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0. Introduction

Topological quantum field theory led recently to a spectacular progress in
numerical algebraic geometry. It was shown that generating functions of cer-
tain charactertistic numbers of modular spaces of stable algebraic curves with
labelled points satisfy remarkable differential equations of KP -type (E. Witten,
M. Kontsevich). In a later series of developments, this was generalized, partly
conjecturally, to the spaces of maps of curves into algebraic varieties leading to
the Mirror Conjecture and the construction of quantum cohomology.

The key technical notion in the context of algebraic geometry is that of a sta-
ble map introduced by M. Kontsevich (cf. [8] and [1]) following the earlier work
by M. Gromov in symplectic geometry. It provides a natural compactification of
spaces of maps, in the same way as stable curves compactify moduli spaces.

We will be working over a ground field. Let W be an algebraic variety.

Definition 0.1. A stable map (to W ) is a structure (C;x1, . . . , xn; f) con-
sisting of the following data.

(a) (C;x1, . . . , xn) is a connected complete reduced curve with n ≥ 0 la-
belled pairwise distinct non–singular points xi and at most ordinary
double singular points.
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(b) f : C →W is a morphism having no non–trivial first order infinitesimal
automorphisms identical on W and xi’s (stability). This means that
every irreducible component of C of genus zero (respectively, 1) has at
least three (respectively, one) special points (inverse images of singular
and labelled points) on its normalization.

A family of stable maps parametrized by a noetherian scheme S is a structure
consisting of a flat proper morphism π : C → S, n sections xi : S → C, and
a morphism f : C →W whose restriction to each geometric fiber of π is a stable
map in the sense of the previous Definition.

Families of stable maps form an algebraic stack in the sense of [2].
For fixed n ≥ 0, g ≥ 0 and an algebraic homology class of dimension two

β, we denote by Mg,n(W,β) the substack of maps for which g is the arithmetic
genus of C and β = f∗([C]). For the proof of the following theorem see [8], [1]
and [3].

Theorem 0.2.

(a) If W is projective, then Mg,n(W,β) is a proper separated algebraic stack
of finite type.

(b) If we assume that W is convex in the following sense: H1(C, f∗(TW )) =
0 for any stable map f : C → W of genus zero, then the stacks
M0,n(W,β) are smooth.

We denote by M0,n(W,β) the big cell of this stack over which C is smooth. The
complement of this cell is a divisor with normal crossings.

In addition, the spaces of geometric points of these stacks are represented
by algebraic schemes, crude moduli spaces of stable maps, Mg,n(W,β) and
Mg,n(W,β) respectively. If

(C;x1, . . . , xn; f)

is a stable map, we denote by [(C;x1, . . . , xn; f)], or simply [f ], the corresponding
point. Two maps [f (i)], i = 1, 2, define the same point if and only if there is an
isomorphism g : C(1) → C(2) such that g(x(1)

i ) = x
(2)
i for all i and g◦f (2) = f (1).

This paper is a sequel to [9].
We will consider mostly the case g = 0, W = G/P (generalized flag spaces).

Although flag spaces are convex, the respective spaces of stable maps are not
smooth but only orbifolds in general. For a recent account of these spaces see [10].
Our goal is to calculate their virtual Poincaré polynomials, or rather an appro-
priate generating function for these polynomials. This calculation generalizes
the one made for M0,n in [9] and [4]. Remarkably, up to a change of variables,
this function satisfies the same universal differential equation as that in [9], the
dependence on W being reflected only in the initial condition which involves the
Eisenstein series of W = G/P (see 2.3 below).
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1. Stratification of the space of stable maps

1.1. Virtual Euler–Poincaré maps. Let R be a commutative associative
Q-algebra, V ar the category of algebraic varieties, not necessarily complete,
smooth, or irreducible, over a fixed ground field.

We will call a map ObV ar → R : V 7→ [V ] a virtual Euler–Poincaré map if
the following conditions are satisfied:

(i) [V ] depends only on the isomorphism class of V .
(ii) (Additivity) If V =

∐
i Vi is a finite disjoint union of locally closed

subsets (“strata”), then [V ] =
∑

i[Vi].
(iii) (Multiplicativity) [

∏
j Vj ] =

∏
j [Vj ].

From (ii) and (iii) it follows that if V → B is a Zariski locally trivial fiber
space with fiber F, then [V ] = [B][F ].

If we work over C, and R = Q[q] (respectively, R = Q[r, s]) the main
examples are virtual Poincaré (respectively, Hodge) polynomials:

PV (q) :=
∑
i,j

(−1)i+jdim(grj
WHi

c(V ))qj ,(1.1)

HV (r, s) :=
∑
i,j,k

(−1)i+j+khj,k(Hi
c(V ))rjsk,(1.2)

and also the virtual Euler characteristics χ(V ) = PV (−1). These properties
were for the first time systematically used by Danilov and Khovanskĭı in the
toric geometry.

Recently C. Soulé and H. Gillet [5] established that the map V 7→ class of
the motive h∗(V ) of V in the K0-ring of Grothendieck’s motives extends from
projective smooth varieties to V ar and becomes an Euler–Poincaré map. For
a somewhat different construction see [6].

On the subcategory generated by the (dual) Tate motive one can identify
the Gillet–Soulé map with virtual Poincaré map putting h∗(P1) = q2 + 1, and
calculate the latter via point count over Fq2 . Most of our calculations are in fact
restricted to this situation.

We will have also to localize R, most notably by inverting [PGL(2)] =
q2(q4 − 1). Since the Euler characteristic of this manifold vanishes, we have
to apply a limiting procedure q2 → 1 producing logarithms and infinite ramifi-
cation in our formulas for generating functions of χ, as already happened in [9].

1.2. Poincaré polynomials of Map
β
(P1,W ). If W is a flag manifold, the

scheme of maps of P1 to W landing in β is a smooth (generally non-complete)
manifold. Its Gillet–Soulé motive lies in the Tate’s subring, and the generating
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function

(1.3) E(W, z) :=
∑
β∈B

[Map
β
(P1,W )]zβ

is rational in z. Here B ⊂ N means the effective subsemigroup of the lattice N
of algebraic homology classes of curves, and zβ are formal monomials, elements
of the dual lattice M written multiplicatively.

In fact, in the Fq2-avatar, (1.3) essentially coincides with an appropriate
Eisenstein series discussed e.g. in [7]. If we introduce a complex vector vari-
able s ∈ MC and replace zβ by q−2(β.s), the poles of Eisenstein series will lie
on the complexified walls of the ample cone Bt

R in N shifted by −KW , and
reflections with respect to the walls will generate the functional equations.

Example 1.2.1. We have

(1.4) E(Pn, z) =
1− q2n+2

1− q2
· 1− q2z

1− q2n+2z
.

In fact, we denote by Nd the number of non–zero (n+ 1)-tuples

(f0(t0, t1), . . . , fn(t0, t1))

of coprime forms of degree d over Fq2 divided by |F∗q2 | = q2−1. Since the number
of all such (n + 1)-tuples is q2(n+1)(d+1) − 1 and the map ((f0, . . . , fn), g) 7→
(f0g, . . . , fng) with fixed g 6= 0 and degrees of fi, g has all fibers of cardinality
q2 − 1, we have

d∑
k=0

Nd−k(q2(k+1) − 1) = q2(k+1)(d+1) − 1,

from which (1.4) easily follows.
Identifying M = Pic Pn with Z via O(1) 7→ 1 and putting z = q−2s one sees

that the real pole of (1.4) is s = n+ 1 = −KPn .

1.3. Big cells of stable map spaces. We will say that a stable map
(C;x1, . . . , xn; f) to W belongs to the big cell M0,k(W,β) if C ∼= P1, and
f∗([C]) = β. We will explain how these big cells are related to Map

β
(P1,W ).

(a) β = 0. In this case, k ≥ 3, and the map

(P1;x1, . . . , xk; f) 7→ (f(x1), [(P1;x1, . . . , xk)])

induces the identification

(1.5) M0,k(W, 0) ∼= W ×M0,k.

In particular, when W is a point, we get simply M0,k.
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(b) β 6= 0. In this case, a choice of three points x1, x2, x3 in P1 defines
an isomorphism

(1.6) M0,3(W,β) ∼= Map
β
(P1,W ).

Let G(i) ⊂ PGL(2) be the subgroup fixing x1, . . . , xi, i = 0, . . . , 3. Then G(i)

freely acts upon M0,3(W,β), and we have

(1.7) M0,i(W,β) ∼= Map
β
(P1,W )/G(i), i ≤ 3.

Finally, for k ≥ 4 the forgetful map

M0,k(W,β) →M0,3(W,β)

identifies M0,k(W,β) with a locally trivial fibration over Map
β
(P1,W ) with fiber

M0,k =
(

(P1)k \
⋂
i<j

∆ij

)/
PGL(2).

To summarize, we have the following formula for the virtual Euler–Poincaré
class of M0,k(W,β) valid for β = 0 as well:

Proposition 1.3.1. We have

(1.8) [M0,k(W,β)] = [Map
β
(P1,W )]

(
[P1]
k

)
k!

1
[PGL(2)]

.

In fact,

[M0,k] =
(

[P1]− 3
k − 3

)
(k − 3)!, [PGL(2)] =

(
[P1]
3

)
3!.

We will now construct strata of the space of stable maps numbered by marked
trees. Their virtual Euler–Poincaré classes will be expressed via products of
those of big cells.

1.4. Trees. In this paper, a tree τ is a finite connected simply connected
CW-complex of dimension 1 or 0 (one-vertex tree). A flag of a tree is a pair
consisting of a vertex and an adjoining edge. The valency |v| of a vertex v is the
number of flags containing v. The sets of vertices (respectively, edges, flags) of
τ are denoted Vτ (respectively, Eτ , Fτ ).

For a set S, P(S) denotes the set of its subsets. As above, B is the semigroup
of classes of effective algebraic curves in a flag manifold W .

Definition 1.4.1. A (k,W )-marking of a tree τ is a map

µ : Vτ → B × P(1, . . . , k) : v 7→ (βv, Sv),
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satisfying the following conditions:

(a) The family {Sv | v ∈ Vτ , Sv 6= ∅} forms a partition of {1, . . . , k} into
pairwise disjoint subsets. (For k = 0, we interpret P as one-element set,
and this condition as empty).

(b) If βv = 0, then |v|+ |Sv| ≥ 3.

There is an obvious notion of isomorphism of marked trees.

1.4.1. Type of a stable map. Let (C;x1, . . . , xk; f) be a stable map of
genus 0 to W . Its combinatorial type is, by definition, the isomorphism class
of the dual tree of C with the marking depending on f . We can describe it as
follows. First of all, we put

Vτ = {irreducible components Cv of C},
Eτ = {intersection points of irreducible components}.

Thus a flag of τ is a pair (intersection point of two components, one of these
components). Furthermore,

βv := f∗([Cv]), Sv = {i | xi ∈ Cv}.

Obviously, βv = 0 means that f(Cv) is a point so that condition 1.4.1(b) means
stability.

1.5. Maps of fixed type. We consider a combinatorial type (τ, µ). For
any vertex v ∈ Vτ , we construct the stack M0,Sv

(W,βv) parametrizing stable
maps of P1 with points labelled by Sv, of class βv. For any t ∈ Sv, there exists
a canonical evaluation map evt : M0,Sv (W,βv) → W , [f ] 7→ f(xt) where xt is
the point marked by t. We put

M0,k(W,β, τ, µ) =
∏
W

M0,Sv
(W,βv),

where
∏

W means the partial fibered product over W which leaves in the total
product only those families of stable maps (fv | v ∈ Vτ ) for which fv(s) = fw(t)
whenever s, t are halves of the same edge of τ .

Theorem 1.5.1. Let W be a generalized flag variety. We put

(1.9) N(W,β) :=
[M0,3(W,β)]
[W ][PGL(2)]

=
[Map

β
(P1,W )]

[W ][PGL(2)]
.

Then

(1.10) [M0,k(W,β, τ, µ)] = [W ]
∏

v∈Vτ

ε(βv, |v|+kv)N(W,βv)
(

[P1]
|v|+ kv

)
(|v|+kv)!
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where µ : v 7→ (βv, Sv), kv = |Sv|, β =
∑
βv, and ε(β, n) = 0 for β = 0,

n = 0, 1, 2, and 1 otherwise.

Sketch of the proof. For β = 0, we have a projection M0,k(W, 0, τ, µ) →
W , (C;x1, . . . , xk; f) 7→ f(C). Its fiber is the stratum of the moduli space of
stable curves with labelled points of the given combinatorial type (τ, µ); we notice
that µ now is just a map v 7→ Sv. This fiber is isomorphic to

∏
v∈Vτ

M0,|v|. The
fibration is locally trivial over [W ]. Hence

[M0,k(W, 0, τ, µ)] = [W ]
∏

v∈Vτ

(
[P1]− 3

|v + kv| − 3

)
(|v + kv| − 3)!.

One easily sees that this coincides with (1.10).
For β 6= 0, τ one-vertex that is, C = P1, (1.10) follows from (1.8).
Finally, in the remaining cases we represent a stable map f : C → W as a

vector of stable maps of irreducible components fv : Cv → W . If we fix one
component, the rest will be constrained by incidence conditions. This accounts
for the necessity to divide by [W ] in each v-factor; we incorporated this division
in Definition (1.9) of N(W,β). The exterior factor [W ] in (1.10) appears because
one component can be moved freely. �

2. Generating function of the space of stable maps

2.1. The problem. In this section, we set to calculate the following series
in R[[t, z]] (we remind that monomials in z belong to a semigroup ring):

(2.1) ΦW (t, z) :=
∑

τ/(iso)

1
|Aut τ |

∑
Vτ→B×N
v 7→(βv,kv)

[W ]

×
∏

v∈Vτ

tkv

kv!
zβvε(βv, |v|+ kv)N(W,βv)

(
[P1]

|v|+ kv

)
(|v|+ kv)!.

We retain the notation from Section 1; in particular, ε is introduced in order to
exclude inadmissible markings.

To motivate this definition, we consider the following more natural generating
function:

(2.2) Φ̃W (t, z) :=
∑
β,k

[M0,k(W,β)]
tk

k!
zβ .

We assume in addition that [M0,k(W,β)] in (2.2) means an “orbifold” virtual
class of [M0,k(W,β)] which is defined on the category of small algebraic stacks
and, besides the usual additivity and multiplicativity properties postulated in
1.1, satisfies the following condition: if V is smooth, G a finite group freely acting
upon V , then [V/G] = [V ]/|G|.
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In this case (2.2) coincides with (2.1). To see this, one has to consider the
stratified covering of M0,k(W,β) by M0,k(W,β, τ, µ) where (τ, µ) runs over all
admissible marked trees with

∑
v βv = β,

∑
v kv = k, and M0,k(W,β.τ, µ) are

moduli spaces of rigidified stable maps. The claim follows from the fact that
Aut τ acts freely on

∐
µM0,k(W,β, τ, µ).

Theorem 2.2. We denote by ϕ0 = ϕW (t, z) the unique root in R[[t, z]] of
the following equation:

(2.3)
[P1]
[W ]

E(W, z)(1 + t+ ϕ0)[P
1]−1

= ϕ0 [P1]− 1
[P1]− 2

+
t

[P1]− 2
+

1
([P1]− 1)([P1]− 2)

,

satisfying the condition

ϕ0 ≡
∑

β∈ind

N(W,β)zβmod (z, t)2,

where the summation is taken over indecomposable elements of B. Then we have

ΦW (t, z) = − [P1]− 1
2[P1]

(ϕ0)2 +
ϕ0

[P1]
− t2

2[P1]
,(2.4)

∂ΦW

∂t
(t, z) = ϕ0.(2.5)

Proof. We first rearrange the inner sum and product in (2.1):

ΦW (t, z) =
∑

τ/(iso)

[W ]
|Aut τ |

∏
v∈Vτ

∑
β,k≥0

tk

k!
zβ(2.6)

× ε(β, |v|+ k)N(W,β)
(

[P1]
|v|+ k

)
(|v|+ k)!.

Furthermore, for a fixed v ∈ Vτ ,∑
β,k

tk

k!
zβε(β, |v|+ k)N(W,β)

(
[P1]
|v|+ k

)
(|v|+ k)!(2.7)

=
( ∑

β

N(W,β)zβ

)( ∑
k≥0

tk

k!

(
[P1]
|v|+ k

)
(|v|+ k)!

)
− ε|v|

=
E(W, z)

[PGL(2)][W ]

∑
k≥0

tk

k!

(
[P1]
|v|+ k

)
(|v|+ k)!− ε|v|,

where εn = 0 for n ≥ 3, and

(2.8) εn =
2−n∑
k=0

N(W, 0)
tk

k!

(
[P1]
n+ k

)
(n+ k)! for n ≤ 2.
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To calculate the resulting sum over marked trees we can now apply the formalism
of [8], [9]. We introduce one more formal variable ϕ and consider the formal
potential

S(ϕ) := −ϕ
2

2
+

∞∑
n=0

Cn

n!
ϕn,(2.9)

Cn :=
E(W, z)

[PGL(2)][W ]

∞∑
k=0

tk

k!
(n+ k)!

(
[P1]
n+ k

)
− εn.(2.10)

We have

(2.11) S(ϕ) = − ϕ2

2
+

E(W, z)
[PGL(2)][W ]

∞∑
n,k=0

ϕntk
(
n+ k

k

)(
[P1]
n+ k

)
−

2∑
n=0

εn

n!
ϕn

=
E(W, z)

[PGL(2)][W ]
(1 + t+ ϕ)[P

1] − ϕ2 [P1]− 1
2([P1]− 2)

− ϕ

(
1

([P1]− 1)([P1]− 2)
+

t

[P1]− 2

)
−

(
1

[P1]([P1]− 1)([P1]− 2)
+

t

([P1]− 1)([P1]− 2)

+
t2

2([P1]− 2)

)
.

According to a general formula of perturbation theory (cf. [8], [9]) we have

ΦW (t, z) = Scrit := S(ϕ0),

where ϕ0 is an appropriate formal solution of ∂
∂ϕS(ϕ) = 0 which we will now

identify. Differentiating (2.11) in ϕ we obtain:

E(W, z)
[W ]

[P1](1 + t+ ϕ0)[P
1]−1 = ϕ0 [P1]− 1

[P1]− 2
+

t

[P1]− 2
+

1
([P1]− 1)([P1]− 2)

,

which is (2.3). Rewriting this equation as

ϕ0 = C1 + C2ϕ
0 + C3

(ϕ0)2

2
+ . . . ,

and taking into account that C1 modulo (t, z)2 starts with terms linear in z we see
that there exists a unique solution ϕ0 ∈ R[[t, z]] such that ϕ0 ≡ C1mod (t, z)2.
In view of (2.10), this coincides with the congruence in the statement of the
Theorem.

It remains to calculate S(ϕ0). Multiplying (2.3) by (1 + t + ϕ0)/[P1] and
simplifying, we get (2.4).

Finally, derivating (2.3) and (2.4) in t, we can obtain (2.5): we reproduce
this calculation below in simplified notation. �
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2.3. Comments and supplements. We will now consider the case R =
Q[q], [V ] = PV (q) (the virtual Poincaré polynomial of V ). Equations (2.3)
and (2.4) take the form

q2 + 1
PW (q)

E(W, z)(1 + t+ ϕ0)q2
= ϕ0 q2

q2 − 1
+

t

q2 − 1
+

1
q2(q2 − 1)

,(2.12)

ΦW (t, z) = − q2

2(q2 + 1)
(ϕ0)2 +

1
q2 + 1

ϕ0 − 1
2(q2 + 1)

t2.(2.13)

(a) A differential equation for ϕ0. Derivating (2.12) in t and multiplying the
result by (1 + t+ ϕ0)/q2 we get the differential equation

(2.14) (1− q2ϕ0)ϕ0
t = (q2 + 1)ϕ0 + t.

Up to a simple variable change ϕ0 = ψ − t, this is the same equation as (0.7)
(and (0.15)) in [9]:

(2.15) (1 + q2 − q2ψ)ψt = 1 + ψ.

Its universality is remarkable: in (2.14) there is no dependence onW and z (below
it will be encoded in the choice of constant in a general solution of (2.14)), and
in [9] it emerged also in a calculation of the generating function for arbitrary
configuration spaces X[n].

(b) Euler characteristics: q2 = 1. A formal substitution q2 = 1 into (2.11) is
impossible, however a limiting procedure gives:

(2.16) (1 + t+ ϕ0) log (1 + t+ ϕ0) = 2ϕ0 + t,

and ΦW (t, z) becomes

(2.17) ΦW (t, z) = −1
4
(ϕ0)2 +

1
2
ϕ0 − 1

4
t2.

(c) General solution of (2.14). We can apply to (2.14) Proposition 1.5.1 in [9].
We put

x = t+
q2 + 1
q2

, y = q2ϕ0 − 1, w =
y

x
.

The general solution of (2.14) in implicit form is given by

(2.18) Cx = (w + 1)1/(q2−1)(w + q2)q2/(1−q2).

This makes evident the ramification structure of ϕ for q2 6= 1. Constant C in
our case is a function of z which can be calculated by considering (2.18) at t = 0
that is, x = (q2 + 1)/q2. Function w(z) = (q4ϕ0(0, z) − q2)/(q2 + 1) is found
from (2.12) at t = 0.
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(d) As in [9], the derivative of ΦW in t is simpler than ΦW itself. Indeed,
from (2.13) and (2.14) we have:

∂ΦW

∂t
= − q2

q2 + 1
ϕ0ϕ0

t +
1

q2 + 1
ϕ0

t −
t

q2 + 1

= − 1
q2 + 1

(
ϕ0

t − (q2 + 1)ϕ0 − t
)

+
1

q2 + 1
ϕ0

t −
t

q2 + 1
= ϕ0.
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