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THE EFFECT OF THE GRAPH TOPOLOGY
ON A SEMILINEAR ELLIPTIC EQUATION

WITH CRITICAL EXPONENT

Jan Chabrowski — Shusen Yan

1. Introduction

The aim of this paper is to study the effect of the topological structure of
the graph of the coefficient Q(y) on the number of the positive solutions of the
following elliptic problem:

(1.1)


−∆u = Q(y)u2∗−1 + εu y in Ω,

u > 0 y in Ω,

u = 0 y on ∂Ω,

where ε is a small nonnegative number, 2∗ = 2N/(N−2), N ≥ 4, Ω is a bounded
domain in RN with a smooth boundary ∂Ω and Q(y) is a smooth positive function
in Ω.

Problem (1.1) stems from differential geometry and has attracted a lot of
attention. In the case ε > 0, the existence of at least one solution for (1.1) was
established by Brézis and Nirenberg [9] in the case Q = Const. and by Escobar
[12] for a continuous function Q(y) satisfying some additional assumptions. In
the case ε = 0, it follows from the Pohozaev identity that problem (1.1) has
no solution if Ω is star shaped and 〈DQ(y), y〉 ≤ 0. Thus we expect that a
solution of problem (1.1) will concentrate at some point as ε → 0+. So it is
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interesting to know where the concentration point is and to estimate the number
of the solutions if there are such points. In the case Q = Const., Rey [19], [20]
studied the role of the Green function in problem (1.1) and used the category
of the domain to estimate the number of the solutions of (1.1) for ε > 0 small.
For general Q(y), Cao and Noussair [10] proved that (1.1) has at least as many
solutions as the number of degenerate isolated global maximum points of Q(y)
if ε is small.

In the case ε = 0 and Q(y) = 1, Bahri and Coron [2] investigated the effect
of the domain topology on the existence of a solution for (1.1). Thus another
problem to consider is the effect of the graph topology of Q(y) on the existence
result for (1.1) in the case ε = 0 and the domain Ω is contractible.

The aim of this paper is two-fold. First, we construct a solution for (1.1)
which concentrates at an interior or a boundary local maximum point of Q(y)
as ε → 0. We also estimate the number of such solutions using the category of
the set on which Q(y) attains its local maximum. Second, we study the effect
of the graph topology of Q(y) on the existence of a solution for (1.1) in the case
ε = 0. Actually, we will construct a solution for (1.1) for ε > 0 small, such that
this sequence of solution converges strongly in H1(Ω) as ε → 0.

Before we introduce our main results, we give some notation. Let

Ux,λ(y) = [N(N − 2)](N−2)/4 λ(N−2)/2

(1 + λ2|y − x|2)(N−2)/2
.

It is well known that Ux,λ satisfies

∆Ux,λ = U2∗−1
x,λ , y ∈ RN .

Let P denote the projection from H1(Ω) into H1
◦ (Ω); that is, if w ∈ H1(Ω), then

Pw is a unique solution of the following Dirichlet problem{
∆u = ∆w y in Ω,

u = 0 on ∂Ω.

Let

〈u, v〉 =
∫

Ω

DuDv, u, v ∈ H1
◦(Ω),(1.2)

‖u‖ =
( ∫

Ω

|Du|2
)1/2

, u ∈ H1
◦(Ω),(1.3)

(1.4) Ex,λ =
{

v : v ∈ H1
◦(Ω),

〈v, PUx,λ〉 =
〈

v,
PUx,λ

∂λ

〉
=

〈
v,

PUx,λ

∂xj

〉
= 0, j = 1, . . . , N

}
.

We now state the main results of this paper.
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Theorem 1.1. Let M and M∗ be two connected closed sets compactly con-
tained in Ω satisfying M ⊂ M∗, maxx∈M Q(x) > maxx∈∂M∗ Q(x) and

(1.5)


Q(x) =: QM = Const. for all x ∈ M,

M∗ ∩ {x : Q(x) = QM} = M,

M∗ ∩ {x : Q(x) > QM} = ∅.

Suppose that N ≥ 4 and that D2
ijQ(x) = 0, i, j = 1, . . . , N , for all x ∈ M if

N ≥ 5. Then there is an ε◦ > 0, such that for each ε ∈ (0, ε◦] problem (1.1) has
at least CatM∗(M) solutions of the form

(1.6) uε = αεPUxε,λε
+ vε,

where vε ∈ Exε,λε
, and as ε → 0,

αε → Q
−1/(2∗−2)
M ,(1.7)

‖vε‖ → 0,(1.8)

xε → x◦ ∈ M,(1.9)

λε →∞,(1.10)

Theorem 1.2. Suppose that N ≥ 5. Let M be a connected closed set in ∂Ω,
satisfying

(1.11)


Q(x) =: QM = Const. for all x ∈ M,

Q(x) ≤ QM − a(d(x,M))k for all d(x, M) ≤ δ,

|DiQ(x)| = O(d(x, M)k−i) for all d(x, M) ≤ δ, i = 1, . . . , [k],

where a is some positive constant, k is some constant satisfying k > 4/(N−4)+2.
Then there is an ε◦ > 0, such that for each ε ∈ (0, ε◦], problem (1.1) has at least
CatM (M) solutions of the form

(1.12) uε = αεPUxε,λε
+ vε,

where vε ∈ Exε,λε
, and as ε → 0,

αε → Q
−1/(2∗−2)
M ,(1.13)

‖vε‖ → 0,(1.14)

xε → x◦ ∈ M,(1.15)

λε →∞, λεd(xε, ∂Ω) →∞.(1.16)
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Theorem 1.3. Let M = {x : Q(x) = Qmax}, where

Qmax = max
x∈Ω

Q(x).

Suppose that N ≥ 5 and that the following conditions hold:

(i) M is not contractible in a small neighbourhood of itself, but M is con-
tractible in {x : Q(x) ≥ t} for some constant t belonging to

(2−2/(N−2)Qmax, Qmax)

and such that max∂Ω Q(x) < t and
(ii) for each x ∈ Ω satisfying DQ(x) = 0 and Qmax > Q(x) ≥ t, we have

∆Q(x) > 0.

Then for each ε ∈ [0, ε◦], (1.1) has a solution uε such that uε converges (up to a
subsequence) strongly in H1(Ω) as ε → 0.

Remark 1.4. From the proof of Theorem 1.3, we see that in the case N = 4
and ε = 0, if (i) and (ii) hold and for each x ∈ Ω satisfying DQ(x) = 0 and
Qmax > Q(x) ≥ t, we have

∆Q(x) >
N2H(x, x)

∫
RN U2∗−1

0,1∫
RN |y|2U2∗

0,1

,

where H(y, x) is the regular part of the Green’s function, then (1.1) has a solu-
tion.

In order to obtain the existence of one solution for (1.1), conditions similar
to (1.5) or (1.11) were imposed on a global maximum point in [12]. The degener-
acy condition on the maximum point is necessary to get a solution concentrating
at that point. In fact, in the next section we will prove that there is no solu-
tion of the form (1.6) which concentrates at an interior critical point x◦ with
∆Q(x◦) 6= 0.

In the last several years, a number of results have been obtained concerning
the effect of the domain topology, the domain shape and the shape of the graph
of the coefficient on the number of the positive solutions for nonlinear elliptic
problem with nearly critical and critical exponent, see for example [3], [10], [11],
[18]–[20], [22]–24]. As far as the authors know, the first paper dealing with the
effect of the topological structure of the coefficient on the number of solutions
is due to Musina [18]. However, the method in [18], similar to that in [4], [5],
cannot be used to construct a solution concentrating at a local maximum point
of Q(y).

It is not difficult to prove that if (1.1) has a solution of the form (1.6) with
xε → x◦ ∈ Ω, then x◦ must be a critical point of Q(y). Thus it is interesting to
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know what kind of critical points of Q(y) can generate a solution of the form (1.6)
for (1.1). Using a similar method developed in [11], [23], we can prove that if Q(y)
is flat enough around a minimum point x◦ ∈ Ω, that is, |DjQ(x)| ≤ C|x−x◦|L−j ,
j = 1, . . . , N − 2, |Q(x)−Q(x◦)| ≥ C0|x− x◦|L, for all x ∈ Bδ(x◦), then x◦ will
generate a solution of the form (1.6) for (1.1). On the other hand, if Ω is convex
and x◦ ∈ ∂Ω is a minimum point of Q(y) such that Q(y) is nondecreasing in the
direction n in a neighbourhood of x◦, where n is the inward unit normal of ∂Ω at
x◦, then using the moving plane method of Gidas, Ni and Nirenberg [13], we see
that the distance between the maximum point of any positive solution of (1.1)
and x◦ has a positive lower bound. As a result, there is no solution concentrating
at x◦. So the problem of what kind of boundary point can generate a solution
is far from well understood.

Our main results here show that the topological structure of the global max-
imum set can not only affect the number of the single peak solution, but also
create a new kind of solution, that is, solution which does not concentrate at cer-
tain points. It is easy to check that the energy of the solution for (1.1) in the case
ε = 0 is at least (1/N)SN/2/Q

(N−2)/2
max , where S is the best Sobolev constant for

the embedding H1(RN ) → L2∗(RN ), but above this energy level, the correspond-
ing functional does not satisfies the PS condition. To overcome this difficulty,
we first perturbe the original problem suitably and construct a solution for this
perturbed problem, whose energy is strictly greater than (1/N)SN/2/Q

(N−2)/2
max .

Then we prove that the solution for the perturbed problem converges strongly
in H1(Ω) to a solution of the original problem.

There are papers on the existence of solutions for (1.1) in the case ε = 0
and Ω = RN under some symmetry assumptions on the coefficient Q(x), see
for example [7], [8], [14]–[16]. In [6], Bianchi considered (1.1) on RN with the
general coefficient Q(x). Among other things, he assumed that Q(x) has only a
finite number of critical points and Q(x) possesses at least two isolated global
maximum points (so the maximum set of Q(x) is not contractible in a small
neighbourhood of itself). Thus his result does not apply to the case where the
maximum set of Q(x) is a sphere.

Let K : H1(Ω)− {0} → R be a functional defined by

(1.17) K(u) =

∫
Ω
|Du|2 − ε

∫
Ω

u2

(
∫
Ω

Q(y)|u|2∗)2/2∗
.

Let M =: {x ∈ Ω, λ ≥ λ◦, v ∈ Ex,λ}, where λ◦ is a large positive number. For
(x, λ, v) ∈M we set

(1.18) J(x, λ, v) = K(PUx,λ + v).

It is well known that if ‖v‖ is small enough, PUx,λ + v is a critical point of K(u)
if and only if (x, λ, v) ∈M is a critical point of J(x, λ, v) on M, see for example
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[6], [2], [19]. Moreover, if ‖v‖ is small enough, then the critical point PUx,λ + v

of K is positive. On the other hand, (x, λ, v) ∈M is a critical point of J(x, λ, v)
on M if and only if there are A ∈ R, B ∈ R and Gj ∈ R, such that

(1.19)
∂J

∂xi
= B

〈
∂2PUx,λ

∂λ∂xi
, v

〉
+

N∑
j=1

Gj

〈
∂2PUx,λ

∂xj∂xi
, v

〉
, i = 1, . . . , N,

(1.20)
∂J

∂λ
= B

〈
∂2PUx,λ

∂λ2
, v

〉
+

N∑
j=1

Gj

〈
∂2PUx,λ

∂xj∂λ
, v

〉
,

(1.21)
∂J

∂v
= APUx,λ + B

∂PUx,λ

∂λ
+

N∑
j=1

Gj
∂PUx,λ

∂xj
.

The paper is organized as follows. In Section 2 we study the interior case.
Section 3 is devoted to the study of boundary case, and the proof of Theorem 1.3
is given in Section 4. Some technical estimates needed in the proofs of our main
results are given in the Appendices.

2. Proof of Theorem 1.1

We commence with the following result which enables us to reduce the orig-
inal problem into a finite dimensional problem.

Proposition 2.1. There exist an ε◦ > 0 and λ◦ > 0, such that for each
ε ∈ (0, ε◦], there is a C1-map

vε = vε(x, λ) : Ω× {λ ≥ λ◦} → Ex,λ

such that (1.21) is satisfied. Moreover,

(2.1) ‖vε‖ = O

( k∑
j=1

|DjQ(x)|
λj

+
1

(λd)(N−2)/2+σ
+ ελ−1

)
,

where σ > 0 is a constant.

Proof. The proof of Proposition 2.1 is standard and we refer to the paper
[19] (see the proof of Proposition 4 there). Estimate (2.1) follows from Lem-
mas A.3 and A.4. �

Without loss of generality we may assume QM = 1. To prove Theorem 1.1
we need the following estimate.

Lemma 2.2. Let x ∈ M∗ and let vε be the map from Proposition 2.1. Then

J(x, λ, vε) ≥A1−2/2∗
(

1 +
K1H(x, x)

λN−2
−K2ελ

−2

)
(2.2)

+ O

(
1

λN−2+σ
+ ε2λ−2

)
, if N ≥ 5,
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(2.3) J(x, λ, vε) ≥A1−2/2∗
(

1 +
K1H(x, x)

λ2
− ελ−2(K3 + o(1)) lnλ

)
+ O

(
1

λ2+σ
+ ε2λ−2

)
, if N = 4,

where σ is a small positive constant, A, K1, K2 and K3 are constants from
Lemmas A.1 and A.2 and H(x, y) denotes the regular part of the Green function.

Proof. Let v = vε. First, in view of (A.4) from the proof of Lemma A.1,
we have

(2.4)
∫

Ω

Q(y)|PUx,λ + v|2
∗

=
∫

Bδ(x◦)

Q(y)|PUx,λ + v|2
∗

+ O(‖v‖2∗ + λ−N )

≤
∫

Bδ(x◦)

|PUx,λ + v|2
∗

+ O(‖v‖2∗ + λ−N )

=
∫

Ω

|PUx,λ + v|2
∗

+ O(‖v‖2∗ + λ−N )

≤
( ∫

Ω

|PUx,λ|2
∗

+
2∗(2∗ − 1)

2

∫
Ω

|PUx,λ|2
∗−2v2

)
+ O

(
1

λθ+(N−2)/2

)
‖v‖+ O(‖v‖2∗ + λ−N )

=
(

A− 2∗
B1H(x, x)

λN−2
+

2∗(2∗ − 1)
2

∫
Ω

|PUx,λ|2
∗−2v2

)
+ O

(
1

λθ+(N−2)/2

)
‖v‖+ O(‖v‖2∗ + λ−N ).

We also have (see (A.2))∫
Ω

|D(PUx,λ + v)|2 = A− B1H(x, x)
λN−2

+ ‖v‖2 + O(λ−N )(2.5)

and ∫
Ω

|PUx,λ + v|2 =
∫

Ω

|PUx,λ|2 + O(‖v‖2 + λ−1‖v‖)(2.6)

≥
∫

Ω

|PUx,λ|2 + (ε− τ)‖v‖2 + O(λ−2),

where τ > 0 is a small constant.
Combining (2.4)–(2.6), using (D.1) in [19], we obtain

(2.7) J(x, λ, vε) ≥A1−2/2∗
(

1 +
K1H(x, x)

λN−2
−

∫
Ω

|PUx,λ|2
)

+ ρ‖v‖2

+ O

(
1

λN−2+σ
+ ε2λ−2

)
,

where ρ > 0 and the result readily follows. �
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We now consider the case N ≥ 5. We define

(2.8) cε =: A1−2/2∗
(

1− 1
2
K1ε

5

)
,

where K1 is the constant in Lemma A.1.
Let D = {(x, λ) : x ∈ M∗, λ ∈ [ε−l, ε−L]}, where L > l > 0 are to be

determined later. For (x, λ) ∈ D we set

F (x, λ) =: J(x, λ, vε(x, λ)).

In order to use the Lusternik–Schnirelman theory of critical points to prove
Theorem 1.1, we need to check that the following flow will not leave D:{ dY (t)

dt
= −gradF (Y (t)) textfort ≥ 0,

Y (0) = Y◦ ∈ F cε ,

where Y = (x, λ) and F c = {(x, λ) : (x, λ) ∈ D, F (x, λ) ≤ c}. Since along the
flow Y (t), F (Y (t)) decreases, we see that if F (x, λ) > cε, for all (x, λ) ∈ ∂D,
then the flow will not touch ∂D.

Lemma 2.3. Suppose that N ≥ 5. Then F (x, λ) > cε, for all (x, λ) ∈ ∂D.

Proof. Let (x, λ) ∈ ∂D.
Case 1. Suppose that λ = ε−l. In this case, Lemma 2.2 yields

F (x, λ) ≥A1−2/2∗(1 + K1H(x, x)εl(N−2) −K2ε
1+2l)(2.9)

+ O(εl(N−2+σ) + ε2+2l) > cε,

if ε > 0 and l > 0 are small enough.
Case 2. Suppose that λ = ε−L. It follows from Lemma 2.1 that

F (x, λ) ≥A1−2/2∗(1 + K1H(x, x)εL(N−2) −K2ε
1+2L)(2.10)

+ O(εL(N−2+σ) + ε2+2L) > cε,

if L > 0 is large enough.
Case 3. Suppose that x ∈ ∂M∗. According to our assumption there is a

positive γ such that
Q(x) ≤ 1− γ, x ∈ ∂M∗.

Consequently, as in Lemma A.1, we have

(2.11) F (x, λ) ≥ A1−2/2∗

Q(x)2/2∗
(1 + o(1)) ≥ A1−2/2∗

(1− γ)2/2∗
(1 + o(1)) > cε

and the result follows. �

Proof of Theorem 1.1. Case N ≥ 5. It follows from Lemma 2.3 that

#{(x, λ) : (x, λ) ∈ F cε , DF (x, λ) = 0} ≥ CatD(F cε).
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Next, we claim that

(2.12) M × {λ = ε−2} ⊂ F cε .

In fact, for any (x, λ) ∈ M × {λ = ε−2}, we have |DjQ(x)| = 0, j = 1, 2. From
Lemma A.1, we get

F (x, λ) =J(x, λ, 0) + O(λ−3 + ε2λ−2)(2.13)

=A1−2/2∗(1−K1ελ
−2) + O(λ−3 + ε2λ−2)

=A1−2/2∗(1−K1ε
5) + O(ε6) < cε.

Consequently,

(2.14) #{(x, λ) : (x, λ) ∈ F cε , DF (x, λ) = 0} ≥ CatD(M × {λ = ε−2})
= CatM∗×{λ=ε−2}(M × {λ = ε−2}) = CatM∗(M)

and this completes the proof of Theorem 1.1 in the case N ≥ 5.
Case N = 4. We define

c′ε = A1−2/2∗(1− e−2L1/ε),

D1 =: {(x, λ) : x ∈ M∗, λ ∈ [ε−l, eL2/ε]},

where L2 > L1 > 0 are to be determined later. Then as in Lemma 2.3, we have
F (x, λ) > c′ε if λ = ε−l or x ∈ ∂M∗. Moreover, if λ = eL2/ε, then

F (x, λ) = A1−2/2∗(1− e−2L2/ε(K3L2 + O(1))) > c′ε.

Hence F (x, λ) > c′ε, for all (x, λ) ∈ ∂D1. On the other hand for any (x, λ) ∈
M × {λ = eL1/ε}, we have

(2.15) F (x, λ) = J(x, λ, 0) + O(λ−2)

= A1−2/2∗(1− (K3 + o(1))ελ−2 lnλ) + O(λ−2)

= A1−2/2∗(1− (K3 + o(1))(L1 + O(1))e−2L1/ε) < c′ε,

if L1 > 0 is large enough. Therefore

M × {λ = eL1/ε} ⊂ F c′ε .

Consequently,

#{(x, λ) : (x, λ) ∈ F cε , DF (x, λ) = 0}(2.16)

≥ CatD(M × {λ = eL1/ε})
= CatM∗×{λ=eL1/ε}(M × {λ = eL1/ε}) = CatM∗(M)

and the result follows. �

To close this section we give the following nonexistence result.
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Theorem 2.4. Suppose that N ≥ 5 and x◦ ∈ Ω is a critical point of Q(y)
satisfying ∆Q(x◦) 6= 0. Then (1.1) has no solution of the form (1.6) satisfying
(1.13)–(1.16).

Proof. Suppose that (1.1) has a solution of the form

uε = αεPUxε,λε
+ vε,

satisfying (1.13)–(1.16). First, we estimate vε. Multiplying (1.1) by vε and
integrating over Ω, we get

(2.17)
∫

Ω

|Dvε|2 =
∫

Ω

Q(y)|αεPUxε,λε
+ vε|2

∗−1vε + ε

∫
Ω

(αεPUxε,λε
+ vε)vε

=
[
α2∗−1

ε

∫
Ω

Q(y)PU2∗−1
xε,λε

vε

+ (2∗ − 1)α2∗−2
ε

∫
Ω

Q(y)PU2∗−2
xε,λε

v2
ε

]
+ ε

∫
Ω

(PUxε,λε + vε)vε + O(‖vε‖2+θ1),

where θ1 > 0 is a constant. It follows from Appendix D in [19] that there exists
a ρ > 0, such that

(2.18)
∫

Ω

|Dvε|2 − (2∗ − 1)α2∗−2
ε

∫
Ω

Q(y)PU2∗−2
xε,λε

v2
ε − ε

∫
Ω

v2
ε ≥ ρ

∫
Ω

|Dvε|2.

Combining (2.17) and (2.18) we get

‖vε‖2 ≤ O

( ∫
Ω

Q(y)PU2∗−1
xε,λε

vε + ε

∫
Ω

PUxε,λε
vε

)
+ O(‖vε‖2+θ1).

From this, with the aid of Lemma A.3, we obtain

(2.19) ‖vε‖ ≤ O

(
|DQ(xε)|

λε
+ λ−2

ε + ελ−1−σ
ε

)
.

Next, multiplying (1.1) by ∂PUxε,λε/∂λ and integrating over Ω, we get

αε

〈
PUxε,λε ,

∂PUxε,λε

∂λ

〉
=

∫
Ω

Q(y)(αεPUxε,λε + vε)2
∗−1 ∂PUxε,λε

∂λ
,

which, together with Lemma B.1 and〈
PUxε,λε ,

∂PUxε,λε

∂λ

〉
= O

(
1

λN−1

)
= O

(
1
λ4

)
,

yields
2K0∆Q(xε)

λ3
ε

+
K2ε

λ3
ε

+ O

(
|DQ(xε)|+ ε

λ3
ε

+ λ−4
ε

)
= 0.

Thus we get a contradiction since ∆Q(xε) → ∆Q(x◦) 6= 0. �
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3. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. First, we define

λε,x =
[
H(x, x)

ε

]1/(N−4)

.

Choose l = 1/(k − 2) + τ with τ > 0 small enough. Then we have

l(k − 2) > 1,(3.1) (
k − 2(N − 2)

N − 4

)
l < 1 +

2
N − 4

.(3.2)

Let

Nε = {x : d(x, M) ≤ εl} ∩ {x : d(x, ∂Ω) ≥ εL},
Dε = { (x, λ) : x ∈ Nε, λ ∈ [ηλε,x, ε−T ]},

where η is small fixed constant, L and T are large constants.
In this section we also assume that QM = 1. Let

cε =: A1−2/2∗(1− τε1+2[1+t(N−2)]/(N−4)),

where t < L is a large constant to be determined later and τ > 0 is a fixed small
constant. Define

F (x, λ) = J(x, λ, vε(x, λ)), (x, λ) ∈ Dε.

In order to keep the following flow inside Dε:{ dY (t)
dt

= −gradF (Y (t)), Y = (x, λ),

Y (0) = Y◦ ∈ F cε ,

we need the following lemma.

Lemma 3.1. If (x, λ) ∈ ∂Dε, then F (x, λ) > cε.

Proof. It follows from Lemmas A.1 and A.3 that

(3.5) F (x, λ) =
A1−2/2∗

Q(x)2/2∗

[
1 +

K1H(x, x)
λN−2

−K2ελ
−2

]
+ O

(
|DQ(x)|2

λ2
+

N−2∑
j=2

|D(j)Q(x)|
λj

+
ε

(λd)N−2
+

1
(λd)N−1

+ ε2λ−2

)
.

For any λ ∈ [ηλε,x, ε−T ] we have

(3.6) λd ≥
[
H(x, x)

ε

]1/(N−4)

dη ≥ cε−1/(N−4)d1−(N−2)/(N−4)) →∞, as ε → 0.
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On the other hand, noting (3.1), we see that for j ≥ 2,

|D(j)Q(x)|
λj

= O

(
d(x, M)k−j

λj

)
(3.7)

= O

(
εl(k−j)ε[1+(N−2)l](j−2)/(N−4)λ−2

)
= O

(
ε(j−2)/(N−4)+l[k−2+2(j−2)/(N−4)]λ−2

)
= O(εγ)ελ−2,

for some γ > 0. Similarly

|DQ(x)|2

λ2
= O

(
εl(k−1)

λ2

)
= O(εγ)ελ−2.

Inserting the above estimates into (3.5) yields

(3.8) F (x, λ) =
A1−2/2∗

Q(x)2/2∗

[
1 +

K1H(x, x)
λN−2

−K2ελ
−2

]
+ O(εγ)ελ−2.

Case 1. Suppose that d(x, ∂Ω) = εL. Then

ελ−2 = O(ε(εdN−2)2/(N−4)) = O(ε1+2(1+L(N−2))/(N−4)),
K1H(x, x)

λN−2
= O(ε(N−2)/(N−4)H(x, x)−2/(N−4)) = O(ε1+2(1+L(N−2))/(N−4)).

Hence, since L > t,

F (x, λ) =
A1−2/2∗

Q(x)2/2∗
[1 + O(ε1+2(1+L(N−2))/(N−4))](3.9)

≥A1−2/2∗ [1 + O(ε1+2(1+L(N−2))/(N−4))] > cε.

Case 2. Suppose that d(x,M) = εl. Then

(3.10)
1

Q(x)2/2∗
≥ 1

(1− ad(x,M)k)2/2∗
=

1
(1− aεlk)2/2∗

≥ 1 + a′εlk,

for some a′ > 0. On the other hand, by (3.2), we get

(3.11)
K1H(x, x)

λN−2
−K2ελ

−2 = O(ε(N−2)/(N−4)d2(N−2)/(N−4))

= O(ε1+2[1+(N−2)l]/(N−4)) = O(εγ)εlk.

Consequently, there is a a′′ > 0, such that

F (x, λ) ≥ A1−2/2∗(1 + a′εlk)(1 + O(εγ)εlk)(3.12)

≥ A1−2/2∗(1 + a′′εlk) > cε.
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Case 3. Suppose that λ = ηλε,x. Then

(3.13)
K1H(x, x)

λN−2
−K2ελ

−2

=
(

K1

ηN−2
−K2η

−2

)
ε(N−2)/(N−4)H(x, x)−2/(N−4) > 0,

if η > 0 is small enough. As a result,

F (x, λ) ≥ A1−2/2∗ > cε.

Case 4. Suppose that λ = ε−T . Then, if T > 0 is large enough,

(3.14) F (x, λ) = A1−2/2∗(1 + O(εT (N−2)−l(N−2) + ε1+2T )) > cε.

So the result follows from Steps 1–4. �

Proof of Theorem 1.2. In view of Lemma 3.1 we conclude

#{ (x, λ) : DF (x, λ) = 0, (x, λ) ∈ Dε } ≥ CatDε
(F cε).

Next, we claim that

(3.15) D∗
ε =:

{
(x, λ) : x ∈

⋃
x◦∈M

{x◦ + εtn}, λ = λε,x,∗

}
⊂ F cε

where n is the inward unit normal to ∂Ω at x◦,

λε,x,∗ =: t∗

[
H(x, x)

ε

]1/(N−4)

and t∗ =:
[
(N − 2)K1

2K2

]1/(N−4)

.

In fact, suppose that (x, λ) ∈ D∗
ε . Then

(3.16) F (x, λ) =
A1−2/2∗

Q(x)2/2∗
(1− c◦ελ

−2
ε,x,∗) + O(εγ)ελ−2

ε,x,∗,

where c◦ = K2t
−2
∗ −K1/tN−2

∗ > 0. On the other hand we have

(3.17) Q(x) = 1 + O(d(x,M)k) = 1 + O(εtk).

(3.18) ελ−2
ε,x,∗ ≥ c′ε[εd(x, ∂Ω)N−2]2/(N−4) = c′εε[1+t(N−2)]·2/(N−4),

for some c′ > 0. Since k > 2(N − 2)/(N − 4), we see that we can choose a
suitably large t, such that

εtk = O(εγ)ελ−2
ε,x,∗.

Consequently,

F (x, λ) =A1−2/2∗(1− c◦ελ
−2
ε,x,∗) + O(εγ)ελ−2

ε,x,∗(3.19)

≤A1−2/2∗(1− c◦ελ
−2
ε,x,∗/2)

≤A1−2/2∗(1− c◦εε
2[1+t(N−2)]/2(N−4)) ≤ cε.
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It follows from (3.15) that

#{(x, λ) : DF (x, λ) = 0, (x, λ) ∈ Dε} ≥ CatDε
(D∗

ε) = CatNε
(N∗

ε ),

where N∗
ε =

⋃
x◦∈M{x◦+εtn}, and n is the inward unit normal of ∂Ω at x◦. On

the other hand, we have

Nε ⊂
⋃

x◦∈M

Ω ∩Bεl(x◦) =: N∗∗
ε .

Thus CatNε
(N∗

ε ) ≥ CatN∗∗
ε

(N∗
ε ). Since N∗∗

ε , N∗
ε and M are homotopically

equivalent, we see that

CatN∗∗
ε

(N∗
ε ) = CatM (M)

and the result follows. �

4. Proof of Theorem 1.3

Let τ ≥ 0 be a small constant. For each fixed small ε > 0, consider the
following problem:

(4.1)


−∆u = Q(y)u2∗−1−τ + εu y in Ω,

u > 0 y in Ω,

u = 0 y on ∂Ω.

The corresponding functional of the above problem is

Iτ (u) =
1
2

∫
Ω

(|Du|2 − εu2)− 1
2∗ − τ

∫
Ω

Q(x)|u|2
∗−τ , u ∈ H1

0 (Ω).

First, we follow the basic idea of [18] to construct a solution for (4.1), whose
energy is strictly greater than SN/2/NQ

(N−2)/2
max .

Theorem 4.1. Suppose that the global maximum set M is not contractible
in a small neighbourhood of itself, but there is a t belonging to the interval
(2−2/(N−2)Qmax, Qmax) such that M is contractible within {x : Q(x) ≥ t}. Then
there are a τ◦ > 0 and ε◦ > 0, such that for each τ ∈ (0, τ◦] and ε ∈ [0, ε◦], (4.1)
has a solution uτ satisfying

1
N

SN/2

Q
(N−2)/2
max

+ δ < Iτ (uτ ) <
1
N

SN/2

t(N−2)/2
+ δ,

where δ > 0 is some small constant independent of τ and ε.

Proof. Denote

J(u) =
∫

Ω

|Du|2 − εu2, u ∈ Vτ ,
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where Vτ = {u : u ∈ H1
0 (Ω),

∫
Ω

Q(x)|u|2∗−τ = 1}. Then for each fixed τ > 0,
J(u) satisfies PS condition. We claim that J(u) has a critical point uτ ∈ V with

S

Q
2/2∗
max

+ δ < J(uτ ) <
S

t2/2∗
+ δ.

We argue by contradiction. Suppose that J(u) does not have critical point in
Jc2 \Jc1 , where Jc = {u : u ∈ Vτ , J(u) ≤ c}, c2 = S/t2/2∗ + δ, c1 = S/Q

2/2∗

max + δ.
Then there is a continuous map α(u) : Jc2 → Jc1 satisfying α(u) = u for u ∈ Jc1 .
By assumption, there is a continuous map h(x, s) : M × [0, 1] → {x : Q(x) ≥ t}
satisfying h(x, 0) = x, h(x, 1) = x◦, for all x ∈ M . Define

f(x, s)(y) = β

(
α

(
η(|y − x|)Uh(x,s),λ

(
∫
Ω

Q(y)|η(|y − h(x, s)|)Uh(x,s),λ|2∗−τ dy)1/(2∗−τ)

))
,

where λ = τ−L, L is some large constant, η(r) is a smooth function with η(r) = 0
outside a small neighbourhood of 0, and

β(u) =

∫
Ω

y|u|2∗dy∫
Ω
|u|2∗dy

.

It is easy to check that

J(f(x, s)( · )) =
S

Q(h(x, s))1/2∗
+ o(1),

where o(1) → 0 as τ → 0 and ε → 0. Since h(x, s) ∈ {x : Q(x) ≥ t}, we see that

η(| · −x|)Uh(x,s),λ

(
∫
Ω

Q(y)|η(|y − h(x, s)|)Uh(x,s),λ|2∗−τ dy)1/(2∗−τ)
∈ Jc2

if λ > 0 is large enough. On the other hand, it follows from concentration
compactness principle [17], [21] that if δ > 0 and ε ≥ 0 are small enough, then
for any u ∈ Jc1 , β(u) is in a small neighbourhood of M . So we see that f(x, s)
is a point in a small neighbourhood of M . Since for x ∈ M , η(|y−x|)Ux,λ ∈ Jc1

if λ > 0 is large, we have f(x, 0) = x. But f(x, 1) = x′◦. This means that M can
be deformed to a point within a small neighbourhood of M , a contradiction to
our assumption. �

The rest of this section is devoted to proving the solution uτ for (4.1) with

1
N

SN/2

Q
(N−2)/2
max

+ δ < Iτ (uτ ) <
1
N

SN/2

t(N−2)/2
+ δ,

converges strongly in H1(Ω) to a function u◦ as τ → 0. Thus u◦ is a solution
of (1.1).
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Proposition 4.2. Suppose that uτ is a solution of (4.1) with

1
N

SN/2

t
(N−2)/2
1

< Iτ (uτ ) <
1
N

SN/2

t
(N−2)/2
2

,

where 2−2/(N−2)Qmax < t2 < t1 < Qmax. Assume that maxx∈∂Ω Q(x) < t2 and
for each x ∈ Ω with t2 ≤ Q(x) ≤ t1, DQ(x) = 0, we have ∆Q(x) > 0. Then uτ

converges strongly in H1(Ω) as τ → 0.

We divide the proof of Proposition 4.2 into two lemmas. In the following, we
always assume that Qmax = 1.

Lemma 4.3. Suppose that uτ is a solution of (4.1) with

Iτ (uτ ) <
SN/2

t(N−2)/2
,

where t > 2−2/(N−2)Qmax, then, there is an ε◦ > 0, such that for each fixed
ε ∈ [0, ε◦], we have that as τ → 0, either uτ converges strongly, or there are
zτ ∈ Ω and µτ →∞, such that∥∥∥∥uτ −

(
Q(x◦)

µ

)−1/(2∗−2)

Uzτ ,µτ

∥∥∥∥ → 0,

where zτ → x◦ and µ = limτ→0 µτ
τ ≥ 1 is a constant.

Proof. It is easy to check that uτ is bounded in H1(Ω). We assume

uτ ⇀ u◦ weakly in H1(Ω) as τ → 0.

On the other hand, by the Sobolev inequality, we see that if u◦ 6= 0, then

(4.2) I(u◦) ≥
1
N

SN/2 + o(1),

where o(1) → 0 as τ → 0 and ε → 0 and I = I◦.
Denote vτ = uτ − u◦. Then

−∆vτ =Q(y)|vτ |2
∗−2−τvτ + εvτ(4.3)

+ Q(y)[(vτ + u◦)2
∗−1−τ − |vτ |2

∗−2−τvτ − u2∗−1−τ
◦ ].

Assume ‖vτ‖2 → l ≥ 0 as τ → 0. It follows from (4.3) and the Sobolev inequality
that

(4.4) l ≤
(

l

S

)2∗/2

+ o(1),

which implies

(4.5) l ≥ (1 + o(1))SN/2, if l 6= 0,
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where o(1) → 0 as ε → 0. Combining (4.2) and (4.5), we conclude that if u◦ 6= 0
and l 6= 0, then

Iτ (uτ ) = I(u◦) + Iτ (vτ ) + o(1) ≥ 2
N

SN/2 + o(1).

So, under our assumption, we see that if ‖uτ − u◦‖ → l > 0, then u◦ = 0.
Now we assume u◦ = 0. Then we claim that maxx∈Ω uτ → ∞ as τ → 0.

Otherwise, the boundedness of L∞-norm of uτ would imply the boundedness of
C1,α-norm of uτ . So ‖uτ‖ → 0. This is a contradiction.

Let zτ ∈ Ω be such that uτ (zτ ) = maxx∈Ω uτ =: µ
(N−2)/2
τ . Denote

wτ (z) = µ−(N−2)/2
τ uτ

(
1
µτ

z + zτ

)
.

Then wτ is a bounded sequence in H1(RN ) and satisfies

−∆w = Q

(
1
µτ

z + zτ

)
1

µ
τ(N−2)/2
τ

w2∗−1−τ + εµ−2
τ w.

Let zτ → x◦ and µ
τ(N−2)/2
τ → µ ≥ 1. We assume

wτ ⇀ w◦ weakly in H1(D) as τ → 0,

wτ → w0 in C1,α
loc (D),

where D is RN or half space. Then w◦ satisfies

(4.6) −∆w =
Q(x◦)

µ◦
w2∗−1.

Since w◦(0) = 1, we see that µ < ∞. By Pohozaev identity, (4.6) does not have
positive solution if D is half space. So we conclude that D = RN .

Let ωτ = wτ − w◦. As before, we see that if ‖ωτ‖ → l > 0, then l ≥ SN/2.
Thus

I(uτ ) =
1
2
‖wτ‖2 − 1

2∗ − τ

∫
RN

Q(µ−1
τ z + zτ )

µ
|wτ |2

∗−τ + o(1)

=
1
2
‖w◦‖2 − 1

2∗

∫
RN

Q(x◦)
µ

|w◦|2
∗

+
1
2
‖ωτ‖2 − 1

2∗ − τ

∫
RN

Q(µ−1
τ z + zτ )

µ
|ωτ |2

∗−τ + o(1)

≥ 2
N

SN/2 + o(1).

So we conclude that ‖ωτ‖ → 0, and the result follows. �

By Lemma 4.3 and Proposition 7 in [2], we know that a solution uτ of (4.1)
with Iτ (uτ ) < (1/N)22/(N−2)SN/2 can be written in the form

(4.7) uτ = ατPUxτ ,λτ
+ vτ ,
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where ατ → µ/Q(x◦))1/(2∗−2), µτ/λτ +λτ/µτ +µτλτ |xτ−zτ |2 ≤ C, vτ ∈ Exτ ,λτ
,

‖vτ‖ → 0. As a result, xτ → x◦, λτ →∞, and µ = limτ→0 µτ
τ .

Next, we give a necessary condition for the location of x◦ and prove µ = 1
for any solution of (4.1) of the form (4.7).

Lemma 4.4. Suppose that uτ is a solution of the form (4.7) for (4.1), satis-
fying Iτ (uτ ) < 2SN/2/N . Then µ = 1 and DQ(x◦) = 0 and ∆Q(x◦) ≤ 0.

Proof. First, using Lemma B.1 and arguing as Theorem 2.1, we obtain

(4.8) ‖vτ‖2 = O

(
τ2 +

|DQ(x)|2

λ2
+

1
λ2+σ

)
.

We claim that x◦ ∈ Ω. In fact, if x◦ ∈ ∂Ω, then it follows from Q(x◦) ≤
maxx∈∂Ω Q(x) ≤ 2−2/(N−2) that

Iτ (uτ ) =
1
N

SN/2

Q(x◦)2/(N−2)
+ o(1) ≥ 2

N
SN/2.

This is a contradiction. On the other hand, we have

(4.9)
〈

uτ ,
∂PUxτ ,λτ

∂λ

〉
=

∫
Ω

Q(y)u2∗−1−τ
τ

∂PUxτ ,λτ

∂λ
.

Using Lemma B.1, we get

τ

λ1+(N−2)τ/2
≤ C

λ3
,

which, in view of λτ ≤ C < ∞, implies λ ≤ Cτ−1/2. Hence, µ = limτ→0 λτ = 1.
We also have

(4.10)
〈

uτ ,
∂PUxτ ,λτ

∂xj

〉
=

∫
Ω

Q(y)u2∗−1−τ
τ

∂PUxτ ,λτ

∂xj
,

which, in view of Lemma A.3, is equivalent to

(4.11)
∫

Ω

Q(y)PU2∗−1−τ
xτ ,λτ

∂PUxτ ,λτ

∂xj
= o(1).

But ∫
Ω

Q(y)PU2∗−1−τ
xτ ,λτ

∂PUxτ ,λτ

∂xj
(4.12)

=
∫

Ω

Q(y)U2∗−1−τ
xτ ,λτ

∂Uxτ ,λτ

∂xj
+ o(1)

=
∫

Ω

〈DQ(x), y − x〉U2∗−1−τ
xτ ,λτ

∂Uxτ ,λτ

∂xj
+ o(1)

=DjQ(x)
∫

Ω

(yj − xj)U2∗−1−τ
xτ ,λτ

∂Uxτ ,λτ

∂xj
+ o(1).

Since
∫
Ω
(yj − xj)U2∗−1−τ

xτ ,λτ
∂Uxτ ,λτ

/∂xj ≤ −c′ < 0, (4.11) and (4.12) imply
DQ(x◦) = 0.
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Using (4.9) and Lemma B.1, we have

N − 2
22∗

Q(x)A
τ

λ
+

∆Q(x◦)
2∗Nλ3

∫
RN

|y|2U2∗

0,1 +
2ε

λ3

∫
RN

U2
0,1 = o

(
1
λ3

)
.

Thus we obtain ∆Q(x◦) ≤ −ε22∗N
∫

RN U2
0,1 ≤ 0. �

Proof of Proposition 4.2. In view of Lemma 4.3, to prove Proposi-
tion 4.2, we only need to prove u◦ 6= 0. Suppose that u◦ = 0. Then it follows
from Lemma 4.4 that

uτ = ατPUxτ ,λτ
+ vτ ,

and as τ → 0, ατ → 1/Q(x◦)1/(2∗−2), xτ → x◦, DQ(x◦) = 0 and ∆Q(x◦) ≤ 0.
It is easy to see

Iτ (uτ ) =
1
N

SN/2

Q(x◦)1/(2∗−2)
+ o(1).

Thus we deduce

t2 ≤ Q(x◦) ≤ t1.

According to our assumption, we have ∆Q(x◦) > 0. This is a contradiction. �

Proof of Theorem 1.3. The existence part is just a direct consequence
of Theorem 4.1 and Proposition 4.2. To prove that uτ (up to a subsequence)
converges strongly in H1(Ω) as τ → 0, we just need to repeat the proof of
Proposition 4.2 and thus we omit the details. �

Appendix A

Let d = d(x, ∂Ω).

Lemma A.1. Suppose that N ≥ 5. We have

(A.1) K(PUx,λ) =
A1−2/2∗

Q(x)2/2∗

[
1 +

K1H(x, x)
λN−2

−K2ελ
−2

]
+ O

( N−2∑
j=2

|D(j)Q(x)|
λj

+
ε

(λd)N−2
+

1
(λd)N−1

)
,

where

A =
∫

RN

U2∗ , K1 =
1
A

∫
RN

U2∗−1, K2 =
1
A

∫
RN

U2.

Proof. Let ϕx,λ = Ux,λ−PUx,λ. Then it follows from Proposition 1 in [19]
that

0 ≤ ϕx,λ ≤
H(x, x)
λ(N−2)/2

.
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As in [6] and [19], we have∫
Ω

|DPUx,λ|2 =
∫

Ω

U2∗−1
x,λ PUx,λ(A.2)

= A− B1H(x, x)
λN−2

+ O

(
1

(λd)N

)
,∫

Ω

|PUx,λ|2 = B2λ
−2 + O

(
1

(λd)N−2

)
,(A.3)

where B1 =
∫
Ω

U2∗−1
x,λ , B2 =

∫
RN U2. We also have (see [19])

(A.4)
∫

Ω

Q(y)|PUx,λ|2
∗

=
∫

Ω

Q(y)|Ux,λ − ϕx,λ|2
∗

=
∫

Ω

Q(y)U2∗

x,λ − 2∗
∫

Ω

Q(y)U2∗−1
x,λ ϕx,λ + O

(
1

(λd)N−1

)
=

∫
Ω

Q(y)U2∗

x,λ − 2∗
B1Q(x)H(x, x)

λN−2
+ O

(
1

(λd)N−1

)
.

Using Taylor’s expansion and the radial symmetry of U we write∫
Ω

Q(y)U2∗

x,λ =Q(x)A +
∫

Ω

〈DQ(x), y − x〉U2∗

x,λ(A.5)

+ O

( N−2∑
j=2

|D(j)Q(x)|
λj

)
+ O

(
1

λN−1

)
.

Using the symmetry of U , we deduce easily

(A.6)
∫

Ω

〈DQ(x), y − x〉U2∗

x,λ = O

(
1
λ

1
(λd)N−1

)
.

Combining (A.4) and (A.5) we get

(A.7)
∫

Ω

Q(y)|PUx,λ|2
∗

=Q(x)A− 2∗
B1Q(x)H(x, x)

λN−2

+ O

( N−2∑
j=2

|D(j)Q(x)|
λj

)
+ O

(
1

(λd)N−1

)
.

Clearly, Lemma A.1 follows from (A.2), (A.3) and (A.7). �

Lemma A.2. Suppose that N = 4. We have

(A.8) K(PUx,λ) =
A1−2/2∗

Q(x)2/2∗

[
1 +

K1H(x, x)
λN−2

− ελ−2 ln(λd)
(

K3 + o(1)
)]

+ O

( N−2∑
j=2

|D(j)Q(x)|
λj

+
ε

(λd)N−2
+

1
(λd)N−1

)
,
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where K3 is some positive constant and o(1) → 0 as λd →∞.

Proof. In order to prove Lemma A.2, we only need to note that∫
Ω

U2
x,λ

λ2 ln(λd)
→ K3 > 0,

as λd →∞. �

Lemma A.3. Let k be the biggest positive integer satisfying k ≤ (N − 2)/2.
Suppose that λτ ≤ C. Then for any v ∈ Ex,λ and τ ≥ 0, we have∫

Ω

Q(y)|PUx,λ|2
∗−1−τv(A.9)

= O

(
τ +

k∑
j=1

|DjQ(x)|
λj

+
1

(λd)θ+(N−2)/2

)
‖v‖,∫

Ω

Q(y)|PUx,λ|2
∗−2−τ ∂PUx,λ

∂λ
v(A.10)

= O

(
τ +

k∑
j=1

|DjQ(x)|
λj

+
1

(λd)θ+(N−2)/2

)
λ−1‖v‖,∫

Ω

Q(y)|PUx,λ|2
∗−2−τ ∂PUx,λ

∂xj
v(A.11)

= O

(
τ +

k∑
j=1

|DjQ(x)|
λj

+
1

(λd)θ+(N−2)/2

)
λ‖v‖,

where θ > 0 is a positive constant.

Proof. In fact, arguing as Rey [19] (see (3.20)–(3.22) there), we have

(A.12)
∫

Ω

Q(y)|PUx,λ|2
∗−1−τv

=
∫

Ω

Q(y)|Ux,λ|2
∗−1−τv +

∫
Ω

Q(y)(|PUx,λ|2
∗−1−τ − |Ux,λ|2

∗−1−τ )v

=
∫

Ω

Q(y)|Ux,λ|2
∗−1−τv + O

(
‖v‖

(λd)θ+(N−2)/2

)
=Q(x)

∫
Ω

|Ux,λ|2
∗−1−τv

+
∫

Ω

(Q(y)−Q(x))|Ux,λ|2
∗−1−τv + O

(
1

(λd)θ+(N−2)/2

)
‖v‖

=Q(x)
∫

Ω

|Ux,λ|2
∗−1−τv + O

( k∑
j=1

|D(j)Q(x)|
λj

+
1

(λd)θ+(N−2)/2

)
‖v‖.
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But

(A.13) Q(x)
∫

Ω

|Ux,λ|2
∗−1−τv

=λ−(N−2)/2τ

∫
RN

U2∗−1−τ
0,1 v

(
y

λ
+ x

)
dy

=λ−(N−2)/2τ

∫
RN

[U2∗−1−τ
0,1 − U2∗−1

0,1 ]v
(

y

λ
+ x

)
dy = O(τ)‖v‖.

Combining (A.12) and (A.13), we get (A.9). Since |∂PUx,λ/∂λ| ≤ Cλ−1Ux,λ

and |∂PUx,λ/∂xj | ≤ CλUx,λ, we can prove (A.10) and (A.11) in a similar way.�

Lemma A.4. There is a σ > 0, such that∫
Ω

PUx,λv = O

(
1

λ1+σ

)
‖v‖,

∫
Ω

∂PUx,λ

∂λ
v = O

(
1

λ2+σ

)
‖v‖.

Proof. For the proof of Lemma A.4 we refer to the paper [19, (3.19),
p. 18]. �

Appendix B

In this section we assume that x ∈ Ω satisfies d = d(x, ∂Ω) ≥ d◦ > 0, and
v = v(x, λ) ∈ Ex,λ satisfies

(B.1) ‖v‖ = O

(
τ +

|DQ(x)|
λ

+ λ−1−σ

)
,

where σ > 0 is a small constant.

Lemma B.1. Suppose that N ≥ 4 and if N = 4, then ε = 0. We have

(B.2)
〈

I ′τ (αPUx,λ + v),
∂PUx,λ

∂λ

〉
=

N − 2
22∗

Q(x)A
τ

λ1+(N−2)τ/2
+

∆Q(x)
2∗Nλ3+(N−2)τ/2

− (N − 2)H(x, x)
2λN−1+(N−2)τ/2

∫
RN

U2∗−1
0,1 +

2ε

λ3

∫
RN

U2
0,1 + o

(
1
λ3

)
,

where λ3o(1/λ3) → 0 as τ → 0, α → 1.

Proof. We have〈
I ′τ (αPUx,λ + v),

∂PUx,λ

∂λ

〉
(B.3)

=
〈

αPUx,λ,
∂PUx,λ

∂λ

〉
− ε

∫
Ω

(αPUx,λ + v)
∂PUx,λ

∂λ

−
∫

Ω

Q(y)|αPUx,λ + v|2
∗−1 ∂PUx,λ

∂λ
.
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By (B.5) in [19], we have

(B.4)
〈

PUx,λ,
∂PUx,λ

∂λ

〉
=

(N − 2)BH(x, x)
2λN−1

+ O

(
1

λN

)
,

where B =
∫

RN U2∗−1
0,1 .

Similarly to (B.16) in [19], using Lemma A.4, we have∫
Ω

(PUx,λ + v)
∂PUx,λ

∂λ
= − 2B1λ

−3 + O

(
‖v‖
λ2+σ

)
(B.5)

=− 2B1λ
−3 + O

(
τ

λ2+σ
+

1
λ3+σ

)
,

where B1 =
∫

RN U2
0,1. On the other hand it follows from Lemma A.3 that

(B.6)
∫

Ω

Q(y)|αPUx,λ + v|2
∗−1−τ ∂PUx,λ

∂λ

=
∫

Ω

Q(y)|αPUx,λ|2
∗−1−τ ∂PUx,λ

∂λ

+ (2∗ − 1− τ)
∫

Ω

Q(y)|αPUx,λ|2
∗−2−τ ∂PUx,λ

∂λ
v + O

(
‖v‖2

λ

)
=

∫
Ω

Q(y)|αPUx,λ|2
∗−1−τ ∂PUx,λ

∂λ

+ O

(
τ2

λ
+
|DQ(x)|2

λ3
+

1
λ3+σ

)
.

Also, by Proposition 1 in [19], we have

(B.7)
∫

Ω

Q(y)|PUx,λ|2
∗−1−τ ∂PUx,λ

∂λ

=
∫

Ω

Q(y)|Ux,λ|2
∗−1−τ ∂PUx,λ

∂λ

− (2∗ − 1− τ)
∫

Ω

Q(y)|Ux,λ|2
∗−2−τϕx,λ

∂PUx,λ

∂λ

+ O

(
‖ϕx,λ‖2

∞
λ

∫
Ω

U2∗−2−τ
x,λ

)
=

∫
Ω

Q(y)|Ux,λ|2
∗−1−τ ∂PUx,λ

∂λ

− (2∗ − 1− τ)
∫

Ω

Q(y)|Ux,λ|2
∗−2−τϕx,λ

∂PUx,λ

∂λ
+ O

(
1

λ3+σ

)
.

Besides,

(B.8)
∫

Ω

Q(y)|Ux,λ|2
∗−1−τ ∂PUx,λ

∂λ

=
∫

Ω

Q(y)|Ux,λ|2
∗−1−τ ∂Ux,λ

∂λ
−

∫
Ω

Q(y)|Ux,λ|2
∗−1−τ ∂ϕx,λ

∂λ
+ O

(
1

λN

)
.
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In view of the symmetry of Ux,λ and ∂Ux,λ/∂λ, we have

(B.9)
∫

Ω

Q(y)|Ux,λ|2
∗−1−τ ∂Ux,λ

∂λ

=Q(x)
∫

Ω

|Ux,λ|2
∗−1−τ ∂Ux,λ

∂λ
+

∫
Ω

〈DQ(x), y − x〉|Ux,λ|2
∗−1−τ ∂Ux,λ

∂λ

+
1
2

∫
RN

〈D2Q(x)(y − x), y − x〉|Ux,λ|2
∗−1−τ ∂Ux,λ

∂λ
+ O

(
1
λ4

)
=

Q(x)
2∗ − τ

∂

∂λ

∫
RN

|Ux,λ|2
∗−τ

+
∆Q(x)

2N

1
2∗ − τ

∂

∂λ

∫
RN

|y|2|Ux,λ|2
∗−τ + O

(
1
λ4

)
= − N − 2

2(2∗ − τ)
Q(x)

τ

λ1+(N−2)τ/2

∫
RN

U2∗−τ

−
(

1 +
N − 2

4
τ

)
∆Q(x)

(2∗ − τ)Nλ3+(N−2)τ/2

∫
RN

|y|2U2∗−τ + O

(
1
λ4

)
= − N − 2

22∗
Q(x)A

τ

λ1+(N−2)τ/2
− ∆Q(x)

2∗Nλ3+(N−2)τ/2

∫
RN

|y|2U2∗

+ O

(
τ2

λ
+

τ

λ3
+

1
λ4

)
.

Following the proof of (B.13) in [19], it is easy to show that

(B.10)
∫

Ω

Q(y)|Ux,λ|2
∗−1−τ ∂ϕx,λ

∂λ
= −N − 2

2
BQ(x)H(x, x)
λN−1+(N−2)τ/2

+ O

(
1

λN

)
.

Substituting (B.9) and (B.10) into (B.8) we obtain

(B.11)
∫

Ω

Q(y)|Ux,λ|2
∗−1−τ ∂PUx,λ

∂λ

= − N − 2
22∗

Q(x)A
τ

λ1+(N−2)τ/2
− ∆Q(x)

2∗Nλ3+(N−2)τ/2

∫
RN

|y|2U2∗

+
(N − 2)BH(x, x)
2λN−1+(N−2)τ/2

+ O

(
τ2

λ
+

τ

λ3
+

1
λ4

)
.

By Proposition 1 in [19] we have

(B.12) (2∗ − 1 − τ)
∫

Ω

Q(y)|Ux,λ|2
∗−2−τϕx,λ

∂PUx,λ

∂λ

=(2∗ − 1− τ)
∫

Ω

Q(y)|Ux,λ|2
∗−2−τϕx,λ

∂Ux,λ

∂λ

− (2∗ − 1− τ)
∫

Ω

Q(y)|Ux,λ|2
∗−2−τϕx,λ

∂ϕx,λ

∂λ

=(2∗ − 1− τ)
1

λ(N−2)/2

∫
Ω

Q(y)|Ux,λ|2
∗−2−τH(y, x)

∂Ux,λ

∂λ
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+ O

(
1

λN−1+2θ

)
=

Q(x)H(x, x)
λ(N−2)/2

∂λ−(N−2)(1+τ)/2

∂λ

∫
RN

U2∗−1−τ + O

(
1

λ3+σ

)
= − N − 2

2
Q(x)H(x, x)

λN−1+(N−2)τ/2
B + O

(
1

λ3+σ

)
.

Combining (B.7), (B.11) and (B.12) we obtain

(B.13)
∫

Ω

Q(y)|PUx,λ|2
∗−1−τ ∂PUx,λ

∂λ

= − N − 2
22∗

Q(x)A
τ

λ1+(N−2)τ/2
− ∆Q(x)

2∗Nλ3+(N−2)τ/2

∫
RN

|y|2U2∗

+
(N − 2)BH(x, x)
λN−1+(N−2)τ/2

+ O(λ−(3+σ)).

Inserting (B.13) into (B.6), we get

(B.14)
∫

Ω

Q(y)|PUx,λ + vε|2
∗−1−τ ∂PUx,λ

∂λ

= − N − 2
22∗

Q(x)A
τ

λ1+(N−2)τ/2
− ∆Q(x)

2∗Nλ3

∫
RN

|y|2U2∗

+
(N − 2)BH(x, x)
λN−1+(N−2)τ/2

+ O

(
τ2

λ
+

τ

λ3
+

1
λ3+σ

)
.

Then Lemma B.1 follows from (B.3)–(B.5) and (B.14). �
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