [4], [5],
cannot be used to construct a solution concentrating at a local maximum point
of Q(y).

It is not difficult to prove that if (1.1) has a solution of the form (1.6) with
ZTe — To € Q, then z, must be a critical point of Q(y). Thus it is interesting to
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know what kind of critical points of Q(y) can generate a solution of the form (1.6)
for (1.1). Using a similar method developed in [11], [23], we can prove that if Q(y)
is flat enough around a minimum point z, € €2, that is, |D7Q(z)| < Clz—zo|* 77,
j=1,...,N=2,|Q(z) — Q(z,)| > Co|x — x0|, for all x € Bs(x,), then z, will
generate a solution of the form (1.6) for (1.1). On the other hand, if £ is convex
and z, € 99 is a minimum point of Q(y) such that Q(y) is nondecreasing in the
direction 7 in a neighbourhood of x,, where n is the inward unit normal of 92 at
Zo, then using the moving plane method of Gidas, Ni and Nirenberg [13], we see
that the distance between the maximum point of any positive solution of (1.1)
and x, has a positive lower bound. As a result, there is no solution concentrating
at To. So the problem of what kind of boundary point can generate a solution
is far from well understood.

Our main results here show that the topological structure of the global max-
imum set can not only affect the number of the single peak solution, but also
create a new kind of solution, that is, solution which does not concentrate at cer-
tain points. It is easy to check that the energy of the solution for (1.1) in the case
e =0 1is at least (l/N)SN/2/anA.;;2)/2, where S is the best Sobolev constant for
the embedding H*(RY) — L? (R™), but above this energy level, the correspond-
ing functional does not satisfies the PS condition. To overcome this difficulty,
we first perturbe the original problem suitably and construct a solution for this
perturbed problem, whose energy is strictly greater than (1/N)S™/2/ QSHZ\QQQ)/ 2,
Then we prove that the solution for the perturbed problem converges strongly
in H'(Q) to a solution of the original problem.

There are papers on the existence of solutions for (1.1) in the case € = 0
and Q = RY™ under some symmetry assumptions on the coefficient Q(z), see
for example [7], [8], [14]-[16]. In [6], Bianchi considered (1.1) on RY with the
general coefficient Q(z). Among other things, he assumed that Q(x) has only a
finite number of critical points and Q(x) possesses at least two isolated global
maximum points (so the maximum set of Q(z) is not contractible in a small
neighbourhood of itself). Thus his result does not apply to the case where the
maximum set of Q(z) is a sphere.

Let K : H(Q) — {0} — R be a functional defined by

) — fQ |Du|? — €fQ u?
K = )

Let M =:{x €Q, A\> X\, v € E,}, where X, is a large positive number. For
(z,\,v) € M we set

(1.17)

(1.18) J(z, A\, v) = K(PU, x +v).

It is well known that if ||v|| is small enough, PU,  + v is a critical point of K (u)
if and only if (z, \,v) € M is a critical point of J(z, A\, v) on M, see for example
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[6], [2], [19]. Moreover, if ||v|| is small enough, then the critical point PU, » + v
of K is positive. On the other hand, (z, A, v) € M is a critical point of J(z, A, v)
on M if and only if there are A € R, B € R and G; € R, such that

aJ 82PU, » 9*PU, » .
(1.19) Do —B< VI > ZG<6%8% > i=1,...,N,

aJ 02PU, 5 al 02PU, 5
(120 5% B< D% ,v>+ZGJ< Fon >

0.7 oP Ux 8PU;C
(121) o= = APU, 5 + B— =2 A ZG A.

The paper is organized as follows. In Section 2 we study the interior case.
Section 3 is devoted to the study of boundary case, and the proof of Theorem 1.3
is given in Section 4. Some technical estimates needed in the proofs of our main
results are given in the Appendices.

2. Proof of Theorem 1.1

We commence with the following result which enables us to reduce the orig-

inal problem into a finite dimensional problem.

PROPOSITION 2.1. There exist an €, > 0 and Ao > 0, such that for each
e € (0,e.], there is a Ct-map

Ve = ve(2, ) : QX {A > A} — Ep
such that (1.21) is satisfied. Moreover,

"D 1
en el =0 X PR s ),

j=1

where o > 0 is a constant.

PROOF. The proof of Proposition 2.1 is standard and we refer to the paper
[19] (see the proof of Proposition 4 there). Estimate (2.1) follows from Lem-
mas A.3 and A.4. O

Without loss of generality we may assume @, = 1. To prove Theorem 1.1
we need the following estimate.

LEMMA 2.2. Let x € M, and let v, be the map from Proposition 2.1. Then

x KiH
(2.2) J(x, A\ v.) > AL72 (1 + % - Kgs/\2>

1
+O(A]\72+0+52)\_2)7 ZfNZB,
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KiH(xz,x)

(23) @A) > AU (1 T

—eXN (K3 +0(1))In /\>

1
+O(/\2+a +52>‘_2)» if N =4,

where o is a small positive constant, A, K1, Ko and K3 are constants from
Lemmas A.1 and A.2 and H(x,y) denotes the regular part of the Green function.

PROOF. Let v = v.. First, in view of (A.4) from the proof of Lemma A.1,
we have

(2.4) / QW)|PU, o + 0> = / QW)|PUsr + 02 + O(J0]* +A~N)
Q Bs(ao)

g/ |PU,\ + )% +0(v]* +27Y)
B

§(zo)

- / PU s+ 02 +O(Ju]? +A~Y)
Q

* 2%(2* — 1 *
< /|PU“|2 +¥/ \PU, AP 202
Q ’ 2 Q '

1 .
+0(Sgrowmays ) ol + Ol + A7)

BiH(x,z)  2°(2 — 1)/ o
=|A-2" PU,

1 * _
+O(W>||U||+O(||U||2 +A7N).

We also have (see (A.2))

B1H
@) [ 1D+ 0P = 4= BEED o)
Q
and
(2.6) / PU o+ 02 = / PU A2 + O(l[o]2 + A~ Jo])
Q Q

> / UL + (e — 1)Joll? + O(A2),
Q

where 7 > 0 is a small constant.
Combining (2.4)—(2.6), using (D.1) in [19], we obtain

" KiH(x,x
1) Jae == (10 KIED oy )

1
- O()\NHU - 52>\‘2) :

where p > 0 and the result readily follows. O
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We now consider the case N > 5. We define
. 1
(2.8) ce = A17%/? (1-— 21(155>,

where K is the constant in Lemma A.1.
Let D = {(x,A) : # € M,, A € [e"!,e7F]}, where L > [ > 0 are to be
determined later. For (x,\) € D we set

F(z,\) =: J(z, A\, ve(x, N)).

In order to use the Lusternik—Schnirelman theory of critical points to prove
Theorem 1.1, we need to check that the following flow will not leave D:

dt
Y(0) =Y, € Fee,
where Y = (z,) and F° = {(z,)) : (z,A) € D, F(z,)\) < ¢}. Since along the
flow Y(t), F(Y(t)) decreases, we see that if F'(z,A) > ¢, for all (z,\) € 9D,
then the flow will not touch 9D.

{ dy (t) = —gradF(Y (t)) textfort >0,

LEMMA 2.3. Suppose that N > 5. Then F(x,\) > c., for all (x,\) € dD.

PRrROOF. Let (z,A) € dD.
Case 1. Suppose that A = e~!. In this case, Lemma 2.2 yields

(2.9) Fz,\) > A2 (1 4 K H(z, )/ V=2 — Kyl t2)
+ Ol WN=24o) 242y 5 ¢

if e > 0 and [ > 0 are small enough.
Case 2. Suppose that A = ¢~L. It follows from Lemma 2.1 that

(2.10) F(z,\) > A2 (1 4 K H(z, z)e" V=2 — [,e'+21)

+ O(gL(N_2+U) _|_€2+2L) > c.,

if L > 0 is large enough.
Case 3. Suppose that x € dM,. According to our assumption there is a
positive v such that
Qz)<1l—x, x€dM,.
Consequently, as in Lemma A.1, we have
1—2/2* A1-2/2"

(2.11) F(z,)) > W(l +o(1)) > A==

and the result follows. O

(I+0(1)) > ce

ProOOF OF THEOREM 1.1. Case N > 5. It follows from Lemma 2.3 that

#{(x,A) : (x,\) € F°, DF(xz,\) =0} > Catp(F*).
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Next, we claim that
(2.12) M x{A=¢e"?} C F.
In fact, for any (x,\) € M x {\ = 72}, we have |[D/Q(z)| = 0, j = 1,2. From
Lemma A.1, we get
(2.13) F(z,\) = J(x,),0) + O\ 3 +£2272)

=AY (1 - K eA2) + O(Z 2 422072

=AY (1 - K1e%) 4+ 0(£9) < c..
Consequently,
(2.14) #{(x,\) : (x,\) € F, DF(x,\) =0} > Catp(M x {\ =&7?})

= Catpy, x (r=e—2} (M x {X = e7?}) = Caty, (M)
and this completes the proof of Theorem 1.1 in the case N > 5.
Case N = 4. We define
= ALY em2n/ey,

Dy =:{(z,\) :z € M, \ele ! el/e)},

where Ly > Ly > 0 are to be determined later. Then as in Lemma 2.3, we have
F(x,)\) > c. if \=e"! or & € OM,. Moreover, if A = e~2/¢ then

Fz,\) = AY72/27 (1 — e722/5 (K3 Ly + O(1))) > L.

Hence F(x,\) > ., for all (z,\) € dD;. On the other hand for any (z,\) €
M x {\ = e"/¢}, we have

(2.15) F(z,\) = J(z,),0) + O(A™?%)
=AY (1 — (K34 0(1))eA2In\) + O(A\72)
= A2 (1 — (K34 0(1)) (L + O(1))e 2E1/5) < ¢,
if L1 > 0 is large enough. Therefore
M x {\=el/5} c Fe.
Consequently,
(2.16) #{(x,)\) : (x,)\) € F°, DF(z,\) = 0}
> Catp(M x {\ = eF1/e})
= Catyy,  reerr/ey (M x {X = e"1/9}) = Catyy, (M)

and the result follows. O

To close this section we give the following nonexistence result.
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THEOREM 2.4. Suppose that N > 5 and x, € Q is a critical point of Q(y)
satisfying AQ(xo) # 0. Then (1.1) has no solution of the form (1.6) satisfying
(1.13)(1.16).

PROOF. Suppose that (1.1) has a solution of the form
Ue = O‘EPUQUE,/\E + e,

satisfying (1.13)—(1.16). First, we estimate v.. Multiplying (1.1) by v. and
integrating over (2, we get

(2.17) /|DUE|2: / Q(y)|a6PUIE’>\E+v6|2*_1vE —|—5/(o¢€PUm€’)\E—1—115)116
Q Q Q
= [ag*_l Q(y)PUz;\ivE
Q
+ (2" — 1)aZ 2 / Q(y)PUiQ,ASvS]
Q
+5/ (PU,.. . +vo)ve + O([Jue|2+),
Q

where 6; > 0 is a constant. It follows from Appendix D in [19] that there exists
a p > 0, such that

(2.18) / |Dv.|* — (2% — 1)a§*—2/ Q(y)PUZ 202 —g/ v? 2,0/ |Dv.|%.
Q Q e Q Q

Combining (2.17) and (2.18) we get

o=]* < O(/QQ(y)PUz::\ivs+5/QPU%7)\€UE) +O(||v€||2+‘91).

From this, with the aid of Lemma A.3, we obtain

(2.19) lve]| < O(ID?\(%)I +AT2+ sAE“’).

Next, multiplying (1.1) by dPU,_ x./0X and integrating over €, we get

OPU, «_1OPU_ z.
a€<PUIE,,\E, 8)\/\> = / Q(y)(ae PUy, A, ‘H)s)Q 1T’/\a
Q

which, together with Lemma B.1 and

OPU,. ». 1 1
(rrn 2552 ) =0(r) =0 (50)

2KoAQ(z.) | Kae 1DQ(z:)| +¢ | |4
_— Ol ———————+X =0.
oo et % %
Thus we get a contradiction since AQ(z:) — AQ(x,) # 0. O

yields
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3. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. First, we define

[H(m, x)} 1/(N—4)
)\57$ = T .

Choose | = 1/(k —2) + 7 with 7 > 0 small enough. Then we have

(3.1) l(k—2) >1,
(3.2) (kM)l <1+ﬁ.
Let

N. ={z : d(z,M) <} {z : d(z,00) >},
D, ={(x,A) : 2 € Noy A€ [Aeare T},

where 7 is small fixed constant, L and T are large constants.
In this section we also assume that @y = 1. Let

Co = AT (1 Z p RN -2)]/(N—4)

where t < L is a large constant to be determined later and 7 > 0 is a fixed small
constant. Define

F(z,\) = J(x, A\ ve(x, N), (x,\) €D

In order to keep the following flow inside D.:

dt

{ w = —gradF(Y(t)), Y = (z,N),
Y(0) = Y, € Fe-,

we need the following lemma.
LEMMA 3.1. If (x,\) € OD., then F(xz,\) > c..

ProoOF. It follows from Lemmas A.1 and A.3 that

1—2/2*
DQ(x D(J 1 _
+O(| Z' ()\d;:N_2+(/\d)N_l+€2)\ 2>.

For any \ € [nAc 4, e~ 7] we have

dn > 05_1/(N_4)d1_(N_2)/(N_4)) — 00, as € — 0.

H(z, m)} 1/ (N=4)

(3.6) )\dz[ :
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On the other hand, noting (3.1), we see that for j > 2,

(5
0<€z (k=) g1+ (N—2)1) -2/ (N—4) y - 2)

(3.7) |D(J)Q

| |
Q

O [ G=2)/(N=2)+Uk—2+2(j—2)/(N—=4)] y — >
O(eM)er2,

for some v > 0. Similarly

|DQ(x)| ghtk=1)
22 =0 \2

) = 0(eM)er 2.
Inserting the above estimates into (3.5) yields

(3.8) F(z,\) =

A2 KiH(xz,x
Q(z)2/? 1 AN -2

Case 1. Suppose that d(z,00) = L. Then

) _ KQE)\_2:| +O(e7)er2.

e"2 = O(e(ng72)2/(N74)) _ O(&_1+2(1+L(N72))/(N74))7

KlH(xax) — — — — _ _
N2 — 0=/ N=D (g 3)=2/ (N=D)) = O(1+20+LIN=2)/(N=4)y

Hence, since L > t,

A1-2/2"

Q(z)>/*
2A172/2*[1+O(€1+2(1+L(N72))/(N74))] > c..

(3.9) F(z,)\) = [1 + O H20+LIN=2)/(N=4))]

Case 2. Suppose that d(z, M) = ¢'. Then

1 1 1
> =
Q(2)2/2 = (1 — ad(x, M)¥)2/2" — (1 — aclk)2/?"

(3.10) > 1+4a'e'*,

for some a’ > 0. On the other hand, by (3.2), we get

(3.11) Klbjfv(z; z) KoeA~2 = O(sN=2)/(N=4) 2(N=2)/(N-1)
A p—

:O( 1+2[1+(N—=2)I]/(N— 4)) O(E'y)slk

Consequently, there is a @’ > 0, such that

(3.12) F(z,)) > A" 22 (1 +d' %) (1 4+ 0()e™)
> A2 (1 4 a"e) > e
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Case 3. Suppose that A =n\. ;. Then

KiH(z,x)

\N—2 — KQE)\_Q

(3.13)
_ <K1 _ K2,,—2>€(N—2>/<N—4>H($,x)—2/<N—4> >0,
1

if 7 > 0 is small enough. As a result,
F(z,\) > AV722 > ¢,
Case 4. Suppose that A = =7, Then, if T > 0 is large enough,
(3.14) F(z,\) = AV72/27 (1 4 O(eTW=2)7UN=2) 4 1+2Ty) 5
So the result follows from Steps 1-4. O
PROOF OF THEOREM 1.2. In view of Lemma 3.1 we conclude
#{(z,\): DF(z,\) =0, (z,\) € D, } > Catp_(F*).

Next, we claim that

(3.15) D: = {(x,)\) rx€ U {0 +e"n}, A= Acsn } C P
T €M

where n is the inward unit normal to 9Q at x,,

H(x, x)] 1/(N—4)

2K,

(N — 2)K1} =)
: L .

Aez s = t*{ and t, =: {

In fact, suppose that (z,\) € Df. Then
Al-2/27

— _ -2 MNe™2
(316) F(.’I,‘, )‘) - Q(l’)2/2* (1 COE)\E,$7*) + O<E )E)‘s7w,*7
where ¢, = Kat;2 — K1/t =2 > 0. On the other hand we have
(3.17) Q(z) =14 0(d(xz, M)*) =1+ O(™).
(318) 5)\;3 . > c/s[sd(x, 8Q)N72]2/(N74) _ 0/58[1+t(N72)]'2/(N74),

for some ¢ > 0. Since k > 2(N —2)/(N —4), we see that we can choose a
suitably large t, such that

et = 0(eM)eN 2

E,T, %"
Consequently,

(3.19) Fz,\) = A2 (1 - coeX2,

<AV (1 - cos)\;i,*ﬂ)
SAl—Q/Z*(l _ CO€€2U+t(N_2)]/2(N_4)) S Ce.

)+ 0(57)5)\;2 .

‘,‘Eﬂ
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It follows from (3.15) that
#{(x,A\) : DF(z,A\) =0, (x,\) € D.} > Catp_(D:) = Catn_(N)),

where N = |, cp {70 +e'n}, and n is the inward unit normal of 9Q at z,. On
the other hand, we have

N.c |J 9nBu(z,) = N,
T, €M
Thus Caty, (NZ) > Caty:-(NZ). Since N*, N¥ and M are homotopically
equivalent, we see that

CatNE**(N;) = CatM(M)

and the result follows. O

4. Proof of Theorem 1.3

Let 7 > 0 be a small constant. For each fixed small € > 0, consider the
following problem:

—Au=Qyu* 1" +eu yinQ,
(4.1) u>0 y in Q,

u=20 y on 0N).
The corresponding functional of the above problem is

1 1
I = 5 [ (DuP —et) = 5

/ Q@) 7, ue HY(Q).
Q

First, we follow the basic idea of [18] to construct a solution for (4.1), whose
energy is strictly greater than SN/Q/NQI(HI\Z;m/Z.

THEOREM 4.1. Suppose that the global maximum set M is not contractible
in a small neighbourhood of itself, but there is a t belonging to the interval
(2_2/(N_2)Qmax, Qmax) such that M is contractible within {x : Q(x) > t}. Then
there are a T, > 0 and €, > 0, such that for each T € (0,75 and € € [0,¢&.], (4.1)
has a solution u, satisfying

1 SN/2 1 SN/Q
NW +60 < L—(UT) < NW +(5,

where § > 0 is some small constant independent of T and €.

PROOF. Denote

J(u):/|Du|2—€u2, ueVr,
Q
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where V; = {u : u € H{(Q), [,Q(z)[u/* ™ = 1}. Then for each fixed 7 > 0,
J(u) satisfies PS condition. We claim that J(u) has a critical point v, € V with

S

N2/2%

max

+0 < J(ur) < + 0.

¥2/2%

We argue by contradiction. Suppose that J(u) does not have critical point in
Je2\ J where J¢ = {u:u €V, J(u) < c}, ca = S/t +6,¢1 = S/an/fx
Then there is a continuous map a(u) : J — J satisfying a(u) = u for u € J‘l.
By assumption, there is a continuous map h(z,s) : M x [0,1] — {z : Q(x) > t}
satisfying h(x,0) =z, h(z,1) = x., for all x € M. Define

162960 = (o (1 iy = M= 7))

where A = 7L L is some large constant, 7(r) is a smooth function with n(r) = 0

outside a small neighbourhood of 0, and

Jo ylul*” dy
U) = —F— 5+ 7 -
It is easy to check that
S
J(f(2,8)(+)) = 57— +o(),

Q(h(x,s))!/*"

where 0o(1) — 0 as 7 — 0 and € — 0. Since h(z,s) € {z : Q(x) > t}, we see that

Nl - =2 )Un(z,s) A
(Jo QW) In(ly — h(z, s))Un(g,5),|>"~7 dy)t/ =7

if A > 0 is large enough. On the other hand, it follows from concentration

e Jx

compactness principle [17], [21] that if 6 > 0 and € > 0 are small enough, then
for any u € J°, §(u) is in a small neighbourhood of M. So we see that f(x,s)
is a point in a small neighbourhood of M. Since for z € M, n(ly — z|)Uyz,x € J*
if A > 0 is large, we have f(z,0) = x. But f(x,1) = 2. This means that M can
be deformed to a point within a small neighbourhood of M, a contradiction to
our assumption. O

The rest of this section is devoted to proving the solution u, for (4.1) with

1 SN/2 1 SN/Q
NiQ(N_Q)/Q +0< L—(UT) < Nit(N_Q)p + (5,

converges strongly in H!(Q) to a function u, as 7 — 0. Thus u, is a solution

of (1.1).
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PROPOSITION 4.2. Suppose that u, is a solution of (4.1) with

1 SN/Q ~ ( ) _ 1 SN/2
AT (N_o) /o T uT AT (N_9)/07
N th—2)/2 N téN—Q)/Q

where 272/(N=2Q <ty < t1 < Qumax. Assume that max,coo Q(z) <tz and
for each x € Q with to < Q(x) < t1, DQ(x) = 0, we have AQ(x) > 0. Then u,
converges strongly in H(Q) as 7 — 0.

We divide the proof of Proposition 4.2 into two lemmas. In the following, we

always assume that Quax = 1.

LEMMA 4.3. Suppose that u, is a solution of (4.1) with

SN/Q
Ir(ur) < sn=y7

where t > 272/(N=2)Q_ . then, there is an £, > 0, such that for each fized
e € [0,e0], we have that as T — 0, either u, converges strongly, or there are
zr € Q and p; — 00, such that

—-1/(2*-2)
‘ Uy — <Q(Io)) UZT7IJ/T

I
where z; — To and p = lim._,opul > 1 is a constant.

— 0,

PROOF. It is easy to check that u, is bounded in H!(£2). We assume
Uy — uo weakly in H*(Q) as 7 — 0.

On the other hand, by the Sobolev inequality, we see that if u, # 0, then
1
(4.2) I(uo) > NSN/Q + o(1),

where 0(1) = 0as 7™ —0and e — 0 and I = L.

Denote v; = u; — uo. Then

(4.3) —Av; = Q(y)|v7\2*_2_7v7 + ev,

R T L -

vy — Ug

Assume v, ||? = 1> 0as 7 — 0. It follows from (4.3) and the Sobolev inequality
that

1\2/2
(4.4) I < (S) +0o(1),
which implies

(4.5) 1> (1+0(1)SN2 ifl+#0,
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where o(1) — 0 as e — 0. Combining (4.2) and (4.5), we conclude that if u, # 0
and [ # 0, then

I (ur) = I(uo) + I (vy) + o(1) > %SN/Q +0(1).

So, under our assumption, we see that if ||u, — uo|| — I > 0, then u, = 0.

Now we assume u, = 0. Then we claim that max,cqu, — oo as 7 — 0.
Otherwise, the boundedness of L*°-norm of u, would imply the boundedness of
Ct-norm of u,. So |lu,|| — 0. This is a contradiction.

Let z, € Q be such that u,(z;) = max,eq u, =: M(TN72)/2. Denote
1
wy(2) = py NP, (z + zT> :
ir
Then w, is a bounded sequence in H'(RY) and satisfies
1 «
—Aw=Q <z + Z.,-> e T pep w.
s M:(N—2)/2
Let z; — x, and ,u:(Nﬂ)/z — u > 1. We assume

wy — w, weakly in H'(D) as 7 — 0,
w, — wy in CL¥(D),
where D is RN or half space. Then w, satisfies
(4.6) —Aw = sz**l.
Lo
Since wo(0) = 1, we see that y < co. By Pohozaev identity, (4.6) does not have
positive solution if D is half space. So we conclude that D = R¥.

Let w, = w, — w,. As before, we see that if |jw, | — > 0, then [ > SN/2,
Thus

2T 4 0(1)

1 1 Quz'z + 2r)
Iur) =3l - [ 2,

1 1 Q(zo)
—slwel? - oo [,
RN M

1 1 a4z
+ ool - g [ HrErE),
2 2% — 7 JrN 7

o*

2T 4 0(1)

So we conclude that ||w.|| — 0, and the result follows. O

By Lemma 4.3 and Proposition 7 in [2], we know that a solution u, of (4.1)
with I, (u,) < (1/N)2%(N=2)GN/2 can be written in the form

(4.7) Ur = 0; PUy_ 5. + vr,
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where a; — 11/ Q(20))Y @ =2y /N AN S pr e Ar | — 2,2 < C vy € By,
[lv-|| = 0. As a result, ; — 2o, Ay — 00, and p = lim,_,o pl.

Next, we give a necessary condition for the location of z, and prove p =1
for any solution of (4.1) of the form (4.7).

LEMMA 4.4. Suppose that u, is a solution of the form (4.7) for (4.1), satis-
fying I (u,) < 28N/2/N. Then =1 and DQ(z.) =0 and AQ(x,) < 0.

ProOOF. First, using Lemma B.1 and arguing as Theorem 2.1, we obtain

2
(48) forl? =0+ PEIE 4 0.

N2 \2to
We claim that z, € Q. In fact, if z, € 9Q, then it follows from Q(z,) <
max,con Q(r) < 272/ (N=2) that
I
N Q(z,)2/(N-2)

This is a contradiction. On the other hand, we have

OPU,. . 2 LOPUy, 5,
(4.9) <Uwa> /Q O\

Using Lemma B.1, we get

2 N,
Z — > /2.
-,—(’LLT) +0(1) 7‘75

T C
AL+(N=2)7/2 = )3’
which, in view of A7 < C' < oo, implies A < C7~ /2. Hence, p = lim,_oA™ = 1.
We also have

OPU,_ . OPU,
4.10 77# -7 T 77
(4.10) <“ oz > / @y oz,
which, in view of Lemma A.3 is equivalent to
. OPU,
4.11 JPUZ 177 ommAn ().
(411) | Qupuz e — o)
But
. OPU,_
4.12 pPU; T
we [ ow o
o,
2 —1 T TryAr
Ay oo(1
/@ T o)
. au,
= [ (DO}~ DU 3T o)
Q TAAT 3%

*—l—T aUTT? T
=D;Q(z) / (y; — xj)Usz)i T ‘k +o(1).
Q Lj

Since [ (y; — xj)Uj:;i_TﬁUwﬁAT/axj < —d < 0, (4.11) and (4.12) imply
DQ(z,) =0.
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Using (4.9) and Lemma B.1, we have

N -2 T AQ(zo) . 25/ 2 1
o Q@AY+ 5w /RN W U0+ 35 i =ol 55 )

Thus we obtain AQ(z.) < —£22*N [on U5, < 0. O

PROOF OF PROPOSITION 4.2. In view of Lemma 4.3, to prove Proposi-
tion 4.2, we only need to prove u, # 0. Suppose that u, = 0. Then it follows
from Lemma 4.4 that

Ur = aTPU:v.,,)\T + vr,
and as 7 — 0, oy — 1/Q(z)/? =2 2, — x,, DQ(x,) = 0 and AQ(z,) < 0.
It is easy to see

1 SN/Q

I-(ur) = N Q) /) +o(1).

Thus we deduce
to < Q(xo) <t.
According to our assumption, we have AQ(z,) > 0. This is a contradiction. O

PrOOF OF THEOREM 1.3. The existence part is just a direct consequence
of Theorem 4.1 and Proposition 4.2. To prove that u, (up to a subsequence)
converges strongly in H'(Q) as 7 — 0, we just need to repeat the proof of
Proposition 4.2 and thus we omit the details. O

Appendix A
Let d = d(z, 09Q).

LEMMA A.1. Suppose that N > 5. We have

1-2/2*
(A1) K(PU, ) = S(x)2/2* { Klgv(f;, T) Kgf:‘)\—ﬂ
N—2 »
DUIQE)| - |
*O( LN et <Ad>N1>’

=2

. 1 . 1
A= ¥ K=~ 2t K:—/ 2.
/RNU w0t A/RNU ro ARNU

PROOF. Let ¢y » = Uy x — PU, x. Then it follows from Proposition 1 in [19]
that

where

H(z,z)
0< "2\ < W
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As in [6] and [19], we have

(A.2) /|DPU3M|2 :/Uj*;lpUgg,A
Q Q
BiH(x,x) 1
= A —
w0 )
1
A. PU,|? = B\ ——
— fyipvestt = Bt +0(rems)

where By = [, Ui;\_l, By = [pn U?. We also have (see [19])
(a4) [ QuIPUAF = [ Qo = pan

- /QQ(y)U;} —2*AQ(y)U§fA‘1¢x,A +O<(Ad)1Nl>
= /QQ(Z/)UE/\ - Q*W + O((/\d)lN—1>

Using Taylor’s expansion and the radial symmetry of U we write

a5 [ ewuii=ewa+ [ (DQw.y-2)U2,
ro( X IRy o (1),

Using the symmetry of U, we deduce easily

(A6 [0y - 20 =0 v )
Combining (A.4) and (A.5) we get

(A7) /QQ(QMPULA‘Z* =Q(z)A - 2"%

+O<J§W>+O(<Ad;v—l>'

Jj=2

Clearly, Lemma A.1 follows from (A.2), (A.3) and (A.7). O

LEMMA A.2. Suppose that N = 4. We have

(A8) K(PUpx) =

g(lx;//z; [1 Klgv(f;x) — eA2In(Ad) (K3 + 0(1)”

N—-2 .
|DYQ(x)| £ 1
o & 5 e )
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where K3 is some positive constant and o(1) — 0 as Ad — oo.

PRrROOF. In order to prove Lemma A.2, we only need to note that

fﬂ U:?,)\
g K> 0

as Ad — oo.

LEMMA A.3. Let k be the biggest positive integer satisfying k < (N

Suppose that \™ < C. Then for any v € E; » and 7 > 0, we have
(a9 [QuPULE T

k .
1D’ Q(z)| 1
- O<T - E:l A + (Ad)0+(N=2)/2 o],
i=

2% —2—1 aPUI»A v
o\

k .
|D?Q()| L -1
:0<7+Zl N T g )2
=

2% —2—1 aPUI»A v
8xj

k .
|D’Q(x)] 1
:O<T+; N D Alloll,
J:

(A.10) /Q QW)|PU, 5

(A11) /Q QW)|PU, 5

where § > 0 is a positive constant.

21

O

~2)/2.

ProoF. In fact, arguing as Rey [19] (see (3.20)—(3.22) there), we have

(A12) /Q Q)| PU A~

_ / QU AlZ 7o + / QW)(IPU, »
Q Q

B 91—y vl
= /QQ(?J)lUw,/\| U+O<(Ad)9+w‘2)/2>

=Q(z) /Q Up | 70

+ [ Q) = QNI 0+ 0 ot o

k .
_ 2% —1—7 |D(])Q(I)‘ 1
—Q(l’)/Q Uzl U+O<_Z; N + (Ad)P+(N=2)/2
ra

2% —1—7 |UI’A|2*_1_T)’U

el
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But

(A13) Q) [ |Usn|* "0
Q

— \—(N-2)/2r /RN U&*l_l_rv(l)/\ + x) dy
_)\7(1\772)/27 [U2*—1—T _ UZ*_I] g + dy = O( )H ||
= o o1 |y tx)dy=0()]vl.

Combining (A.12) and (A.13), we get (A.9). Since |OPU, /0N < CA7'U, »
and |0PUy /0z;| < CAUg x, we can prove (A.10) and (A.11) in a similar way.(J

LEMMA A.4. There is a 0 > 0, such that

1 OPU, A 1
P = — v = .
A UZ>>\U O(}\1+J>||U||’ /Q a)\ v O(}\2+0—>||U

PRrROOF. For the proof of Lemma A.4 we refer to the paper [19, (3.19),
p. 18]. O

Appendix B

In this section we assume that = € ) satisfies d = d(z,09Q) > d, > 0, and
v=v(z,\) € E, ) satisfies

(B'l) ||U|| = O<T+ m + )\10),

where o > 0 is a small constant.
LEMMA B.1. Suppose that N > 4 and if N =4, then e =0. We have

(B.2) <I;(aPUm,A +v), ap;;“ >

N -2 T AQ(z)
~ 99« Q(x)A)\H(N—z)T/z + 2% N \3+(N=2)7/2

(N —2)H(x,x) 1 2 9 1
T f, Yo o [ Yol )

where A30(1/X\3) — 0 as 7 — 0, a — 1.

Proor. We have

OPU; A
B. I' (aPU, :
B3 (LaPUo o), 202
_ aPva)\ 8PU3?,>\
_<OéPUx7)\,a>\> _6‘/52(0(PU2?7>\ +’U) N

OPU, »

_ P . 2% —1
[ QlaPU, s+ 12
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By (B.5) in [19], we have

(B4) <PUM aPUm> _ (N -2)BH(z,x) +0(1>,

oA 2AN-1
where B = [~ Ug %
Similarly to (B.16) in [19], using Lemma A.4, we have

oPU,, _ v
(B.5) /Q(PUa:,A +v) B3 A= 2B\ 3+O(/\|2+Ha>

1
:—2B1>\ +O<A2+U+)\3+U)’

where By = [;n Ug ;. On the other hand it follows from Lemma A.3 that

OPU, »
R
OPU, »
ER

(B.6) /Q Q)laPUp + o 7177

- / Q)|aPU, > 1=
Q

L@ 1) /2 Q)|aPU,

. OPU.
- / Qy)|aPU, 5|7 177 e
Q

2* 21 Lw, 9]
oA Y <

(D)
rol et L)
Also, by Proposition 1 in [19], we have
e
= [ QUi e

‘o OPU, »
2 -2-r

@ =1-7) [ QTP ona

2
+O<|90:r)i\||oo/U37)\27>
Q

* 0PU,
[ Qe 2

o\
. oPU, 1
@11 [ QTP e ’”0( )
Q

O\ \3+o
Besides,

s _1_-OPUg
2% —1—71 T,
B3 [ QU7

8Uw
/Q (U A2 1 P /Q a2

89090)\ 1
2 +o(w).
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In view of the symmetry of U, » and U, /I, we have

I A
=Q(z / Upn > 717 TaU“ A(DQ(w),y_x>|UI,A|2*—1—T%
5/R (D*Qa)(y — ).y —z>|Ux,A|2*1fag§*+o(;4)

e A
* A2Qz\(fm) o 1_ ra% - Y| Uan > ™7 + O<)\14>

-~ 53— e U
B (1 i N4_ 27) (2% — T)?vci:(si)(zv_zwm /RN ylPU* " +0(A14>

- 1\2;262(35).;1”“;72)7/2 B Q*Né?((;zmr/z /N WU

72 T 1
+ O( R Ry 4>
Following the proof of (B.13) in [19], it is easy to show that

2*_1_7_8@%)\ o N -2 BQ(J:)H('T’J:) +O(1)

(B.10) /QQ(Z/)|U, ON 2 ON-1+(N-2)7/2 N

Substituting (B.9) and (B.10) into (B.8) we obtain

« 1. OPU, »
B.11 PRV R p—a
®11) [ QU o
N -2 T AQ(Z‘) 27 72%
== WQ(I>A)\1+(N72)T/2 - 2*N)\3+(N72)7—/2/ lylI°U
(N —2)BH (z,x) 72 1
+ IAN—1+(N—2)7/2 +0 N +ﬁ+ A4

By Proposition 1 in [19] we have

. dOPU,
(B.12) (2" -1 fr)/ QW)Uz > 7> Tpu =
0 B\
. U\
2% —2—1 T,
AT

. Do,
2= 1-7) [ QIR T T
o oA

—(2-1-7) / QW)U s

o 1 2¥ 21 OUq,
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1
+0 ()\N1+29)

—(N=2)(147)/2 .
_ Q(x)H (z,x) O\ / e _1_T—|—O< 1 )
RN

AN=2)/2 B 5o

N -2 Qx)H(z,z) 1
- T )\N71+(N72)T/2B+O \3+o )

Combining (B.7), (B.11) and (B.12) we obtain

(B.13) / Q)| PU, 5|7 —1-7 2Pz
o : B

- _ N-2 T AQ(z) / |y|2U2*
RN

99+ Q(x)A)\1+(N—2)T/2 T ox NA3H(N-2)7/2

(N —2)BH(z,x)
AN—1+(N-2)7/2

+ O\ BT,

Inserting (B.13) into (B.6), we get

. oOPU,
(B.14) / Q()|PUx 4 v | 177 22
Q 7))
N -2 T AQ(z) e
== WQ@) AF(N=2)7/2 ~ 9% N A3 /RN yI°U
(N —2)BH(z,x) 2 7 1
AN—1+(N-2)7/2 o \ + A3 + A3+ )
Then Lemma B.1 follows from (B.3)—(B.5) and (B.14). O
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