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1. Introduction

Let N be a smooth, compact manifold without boundary of dimension k. By
Nash’s embedding theorem we may assume N C R”™ isometrically for some n.
A wave map u = (u',... ,u") : R x R? — N — R" by definition is a stationary

point for the action integral
Alu; Q) = / L(u)dz, Q CRxR?
Q
with Lagrangian
1
£(w) = 5(9ul — fuf?)

with respect to compactly supported variations u. satisfying the “target con-
straint” u. (R x R?) C N. Equivalently, a wave map is a solution to the equation

(1) Ou = uyy — Au = A(u)(Du, Du) L T, N,

where A is the second fundamental form of N, T, N C T,R" is the tangent space
to N at a point p € N, and “1” means orthogonal with respect to the standard
inner product (-, -) on R™.

We denote points on Minkowski space as z = (t,2) = (¥*)p<a<2 € R x R?
and let Du = (u, Vu) = (0au)o<a<2 denote the vector of space-time derivatives.
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296 S. MULLER M. STRUWE

Moreover, we raise and lower indeces with the Minkowski metric n = (743) =
(n*P) = diag(—1,1,1). A summation convention is used; thus, Ju = —9%J,u.
Finally, we abbreviate

A(u)(Du, Du) = A(u)(0%u, Oqu).

Recall that locally, near any point pg € N, letting vgy1,...,v, be a smooth
orthonormal frame for the normal bundle TN~ near pg, that is, vector fields
such that (v;(p))k<i<n is an orthonormal basis for the normal space T, N+ at
any p € N near pgy, we have

A(p)(v,w) = A'(p) (v, w)ra(p)
at any such p, where
Al(p) (v, w) = (v, dvi(p)w)
is the second fundamental form of N with respect to v;.
Given ug : R? — N, up : R? — R" satisfying the condition u;(x) € Ty ()N
for all z € R?, that is, (ug,u;) : R* — TN, we consider the Cauchy problem for
wave maps u with initial data

(2) (w,ue)),— = (ug,u1) : R? — TN

of finite energy

1
Eo = 5/ (lur |2 + [ Vo 2) da.
R2

Specifically, in the present paper we study the relation between solutions u of (1),
(2) on R x R? and their spatially discrete counterparts u” : R x Mj;, — N — R",
where R? is replaced by a uniform square lattice M, = (hZ)? of mesh-size h — 0.

In a previous paper [12], jointly with Vladimir Sverdk, we studied the time-
independent case and showed that a weakly convergent family of harmonic maps
u’ € HY(T); N) on a periodic lattice T}, = (hZ)?/Z? as h — 0 accumulates at
a harmonic map u on the 2-torus 72 = R?/Z2.

Here we extend this result to the time dependent case; see our main result
Theorem 4.1 below. Since the Cauchy problem for wave maps on a spatially
discrete domain is equivalent to an initial value problem for a system of ordinary
differential equations which can be solved globally for any mesh-size h in view
of the uniform energy bounds available, as a corollary we reobtain our existence
result from [11] for global weak solutions to the Cauchy problem (1), (2) for wave
maps on (1+2)-dimensional Minkowski space; see Theorem 5.1. The methods we
use are similar to the methods of [12]. We essentially rely on our previous weak
compactness results [7], [8] with Freire and exploit the equivalent formulation
of (1) as a Hodge system as in [3] or [9] to which compensation techniques may be
applied in a way similar to the work of Hélein [9], [10], Evans [5], and Bethuel [1]
on weakly harmonic maps, that is, time independent solutions of (1). (See [7]
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for further references and a detailed comparison of the elliptic and hyperbolic
cases.)

2. Technical framework

Whenever possible, we use the same notations as in [12] regarding difference
calculus, discrete Hodge theory, interpolation and discretization. For the reader’s
convenience we recall the definition at each first appearance of a symbol.

2.1. Differential forms. For h > 0 with b= € N let M, = (hZ)?, T), =
(hZ?)/Z* with generic point x = z), = (z},x3), and let S = R/Z with generic
point ¢ = 2% = 9. Differential forms on R x M} or S' x T}, may be most
conveniently expressed in terms of the standard basis dz®, dz® A dz®, 0 < o <
B < 2, and dt A dz' A de? = dz. In particular, for a 1-form " we have " =

hdr®, and a 2-form b" may be written in the standard form
b = bhdat A da® — bida® A da? + bhda® A dat = bgﬁdxa A dzP

with real-valued functions ¢, b%.
The Hodge *4-operator with respect to either the Euclidean metric g = eucl
or the Minkowski metric g = 7 in terms of this basis is defined as

*¥gl = dz,xqdz =1,
*ggoh = goonpgdxl Ada?® — oldx® A dx? + phda® A dat,
g™ = g"0bldx® + bl dxt + bhyda?,
where (g%°) = g7 = diag(£1,1,...,1) and " = p"dx®, etc., as above.
From this definition we immediately deduce that *4 0 x, = id and, moreover,
P Nxgph = (xg0") A" = PPz,
V" A g = (xgb") A D" = g*Pbliblidz

for any 1-form ¢" or 2-form b as above.
Finally, two forms ¢", ¢" of the same degree may be contracted by letting

" g W dz = O A kgl = go‘ﬁgpgwgdz.

Spatially discrete differential and co-differential are defined as follows.
For u” : R x My, — R, h # 0, we let d"u" = 0"u"dz® with components

h —
Mot Uy

ohul = opul = Ol = ult,  OMu(z) =
where (e, )1<a<2 is the standard basis for R2. For a 1-form ¢" = ¢! dx® then

dhh = aggogdaco‘ A da?
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and for a 2-form b" as above, d"b" = 9'b" dz. The co-differential (with respect
to g) is
(52 = — %4 od™" o *g.
Explicitly, for o = pldx®, h # 0, we have
6g<ph — _gaﬁaghwg _ _agh@g _ afh(p;z _ gOOathng7

and similarly for forms of higher degree. Clearly, we have d"od" = 0,6" 06" =0
for all A # 0.
Finally, for h > 0, we let
h _—h _ ghsh o shah _ j—hs—h | s—h j—h
O =0""=d", +9,d" =d "o, " +6,"d

denote the spatially discrete wave operator, acting on forms on R x M. Expli-
citly, we have

Ol = 5,};dhuh = (8t2 — AMuh, Dh(gogdxa) = (I:lhgag) dx®,
O" (b yda® A da®) = (O] )da® Ada?,  OM(fdz) = (O"f") dz,
where A" = A~" is the discrete (5-point) Laplace operator on Tj; that is,

0" acts as a diagonal operator with respect to the standard basis of forms.

Also note the product rule
(3) ol (ulvh) = ohuoh Tl ohuh
= oMul ol 4wt = Otulml ol 4 mluh ol
and
(D" ") = =g ") = —g* 1 (OaeB) " + Tadnt";
in particular, we have
S5, (o Mol da - f) = —g™P1(0 el [ + ool £ = (0l 1 — o g dM f.
Here and in the following we denote
rEhut = mEhuh = ot rER = Wl (£ hey),
mEhyh = (W + 7y 2, a=1,2.
2.2. Dirichlet’s integral. For u" : R x M), — R we let
1
(4) en(u) = 1 > (b + 107 ")
0<a2
be the energy density and let

Buu () = [ enluh ()= 12 3 enlu’(t.)

Mp zp €M)
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be the energy of u" at any time ¢. If »~' € N and if «” has period one in each
variable, we regard v as a map u” : S' x T}, — R. Then we define

D)= [ entutyi= [0S et

zp €Th

and similarly for forms of degree > 1.
Note that the first variation of Dj, at u” in direction v" is given by

(D (), 0"y = Dy + 0o

1
-y /S ERCTEAEE A
« X1Lh
Z/ ohuholoh = 7/ Ahyloh
a SlXTh SlXTh

dh + dhéh | = —0? — A" is the spatially discrete Laplace

eucl

where —Al = §h |

operator, acting on forms on S x Tj,.
Similarly, for v : R x Mj;, — R™ the spatially discrete Lagrangian of u” is

1
Ln(u") = 07 (Ogu”, Ofu") + (07 u", 05" u")).

The action integral over any spatially discrete domain (@ C R x M}, then is
AnsQ) = [ £auh),
Q

and u" is stationary for 4, with respect to compactly supported variations if
and only if

) (@A) = LA + oo

:/ naﬁ<a§uh,aguh> = / Ot =0
Rx My, Rx My
for any v" € C§°(R x Mj,); that is, if and only if O"u" = 0.

2.3. Hodge decomposition. Analogous to the continuous case or the case
of a planar lattice, we have the following result on Hodge decomposition of forms
on St x T,

PROPOSITION 2.1. Any 1-form ¢ = @Pdz® on S' x T}, may be decomposed

uniquely as
6 b= dra" 4 50, 0" + "
( @

eucl

where a” and b are normalized to satisfy

(7) / ah:/ Vi =0 for0<a<p<2 d =0,
S1xT), sixT, P
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and d"c" =0, "

euclc

=0.
PROOF. Let a”, b" be the unique solutions to the equations
_Aga 6cuc1§0 s _Agbh = dh ha

normalized by (7), obtained, for instance, by minimizing the integral
R R CXCORT ey
S1x Th

among functions a” : S x Tj, — R satisfying (7), and similarly for . The

remainder ¢ = " — dha — §" b then satisfies

dhel = dhph + Agbh =0, 5euc10 5euc1<P + Agah =0,
as desired. 0
Via the Euclidean Hodge *-operator, we obtain an analogous decomposition

of 2-forms. Observe that the decomposition (6) is L?-orthogonal and hence

we have
) LWt [ (gt ).
SIXTh SIXT}L

2.4. Discretization and interpolation. We discretize a map u : RxR? —
R by letting, for each t € R,

ul(t, ) = h™2 u(t,x)dx, xp € My,
Qi (zn)
where for [ € N the set
Qf(zp) = {z = (z',2%) e R? : a2 <z < +1h, a=1,2}

is a square with lower left corner xh of size lh, and similarly for periodic maps
w:T3=8'xT — R, assuming h~ € N.
Conversely, we interpolate a map u” : R x M;, — R either trivially, by letting

u(t,z) = ul(t,zp,) for x € Q) (1), z € M,
or bilinearly, by letting
" (t,x) = ul(t, ) + Z X Otul (t, 2p) + €201 05" (t, )

a=1,2
whenever © = x;, +& € Q;(th xp, € My, and similarly for maps u” : ST x T}, —
R.
Observe that
aj:h h(t LC) aj:h h(t xh)

for all t € S, x € Q) (z1), x, € Tj; moreover,

8lﬂh(t, xp+h)=(1- fg)@fuh(t, xp) + fg@fuh(t, xp + hes)
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for t € SY, xy, € Ty, € € Q(0), and similarly with 2!- and z2-directions ex-
changed.
From this identity the following result is immediate.

PROPOSITION 2.2. For u" : R x M, — R with sup, E,(u"(t)) < co we have
uh € L= (R; HY(R?)) N CO(R x R?), and with a uniform constant C for allt € R
there holds

() 1" = YO < gt ) = C Sty ey el () for all zn € M
(i) [|@" — u")()][2agz) < CH2En(ul(1));
(iii) C—1Ep(uh(t)) < E(@"(t)) < CEp(uh(t)).

Moreover, by comparing u” and %", using Proposition 2.2(i), it is clear that
the Poincaré inequality

H(uh — uﬁxo (t)”%z(QT(wo)) < CTZEh(uh(t)E Qr4n(0))
holds for every (¢,z9) € R X My, any r = kh, k € N, where
Qr(20) = {z = (2", 2%) : |z* — 2§ <r, a =1,2}

and where

ut, (1) = f u(t,2)
Qr (:Eo)

Similar results hold true if we also take time dependence into account.

is the mean value.

For zp = (2§ )o<a<z2, 7 > 0, let

2
Po(z0) = [] 126 —r 2 + 71

a=0
and let v : R x Mj, — R with locally finite energy as above. For z € R x Mj,,
r=kh, k€N, we also let
R
’ P,.(2)

denote the average of u” on P,(z).
PROPOSITION 2.3. For any z = (t,z) € Rx My, 0 < h <r =kh, k € N,
a € {1,2}, with an absolute constant C there holds
(i) [(hal — aP) ()2 < O [, en(ub),

(i) Ilu" = uralia(p, ) < OF% fp, ) en(0®)-

PROOF. (i) Integrating in time, for any s € |t — h, t + h[ we obtain

t+h
(it — )t )] < (e = )+ [ (O] + o) s
t—h
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Squaring and averaging with respect to s, in view of Proposition 2.2(i) we find

t+h
[l — M) () < B! / (il — (s, ) 2 ds
t—h

t+h
+Ch (|0 4 |0yul|?) ds
t—h

gCh*l/ en(ul).
PQh(Z)

(ii) The asserted inequality is immediate from Proposition 2.2(i) and the
usual Poincaré inequality, applied to the function w”. O

If we consider the trivial extensions of a function u” : R x M), — R and
its energy density e (u) to R x R2, Proposition 2.3(ii) remains valid for all
zeRxRZand0< h <r.

Regarding a function u” : S' x T, — R as a periodic function on R x Mj,,
the above results also hold for u” : S' x Tj, — R. In addition, by integrating in
time, from Proposition 2.2(iii) we obtain the following result.

PROPOSITION 2.4. For u" : S' x T}, — R with Dy(u") < oo we have u" €
HY(T3) and with a uniform constant C' there holds

1
C 1Dy (") < D(@") = 5/ (Jul' > + [Vu"|?) dz < CDp(u).
T3

In view of Proposition 2.4 we will say that u" — u weakly in H'(T®) as
h — 0, if u" — u weakly in H'(T?), or, equivalently, if u" — u and d"u" — du
weakly in L2(T?), where u”, d"u" denote the trivial extensions of u”, d"u" to T3,
defined above.

3. Spatially discrete wave maps

In analogy with the continuous case a map u* : R x M), — N — R" is
a spatially discrete wave map if and only if " is stationary for Aj, among maps
ul : R x My, — N such that u? = u" at ¢ = 0 and outside some compact set
@ C R x Mp; in particular, then

d
de
for all v" € C§°(R x Mp;R"™), where 7wy : Us(N) — N is the smooth map
projecting a point p in a tubular neighbourhood of N of sufficiently small width

Ay (u + ev"))|e=o = 0

d > 0 to its nearest neighbour mn(p) € N.
Computing the first variation using (5), we deduce that u” satisfies the equa-
tion

dry (u) DM =0,
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that is,
(9) O™ 1 T, N.
Hence, letting g1 1,... ,v, be a local frame for TN+ as above, we have
Orul = Ny o uh,
where A\! may be computed as
(10) X = (@, vy 0u) = =P (0 ", vy o u) + P (Dhu”, Dl (v 0 u™)).

Observe that for a = 0, 3 = 0 the first term vanishes because (9;u”, v, ou") = 0.
In view of this representation of (9), for h > 0 equation (9) is equivalent to
a system of ordinary differential equations of the form

(11) Ul =FU" U

for UM(t) = (u"(t,24))s,enm,, with coupling involving only neighbouring lat-
tice sites.
Given (ul,ul): Mj, — TN with finite energy

(12 Bu(u0) =5 [ (a4 ),

we therefore expect to obtain a unique global solution u” of the initial value
problem for (9) with initial data

(13) (", uy)e=o = (ug,ul).
In fact, we have the following result.

THEOREM 3.1. For any h > 0, any (ul,u}) : My, — N with Ey(u"(0)) < oo
there exists a unique global solution u" : R x My, — N of the Cauchy problem
(9), (13), and Ep(u"(t)) = En(u(0)) for all t.

The proof is achieved by combining the local existence and uniqueness re-
sults for systems of ordinary differential equations with the a priori bounds on
solutions resulting from the following energy inequality.

3.1. Energy inequality. For v" : R x M; — N let e, (u”) be the energy
density defined in (4), and for & = 1,2 let

ga"(u") = (03" " )

be the momentum of v in direction a.
For a solution of (9) then we have

(14) 0= (0Nt by = Sen) — L Y (0o () + 0" gl ().



304 S. MULLER M. STRUWE

In particular, the total energy is conserved; that is,
(15) By (1) = [ enlu () = BA(u(0) for all ¢
My,

For the proof of Theorem 3.1 and for our later purposes, we also need a local
version of this result. Observe that in the discrete case (9) cannot exhibit finite
propagation speed. However, as h — 0 equation (9) approximates a system of
wave equations. Therefore we expect the (essential) domains of influence and
dependence of any given point to approach the light cone through that point; in
particular, in the limit h — 0, on any bounded region of space-time the discrete
evolution should essentially be determined by the data on a finite region of the
hyperplane ¢ = 0.

Below we verify this behavior in detail. Because in the discrete case we are
working on a quadratic lattice, we prove the local energy inequality on squares,

not on circles.

3.2. Local energy inequality. For any function ¢, upon multiplying (14)
by the discretized function " we obtain

0= %(eh(uh)wh) _ % Z [8Z(g;h(uh)wh) + a;h(gg(uh)sph)} B €h(uh)at<,0h

g 3 [0 M)+ hea) + (gh(uMle) (- — hea)]

a=1,2

Now let ¢/ : R — R be given by

5 <0,
and choose
(16) p(t,z) = inf (jz% +1t) = Y(sup 2| + 1),
1<a<2 a
satisfying

(Or" + max{|05 0" |, 105 " 1) (8, 2n) < (1 () + max{|0" ()], 07"V (s)]}),

for x, € My, where s = sup,, |z| +t.
Integrating in spatial direction and shifting coordinates in the last two terms,
we then find that

& / enlu)s"

= /Mh, (ehW”)é’t@h + % S (g M) 105 " + |gZ(uh)|ngph|)>

a=1,2

h h h,  h —h h
</Mh en(u™)(Op +11§n§1§2{\8a<p 1,107 ).
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Remark that at any point (¢, ) at most two of the terms 9F"¢" # 0; hence
in the Cauchy-Schwarz inequality we may replace the Euclidean norm of 91" "
by the maximum norm. Let

p(s) =4 (s) + max{|0"y(s)], [0~ (s)[}.

We distinguish the cases s < —h, s > h, —h <s<0,and 0 < s < h.
If s < —h, we have

2/3 _,2/3
p(s) = <h1/3+max{eh —1 1ot })eh_l/ss
ho h

B2/3
_ p—1/3 h73s [ € -1
=h"""e ( 278 1).

By Taylor’s formula
eh2/3 -1
h2/3

for h < hg. Hence for such h and s we conclude

— 1= 1h2/3 + O(h4/3) < h2/3
2 >

p(s) < pL/Beh ™t %s < M3 < hl/?’z/J(s).

Similarly, if s > h, for h < hg we find
h/8
pls) = h='/3e=h s (6 hz/; - - 1> < BM3eh TP = BBy ().
If —h < s < 0 we only need to check that
h=Ps _ o=h T3 (s+h)
h

_p—1/8 _3p2/3 _o5p—1/3
%2¢ h s_1—e h e 2h s
h2/3

1/34 2—e

¥ (s) +10"Mp(s)| < —h7 B

o BB < .

< Chl/Behfl/?’s < Chl/S < Chl/3w(s)

with an absolute constant C, if h < hg. The estimate v¥/(s) + [0~ (s)] <
h/34(s) for h < hg is obtained as in the case s < —h.
Similarly, for 0 < s < h < hg, we have

W (s) + 107" (s)| < CRYPy(s).
The remaining estimate
W'(s) + 10" ()| < h24(s), h < ho,

is obtained as in the case s > h.
Thus, we conclude that with the above choice of ¢ for h < hg there holds

Oep" + max{|0h 0", 10, " |} < CRP"
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with an absolute constant C', and hence also

d
%/ en(u)p" §Ch1/3/ en(u)ph.
My,

My

We may shift the argument of ¢ by an arbitrary vector (¢g,xo) and integrate
in time to obtain the following result.

LEMMA 3.2. There exist constants hg > 0, C such that for any h < hg, any
solution u™ of (9), any 2o = (to,x0) € R x My, if 0 < t <t there holds

1/3
/ en(ul)ph < eCH / en(u)gh |
{t}XMh {O}X]\/Ih

where @, (t,x) = p(t — to,x — o) s given by (16).

PROOF OF THEOREM 3.1. We first consider initial data (ul, u”) : M, — TN
having compact support in the sense that ul = const, u? = 0 outside some
compact set. Then for sufficiently large K € N the support of d*"ul, u} is
strictly contained in the square of edge-length 2K h centered at (0,0). Extending
ull, u periodically with period 2K h in the z!- and x2-directions, we may regard
ul, ul alternatively as maps (ul,uf) : My/(2KhZ)? =: My x — TN or as
periodic maps on Mj,.

The Cauchy problem for equation (9) now reduces to an initial value problem
for a finite-dimensional system (11) of ordinary differential equations, which in

view of the uniform a-priori bound on the energy
(1) Bl ®) = [ enule(®) = B (w(0) = En(u(0))
M,k

of a solution u%, which results from integrating (14) over M, k, can be solved
uniquely for all time.

Moreover, regarding u? : R x M), — N as spatially periodic solutions of (9),
in view of these uniform energy bounds a subsequence u?% — u", 9ult. — 9,u”
locally uniformly on R x M}, as K — oo, where u” satisfies (9). Combining (17),
Lemma 3.2, and (15) we conclude that Ej(u"(t)) = const. Indeed, given t > 0,
zo = (to, o), by exponential decay of ¢ there are constants Ky, C; = eCh'/%t
such that for L > K > K, there holds

20, /M en(u(0))gh (0) > Cy /M en(ul (0))gh (0) > /M en(ul (1)) 0" (1

>

/{IhEMh,;|ZI?§f<Kh}
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Fixing K and letting L — oo, from locally uniform convergence u'i — ul,

d"ul — d"u" we conclude that

/ en(ul (£)) ¢ () < AC1 By (u"(0)).
{zn€Mp;|z |<Kh}

Letting K — oo and then ty — oo, we deduce that
Ep(u"(t)) < 2C1Ey(u"(0)) < 0o

locally uniformly in time and therefore, in fact, Ej(u"(t)) = Ej,(u"(0)) for all ¢,
by (15).

Uniqueness of u” is obtained as follows. Let u”, v" : R x M, — N be
solutions to (9) with u"(0, -) = v"(0, -) = ul, u}(0, ) = v}(0, -) = ul and
such that Ej,(u"(t)) + En(v"(t)) < C, uniformly in ¢. Observe that this also
implies that

[l (£, o) 2 + ol (£, )2 < Ch2,
uniformly in R x Mj,.

Expanding (9) and (10), we deduce that w" = u” — v" satisfies

|Ohw" <C Z (|05 0" w"| + h= Y oE w"| + h=2jw" (- + hey)| + h 2 |[w"|)
a=1,2

+ C(Jug | + lof Dlwg| + C(|uf * + g [*) [w"|
SCh_2< Z lw" (- & heq) |—|—|wh|) + Ch7 1w},

a=1,2

Multiplying by w and integrating over Mj,, we obtain
d
(18)  —En(w ")) < C(1+h’2)/M (0" (@)1 + wi (1))
<C(1+h7?) / lw" (t))? + C(1 + h™2) Ep(w"(t)).
My,

Moreover, by Holder’s inequality, for any ¢ > 0, any « € M), we have

t 2 t
lw"(t,z)|* = (/ wh (s, ) ds) < t/ lwh (s, z)|* ds.
0 0

Hence for 0 < ¢ < T we can estimate

/ lw" (t)]? <2t/ Ep(wh(s))ds < 2T? sup Ej(w"(s)).

0<s<T

Given T > 0, we fix ¢t € [0, 7] such that

Eh(wh(t)) = OquT Eh(wh(s)).
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We may assume that T' < 1. Integrating (18) from 0 to ¢, it then follows that

(19) En(w"(t)) = sup Ep(w"(s)) < CT(1+h"2) sup Ex(w"(s)).
0<s<T 0<s<T

Choosing T > 0 sufficiently small, we conclude that w" = 0 on [0,T] x Mj,. By

iteration therefore w" = 0 on R x Mj,.

Finally, we may use (18) to remove the assumption that d"uf, u? have com-
pact support. Indeed, given data (ul,u?) : M) — TN of finite energy we may
approximate (u¢,u}) by data (uf,,uf;) : M, — TN, | € N, such that d"uf}
u? ; have compact support for any [ and such that

/ (" (ul, — ul))? + [l — ul?) =0
M,

as | — o0o0. (The proof of this density result is analogous to the proof that
maps u € HY(R?; N) with supp(Vu) C R? are H!-dense in this space; see for
instance [13].) Letting (u}');en be the solutions to (9) with data (ul', ;ult)|;—o =
(ug’l,u?vl), from (18), applied to w" = ul' — ul for large I,m € N, we obtain

convergence of (ul') to the unique solution u of (9), (13). O

4. Passing to the limit h — 0
Our aim in this section is to prove the following weak convergence result.

THEOREM 4.1. Let u" : R x M, = N — R", h > 0, be spatially discrete

wave maps such that
(20) Ey(u"(t)) < C uniformly in h > 0, t € R.

Then a subsequence u" — wu locally in L*(R'*?), d"u" — Du weakly-+ in
L>(R; L*(R?)) as h — 0 where u : R x R* — N — R" is a weak solution
of (1) with

E(u(t)) = %/R | Du(t)|? de < 111}111_5‘:})1p En(ut(t) <C

uniformly in t € R.

The proof of Theorem 4.1 uses certain compensation properties of Jaco-
bians exhibited by the first order equations equivalent to (1), (9), respectively,
as in [7], [8], [12].

To derive these equations we proceed as in [3] or [9]. First suppose that TN
is parallelizable and let €1, ... ,€x be a smooth orthonormal frame field. For any

h >0 and any R" : R x M}, — SO(k) then
el = R%(Ej ouh), 1<i<k,

?

is a frame field for (u")"1TN.
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4.1. First order equations. Let

920 = <8tuh7€h>’ ezh,a = <8Zuh)ezh(' + hga»v a=1,2;

(2

observe that the shift is arranged so that the functions

Ora =00 —hey) = (0"t el), a=12,

R

are the coefficients of the representation of d~"u” in terms of the frame (e?).
Also let

+h b

wih — (@e?,e?}, wih — ((‘ffhe?,ma J>,

05,0 — ig,or a=1,2
h
ij
(de;, ej) of a frame (e;) in the continuum limit & = 0. The definition is made to

Clearly, the wy’; are a discrete approximation of the connection 1-forms w;; =

insure anti-symmetry wlhj = —w?i also in the discrete case.
Letting 0" := 9y, ¢y = 0, mE" = id, we have
h _ /ah, h _h —h _ ya—h, h _h +h _ yath h . +h h
ei,oz - <aocu ) €4 ( + hgoz))’ ei,(x - <aa u-,e; >’ Wij,o = <ao¢ €My ej>
for all @. Then

57};91’? = _naﬂaghezﬁ = —no‘ﬂ(‘)h&_h = —<|:]huh, eh> — naﬂ<82uh,3ge?>.

That is, u” : R x M}, — N solves (9) if and only if
(21) 0p0; = 1% (Ogu", Ofert) = =070 o w5 + i,

where

h h
er(- + he,) — e’
ot = o (L0 e

+(Onu" o u (- + hey)) (v ou (- + hey), 3}56?>] '
Observe that there exists a constant C' = C'(N) such that for p,q € N there
holds |(p — q,v1(p))| < Clp — q|?. Tt follows that
(Ohu v ou (- + he,))| < ChHu" (- + he,) — u"'* = Ch|Otu" .
Moreover, remark that
07707 (e} (- +hey) =€), Oes)| < hl6] 1|05} > < [u (- +hey) —u||0he] .
Thus, we may estimate the error term
<0 3 I+ hey) - o)l P+ T lohel?).
a=1,2 J

Our aim is to pass to the distributional limit in (9) or, equivalently, (21) for
a suitable sequence h — 0. Asin [7], [8] we may convert this convergence problem
into a problem on a compact domain, as follows. Given ¢ € C§°(R x R?), let Q
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be a cube centered at (0,0) containing the support of . Scaling the coordinates
suitably, we may assume that Q = [—~1/4,1/4]3; moreover, we may suppose
that 1/4h € N. We then extend u" by even reflection in the faces of Q to
periodic functions v on R x Mj, of period 1 in each variable, satisfying (9) on
the support of ¢.

Given a frame (e;) for (v?)"1TN, then also (21) will hold on the support
of ¢. Regarding v" as maps v : S x T}, — N on the compact spatially discrete
3-torus, moreover, following Hélein [9], we may choose a frame (e;) which is in
minimal Coulomb gauge, defined as follows.

4.2. Gauge condition. Choose R" = (Rl}) € H'(S* x T),; SO(k)) such
that

Dy(R"(®ouM)) / > ([oker? + 105 el ?) = inf Dy (R(E o u™)),
SlXTh O(Z R

and let e = R?j (e; ou),1 <i < k. Observe that

(22) Dy(eh) < C en(ul) < CDy(uh).

SIXT;L

Moreover, minimality implies

d .
0= dith((Zd + ES)@h)|E:0
1

1 heh (S, ¢ —hh e
5 L, Gkl Oh(Such) + (05l 0" (Sue)

« (2 a1

1 _ _
= —7/ {oh(a el mahe?> + 0 (Okel, mbel)} Sy

h h
Wij,asij

1
|
o
X
3
o

for all S;; € SO(k), where we also used anti-symmetry of S and the discrete
product rule (3) to derive the second identity.

h h
Since w;}; , = —w}; , we conclude
—h _ sh —h
8 Zj a 5euclwzj 5cuclw = 0.

In view of (22) we may assume that, as h — 0 suitably,
el — e; weakly in H'(T?),
0" — 6; weakly in L*(T?),
wfj — w;; weakly in L*(T?),
where ¢; is a frame for ™ 'TN and 0; = (du, e;), w;; = (de;, e;).
Our aim is to show that

/ (Ql n d(p + Wij 'y 9j<p) dz =0,
Q
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where ¢ € C§°(R x R?) with supp(¢) C Q is the testing function that we chose
above.

In fact, we will show that
(23) 57192 + wij 'y 93‘ =0 in D/(Q),

where we extend u periodically as above and regard @ as part of a fundamental
domain for 7% = R3/Z3. In view of the equations (21), that is,

SOt + Wl 0 =1l in Q,
and distributional convergence 5,};9? — 8,0; in D'(T3), it will suffice to show

that

(24) W oy OF — Tl — wij oy 0; in D'(T?)
as h — 0 suitably.

Let
(25) 0,07 = dMalt + 50 bl 4 el

be the Hodge decomposition of *,0; hon S x T, as determined in Proposi-
tion 2.1. We may assume that as h — 0 suitably

al — a;, b — b; weakly in H*(T®),

and ¢ — ¢; smoothly. Observe that the harmonic forms c?,¢; are constant
linear combinations of the basis dz® A dz?, 0 < a < 8 < 2.

Using this decomposition, we may write

w07z = Wi N = wS AdPall 4w A SR DY+ Wt A

i euc

Since c?

problem. To show convergence of the second last term, for convenience denote

— ¢; smoothly, passing to the desired limit in the last term is no

— *eucl b? = ﬁ;‘. Observe that th is a scalar function and ﬁj’-" — B = — *cucl b5
weakly in H*(T?), whence strongly in L?(T3) by the Rellich-Kondrakov theorem.
Then
wii N OLab) = Wi A keuad "B = wi eue d7 Bl dz
= (*euclwi_jh) A dihﬁ]}‘l = dih(*eudw?jﬂ]}‘l)a

(5euclw”) ﬂh = 0 on account of the Coulomb gauge condition. (In coordinates,
wi;" reuer d” hﬁh =w ko B = 0 (Wl B — (07wl )BT
Since w}; — wi; weakly in L?, while 8} — (; strongly in L?, we conclude
that
7h A§h

euc

lb' — Wij A\ 5euc1bj in D/.
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For the remaining term by the discrete product rule we have

wz Ad'a h = w;};ﬁ L dx® A dzP A dx”

= [0f(w ”a( — heg)al ) — 95 wik al Jda® A da® A da?,

=d” wijh/\aj —|—3ﬁ_h( Z_J};Tg a_)dz® AdaP A dz?.

Since we also have that 7ja! — a; weakly in H'(T®) and hence strongly in L?,
as h — 0 the last term converges to 95 (wij.aaj~)dz® Adz? AdxY = —d(w;j A a;)
in D,

Thus we have shown distributional convergence

(26) wi; " hdy —d" _h/\a — wij - 0jdz — dwij N aj

as h — 0, and it remains to prove that
(27) d~"w _h A a T — dwi; Aa; inD.

The proof of (27) will be accomplished by adapting the ideas of [8] to the spatially
discrete case.
Passing to a further subsequence, if necessary, we may assume that, as h — 0,

en(u) +en(e") S p in M(T?)

as Radon measures. Theorem 4.1 then will be a consequence of the following
Proposition.

PROPOSITION 4.2. There exists a Radon measure v such that, as h — 0
suitably,
d "ot Nalh — 7l — dwij Naj — v in D'(Q),
where
supp(v) C ¥ = {z = (t, ) : hIII{lS‘SP(R_lﬂ(PR(Z))) > 0}

has finite 1-dimensional Hausdorff measure.

PROOF OF THEOREM 4.1. Combining Proposition 4.2 and (26), we conclude
that, as h — 0,

0=000 +wp - 08 — 7 — 6,0 + wij - 0; — v

in D'(Q). Hence

v=206,0; +wijy0; € H '+ L.
But since the support of v is contained in a set of finite 1-dimensional Hausdorff
measure, as in [8], Proof of Theorem 1.3, we conclude that, in fact, v = 0 and

0nbi +wij 0, =0 1in D'(Q),

as claimed. m
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4.3 Proof of Proposition 4.2. We proceed as in [8]. The key ingredients
in the proof are the duality between the Hardy space H! and BMO (due to Fef-
ferman and Stein [6]), the H! estimates for Jacobians of Coifman, Lions, Meyer
and Semmes [4] (see Lemma 4.4 below for the discrete setting), and a charac-
terization of concentration points in the spirit of concentration compactness for
sequences of products whose factors are bounded in ' and BMO, respectively
(see [8], Lemma 3.7). To obtain the BMO estimate (see Lemma 4.3 below) we
exploit the energy inequality and apply Campanato theory and Poincaré’s in-
equality. For elliptic problems similar arguments were used by Hélein [9], [10],
Evans [5], Bethuel [1], and others.

Fix a function ¢ € C§°(B1(0)) with [ ¢ dz = 1. For f € L'(T?) then let

/TS 3 (Z ;z°> £(2)dz

be the regularized maximal function of f. The Hardy space on T° then is

(M f)(20) = sup

0<r<1

the space
HY(T?) = {f € LNT?); | fdz=0, My(f) € Ll(TS)}
T3

with norm

f 1l o= M ()] L1
Also let BMO(T?3) be the space of functions f € L'(T) such that

[flBmo(Tsy = sup SUP][ |f = frzoldz < 00
0<r<1/2 z20€T3J P,.(z0)

/Tsfdz

where P.(zg) and f, ., are defined as in Section 2.
By [6], BMO(T?) is the dual space of H!(T?), and for ¢ € HY(T?), f €
BMO(T3) there holds

with norm

I|f|lBMmo(Tsy = + [flBMO(T3),

(fs g)Bmoxnr < ClflBmo(rs)llgllwe-

Moreover, for any ¢ € C*°(T3), f € BMO(T?) the function fo € BMO(T?) and

[f¢lpmo < Cl|fllsmoll@llot;

see for instance [8], Proposition 3.8. In particular, for any f € BMO(T?), g €
H(T?) the product T = fg is defined as a distribution in T by letting

(T, ¢)prxD = (f©, 9)BMOXH!
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for any ¢ € C°°(T3). Finally, for 0 < A < 3, f € L*(T?) let

£ T— supﬂ][ 1 = fromo? d2
0<r<1/2 zo Pr(z0)

and for 0 < X < 3 denote
1B = sup swprf |
0<r<1/2 20 Pr.(20)

Define the Morrey—Companato spaces

L2NT®) = {f € LXT?) : [fle2n < oo},
L*NT?) = {f € LX(T?) : [|f|| 2 < o0}
with norms || - ||g2.2 and || f]|gex = ||fllL2 + [f] 2., respectively. Recall that

LA = £22 for 0 < A < 3 and £2? = BMO with equivalent norms.
For an open set U C T2 define the local BMO-seminorm by letting

[flsMo(v) = sup {]{9 - |f = frizol®dz : By(20) C U}'

LEMMA 4.3. For any h > 0 we have o} € BMO(T?) with d"al! € L*'(T?)
and
10} [[no < Clld"ag||7zn < CE(u") < C
independently of h. Moreover, for any 0 < h <r < R < 1/2, any zo € T® there
holds

T _
[a}1BMO (P, (20)) A" 0} 121 (P, (20)) < C(R||“?||BMO<PR<zo>>+||9j h|L2,1(PR(ZO)>)'

PrOOF. A global bound for a? follows from (8). From (25) we obtain the
equation
_Aga‘? = 5gucldha’? = (Sgucl *n g;h = Dh@;h’
where D" is a discrete first order differential operator with constant coefficients.
The proof now proceeds as the proof [8], Lemma 3.11, in the case h = 0. Omitting
the index j for brevity, given 0 < h <r < R= Kh < 1/2, zg € S* x T},, we split

a" = a? + a? on Pr(zy), where

—Alal =0 in Pr(z0), at =a" on OPg(2),
and

—Alalh = D"07" in Pgr(2), al =0  on dPg(2).
Standard estimates yield that

len(@) | (Pryateny) < cw][ 0 — (@) s |
Pr(z0)
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Hence, from Proposition 2.3(ii), for any r = kh, z € S* x T}, such that P, p(2) C
Pr/2(z0) we conclude

]{D k=@t < 0 /P en(al) < Cr2|len(al) |z (Pnya(eon

r4h (%)

2
r
< C(R) ][ |a}f — (a?)R,ZO‘2
Pr(z0)
r 2
< C<R> [a}ll]QBMO(PR(ZO)).

Clearly, these estimates remain valid for any r > h and any z € T2 with
P,i1(2) C Prya(z0) if we extend a” as the spatially piecewise constant func-
tion
a(t,x) = a"(t,xy), for x € Qu(xn).

Moreover, for 0 < r < h, if we compare a} to its bilinearly interpolated function
al, for any z; = (t1,21) € T with P.(21) C Pan(zn) C Prya(z0) for some
zn = (t,xp) € S x Ty, from Proposition 2.2 (i), (iii) and the (standard) Poincaré
inequality applied to @? we obtain

f ool @aPaet [ jddpa:
Pp(21) Py (21)

t1+7r
< c]{ (O T -

wof @ Pdeert [ el
Pr(Zl) Pr(Zl)
ti4r t1+r
<of [ ed@nsaopiaase/ [ @)
ti—r JQan(zn) ti—r JQan(wn)
2

h
< Chlen (@)l (Pr)a(z0)) < C(R> [a1]BMO (P (20))-

It follows that for » > h there holds
[al]BMO(P, (20)) + A"} || L21(py (29)) < C%[G?]EMO(PR(ZO))
< C(;[ah]BMO(PR(ZO)) + [GS]BMO(PR(ZO)))~
The analogous estimate

[a5]BMO(Pr(z0)) < Clld"a3]| L2 (Pr(z0)) < CHO™"(1L21 (Pr(z0))

is obtained exactly as in the continuous case from [2], Teorema 16.I, and Poin-
caré’s inequality. O
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Observe that the local energy inequality Lemma 3.2 implies that
(28) lim sup 105113 21 (P (z0)) < CR™ 1(P3r(20)).

Indeed, for any r» < R, any z; = (t1,21) such that P.(z1) C Pgr(20), if 3r < R
by Lemma 3.2 we have

) e,y < s [ en(ue)
[t=t1|<r JQr(z1)

en(u 1—1))+o(1
< /M( ) h( (t )) ( )

& uh 1 — 7 —|—01
</2 (o) h( (t )) ()

t1—7r
<R~ / / p(u"(t)) dt + o(1)
ti—r7—R 3R I())

< R_l/ en(u(t) + o(1) < R u(Psr(20)) + o(1)
P3r(z0)

where o(1) — 0 as h — 0.
If R/3 <r <R, clearly

Br) M6 L2,y < B0 |2 (Przo)) < R u(Psr(20)) + o(1),

where o(1 )—>0ash—>0.

Regarding w!:, we now introduce the bilinearly interpolated frame to split

ij0
(29) whe = (ohel €M) + (dhel mhel — ey,

ij,00 a1 J a~i Matyj J

LEMMA 4.4. For any h > 0 there holds d"(d"e}',e") € H'(T?) and
d"(d"e}! ey = d(de;, e;) = dwy;

€i:€j
in HY(T?3) as h — 0 suitably.
PROOF. In view of the identity d” o d® = 0, we have
d"(d"e} el) = ok (ofel &")dx™ A da’
= (Opel (- + he, )ﬁaej)dac AdxP = d"(d"e! (*;-L —q))
for any g € R™. Exactly, as in [4], Theorem 2.1, we may therefore show that

d"(d"e}',e7) € HN(T?)

R
with
ld"(d" e, e})|lrr < CEn(e") < C,
where we also used Proposition 2.2(iii). Since the space VMO(T?), the pre-dual
of H!(T?) is separable, we conclude that (d"(d"e]',e!))50 is relatively weakly-x

sequentially compact. But, as h — 0 suitably, dh<dhe?,6?> — dw;; in the sense
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of distributions. By density of C*°(T?) in VMO(T?), therefore we also have
weak-* convergence

d"(d"e},el) = dwy;

in HY(T?), as claimed. O

From Lemma 4.3 and [8], Theorem 3.7, we hence conclude that, as h — 0,

(30) d-"(d el ety Nalh — dwij Naj+v1 in D,

Z )

where 17 is a Radon measure with

supp(v1) C { + Jim lim supfa "BMO(P, (20)) > 0}-

But by Lemma 4.3, for » > h we have

T _
[a"]BMO(P, (20)) < C<R||ah||BMO(PR(zU)) + /6 h||L211(PR(zo))>-
Fixing R > 0, from (28) we conclude that

lim lim sup[a” B0 p, (20)) < Cligl sup 10" |21 (Pr(z0)) < C(R™ u(Psr(20)))-

=0 p_0

Since R > 0 is arbitrary, therefore supp(v1) C Y, as defined in Proposition 4.2.
The contribution to (27) from the second term in (29), after shifting in di-
rections « and [, is
ol (9zel mﬁeh - eh>7h75 ]de AdzP A dx = {0"(( gei‘,mgeh 6h>7’ga?7)
<8,3€Z ,mﬁeh >6hrﬁ Sz A daP Nda? = I" + 11",

Since, as h — 0 suitably, TB ] 4 — aj while mﬂeéhe;‘ — e; in LP(T?) for any

p < 00, and since (age?) is bounded in L?(T?), the first term I — 0 in D'(T?).
Observing that for any t € S, 2 € T, v =2, +E€ T, €€ QZ(O), we have

(m}éeh—e )(t,x) = 2(7’56? (¢, zn) Z gaah ot ay) — 51526?836?@,33;1),
a=1,2
moreover, we can estimate
|(mﬁe tx|<ChZ|8hhtxh
a=1,2

Thus, the second term above may be bounded
[T < [(@Ber, mijey — €})0hTha). |
< Ch|d"e"|? |8h a| < Ot (Tﬁah) - Tgah||dheh|2.
Shifting back, from (29) and (30) we thus obtain that

d_hw;jh A a? —dwij Naj =T + 78 4+ v +o(1),
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where o(1) — 0 in D'(T®) and where
T35l < C Y la" —a"(- = hey)len(e”).
«
LEMMA 4.5. 7/ + 78 — vy in M(T®), where vy is a Radon measure with
supp(v2) C >, as defined in Proposition 4.2.

PROOF. For any ¢ € C°(T?) we can estimate

‘/ Tlhigadz +‘/ 72hig0dz / Tlhicph Jr‘/ Téligah
T3 T3 Sleh SIXTh

<¢ - > (- £ hey) —u[ + [a" (- £he,) —a]) - (en(u”) + en(e™)|p"].

Now by Proposition 2.2(i) and Lemma 3.2, for any z = (¢t,x,) € S x Tj,, any
0 <h<3h<r<1/2 we have

(" (- £ hey) = u)(t,2n)|* < Ep(u(t): Q3 (21)) < CT*l/ en(u") +o(1)
P, (z)

where o(1) — 0 as h — 0.
Similarly, for any z = (t,25,) € S* x Tj,, any 0 < h < 2h <r < R < 1/2, by
Proposition 2.3 (i) we can estimate

(@ (- hey) =)t < On! [ o, o) < Ol i p, o))
2n (2

Hence by Lemma 4.3 we obtain
1 r 1
(a)) (- £ he,) —al)(2)] < C<R|a?|BM0(pR(z)) + 116" ||L2v1(PR(z))>-

It follows that 7/ + 7l — 1y in M(T3) as h — 0, where vy is absolutely
continuous with respect to u with density

(Z) = lim VQ(PT(Z))
r=0 u(Pr(2))

. . r
S C hH%) hmsup (R|ah|BMO(PR(z)) + |dih’u,h||L2,1(p3R(Z)))
=Y h—0

dvy
dp

<CR™'u(Pr(2))

for any z € T3. Since R > 0 is arbitrary, the asserted characterization of supp(v)
follows. O

This completes the proof of Theorem 4.1 if TN is parallelizable. In the
general case, by the results of [3] and [9] we may embed N as a totally geodesic

submanifold of another manifold N with this property. As above, we now obtain

h

weak convergence of a subsequence u® — u, where u : R x R2 — N — N is
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a weak wave map into N. But then as in [11], p. 255 f., it follows that w also is
a weak wave map into N.

5. Global existence of wave maps

Theorems 3.1 and 4.1 easily give rise to the following existence result, previ-
ously established in [11] by a different method.

THEOREM 5.1. For any (ug,u;) € H' x L?(R%,TN) there exists a global
weak solution u of the Cauchy problem (1), (2) satisfying the energy inequality

1 1
Blut) = 3 [ 1Dude < By =5 [ (P + [VuoP) da

for all t and which continuously attains the initial data in H' x L.

PROOF. Let ug, u? be the maps ug, u1, discretized as in Section 2.4. Note
that

dist?(uf (x), N) <fQ+( ) [uft () — uo(y)|? dy
h x

Sf f uo(y) — uo(y)|? dy dy’
Qf () Qf (z)

<C |Vug|? dy — 0
Qif (=)
as h — 0. Hence for 0 < h < hg the range of ull lies in a sufficiently small
tubular neighbourhood of N and we may project to obtain spatially discrete
data (ul = 7y oul,uf = ul) : M, — TN such that
Bomy [ (@P+1d TP <o

2 My

and such that
@l ahy — (ug,u1) in H' x L?

as h — oo. In particular Eh — FEgas h — 0.

By Theorem 3.1 now, for any h > 0 there exists a unique global solu-
tion " of (9) with data (u”,u})
En(@"(t)) = E, for all t.

By Theorem 4.1 a subsequence (u") as h — 0 weakly converges to a weak
solution u of (1), (2) with

= (up,ut), satisfying the energy identity

[t=0

E(u(t)) < li}ln i(I)lf En(u"(t)) = Eo
for all ¢. In particular,

1
lim sup = / |Du(t)|? de = limsup E(u(t)) < Eg
t—0 2 R2 t—0
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and we conclude that Du(t) — Du(0) strongly in L?(R?) as t — 0, showing that

the initial data are attained continuously in H' x L. O
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