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1. Introduction

Let N be a smooth, compact manifold without boundary of dimension k. By
Nash’s embedding theorem we may assume N ⊂ Rn isometrically for some n.
A wave map u = (u1, . . . , un) : R× R2 → N ↪→ Rn by definition is a stationary
point for the action integral

A(u;Q) =
∫

Q

L(u) dz, Q ⊂ R× R2,

with Lagrangian

L(u) =
1
2
(|∇u|2 − |ut|2)

with respect to compactly supported variations uε satisfying the “target con-
straint” uε(R×R2) ⊂ N . Equivalently, a wave map is a solution to the equation

(1) �u = utt −∆u = A(u)(Du,Du) ⊥ TuN,

where A is the second fundamental form of N , TpN ⊂ TpRn is the tangent space
to N at a point p ∈ N , and “⊥” means orthogonal with respect to the standard
inner product 〈 · , · 〉 on Rn.

We denote points on Minkowski space as z = (t, x) = (xα)0≤α≤2 ∈ R × R2

and let Du = (ut,∇u) = (∂αu)0≤α≤2 denote the vector of space-time derivatives.
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Moreover, we raise and lower indeces with the Minkowski metric η = (ηαβ) =
(ηαβ) = diag(−1, 1, 1). A summation convention is used; thus, �u = −∂α∂αu.
Finally, we abbreviate

A(u)(Du,Du) = A(u)(∂αu, ∂αu).

Recall that locally, near any point p0 ∈ N , letting νk+1, . . . , νn be a smooth
orthonormal frame for the normal bundle TN⊥ near p0, that is, vector fields
such that (νl(p))k<l≤n is an orthonormal basis for the normal space TpN

⊥ at
any p ∈ N near p0, we have

A(p)(v, w) = Al(p)(v, w)νl(p)

at any such p, where
Al(p)(v, w) = 〈v, dνl(p)w〉

is the second fundamental form of N with respect to νl.
Given u0 : R2 → N , u1 : R2 → Rn satisfying the condition u1(x) ∈ Tu0(x)N

for all x ∈ R2, that is, (u0, u1) : R2 → TN , we consider the Cauchy problem for
wave maps u with initial data

(2) (u, ut)|t=0 = (u0, u1) : R2 → TN

of finite energy

E0 =
1
2

∫
R2

(|u1|2 + |∇u0|2) dx.

Specifically, in the present paper we study the relation between solutions u of (1),
(2) on R×R2 and their spatially discrete counterparts uh : R×Mh → N ↪→ Rn,
where R2 is replaced by a uniform square lattice Mh = (hZ)2 of mesh-size h→ 0.

In a previous paper [12], jointly with Vladimir Šverák, we studied the time-
independent case and showed that a weakly convergent family of harmonic maps
uh ∈ H1(Th;N) on a periodic lattice Th = (hZ)2/Z2 as h → 0 accumulates at
a harmonic map u on the 2-torus T 2 = R2/Z2.

Here we extend this result to the time dependent case; see our main result
Theorem 4.1 below. Since the Cauchy problem for wave maps on a spatially
discrete domain is equivalent to an initial value problem for a system of ordinary
differential equations which can be solved globally for any mesh-size h in view
of the uniform energy bounds available, as a corollary we reobtain our existence
result from [11] for global weak solutions to the Cauchy problem (1), (2) for wave
maps on (1+2)-dimensional Minkowski space; see Theorem 5.1. The methods we
use are similar to the methods of [12]. We essentially rely on our previous weak
compactness results [7], [8] with Freire and exploit the equivalent formulation
of (1) as a Hodge system as in [3] or [9] to which compensation techniques may be
applied in a way similar to the work of Hélein [9], [10], Evans [5], and Bethuel [1]
on weakly harmonic maps, that is, time independent solutions of (1). (See [7]
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for further references and a detailed comparison of the elliptic and hyperbolic
cases.)

2. Technical framework

Whenever possible, we use the same notations as in [12] regarding difference
calculus, discrete Hodge theory, interpolation and discretization. For the reader’s
convenience we recall the definition at each first appearance of a symbol.

2.1. Differential forms. For h > 0 with h−1 ∈ N let Mh = (hZ)2, Th =
(hZ2)/Z2 with generic point x = xh = (x1

h, x
2
h), and let S1 = R/Z with generic

point t = x0 = x0
h. Differential forms on R × Mh or S1 × Th may be most

conveniently expressed in terms of the standard basis dxα, dxα ∧ dxβ , 0 ≤ α <

β ≤ 2, and dt ∧ dx1 ∧ dx2 = dz. In particular, for a 1-form ϕh we have ϕh =
ϕh

αdx
α, and a 2-form bh may be written in the standard form

bh = bh0dx
1 ∧ dx2 − bh1dx

0 ∧ dx2 + bh2dx
0 ∧ dx1 = bh

α̂β
dxα ∧ dxβ

with real-valued functions ϕh
α, bhα.

The Hodge ∗g-operator with respect to either the Euclidean metric g = eucl
or the Minkowski metric g = η in terms of this basis is defined as

∗g1 = dz, ∗gdz = 1,

∗gϕ
h = g00ϕh

0dx
1 ∧ dx2 − ϕh

1dx
0 ∧ dx2 + ϕh

2dx
0 ∧ dx1,

∗gb
h = g00bh0dx

0 + bh1dx
1 + bh2dx

2,

where (gαβ) = g−1 = diag(±1, 1, . . . , 1) and ϕh = ϕh
αdx

α, etc., as above.
From this definition we immediately deduce that ∗g ◦ ∗g = id and, moreover,

ϕh ∧ ∗gϕ
h = (∗gϕ

h) ∧ ϕh = gαβϕh
αϕ

h
βdz,

bh ∧ ∗gb
h = (∗gb

h) ∧ bh = gαβbhαb
h
βdz

for any 1-form ϕh or 2-form bh as above.
Finally, two forms ϕh, ψh of the same degree may be contracted by letting

ϕh ·g ψhdz = ϕh ∧ ∗gψ
h = gαβϕh

αψ
h
βdz.

Spatially discrete differential and co-differential are defined as follows.
For uh : R×Mh → R, h 6= 0, we let dhuh = ∂h

αu
hdxα with components

∂h
0 u

h = ∂h
t u

h = ∂tu
h = uh

t , ∂h
αu(z) =

u(z + heα)− u(z)
h

, α = 1, 2,

where (eα)1≤α≤2 is the standard basis for R2. For a 1-form ϕh = ϕh
αdx

α then

dhϕh = ∂h
αϕ

h
βdx

α ∧ dxβ
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and for a 2-form bh as above, dhbh = ∂h
αb

h
α dz. The co-differential (with respect

to g) is
δh
g = − ∗g ◦d−h ◦ ∗g.

Explicitly, for ϕh = ϕh
αdx

α, h 6= 0, we have

δh
gϕ

h = −gαβ∂−h
α ϕh

β = −∂−h
2 ϕh

2 − ∂−h
1 ϕh

1 − g00∂−h
0 ϕh

0 ,

and similarly for forms of higher degree. Clearly, we have dh ◦dh = 0, δh ◦ δh = 0
for all h 6= 0.

Finally, for h > 0, we let

�h = �−h = dhδh
η + δh

ηd
h = d−hδ−h

η + δ−h
η d−h

denote the spatially discrete wave operator, acting on forms on R×Mh. Expli-
citly, we have

�huh = δh
ηd

huh = (∂2
t −∆h)uh, �h(ϕh

αdx
α) = (�hϕh

α) dxα,

�h(bh
α̂β
dxα ∧ dxβ) = (�hbh

α̂β
)dxα ∧ dxβ , �h(fhdz) = (�hfh) dz,

where ∆h = ∆−h is the discrete (5-point) Laplace operator on Th; that is,
�h acts as a diagonal operator with respect to the standard basis of forms.

Also note the product rule

∂h
α(uhvh) = ∂h

αu
hvh + τh

αu
h∂h

αv
h(3)

= ∂h
αu

hτh
αv

h + uh∂h
αv

h = ∂h
αu

hmh
αv

h +mh
αu

h∂h
αv

h,

and
δ−h
g (ϕhfh) = −gαβ∂h

α(ϕh
βf

h) = −gαβ [(∂h
αϕ

h
β)fh + τh

αϕ
h
β∂

h
αf

h];

in particular, we have

δ−h
g (τ−h

α ϕh
αdx

α · fh) = −gαβ [(∂−h
α ϕh

β)fh + ϕh
β∂

h
αf

h] = (δh
gϕ

h)fh − ϕh ·g dhf.

Here and in the following we denote

τ±h
0 uh = m±h

0 uh = uh, τ±h
α uh = uh(· ± heα),

m±h
α uh = (uh + τ±h

α uh)/2, α = 1, 2.

2.2. Dirichlet’s integral. For uh : R×Mh → R we let

(4) eh(uh) =
1
4

∑
0≤α≤2

(|∂h
αu

h|2 + |∂−h
α uh|2)

be the energy density and let

Eh(uh(t)) =
∫

Mh

eh(uh(t)) := h2
∑

xh∈Mh

eh(uh(t, xh))
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be the energy of uh at any time t. If h−1 ∈ N and if uh has period one in each
variable, we regard uh as a map uh : S1 × Th → R. Then we define

Dh(uh) =
∫

S1×Th

eh(uh) :=
∫ 1

0

h2
∑

xh∈Th

eh(uh)(t, xh) dt,

and similarly for forms of degree ≥ 1.
Note that the first variation of Dh at uh in direction vh is given by

〈dDh(uh), vh〉 =
d

dε
Dh(uh + εvh)|ε=0

=
1
2

∑
α

∫
S1×Th

(∂h
αu

h∂h
αv

h + ∂−h
α uh∂−h

α vh)

=
∑
α

∫
S1×Th

∂h
αu

h∂h
αv

h = −
∫

S1×Th

∆h
3u

hvh,

where −∆h
3 = δh

eucld
h + dhδh

eucl = −∂2
t − ∆h is the spatially discrete Laplace

operator, acting on forms on S1 × Th.
Similarly, for uh : R×Mh → Rn the spatially discrete Lagrangian of uh is

Lh(uh) =
1
4
ηαβ(〈∂h

αu
h, ∂h

βu
h〉+ 〈∂−h

α uh, ∂−h
β uh〉).

The action integral over any spatially discrete domain Q ⊂ R×Mh then is

Ah(uh;Q) =
∫

Q

Lh(uh),

and uh is stationary for Ah with respect to compactly supported variations if
and only if

〈dAh(uh), vh〉 =
d

dε
Ah(uh + εvh)|ε=0(5)

=
∫

R×Mh

ηαβ〈∂h
αu

h, ∂h
βv

h〉 =
∫

R×Mh

�huhvh = 0

for any vh ∈ C∞0 (R×Mh); that is, if and only if �huh = 0.

2.3. Hodge decomposition. Analogous to the continuous case or the case
of a planar lattice, we have the following result on Hodge decomposition of forms
on S1 × Th.

Proposition 2.1. Any 1-form ϕh = ϕh
αdx

α on S1× Th may be decomposed
uniquely as

(6) ϕh = dhah + δh
euclb

h + ch

where ah and bh are normalized to satisfy

(7)
∫

S1×Th

ah =
∫

S1×Th

bh
cαβ

= 0 for 0 ≤ α < β ≤ 2, dhbh = 0,
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and dhch = 0, δh
euclc

h = 0.

Proof. Let ah, bh be the unique solutions to the equations

−∆h
3a

h = δh
euclϕ

h, −∆h
3b

h = dhϕh,

normalized by (7), obtained, for instance, by minimizing the integral

Fh(ah) =
∫

S1×Th

{eh(ah)− ahδh
euclϕ

h}

among functions ah : S1 × Th → R satisfying (7), and similarly for bh. The
remainder ch = ϕh − dhah − δh

euclb
h then satisfies

dhch = dhϕh + ∆h
3b

h = 0, δh
euclc

h = δh
euclϕ

h + ∆h
3a

h = 0,

as desired. �

Via the Euclidean Hodge ∗-operator, we obtain an analogous decomposition
of 2-forms. Observe that the decomposition (6) is L2-orthogonal and hence
we have

(8)
∫

S1×Th

|ϕh|2 =
∫

S1×Th

(|dhah|2 + |δh
euclb

h|2 + |ch|2).

2.4. Discretization and interpolation. We discretize a map u : R×R2 →
R by letting, for each t ∈ R,

uh(t, xh) = h−2

∫
Q+

h (xh)

u(t, x) dx, xh ∈Mh,

where for l ∈ N the set

Q+
lh(xh) = {x = (x1, x2) ∈ R2 : xα

h ≤ xα < xα
h + lh, α = 1, 2}

is a square with lower left corner xh of size lh, and similarly for periodic maps
u : T 3 = S1 × T → R, assuming h−1 ∈ N.

Conversely, we interpolate a map uh : R×Mh → R either trivially, by letting

uh(t, x) = uh(t, xh) for x ∈ Q+
h (xh), xh ∈Mh,

or bilinearly, by letting

uh(t, x) = uh(t, xh) +
∑

α=1,2

ξα∂h
αu

h(t, xh) + ξ1ξ2∂h
1 ∂

h
2 u

h(t, xh)

whenever x = xh +ξ ∈ Q+
h (xh), xh ∈Mh, and similarly for maps uh : S1×Th →

R.
Observe that

∂±h
α uh(t, x) = ∂±h

α uh(t, xh)

for all t ∈ S1, x ∈ Q+
h (xh), xh ∈ Th; moreover,

∂1u
h(t, xh + hξ) = (1− ξ2)∂h

1 u
h(t, xh) + ξ2∂

h
1 u

h(t, xh + he2)
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for t ∈ S1, xh ∈ Th, ξ ∈ Q+
1 (0), and similarly with x1- and x2-directions ex-

changed.
From this identity the following result is immediate.

Proposition 2.2. For uh : R×Mh → R with suptEh(uh(t)) <∞ we have
uh ∈ L∞(R;H1(R2))∩C0(R×R2), and with a uniform constant C for all t ∈ R
there holds

(i) ||(uh − uh)(t)||2
L∞(Q+

h (xh))
≤ C

∫
Q+

2h(xh)
eh(uh(t)) for all xh ∈Mh;

(ii) ||(uh − uh)(t)||2L2(R2) ≤ Ch2Eh(uh(t));
(iii) C−1Eh(uh(t)) ≤ E(uh(t)) ≤ CEh(uh(t)).

Moreover, by comparing uh and uh, using Proposition 2.2(i), it is clear that
the Poincaré inequality

||(uh − uh
r,x0

(t)||2L2(Qr(x0))
≤ Cr2Eh(uh(t);Qr+h(x0))

holds for every (t, x0) ∈ R×Mh, any r = kh, k ∈ N, where

Qr(x0) = {x = (x1, x2) : |xα − xα
0 | < r, α = 1, 2}

and where

uh
r,x0

(t) = –
∫

Qr(x0)

uh(t, x)

is the mean value.
Similar results hold true if we also take time dependence into account.
For z0 = (xα

0 )0≤α≤2, r > 0, let

Pr(z0) =
2∏

α=0

]xα
0 − r, xα

0 + r[

and let uh : R ×Mh → R with locally finite energy as above. For z ∈ R ×Mh,
r = kh, k ∈ N, we also let

uh
r,z = –

∫
Pr(z)

uh

denote the average of uh on Pr(z).

Proposition 2.3. For any z = (t, x) ∈ R ×Mh, 0 < h ≤ r = kh, k ∈ N,
α ∈ {1, 2}, with an absolute constant C there holds

(i) |(τh
αu

h − uh)(z)|2 ≤ Ch−1
∫

P2h(z)
eh(uh),

(ii) ||uh − uh
r,z||2L2(Pr(z)) ≤ Cr2

∫
Pr+h(z)

eh(uh).

Proof. (i) Integrating in time, for any s ∈ ]t− h, t+ h[ we obtain

|(τh
αu

h − uh)(t, x)| ≤ |(τh
αu

h − uh)(s, x)|+
∫ t+h

t−h

(
|∂t(τh

αu
h)|+ |∂tu

h|
)
ds.
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Squaring and averaging with respect to s, in view of Proposition 2.2(i) we find

|(τh
αu

h − uh)(z)|2 ≤h−1

∫ t+h

t−h

|(τh
αu

h − uh)(s, x)|2 ds

+ Ch

∫ t+h

t−h

(|∂tτ
h
αu

h|2 + |∂tu
h|2) ds

≤Ch−1

∫
P2h(z)

eh(uh).

(ii) The asserted inequality is immediate from Proposition 2.2(i) and the
usual Poincaré inequality, applied to the function uh. �

If we consider the trivial extensions of a function uh : R ×Mh → R and
its energy density eh(uh) to R × R2, Proposition 2.3(ii) remains valid for all
z ∈ R× R2 and 0 < h ≤ r.

Regarding a function uh : S1 × Th → R as a periodic function on R ×Mh,
the above results also hold for uh : S1 × Th → R. In addition, by integrating in
time, from Proposition 2.2(iii) we obtain the following result.

Proposition 2.4. For uh : S1 × Th → R with Dh(uh) < ∞ we have uh ∈
H1(T 3) and with a uniform constant C there holds

C−1Dh(uh) ≤ D(uh) =
1
2

∫
T 3

(|uh
t |2 + |∇uh|2) dz ≤ CDh(uh).

In view of Proposition 2.4 we will say that uh ⇁ u weakly in H1(T 3) as
h→ 0, if uh ⇁ u weakly in H1(T 3), or, equivalently, if uh ⇁ u and dhuh ⇁ du

weakly in L2(T 3), where uh, dhuh denote the trivial extensions of uh, dhuh to T 3,
defined above.

3. Spatially discrete wave maps

In analogy with the continuous case a map uh : R × Mh → N ↪→ Rn is
a spatially discrete wave map if and only if uh is stationary for Ah among maps
uh

ε : R ×Mh → N such that uh
ε = uh at ε = 0 and outside some compact set

Q ⊂ R×Mh; in particular, then

d

dε
Ah(πN (uh + εvh))|ε=0 = 0

for all vh ∈ C∞0 (R × Mh; Rn), where πN : Uδ(N) → N is the smooth map
projecting a point p in a tubular neighbourhood of N of sufficiently small width
δ > 0 to its nearest neighbour πN (p) ∈ N .

Computing the first variation using (5), we deduce that uh satisfies the equa-
tion

dπN (uh)�huh = 0;



Spatially Discrete Wave Maps 303

that is,

(9) �huh ⊥ TuhN.

Hence, letting νk+1, . . . , νn be a local frame for TN⊥ as above, we have

�huh = λlνl ◦ uh,

where λl may be computed as

(10) λl = 〈�huh, νl ◦ uh〉 = −ηαβ∂h
β 〈∂−h

α uh, νl ◦ uh〉+ ηαβ〈∂h
αu

h, ∂h
β (νl ◦ uh)〉.

Observe that for α = 0, β = 0 the first term vanishes because 〈∂tu
h, νl ◦uh〉 = 0.

In view of this representation of (9), for h > 0 equation (9) is equivalent to
a system of ordinary differential equations of the form

(11) Uh
tt = F (Uh, Uh

t )

for Uh(t) = (uh(t, xh))xh∈Mh
, with coupling involving only neighbouring lat-

tice sites.
Given (uh

0 , u
h
1 ) : Mh → TN with finite energy

(12) Eh(uh(0)) :=
1
2

∫
Mh

(|uh
1 |2 + |dhuh

0 |2),

we therefore expect to obtain a unique global solution uh of the initial value
problem for (9) with initial data

(13) (uh, uh
t )|t=0 = (uh

0 , u
h
1 ).

In fact, we have the following result.

Theorem 3.1. For any h > 0, any (uh
0 , u

h
1 ) : Mh → N with Eh(uh(0)) <∞

there exists a unique global solution uh : R ×Mh → N of the Cauchy problem
(9), (13), and Eh(uh(t)) = Eh(uh(0)) for all t.

The proof is achieved by combining the local existence and uniqueness re-
sults for systems of ordinary differential equations with the a priori bounds on
solutions resulting from the following energy inequality.

3.1. Energy inequality. For uh : R ×Mh → N let eh(uh) be the energy
density defined in (4), and for α = 1, 2 let

g±h
α (uh) = 〈∂±h

α uh, uh
t 〉

be the momentum of uh in direction α.
For a solution of (9) then we have

(14) 0 = 〈�huh, uh
t 〉 =

d

dt
eh(uh)− 1

2

∑
α=1,2

(∂h
αg
−h
α (uh) + ∂−h

α gh
α(uh)).
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In particular, the total energy is conserved; that is,

(15) Eh(uh(t)) =
∫

Mh

eh(uh(t)) = Eh(uh(0)) for all t.

For the proof of Theorem 3.1 and for our later purposes, we also need a local
version of this result. Observe that in the discrete case (9) cannot exhibit finite
propagation speed. However, as h → 0 equation (9) approximates a system of
wave equations. Therefore we expect the (essential) domains of influence and
dependence of any given point to approach the light cone through that point; in
particular, in the limit h→ 0, on any bounded region of space-time the discrete
evolution should essentially be determined by the data on a finite region of the
hyperplane t = 0.

Below we verify this behavior in detail. Because in the discrete case we are
working on a quadratic lattice, we prove the local energy inequality on squares,
not on circles.

3.2. Local energy inequality. For any function ϕ, upon multiplying (14)
by the discretized function ϕh we obtain

0 =
d

dt
(eh(uh)ϕh)− 1

2

∑
α=1,2

[∂h
α(g−h

α (uh)ϕh) + ∂−h
α (gh

α(uh)ϕh)]− eh(uh)∂tϕ
h

+
1
2

∑
α=1,2

[(g−h
α (uh)∂−h

α ϕh)( · + heα) + (gh
α(uh)∂h

αϕ
h)( · − heα)].

Now let ψ : R → R be given by

ψ(s) =

{
e−h−1/3s s ≥ 0,

2− eh−1/3s s < 0,

and choose

(16) ϕ(t, x) = inf
1≤α≤2

ψ(|xα|+ t) = ψ(sup
α
|xα|+ t),

satisfying

(∂tϕ
h + max

α
{|∂h

αϕ
h|, |∂−h

α ϕh|})(t, xh) ≤ (ψ′(s) + max{|∂hψ(s)|, |∂−hψ(s)|}),

for xh ∈Mh, where s = supα |xα
h |+ t.

Integrating in spatial direction and shifting coordinates in the last two terms,
we then find that

d

dt

( ∫
Mh

eh(uh)ϕh

)
≤

∫
Mh

(
eh(uh)∂tϕ

h +
1
2

∑
α=1,2

(|g−h
α (uh)||∂−h

α ϕh|+ |gh
α(uh)||∂h

αϕ
h|)

)
≤

∫
Mh

eh(uh)(∂tϕ
h + max

1≤α≤2
{|∂h

αϕ
h|, |∂−h

α ϕh|}).
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Remark that at any point (t, xh) at most two of the terms ∂±h
α ϕh 6= 0; hence

in the Cauchy–Schwarz inequality we may replace the Euclidean norm of ∂±h
α ϕh

by the maximum norm. Let

ρ(s) = ψ′(s) + max{|∂hψ(s)|, |∂−hψ(s)|}.

We distinguish the cases s ≤ −h, s ≥ h, −h ≤ s ≤ 0, and 0 ≤ s ≤ h.
If s ≤ −h, we have

ρ(s) =
(
− h−1/3 + max

{
eh2/3 − 1

h
,
1− e−h2/3

h

})
eh−1/3s

= h−1/3eh−1/3s

(
eh2/3 − 1
h2/3

− 1
)
.

By Taylor’s formula

eh2/3 − 1
h2/3

− 1 =
1
2
h2/3 +O(h4/3) ≤ h2/3

for h ≤ h0. Hence for such h and s we conclude

ρ(s) ≤ h1/3eh−1/3s ≤ h1/3 ≤ h1/3ψ(s).

Similarly, if s ≥ h, for h ≤ h0 we find

ρ(s) = h−1/3e−h−1/3s

(
eh2/3 − 1
h2/3

− 1
)
≤ h1/3e−h−1/3s = h1/3ψ(s).

If −h ≤ s ≤ 0 we only need to check that

ψ′(s) + |∂hψ(s)| ≤ −h−1/3eh−1/3s +
2− eh−1/3s − e−h−1/3(s+h)

h

≤ h−1/3eh−1/3s

(
− 1 +

2e−h−1/3s − 1− e−h2/3
e−2h−1/3s

h2/3

)
≤ Ch1/3eh−1/3s ≤ Ch1/3 ≤ Ch1/3ψ(s)

with an absolute constant C, if h ≤ h0. The estimate ψ′(s) + |∂−hψ(s)| ≤
h1/3ψ(s) for h ≤ h0 is obtained as in the case s ≤ −h.

Similarly, for 0 ≤ s ≤ h ≤ h0, we have

ψ′(s) + |∂−hψ(s)| ≤ Ch1/3ψ(s).

The remaining estimate

ψ′(s) + |∂hψ(s)| ≤ h1/3ψ(s), h ≤ h0,

is obtained as in the case s ≥ h.
Thus, we conclude that with the above choice of ϕ for h ≤ h0 there holds

∂tϕ
h + max

α
{|∂h

αϕ
h|, |∂−h

α ϕh|} ≤ Ch1/3ϕh
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with an absolute constant C, and hence also

d

dt

∫
Mh

eh(uh)ϕh ≤ Ch1/3

∫
Mh

eh(uh)ϕh.

We may shift the argument of ϕ by an arbitrary vector (t0, x0) and integrate
in time to obtain the following result.

Lemma 3.2. There exist constants h0 > 0, C such that for any h ≤ h0, any
solution uh of (9), any z0 = (t0, x0) ∈ R×Mh, if 0 ≤ t ≤ t0 there holds∫

{t}×Mh

eh(uh)ϕh
z0
≤ eCh1/3t

∫
{0}×Mh

eh(uh)ϕh
z0
,

where ϕz0(t, x) = ϕ(t− t0, x− x0) is given by (16).

Proof of Theorem 3.1. We first consider initial data (uh
0 , u

h
1 ) : Mh → TN

having compact support in the sense that uh
0 ≡ const, uh

1 ≡ 0 outside some
compact set. Then for sufficiently large K ∈ N the support of d±huh

0 , uh
1 is

strictly contained in the square of edge-length 2Kh centered at (0, 0). Extending
uh

0 , uh
1 periodically with period 2Kh in the x1- and x2-directions, we may regard

uh
0 , uh

1 alternatively as maps (uh
0 , u

h
1 ) : Mh/(2KhZ)2 =: Mh,K → TN or as

periodic maps on Mh.
The Cauchy problem for equation (9) now reduces to an initial value problem

for a finite-dimensional system (11) of ordinary differential equations, which in
view of the uniform a-priori bound on the energy

(17) Eh,K(uh
K(t)) =

∫
Mh,K

eh(uh
K(t)) ≡ Eh,K(uh

K(0)) = Eh(uh(0))

of a solution uh
K , which results from integrating (14) over Mh,K , can be solved

uniquely for all time.
Moreover, regarding uh

K : R×Mh → N as spatially periodic solutions of (9),
in view of these uniform energy bounds a subsequence uh

K → uh, ∂tu
h
K → ∂tu

h

locally uniformly on R×Mh as K →∞, where uh satisfies (9). Combining (17),
Lemma 3.2, and (15) we conclude that Eh(uh(t)) ≡ const. Indeed, given t > 0,
z0 = (t0, x0), by exponential decay of ϕ there are constants K0, C1 = eCh1/3t

such that for L ≥ K ≥ K0 there holds

2C1

∫
Mh

eh(uh(0))ϕh
z0

(0) ≥ C1

∫
Mh

eh(uh
L(0))ϕh

z0
(0) ≥

∫
Mh

eh(uh
L(t))ϕh

z0
(t)

≥
∫
{xh∈Mh;|xα

h |≤Kh}
eh(uh

L(t))ϕh
z0

(t).
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Fixing K and letting L → ∞, from locally uniform convergence uh
L → uh,

dhuh
L → dhuh we conclude that∫

{xh∈Mh;|xα
h |≤Kh}

eh(uh(t))ϕh
z0

(t) ≤ 4C1Eh(uh(0)).

Letting K →∞ and then t0 →∞, we deduce that

Eh(uh(t)) ≤ 2C1Eh(uh(0)) <∞

locally uniformly in time and therefore, in fact, Eh(uh(t)) = Eh(uh(0)) for all t,
by (15).

Uniqueness of uh is obtained as follows. Let uh, vh : R × Mh → N be
solutions to (9) with uh(0, · ) = vh(0, · ) = uh

0 , uh
t (0, · ) = vh

t (0, · ) = uh
1 and

such that Eh(uh(t)) + Eh(vh(t)) ≤ C, uniformly in t. Observe that this also
implies that

|uh
t (t, xh)|2 + |vh

t (t, xh)|2 ≤ Ch−2,

uniformly in R×Mh.
Expanding (9) and (10), we deduce that wh = uh − vh satisfies

|�hwh| ≤C
∑

α=1,2

(|∂−h
α ∂h

αw
h|+ h−1|∂±h

α wh|+ h−2|wh( · ± heα)|+ h−2|wh|)

+ C(|uh
t |+ |vh

t |)|wh
t |+ C(|uh

t |2 + |vh
t |2)|wh|

≤Ch−2

( ∑
α=1,2

|wh( · ± heα)|+ |wh|
)

+ Ch−1|wh
t |.

Multiplying by wh
t and integrating over Mh, we obtain

(18)
d

dt
Eh(wh(t)) ≤ C(1 + h−2)

∫
Mh

(|wh(t)|2 + |wh
t (t)|2)

≤ C(1 + h−2)
∫

Mh

|wh(t)|2 + C(1 + h−2)Eh(wh(t)).

Moreover, by Hölder’s inequality, for any t ≥ 0, any x ∈Mh we have

|wh(t, x)|2 =
( ∫ t

0

wh
t (s, x) ds

)2

≤ t

∫ t

0

|wh
t (s, x)|2 ds.

Hence for 0 ≤ t ≤ T we can estimate∫
Mh

|wh(t)|2 ≤ 2t
∫ t

0

Eh(wh(s)) ds ≤ 2T 2 sup
0≤s≤T

Eh(wh(s)).

Given T > 0, we fix t ∈ [0, T ] such that

Eh(wh(t)) = sup
0≤s≤T

Eh(wh(s)).
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We may assume that T ≤ 1. Integrating (18) from 0 to t, it then follows that

(19) Eh(wh(t)) = sup
0≤s≤T

Eh(wh(s)) ≤ CT (1 + h−2) sup
0≤s≤T

Eh(wh(s)).

Choosing T > 0 sufficiently small, we conclude that wh ≡ 0 on [0, T ]×Mh. By
iteration therefore wh ≡ 0 on R×Mh.

Finally, we may use (18) to remove the assumption that dhuh
0 , uh

1 have com-
pact support. Indeed, given data (uh

0 , u
h
1 ) : Mh → TN of finite energy we may

approximate (uh
0 , u

h
1 ) by data (uh

0,l, u
h
1,l) : Mh → TN , l ∈ N, such that dhuh

0,l,
uh

1,l have compact support for any l and such that∫
Mh

(|dh(uh
0,l − uh

0 )|2 + |uh
1,l − uh

1 |2) → 0

as l → ∞. (The proof of this density result is analogous to the proof that
maps u ∈ H1(R2;N) with supp(∇u) ⊂ R2 are H1-dense in this space; see for
instance [13].) Letting (uh

l )l∈N be the solutions to (9) with data (uh
l , ∂tu

h
l )|t=0 =

(uh
0,l, u

h
1,l), from (18), applied to wh = uh

l − uh
m for large l,m ∈ N, we obtain

convergence of (uh
l ) to the unique solution u of (9), (13). �

4. Passing to the limit h → 0

Our aim in this section is to prove the following weak convergence result.

Theorem 4.1. Let uh : R ×Mh → N ↪→ Rn, h > 0, be spatially discrete
wave maps such that

(20) Eh(uh(t)) ≤ C uniformly in h > 0, t ∈ R.

Then a subsequence uh → u locally in L2(R1+2), dhuh ⇁ Du weakly-∗ in
L∞(R;L2(R2)) as h → 0 where u : R × R2 → N ↪→ Rn is a weak solution
of (1) with

E(u(t)) =
1
2

∫
R2
|Du(t)|2 dx ≤ lim sup

h→0
Eh(uh(t)) ≤ C

uniformly in t ∈ R.

The proof of Theorem 4.1 uses certain compensation properties of Jaco-
bians exhibited by the first order equations equivalent to (1), (9), respectively,
as in [7], [8], [12].

To derive these equations we proceed as in [3] or [9]. First suppose that TN
is parallelizable and let e1, . . . , ek be a smooth orthonormal frame field. For any
h > 0 and any Rh : R×Mh → SO(k) then

eh
i = Rh

ij(ej ◦ uh), 1 ≤ i ≤ k,

is a frame field for (uh)−1TN .
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4.1. First order equations. Let

θh
i,0 = 〈∂tu

h, eh
i 〉, θh

i,α = 〈∂h
αu

h, eh
i ( · + heα)〉, α = 1, 2;

observe that the shift is arranged so that the functions

θ−h
i,α = θh

i,α( · − heα) = 〈∂−h
α uh, eh

i 〉, α = 1, 2,

are the coefficients of the representation of d−huh in terms of the frame (eh
i ).

Also let

ω±h
ij,0 = 〈∂te

h
i , e

h
j 〉, ω±h

ij,α = 〈∂±h
α eh

i ,m
±h
α eh

j 〉, α = 1, 2.

Clearly, the ωh
ij are a discrete approximation of the connection 1-forms ωij =

〈dei, ej〉 of a frame (ei) in the continuum limit h = 0. The definition is made to
insure anti-symmetry ωh

ij = −ωh
ji also in the discrete case.

Letting ∂±h
t := ∂t, e0 = 0, m±h

0 = id, we have

θh
i,α = 〈∂h

αu
h, eh

i ( · + heα)〉, θ−h
i,α = 〈∂−h

α uh, eh
i 〉, ω±h

ij,α = 〈∂±h
α eh

i ,m
±h
α eh

j 〉

for all α. Then

δh
η θ

h
i = −ηαβ∂−h

α θh
i,β = −ηαβ∂h

αθ
−h
i,β = −〈�huh, eh

i 〉 − ηαβ〈∂h
αu

h, ∂h
βe

h
i 〉.

That is, uh : R×Mh → N solves (9) if and only if

(21) δh
η θ

h
i = −ηαβ〈∂h

αu
h, ∂h

βe
h
i 〉 = −ηαβθh

j,α · ωh
ij,β + τh

1i,

where

τh
1i = − ηαβ

[
θh

j,α

〈
eh
j ( · + heα)− eh

j

2
, ∂h

βe
h
i

〉
+ 〈∂h

αu
h, νl ◦ uh( · + heα)〉〈νl ◦ uh( · + heα), ∂h

βe
h
i 〉

]
.

Observe that there exists a constant C = C(N) such that for p, q ∈ N there
holds |〈p− q, νl(p)〉| ≤ C|p− q|2. It follows that

|〈∂h
αu

h, νl ◦ uh( · + heα)〉| ≤ Ch−1|uh( · + heα)− uh|2 = Ch|∂h
αu

h|2.

Moreover, remark that

|ηαβθh
j,α〈(eh

j ( · +heα)− eh
j ), ∂h

βej〉| ≤ h|θh
j,α||∂h

αe
h
j |2 ≤ |uh( · +heα)−uh||∂h

αe
h
j |2.

Thus, we may estimate the error term

|τh
1i| ≤ C

∑
α=1,2

|uh( · + heα)− uh|
(
|∂h

αu
h|2 +

∑
j

|∂h
αe

h
j |2

)
.

Our aim is to pass to the distributional limit in (9) or, equivalently, (21) for
a suitable sequence h→ 0. As in [7], [8] we may convert this convergence problem
into a problem on a compact domain, as follows. Given ϕ ∈ C∞0 (R×R2), let Q
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be a cube centered at (0, 0) containing the support of ϕ. Scaling the coordinates
suitably, we may assume that Q = [−1/4, 1/4]3; moreover, we may suppose
that 1/4h ∈ N. We then extend uh by even reflection in the faces of Q to
periodic functions vh on R ×Mh of period 1 in each variable, satisfying (9) on
the support of ϕ.

Given a frame (ei) for (vh)−1TN , then also (21) will hold on the support
of ϕ. Regarding vh as maps vh : S1× Th → N on the compact spatially discrete
3-torus, moreover, following Hélein [9], we may choose a frame (ei) which is in
minimal Coulomb gauge, defined as follows.

4.2. Gauge condition. Choose Rh = (Rh
ij) ∈ H1(S1 × Th;SO(k)) such

that

Dh(Rh(e ◦ uh)) =
1
4

∫
S1×Th

∑
α,i

(|∂h
αe

h
i |2 + |∂−h

α eh
i |2) = inf

R
Dh(R(e ◦ uh)),

and let eh
i = Rh

ij(ej ◦ uh), 1 ≤ i ≤ k. Observe that

(22) Dh(eh
i ) ≤ C

∫
S1×Th

eh(uh) ≤ CDh(uh).

Moreover, minimality implies

0 =
d

dε
Dh((id+ εS)eh)|ε=0

=
1
2

∫
S1×Th

(〈∂h
αe

h
i , ∂

h
α(Sije

h
j )〉+ 〈∂−h

α eh
i , ∂

−h
α (Sije

h
j )〉)

= −1
2

∫
S1×Th

{∂h
α〈∂−h

α eh
i ,m

−h
α eh

j 〉+ ∂−h
α 〈∂h

αe
h
i ,m

h
αe

h
j 〉}Sij

= −
∫

S1×Th

∂−h
α ωh

ij,αSij

for all Sij ∈ SO(k), where we also used anti-symmetry of S and the discrete
product rule (3) to derive the second identity.

Since ωh
ij,α = −ωh

ji,α we conclude

∂−h
α ωh

ij,α = δh
euclω

h
ij = δ−h

euclω
−h
ij = 0.

In view of (22) we may assume that, as h→ 0 suitably,

eh
i ⇁ ei weakly in H1(T 3),

θh
i ⇁ θi weakly in L2(T 3),

ωh
ij ⇁ ωij weakly in L2(T 3),

where ei is a frame for u−1TN and θi = 〈du, ei〉, ωij = 〈dei, ej〉.
Our aim is to show that∫

Q

(θi ·η dϕ+ ωij ·η θjϕ) dz = 0,
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where ϕ ∈ C∞0 (R× R3) with supp(ϕ) ⊂ Q is the testing function that we chose
above.

In fact, we will show that

(23) δηθi + ωij ·η θj = 0 in D′(Q),

where we extend u periodically as above and regard Q as part of a fundamental
domain for T 3 = R3/Z3. In view of the equations (21), that is,

δh
η θ

h
i + ωh

ij ·η θh
j = τh

1i in Q,

and distributional convergence δh
η θ

h
i ⇁ δηθi in D′(T 3), it will suffice to show

that

(24) ωh
ij ·η θh

j − τh
1i ⇁ ωij ·η θi in D′(T 3)

as h→ 0 suitably.
Let

(25) ∗ηθ
−h
i = dhah

i + δh
euclb

h
i + chi

be the Hodge decomposition of ∗ηθ
−h
i on S1 × Th as determined in Proposi-

tion 2.1. We may assume that as h→ 0 suitably

ah
i ⇁ ai, bhi ⇁ bi weakly in H1(T 3),

and chi → ci smoothly. Observe that the harmonic forms chi , ci are constant
linear combinations of the basis dxα ∧ dxβ , 0 ≤ α < β ≤ 2.

Using this decomposition, we may write

ω−h
ij ·η θ−h

j dz = ω−h
ij ∧ ∗ηθ

−h
j = ω−h

ij ∧ dhah
j + ω−h

ij ∧ δh
euclb

h
j + ω−h

ij ∧ chj .

Since chj → cj smoothly, passing to the desired limit in the last term is no
problem. To show convergence of the second last term, for convenience denote
− ∗eucl b

h
j = βh

j . Observe that βh
j is a scalar function and βh

j ⇁ βj = − ∗eucl bj

weakly inH1(T 3), whence strongly in L2(T 3) by the Rellich-Kondrakov theorem.
Then

ω−h
ij ∧ δh

euclb
h
j = ω−h

ij ∧ ∗eucld
−hβh

j = ω−h
ij ·eucl d

−hβh
j dz

= (∗euclω
−h
ij ) ∧ d−hβh

j = d−h(∗euclω
h
ijβ

h
j ),

as (δh
euclω

h
ij)β

h
j = 0 on account of the Coulomb gauge condition. (In coordinates,

ω−h
ij ·eucl d

−hβh
j = ω−h

ij,α∂
−h
α βh

j = ∂−h
α (ωh

ij,αβ
h
j )− (∂−h

α ωh
ij,α)βh

j .)
Since ωh

ij ⇁ ωij weakly in L2, while βh
j → βj strongly in L2, we conclude

that
ω−h

ij ∧ δh
euclb

h
j ⇁ ωij ∧ δeuclbj in D′.
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For the remaining term by the discrete product rule we have

ω−h
ij ∧ dhah

j = ω−h
ij,α∂

h
βa

h
j,γdx

α ∧ dxβ ∧ dxγ

= [∂h
β (ω−h

ij,α( · − heβ)ah
j,γ)− ∂−h

β ω−h
ij,αa

h
j,γ ]dxα ∧ dxβ ∧ dxγ ,

= d−hω−h
ij ∧ ah

j + ∂−h
β (ω−h

ij,ατ
h
β a

h
j,γ)dxα ∧ dxβ ∧ dxγ .

Since we also have that τh
β a

h
j ⇁ aj weakly in H1(T 3) and hence strongly in L2,

as h→ 0 the last term converges to ∂β(ωij,αaj,γ)dxα ∧ dxβ ∧ dxγ = −d(ωij ∧ aj)
in D′.

Thus we have shown distributional convergence

(26) ω−h
ij ·η θ−h

j dz − d−hω−h
ij ∧ ah

j ⇁ ωij ·η θjdz − dωij ∧ aj

as h→ 0, and it remains to prove that

(27) d−hω−h
ij ∧ ah

j − τh
1i ⇁ dωij ∧ aj in D′.

The proof of (27) will be accomplished by adapting the ideas of [8] to the spatially
discrete case.

Passing to a further subsequence, if necessary, we may assume that, as h→ 0,

eh(uh) + eh(eh) ∗
⇁µ in M(T 3)

as Radon measures. Theorem 4.1 then will be a consequence of the following
Proposition.

Proposition 4.2. There exists a Radon measure ν such that, as h → 0
suitably,

d−hω−h
ij ∧ ah

j − τh
1i ⇁ dωij ∧ aj − ν in D′(Q),

where
supp(ν) ⊂ Σ = {z = (t, x) : lim sup

R→0
(R−1µ(PR(z))) > 0}

has finite 1-dimensional Hausdorff measure.

Proof of Theorem 4.1. Combining Proposition 4.2 and (26), we conclude
that, as h→ 0,

0 = δh
η θ

h
i + ωh

ij ·η θh
j − τh

1i ⇁ δηθi + ωij ·η θj − ν

in D′(Q). Hence
ν = δηθi + ωij ·η θj ∈ H−1 + L1.

But since the support of ν is contained in a set of finite 1-dimensional Hausdorff
measure, as in [8], Proof of Theorem 1.3, we conclude that, in fact, ν = 0 and

δηθi + ωij ·η θj = 0 in D′(Q),

as claimed. �
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4.3 Proof of Proposition 4.2. We proceed as in [8]. The key ingredients
in the proof are the duality between the Hardy space H1 and BMO (due to Fef-
ferman and Stein [6]), the H1 estimates for Jacobians of Coifman, Lions, Meyer
and Semmes [4] (see Lemma 4.4 below for the discrete setting), and a charac-
terization of concentration points in the spirit of concentration compactness for
sequences of products whose factors are bounded in H1 and BMO, respectively
(see [8], Lemma 3.7). To obtain the BMO estimate (see Lemma 4.3 below) we
exploit the energy inequality and apply Campanato theory and Poincaré’s in-
equality. For elliptic problems similar arguments were used by Hélein [9], [10],
Evans [5], Bethuel [1], and others.

Fix a function ϕ ∈ C∞0 (B1(0)) with
∫

R3 ϕdz = 1. For f ∈ L1(T 3) then let

(Mϕf)(z0) = sup
0<r<1

∣∣∣∣ ∫
T 3
r−3ϕ

(
z − z0
r

)
f(z) dz

∣∣∣∣
be the regularized maximal function of f . The Hardy space on T 3 then is
the space

H1(T 3) =
{
f ∈ L1(T 3);

∫
T 3
f dz = 0, Mϕ(f) ∈ L1(T 3)

}
with norm

||f ||H1 := ||Mϕ(f)||L1 .

Also let BMO(T 3) be the space of functions f ∈ L1(T 3) such that

[f ]BMO(T 3) = sup
0<r<1/2

sup
z0∈T 3

–
∫

Pr(z0)

|f − fr,z0 | dz <∞

with norm

||f ||BMO(T 3) =
∣∣∣∣ ∫

T 3
f dz

∣∣∣∣ + [f ]BMO(T 3),

where Pr(z0) and fr,z0 are defined as in Section 2.
By [6], BMO(T 3) is the dual space of H1(T 3), and for g ∈ H1(T 3), f ∈

BMO(T 3) there holds

〈f, g〉BMO×H1 ≤ C[f ]BMO(T 3)||g||H1 .

Moreover, for any ϕ ∈ C∞(T 3), f ∈ BMO(T 3) the function fϕ ∈ BMO(T 3) and

[fϕ]BMO ≤ C||f ||BMO||ϕ||C1 ;

see for instance [8], Proposition 3.8. In particular, for any f ∈ BMO(T 3), g ∈
H1(T 3) the product T = fg is defined as a distribution in T 3 by letting

〈T, ϕ〉D′×D := 〈fϕ, g〉BMO×H1
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for any ϕ ∈ C∞(T 3). Finally, for 0 ≤ λ ≤ 3, f ∈ L2(T 3) let

[f ]2L2,λ = sup
0<r<1/2

sup
z0

r−λ–
∫

Pr(z0)

|f − fr,z0 |2 dz

and for 0 ≤ λ < 3 denote

||f ||2L2,λ = sup
0<r<1/2

sup
z0

r−λ–
∫

Pr(z0)

|f |2 dz.

Define the Morrey–Companato spaces

L2,λ(T 3) = {f ∈ L2(T 3) : [f ]L2,λ <∞},
L2,λ(T 3) = {f ∈ L2(T 3) : ||f ||L2,λ <∞}

with norms || · ||L2,λ and ||f ||L2,λ = ||f ||L2 + [f ]L2,λ , respectively. Recall that
L2,λ ∼= L2,λ for 0 ≤ λ < 3 and L2,3 ∼= BMO with equivalent norms.

For an open set U ⊂ T 3 define the local BMO-seminorm by letting

[f ]BMO(U) = sup
{

–
∫

Br(z0)

|f − fr,z0 |2 dz : Br(z0) ⊂ U

}
.

Lemma 4.3. For any h > 0 we have ah
j ∈ BMO(T 3) with dhah

j ∈ L2,1(T 3)
and

||ah
j ||2BMO ≤ C||dhah

j ||2L2,1 ≤ CEh(uh) ≤ C

independently of h. Moreover, for any 0 < h ≤ r ≤ R < 1/2, any z0 ∈ T 3 there
holds

[ah
j ]BMO(Pr(z0))+[dhah

j ]L2,1(Pr(z0)) ≤ C

(
r

R
||ah

j ||BMO(PR(z0))+||θ
−h
j ||L2,1(PR(z0))

)
.

Proof. A global bound for ah
j follows from (8). From (25) we obtain the

equation
−∆h

3a
h
j = δh

eucld
hah

j = δh
eucl ∗η θ

−h
j = Dhθ−h

j ,

where Dh is a discrete first order differential operator with constant coefficients.
The proof now proceeds as the proof [8], Lemma 3.11, in the case h = 0. Omitting
the index j for brevity, given 0 < h ≤ r < R = Kh < 1/2, z0 ∈ S1×Th, we split
ah = ah

1 + ah
2 on PR(z0), where

−∆h
3a

h
1 = 0 in PR(z0), ah

1 = ah on ∂PR(z0),

and

−∆h
3a

h
2 = Dhθ−h in PR(z0), ah

2 = 0 on ∂PR(z0).

Standard estimates yield that

||eh(ah
1 )||L∞(PR/2(z0)) ≤ CR−2–

∫
PR(z0)

|ah
1 − (ah

1 )R,z0 |2.
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Hence, from Proposition 2.3(ii), for any r = kh, z ∈ S1×Th such that Pr+h(z) ⊂
PR/2(z0) we conclude

–
∫

Pr(z)

|ah
1 − (ah

1 )r,z|2 ≤ Cr−1

∫
Pr+h(z)

eh(ah
1 ) ≤ Cr2||eh(ah

1 )||L∞(PR/2(z0))

≤ C

(
r

R

)2

–
∫

PR(z0)

|ah
1 − (ah

1 )R,z0 |2

≤ C

(
r

R

)2

[ah
1 ]2BMO(PR(z0))

.

Clearly, these estimates remain valid for any r > h and any z ∈ T 3 with
Pr+h(z) ⊂ PR/2(z0) if we extend ah as the spatially piecewise constant func-
tion

ah(t, x) = ah(t, xh), for x ∈ Qh(xh).

Moreover, for 0 < r < h, if we compare ah
1 to its bilinearly interpolated function

ah
1 , for any z1 = (t1, x1) ∈ T 3 with Pr(z1) ⊂ P2h(zh) ⊂ PR/2(z0) for some
zh = (t, xh) ∈ S1×Th, from Proposition 2.2 (i), (iii) and the (standard) Poincaré
inequality applied to ah

1 we obtain

–
∫

Pr(z1)

|ah
1 − (ah

1 )r,z1 |2 dz + r−1

∫
Pr(z1)

|dhah
1 |2 dz

≤C–
∫ t1+r

t1−r

||(ah
1 − ah

1 )(t)||2L∞(Qr(x1))
dt

+ C–
∫

Pr(z1)

|ah
1 − (ah

1 )r,z1 |2 dz + r−1

∫
Pr(z1)

|dhah
1 |2 dz

≤C–
∫ t1+r

t1−r

∫
Q2h(xh)

(eh(ah
1 (t)) + |dah

1 (t)|2) dx dt ≤ C–
∫ t1+r

t1−r

∫
Q2h(xh)

eh(ah
1 (t))

≤Ch2||eh(ah
1 )||L∞(PR/2(z0)) ≤ C

(
h

R

)2

[ah
1 ]BMO(PR(z0)).

It follows that for r ≥ h there holds

[ah
1 ]BMO(Pr(z0)) + ||dhah

1 ||L2,1(Pr(z0)) ≤C
r

R
[ah

1 ]BMO(PR(z0))

≤C
(
r

R
[ah]BMO(PR(z0)) + [ah

2 ]BMO(PR(z0))

)
.

The analogous estimate

[ah
2 ]BMO(PR(z0)) ≤ C||dhah

2 ||L2,1(PR(z0)) ≤ C||θ−h||L2,1(PR(z0))

is obtained exactly as in the continuous case from [2], Teorema 16.I, and Poin-
caré’s inequality. �
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Observe that the local energy inequality Lemma 3.2 implies that

(28) lim sup
h→0

||θ−h
j ||2L2,1(PR(z0))

≤ CR−1µ(P3R(z0)).

Indeed, for any r < R, any z1 = (t1, x1) such that Pr(z1) ⊂ PR(z0), if 3r < R

by Lemma 3.2 we have

(4r)−1||θ−h
j ||2L2(Pr(z1))

≤ sup
|t−t1|<r

∫
Qr(x1)

eh(uh(t))

≤
∫

Q4r(x1)

eh(uh(t1 − r)) + o(1)

≤
∫

Q2R(x0)

eh(uh(t1 − r)) + o(1)

≤ R−1

∫ t1−r

t1−r−R

∫
Q3R(x0)

eh(uh(t)) dt+ o(1)

≤ R−1

∫
P3R(z0)

eh(uh(t)) + o(1) ≤ R−1µ(P3R(z0)) + o(1)

where o(1) → 0 as h→ 0.
If R/3 ≤ r ≤ R, clearly

(3r)−1||θ−h
j ||L2(Pr(z1)) ≤ R−1||θ−h

j ||L2(PR(z0)) ≤ R−1µ(P3R(z0)) + o(1),

where o(1) → 0 as h→ 0.
Regarding ωh

ij , we now introduce the bilinearly interpolated frame to split

(29) ωh
ij,α = 〈∂h

αe
h
i , e

h
j 〉+ 〈∂h

αe
h
i ,m

h
αe

h
j − eh

j 〉.

Lemma 4.4. For any h > 0 there holds dh〈dheh
i , e

h
j 〉 ∈ H1(T 3) and

dh〈dheh
i , e

h
j 〉

∗
⇁d〈dei, ej〉 = dωij

in H1(T 3) as h→ 0 suitably.

Proof. In view of the identity dh ◦ dh = 0, we have

dh〈dheh
i , e

h
j 〉 = ∂h

α〈∂h
βe

h
i , e

h
j 〉dxα ∧ dxβ

= 〈∂βe
h
i ( · + heα), ∂h

αe
h
j 〉dxα ∧ dxβ = dh〈dheh

i , (e
h
j − q)〉

for any q ∈ Rn. Exactly, as in [4], Theorem 2.1, we may therefore show that

dh〈dheh
i , e

h
j 〉 ∈ H1(T 3)

with
||dh〈dheh

i , e
h
j 〉||H1 ≤ CEh(eh) ≤ C,

where we also used Proposition 2.2(iii). Since the space VMO(T 3), the pre-dual
of H1(T 3) is separable, we conclude that (dh〈dheh

i , e
h
j 〉)h>0 is relatively weakly-∗

sequentially compact. But, as h → 0 suitably, dh〈dheh
i , e

h
j 〉 ⇁ dωij in the sense
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of distributions. By density of C∞(T 3) in VMO(T 3), therefore we also have
weak-∗ convergence

dh〈dheh
i , e

h
j 〉

∗
⇁dωij

in H1(T 3), as claimed. �

From Lemma 4.3 and [8], Theorem 3.7, we hence conclude that, as h→ 0,

(30) d−h〈d−heh
i , e

h
j 〉 ∧ ah

j ⇁ dωij ∧ aj + ν1 in D′,

where ν1 is a Radon measure with

supp(ν1) ⊂
{
z : lim

r→0
lim sup

h→0
[ah]BMO(Pr(z0)) > 0

}
.

But by Lemma 4.3, for r ≥ h we have

[ah]BMO(Pr(z0)) ≤ C

(
r

R
||ah||BMO(PR(z0)) + ||θ−h||L2,1(PR(z0))

)
.

Fixing R > 0, from (28) we conclude that

lim
r→0

lim sup
h→0

[ah]2BMO(Pr(z0))
≤ C lim sup

h→0
||θ−h||L2,1(PR(z0)) ≤ C(R−1µ(P3R(z0))).

Since R > 0 is arbitrary, therefore supp(ν1) ⊂
∑

, as defined in Proposition 4.2.
The contribution to (27) from the second term in (29), after shifting in di-

rections α and β, is

∂h
α〈∂βe

h
i ,m

h
βe

h
j − eh

j 〉τh
ατ

h
β a

h
j,γdx

α ∧ dxβ ∧ dxγ = {∂h
α(〈∂h

βe
h
i ,m

h
βe

h
j − eh

j 〉τh
β a

h
j,γ)

− 〈∂h
βe

h
i ,m

h
βe

h
j − eh

j 〉∂h
ατ

h
β a

h
j,γ}dxα ∧ dxβ ∧ dxγ =: Ih + IIh.

Since, as h → 0 suitably, τh
β a

h
j,γ → aj,γ while mh

βe
h
j , e

h
j → ej in Lp(T 3) for any

p <∞, and since (∂h
βe

h
i ) is bounded in L2(T 3), the first term Ih ⇁ 0 in D′(T 3).

Observing that for any t ∈ S1, xh ∈ Th, x = xh + ξ ∈ T , ξ ∈ Q+
h (0), we have

(mh
βe

h
j −eh

j )(t, x) =
1
2
(τh

β e
h
j −eh

j )(t, xh)−
∑

α=1,2

ξα∂h
αe

h
j (t, xh)−ξ1ξ2∂h

1 ∂
h
2 e

h
j (t, xh),

moreover, we can estimate

|(mh
βe

h
j − eh

j )(t, x)| ≤ Ch
∑

α=1,2

|∂h
αe

h
j (t, xh)|.

Thus, the second term above may be bounded

|IIh| ≤ |〈∂h
βe

h
i ,m

h
βe

h
j − eh

j 〉∂h
ατ

h
β a

h
j,γ |

≤ Ch|dheh|2|∂h
ατ

h
β a

h| ≤ C|τh
α(τh

β a
h)− τh

β a
h||dheh|2.

Shifting back, from (29) and (30) we thus obtain that

d−hω−h
ij ∧ ah

j − dωij ∧ aj = τh
1i + τh

2i + ν1 + o(1),
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where o(1) → 0 in D′(T 3) and where

|τh
2i| ≤ C

∑
α

|ah − ah( · − heα)|eh(eh).

Lemma 4.5. τh
1i + τh

2i ⇁ ν2 in M(T 3), where ν2 is a Radon measure with
supp(ν2) ⊂

∑
, as defined in Proposition 4.2.

Proof. For any ϕ ∈ C0(T 3) we can estimate∣∣∣∣ ∫
T 3
τh
1iϕdz

∣∣∣∣ +
∣∣∣∣ ∫

T 3
τh
2iϕdz

∣∣∣∣ =
∣∣∣∣ ∫

S1×Th

τh
1iϕ

h

∣∣∣∣ +
∣∣∣∣ ∫

S1×Th

τh
2iϕ

h

∣∣∣∣
≤ C

∫
S1×Th

∑
α

(|uh(· ± heα)− uh|+ |ah( · ± heα)− ah|) · (eh(uh) + eh(eh))|ϕh|.

Now by Proposition 2.2(i) and Lemma 3.2, for any z = (t, xh) ∈ S1 × Th, any
0 < h ≤ 3h ≤ r < 1/2 we have

|(uh( · ± heα)− uh)(t, xh)|2 ≤ Eh(uh(t);Q+
2h(xh)) ≤ Cr−1

∫
Pr(z)

eh(uh) + o(1)

where o(1) → 0 as h→ 0.
Similarly, for any z = (t, xh) ∈ S1 × Th, any 0 < h ≤ 2h ≤ r < R ≤ 1/2, by

Proposition 2.3 (i) we can estimate

|(ah
j ( · ± heα)− ah

j )(t, xh)|2 ≤ Ch−1

∫
P2h(z)

eh(ah
j ) ≤ C[dhah

j ]2L2,1(Pr(z)).

Hence by Lemma 4.3 we obtain

|(ah
j ( · ± heα)− ah

j )(z)| ≤ C

(
r

R
||ah

j ||BMO(PR(z)) + ||θh
j ||L2,1(PR(z))

)
.

It follows that τh
1i + τh

2i ⇁ ν2 in M(T 3) as h → 0, where ν2 is absolutely
continuous with respect to µ with density

dν2
dµ

(z) = lim
r→0

ν2(Pr(z))
µ(Pr(z))

≤C lim
r→0

lim sup
h→0

(
r

R
||ah||BMO(PR(z)) + ||d±huh||L2,1(P3R(z))

)
≤CR−1µ(PR(z))

for any z ∈ T 3. Since R > 0 is arbitrary, the asserted characterization of supp(ν2)
follows. �

This completes the proof of Theorem 4.1 if TN is parallelizable. In the
general case, by the results of [3] and [9] we may embed N as a totally geodesic
submanifold of another manifold Ñ with this property. As above, we now obtain
weak convergence of a subsequence uh ⇁ u, where u : R × R2 → N ↪→ Ñ is
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a weak wave map into Ñ . But then as in [11], p. 255 f., it follows that u also is
a weak wave map into N .

5. Global existence of wave maps

Theorems 3.1 and 4.1 easily give rise to the following existence result, previ-
ously established in [11] by a different method.

Theorem 5.1. For any (u0, u1) ∈ H1 × L2(R2;TN) there exists a global
weak solution u of the Cauchy problem (1), (2) satisfying the energy inequality

E(u(t)) =
1
2

∫
R2
|Du(t)|2 dx ≤ E0 =

1
2

∫
R2

(|u1|2 + |∇u0|2) dx

for all t and which continuously attains the initial data in H1 × L2.

Proof. Let uh
0 , uh

1 be the maps u0, u1, discretized as in Section 2.4. Note
that

dist2(uh
0 (x), N) ≤ –

∫
Q+

h (x)

|uh
0 (x)− u0(y)|2 dy

≤ –
∫

Q+
h (x)

–
∫

Q+
h (x)

|u0(y)− u0(y′)|2 dy dy′

≤ C

∫
Q+

h (x)

|∇u0|2 dy → 0

as h → 0. Hence for 0 < h ≤ h0 the range of uh
0 lies in a sufficiently small

tubular neighbourhood of N and we may project to obtain spatially discrete
data (ũh

0 = πN ◦ uh
0 , ũ

h
1 = uh

1 ) : Mh → TN such that

Ẽh :=
1
2

∫
Mh

(|ũh
1 |2 + |dhũh

0 |2) <∞

and such that
(ũh

0 , ũ
h
1 ) → (u0, u1) in H1 × L2

as h→∞. In particular Ẽh → E0 as h→ 0.
By Theorem 3.1 now, for any h > 0 there exists a unique global solu-

tion ũh of (9) with data (ũh, ũh
t )|t=0 = (ũh

0 , ũ
h
1 ), satisfying the energy identity

Eh(ũh(t)) = Ẽh for all t.
By Theorem 4.1 a subsequence (ũh) as h → 0 weakly converges to a weak

solution u of (1), (2) with

E(u(t)) ≤ lim inf
h→0

Eh(ũh(t)) = E0

for all t. In particular,

lim sup
t→0

1
2

∫
R2
|Du(t)|2 dx = lim sup

t→0
E(u(t)) ≤ E0
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and we conclude that Du(t) → Du(0) strongly in L2(R2) as t→ 0, showing that
the initial data are attained continuously in H1 × L2. �
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