
Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 11, 1998, 103–113

ON THE THREE CRITICAL POINTS THEOREM

Vitaly Moroz — Alfonso Vignoli — Petr Zabrĕıko

1. Introduction

Let ϕ be a C1 real function defined on Rm. We assume that ϕ is coercive
(i.e. ϕ(x) → ∞ as ||x|| → ∞). It is well-known that under these assumptions
ϕ reaches a minimum at some point x0. Let now x1 be a critical point of ϕ
which is not a global minimum. M. A. Krasnosel’skĭı [10] made the following
observations: if x1 is a nondegenerate singular point of the vector field ∇ϕ (i.e.
the topological index ind (∇ϕ(x1), 0) is different from zero), then ϕ admits a
third critical point. In the sequel this statement became known as the “Three
Critical Points Theorem” (TCPT).

The above result of Krasnosel’skĭı was extended to the context of Banach
spaces (see [1], [4], [8], [17]). Another generalization was obtained by Chang
[5], [6] using the methods of Morse theory (the condition ind (∇ϕ(x1), 0) 6= 0
is replaced by the weaker assumption of nontriviality of Morse critical groups
at x1). Also, Brezis and Nirenberg [3] gave a very useful variant of TCPT for
applications using the principle of local linking (see also [12]). In this paper
we shall give a proof of TCPT based on a “strong” deformation lemma (see
Lemma 2.1 below) thus avoiding standard minimax techniques. In contrast to
the previous work in this field, we prove in fact the Lusternik–Schnirel’man type
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alternative, that is, for a functional ϕ there exist either three distinct critical
values or the set of minimum points is “plentiful”.

As an application of our result we prove a theorem on the existence of two
nontrivial solutions for a Hammerstein integral equation.

2. Definitions, preliminary results,
and statement of the main theorem

Let X be a Banach space. In what follows we shall assume that ϕ is a C1-
functional which is bounded from below, satisfying the Palais–Smale condition
((PS)-condition): any sequence (xn) such that |ϕ(xn)| < c and ||∇ϕ(xn)|| → 0
as n → ∞ has a convergent subsequence. It is well known that, under these
assumptions, ϕ is coercive and has a minimum on X (see e.g. [3]).

Let us denote by
m = inf

X
ϕ

the minimum of ϕ over X and by

M = {x ∈ X | ϕ(x) = m}

the set of minimum points of ϕ. Moreover, by

ϕc = {x ∈ X | ϕ(x) ≤ c}

we denote the Lebesgue set of the functional ϕ for the value c ∈ R∪{∞}, where
it is assumed that ϕ∞ = X.

Let A ⊆ B ⊆ X. A continuous map h : [0, 1] × A → B such that h0(x) = x

for all x ∈ A is said to be a deformation of A in B. The set A is contractible
in B if there exists a deformation ht of A in B such that h1(A) = {p}, where
p is a point in B. In the case A = B we say that B is contractible in itself (to
a point). The set A is a deformation retract of B if there is a deformation ht

of the set B in itself such that h1(B) ⊆ A and h1(x) = x for all x ∈ A. The
set A is called a strong deformation retract of B, if A is a deformation retract
and, moreover, ht(x) = x for all x ∈ A and t ∈ [0, 1]. It is well known that, if A
is a (strong) deformation retract of B, then A and B have the same homotopy
type. The converse does not hold in general (see, however, Lemma 2.2 below).

For C1-functionals satisfying the (PS)-condition the following deformation
lemma is well-known (for a proof see e.g. [6]).

Lemma 2.1. If we assume that the interval [a, b] ⊆ R∪{∞} does not contain
critical values of ϕ, then ϕa is a strong deformation retract of ϕb.

We now indicate some elementary consequences of Lemma 2.1.

Proposition 2.1. Let [a, b] ⊆ R∪{∞} and assume that the Lebesgue set ϕa

is not a strong deformation retract of ϕb. Then ϕ has a critical value c ∈ [a, b].
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Proposition 2.2. Let a ∈ R be such that ϕa is not contractible in itself to
a point. Then ϕ has a critical value c ≥ a.

In the sequel it will be useful for us to distinguish a particular class of critical
values, obtained by Proposition 2.1 and 2.2.

Definition 2.1. A value c ∈ R of the functional ϕ is called an essential
critical value if there exist arbitrarily small numbers ε > 0 such that the Lebesgue
set ϕc−ε is not a strong deformation retract of the Lebesgue set ϕc+ε.

Remark 2.1. From Lemma 2.1 it follows that an essential critical value of
a C1-functional ϕ satisfing the (PS)-condition is indeed a critical value of ϕ.
The notion of essential critical values is in fact topological and can therefore be
extended to continuous (not necessarily C1) functionals. A related notion for
continuous functionals in metric spaces was introduced and studied in [7].

A version of TCPT can be obtained as follows.

Theorem 2.1 (Three Critical Values Theorem, TCVT). If ϕ has an es-
sential critical value c > m, then either ϕ admits at least three distinct critical
values, or the set of minimum points M is not contractible in itself. In particular,
ϕ has at least three critical points.

In order to prove Theorem 2.1 we need some more information about the
structure of the Lebesgue sets of the functional ϕ. We recall that a metric space
C is an absolute neighbourhood retract (ANR) if for any closed subset A ⊆ B of
a metric space B we have that any continuous map f : A→ C has a continuous
extension over some neighbourhood UA of A in B. Any Banach manifold (with
boundary) and, in particular, any Lebesgue set corresponding to a regular value
of a C1-functional ϕ is an ANR (see e.g. [14]).

Very important for us is the fact that, for ANR’s, the notions of deformation
retract and strong deformation retract coincide. In fact, the following stronger
assertion holds (see [16]).

Lemma 2.2. Let B be an ANR, A ⊆ B a closed subset of B such that A
is also an ANR. Then A is a strong deformation retract of B if and only if the
inclusion i : A ↪→ B is a homotopy equivalence.

With the aid of Lemma 2.2 one gets some useful information about the
homotopy type of the Lebesgue sets of the functional ϕ in a neighbourhood of
an essential critical value.

Lemma 2.3. Let c ∈ R be an isolated and essential critical value of ϕ. Then
there exist arbitrarily small numbers ε > 0 such that at least one of the two
Lebesgue sets ϕc−ε and ϕc+ε is not contractible in itself.
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Proof. We fix ε > 0 in such a way that the interval [c − ε, c + ε] does not
contain critical values of ϕ different from c, and the Lebesgue set ϕc−ε is not
a strong deformation retract of the Lebesgue set ϕc+ε. Since c + ε and c − ε

are regular values of ϕ, the Lebesgue sets ϕc−ε and ϕc+ε are closed ANR’s and,
by Lemma 2.2, we have that the inclusion i : ϕc−ε ↪→ ϕc+ε is not a homotopy
equivalence.

We assume now that both ϕc−ε and ϕc+ε are contractible in itself. In this
case any continuous map f : ϕc−ε → ϕc+ε, and, in particular, the inclusion map
is a homotopy equivalence [16], a contradiction. �

We recall now a classical result from Lusternik–Schnirel’man Theory (see
e.g. [15]). In what follows CatB(A) stands for the category of a set A ⊆ B in B.

Lemma 2.4. Let B be an ANR and A ⊆ B. Then there exist a neighbourhood
UA of A in B such that CatB(UA) = CatB(A).

In order to prove the next lemma we use a particular case of Lemma 2.4.
Namely let us assume, under the assumptions of Lemma 2.4, that set A is con-
tractible in itself. Then CatB(A) = 1 and, since subsets of B of category one are
contractible in B, there exists a neighbourhood UA of A which is contractible
in B.

Lemma 2.5. Let m be an isolated critical value of ϕ and let M be contractible
in itself. Then there exist arbitrary small numbers ε > 0 such that the Lebesgue
set ϕm+ε is contractible in itself.

Proof. We fix ε > 0 in such a way that the interval [m,m + ε] does not
contain critical values of ϕ different from m. This implies that ϕm+ε is an
ANR, and, since M ⊆ ϕm+ε is contractible in itself, by Lemma 2.4 there exists
a neighbourhood UM of M in ϕm+ε which is contractible in ϕm+ε.

Let us show now that there exists a δ ∈ (0, ε) such that

M ⊆ ϕm+δ ⊆ UM ⊆ ϕm+ε.

In fact, if this is not the case, there exists a minimizing sequence (xn) ⊆ ϕm+δ \
UM . Now, since ϕ is a C1-functional satisfying the (PS)-condition it follows that
(xn) has a subsequence converging to some x0 ∈ M (see e.g. [3]). Obviously,
x0 /∈ UM . This contradicts the fact that M ⊆ UM .

Finally, by Lemma 2.1, ϕm+δ ⊆ UM is a strong deformation retract of ϕm+ε

and UM is contractible in ϕm+ε; from this it follows immediately that ϕm+ε is
contractible in itself. �

3. Proof of the main result (TCVT)

We start by assuming that m and c are isolated critical values of ϕ, for
otherwise the theorem is proved. Since c > m is an essential critical value of ϕ,
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by Lemma 2.3 there exist arbitrarily small numbers ε > 0 such that at least one
of the two Lebesgue sets ϕc+ε and ϕc−ε is not contractible in itself.

Let us assume first, that ϕc+ε is not contractible in itself. From Proposi-
tion 2.2 it follows that ϕ has a third critical value c1 > c.

Now we assume that ϕc−ε is not contractible in itself and that the set of
minimum point M is contractible in itself. Then, by Lemma 2.5, there exist
sufficiently small numbers η > 0 such that the Lebesgue set ϕm+η is contractible
in itself. On the other hand, ϕm+η cannot be a strong deformation retract of
the noncontractible set ϕc−ε. Thus, by Proposition 2.1, functional ϕ has a third
critical value c1 ∈ (m, c).

The TCPT as stated is perhaps too general and not very handy to be used
in the study of nonlinear problems. It is clear, however, that any statement
implying the existence of an essential critical value c > m of a functional ϕ will
give a corresponding variant of TCPT. In order to illustrate this point let us give
the following two results.

Proposition 3.1. Let x0 be a strict local minimum of the functional ϕ.
Then c = ϕ(x0) is an essential critical value of ϕ.

Proof. Let B% (S%) be the ball (sphere) in the space X with the center at
x0 and radius % > 0. Since ϕ is a C1-functional satisfying the (PS)-condition and
x0 is a strict local minimum of ϕ, it follows (see e.g. [3]) that for each sufficiently
small % > 0

inf
S%

ϕ(x) = c% > c, inf
B%

ϕ(x) = c.

Obviously, c% tends to c as % tends to zero. We fix ε = ε% ∈ (0, c% − c). Then
the component of the Lebesgue set ϕc+ε which contains the point x0 does not
meet the Lebesgue set ϕc−ε. Hence, ϕc−ε is not a strong deformation retract of
ϕc+ε. Since ε can be chosen arbitrarily small, this means that c = ϕ(x0) is an
essential critical value of ϕ. �

Proposition 3.2. Let X = V−+̇V+, where 0 < dim V− < ∞ and assume
that there exist an arbitrarily small % > 0 such that

inf
||x||=%

ϕ(x) > 0 (x ∈ V+),(1)

sup
||x||=%

ϕ(x) < 0 (x ∈ V−).(2)

Then c = 0 is an essential critical value of ϕ.

Proof. First, we note that ϕ(0) = 0 and, moreover, 0 is a critical point of ϕ
under conditions (1) and (2).

Let B−
% (S−% ) be the ball (sphere) in the subspace V− with zero center and

radius % > 0, and B+
% (S+

% ) be the ball (sphere) in the subspace V+ with zero
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center and radius % > 0. We set

c−% = sup
S−%

ϕ(x), c+% = inf
S+

%

ϕ(x).

Obviously, c−% and c+% tend to zero as % tends to zero. We fix % > 0 and ε =
ε% ∈ (0,min{c−% , c+% }) such that (1) and (2) hold. Let h : [0, 1] × ϕε → ϕε be
a deformation for which

ht(x) = x (x ∈ ϕ−ε, t ∈ [0, 1]).

Consider the continuous mapping η : [0, 1]×B−
% → R×V− defined by means of

the formula
η(t, x) = (||Qht(x)||, Pht(x)),

where P and Q are orthoprojectors on the subspaces V− and V+, correspond-
ingly. (This construction is borrowed from the preprint version of [13]). Then
η(0, x) = (0, x) for x ∈ B−

% , and η(t, x) = (0, x) for x ∈ S−% and t ∈ [0, 1].
Moreover, by virtue of (1) and the choice of ε, the relation (%, 0) /∈ Im η is true.

Now we show that there exist σ ∈ [0, %] and y ∈ B−
% such that η(1, y) = (σ, 0).

In fact, the homotopy H : [0, 1]× ([−1, 1]×B−
% ) → R× V− defined by

Ht(s, x) = η(t, x) + (s, 0),

satisfies the conditions

H0(s, x) = (s, x) ((s, x) ∈ [−1, 1]×B−
% ),

(0, 0) /∈ Ht(∂([−1, 1]×B−
% )) (t ∈ [0, 1]).

Thus, deg (H1( · , · ), [−1, 1] × B−
% , (0, 0)) = 1, and therefore η(1, y) = (σ, 0) for

some suitable y ∈ B−
% . But in this case h1(y) /∈ ϕ−ε and this means that ϕ−ε is

not a strong deformation retract of ϕε and, since ε = ε% can be chosen arbitrarily
small, c = 0 is an essential critical value of ϕ. �

Remark 3.1. Under the hypotheses of Proposition 3.2, for the point zero,
considered as a critical point of the vector field ∇ϕ, we may have ind (∇ϕ, 0) = 0.
Related examples can be given already in R3.

Remark 3.2. More general principles on the existence of essential critical
values can be obtained with the aid of different kinds of linking conditions (see
e.g. [3], [12], [13]).

4. Nontrivial solutions of Hammerstein equations

We apply the results above to the problem of the existence of nontrivial
solutions to a Hammerstein nonlinear integral equation

(3) x(t) =
∫

Ω

k(t, s) f(s, x(s)) ds,
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where Ω ⊆ Rm is a bounded domain, k(t, s) : Ω × Ω → R is a measurable,
symmetric kernel and the function f(s, u) : Ω×R → R satisfies the Caratheodory
conditions.

Equation (3) can be rewritten in the operator form x = KFx, where F is
the nonlinear superposition operator generated by the Caratheodory function
f(s, u), i.e.

Fx(s) = f(s, x(s)),

and K is the linear integral operator

Kx(t) =
∫

Ω

k(t, s)x(s) ds,

generated by the kernel k(t, s).
In what follows we assume that K is a selfadjoint positive definite and com-

pact operator acting in L2. In particular, the spectrum σ(K) of K consists of
a countable set of positive characteristic eigenvalues λ1 > λ2 > . . . of finite
multiplicity, and zero is the only point of accumulation.

Let 〈 · , · 〉 and || · || = 〈 · , · 〉1/2 stand for the scalar product and norm in L2,
respectively, and let ϕ : L2 → R be the Golomb functional generated by K and
F , i.e.,

ϕ(h) =
1
2
〈h, h〉 −

∫
Ω

φ(s,Hh(s)) ds,

where H = K1/2 is the square root of K and

φ(s, u) =
∫ u

0

f(s, v) dv,

is the potential generated by f(s, u).
Let us assume that for some p ∈ [2,∞) and p′ = p/(p − 1), the operator K

acts and is compact as an operator from Lp′ into Lp. Furthermore, we suppose
that operator F acts from Lp into Lp′ ; the latter means that function f(s, u)
satisfies an inequality

|f(s, u)| ≤ m(s) + b|u|p−1,

with m(s) ∈ Lp and b <∞.
Under these assumptions (see [9], [18]), the Golomb functional ϕ is C1-

smooth in L2, and each critical point h∗ of ϕ defines a solution x∗ = Hh∗

to the Hammerstein equation (3).
In the case when the nonlinearity φ(s, u) satisfies the following one-sided

growth conditions

φ(s, u) ≤ n(s) +
1
2
au2,

with n(s) ∈ L1 and a < ||K||−1, the Golomb functional is lower bouded and
satisfies the (PS)-condition. Therefore, ϕ attains its minimum in L2 so that
equation (3) has at least one solution in Lp (see e.g. [9], [18]).
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Now assume that function f(s, u) may be represented in a form

(4) f(s, u) = a(s)u+ w(s, u),

where a(s) ∈ Lp/(p−2) and w(s, u) satisfies the following special condition: for
each ε > 0 there exist aε(s) ∈ Lp/(p−2) and bε such that ||aε||Lp/(p−2) < ε and

|w(s, u)| ≤ aε(s)|u|+ bε|u|p−1,

the latter guarantees that the Golomb functional ϕ is twice differentiable at zero
and

(5) ∇2ϕ(0) = I − H̃AH,

where H̃ is the natural extension of H on Lp′ and

Ax(s) = a(s)x(s).

It should be pointed out that the spectrum σ(H̃AH) of the operator H̃AH in
L2 coincides with the spectrum σ(KA) of the operator KA in Lp.

In the case when the spectrum of the operator KA does not belong to the
interval (−∞, 1] zero is a critical point of the Golomb functional, but it is not
a minimum point. Hence, equation (3) has at least one nontrivial solution (see
[19]).

Under some additional assumptions on the nonlinearity the TCVT gives the
existence of at least two nontrivial solutions of the Hammerstein equation (3).

We set

(6) ω(s, u) =
∫ u

0

w(s, t) dt.

Theorem 4.1. Let us assume that σ(KA)∩ [1,∞) 6= ∅, and that one of the
following three conditions holds:

(a) 1 /∈ σ(KA).
(b) 1 ∈ σ(KA) and the condition

(7) ω(s, u) ≥ a|u|p (|u| ≤ u(s)), −ω(s, u) ≤ L|u|p (|u| > u(s)),

holds for some a > 0, L < ∞, and some measurable positive func-
tion u(s).

(c) 1 ∈ σ(KA), eigenfunctions of KA corresponding to eigenvalues from
[1,∞) belong to L

ep, and the condition

(8) ω(s, u) ≥ a|u|ep (|u| ≤ u(s)), −ω(s, u) ≤ L|u|ep (|u| > u(s)),

holds for some a > 0, p < p̃ < ∞, and some measurable positive
function u(s).
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Then the Hammerstein equation (3) has at least two nontrivial solutions which
belong to Lp.

Proof. We will show that c = 0 is an essential critical value of the Golomb
functional ϕ in the Hilbert space X = L2 and that infX ϕ < 0.

As a matter of fact, we will actually show that the conditions of Proposi-
tion 3.2 are fulfilled. Indeed, let us rewrite ϕ in the form

ϕ(h) =
1
2
〈(I − H̃AH)h, h〉 − ψ(h),

where

ψ(h) =
∫

Ω

ω(s,Hh(s)) ds.

We notice that ψ(h) = o(||h||2) as ||h|| → 0 and the Hessian of ϕ at zero is given
by ∇2ϕ(0) = I − H̃AH. Under the assumptions of Proposition 3.2 we have
X = V−⊕V+, where V+ is the positive invariant subspace of I − H̃AH and V−

is its orthogonal complement. With this choice of V+, ϕ satisfies condition (1) of
Proposition 3.2. It only remains to show that also condition (2) of Proposition 3.2
is satisfied as well. Also 0 < dim V− <∞ holds.

First, we assume that (a) holds. Then (2) is automatically satisfied since
1 /∈ σ(KA) implies that operator I − H̃AH is invertible and therefore V− is the
negative invariant subspace of I − H̃AH.

Now we assume that (b) holds. In this case the Hessian ∇2ϕ(0) = I − H̃AH
has a nontrivial kernel and V− is the direct sum of the invariant negative subspace
and the kernel itself. It is not hard to see that condition (2) holds if we show,
under assumption (7), the existence of % > 0 such that ψ(h) > 0 for any 0 <
||h|| ≤ %, h ∈ V−.

By virtue of (7)∫
Ω

ω(s,Hh(s)) ds =
∫

Ω\D(h)

ω(s,Hh(s)) ds+
∫

D(h)

ω(s,Hh(s)) ds

≥ a

∫
Ω\D(h)

|Hh(s)|p ds− L

∫
D(h)

|Hh(s)|p ds

= a

∫
Ω

|Hh(s)|p ds− (a+ L)
∫

D(h)

|Hh(s)|p ds

= a||Hh(s)|Lp||p − (a+ L)
∫

D(h)

|Hh(s)|p ds,

where

D(h) = {s ∈ Ω : |Hh(s)| > u(s)}.

Taking into account that there exists a positive number ν such that

||Hh(s)|Lp|| ≥ ν||h|| (h ∈ V−),
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and, furthermore, there exists a function e(s) ∈ Lp such that

|Hh(s)| ≤ ||h||e(s) (h ∈ V−),

we obtain

(9) ψ(h) =
∫

Ω

ω(s,Hh(s)) ds ≥
(
aνp − (a+ L)

∫
T (||h||)

e(s)p ds

)
||h||p,

where
T (r) = {s ∈ Ω : re(s) > u(s)}.

It is evident that mesT (r) → 0 as r → 0. Thus, this relation and the absolute
continuity property of the Lebesgue integral imply that

lim
r→0

∫
T (r)

e(s)p ds = 0.

Hence, there exists a % > 0 such that the inequality (9) implies the inequality
ψ(h) > 0 (||h|| ≤ %) and, therefore,

ϕ(h) =
1
2
〈(I − H̃AH)h, h〉 − ψ(h) < 0 (||h|| ≤ %, h ∈ V−).

In other words, condition (2) of Proposition 3.2 is satisfied.
The case when condition (c) holds is proved in a similar way; it is sufficient

to remark that H in this case acts from L2 into L
ep. �

Finally, let us remark that Theorem 4.1 can be generalized to Hammerstein
equations with kernels which have a finite number of negative eigenvalues and
also to systems of Hammerstein equations on ideal spaces of vector-functions
(see e.g. [2]).
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