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MULTIPLICITY RESULTS OF AN ELLIPTIC EQUATION
WITH NON–HOMOGENEOUS BOUNDARY CONDITIONS

A. M. Candela — A. Salvatore

1. Introduction

In this paper we study the nonlinear elliptic problem

(1.1)

{
∆u + |u|p−2 u = 0 in Ω,

u = g on ∂Ω,

where Ω is an open smooth bounded subset of RN , N ≥ 2, g : ∂Ω → R is a given
continuous function and p > 2 is fixed.

If g ≡ 0, it is well known that (1.1) has infinitely many distinct solutions
for 2 < p < 2N/(N − 2) if N ≥ 3 or p > 2 if N = 2. Such results have been
proved by using variational methods also for more general odd nonlinearities at
the beginning of 70’s (see e.g. [2], [3], [6], [9], [11] and references therein). In all
these papers a fundamental role is played by the fact that the energy functional
is even in a Banach space, hence it is possible to use a modified version of
the classical Ljusternik–Schnirelman theory and the properties of the genus for
symmetric sets.

On the contrary, if g 6≡ 0 the more general boundary value problem (1.1) loses
its symmetry and the previous recalled arguments do not hold. In fact, it is well
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known that the solutions of (1.1) are critical points of the energy functional

(1.2) I∗(u) =
1
2

∫
Ω

|∇u|2dx− 1
p

∫
Ω

|u|p dx

in E = {u ∈ H1(Ω) : u = g on ∂Ω}, and I∗ is not invariant under a group
of symmetries in such a set.

However, we prove that it is possible to apply the perturbation results de-
veloped by Bahri and Berestycki (cf. [4]), Rabinowitz (cf. [10]), Struwe (cf. [13]);
then, for p > 2 but not too larger, the existence of infinitely many solutions
of (1.1) with higher and higher energy will be stated.

Indeed the following theorem holds:

Theorem 1.1. If g is continuous in ∂Ω and

(1.3) 2 < p < 2(N + 1)/N,

then the elliptic problem (1.1) has infinitely many classical solutions (un)n∈N

such that

lim
n→∞

I∗(un) = +∞.

The idea of using perturbation methods for solving nonlinear boundary value
problems was introduced by Struwe (cf. [12]), while Ekeland, Ghoussoub and Te-
herani use perturbative methods in order to prove the existence of infinitely many
solutions of a second order Hamiltonian system joining two given points (cf. [8];
see also [5] for a generalization).

Remark 1.2. The result in Theorem 1.1 holds for all N ≥ 2 under the hy-
pothesis (1.3) which arises from the pertubative methods used in the proof. In
any case such condition seems a natural extension of the hypothesis 2 < p < 4
which is introduced in [8] for solving the problem corresponding to (1.1) in
the particular case N = 1.

2. Variational setting and perturbed functional

Let

‖u‖ =
( ∫

Ω

|∇u|2 dx

)1/2

, |u|p =
( ∫

Ω

|u|p dx

)1/p

and |u|∞ = sup
x∈Ω

|u(x)|

be the standard norms of H1
0 (Ω), respectively Lp(Ω), C(Ω).

Since our aim is to give a suitable variational approach to the problem (1.1),
we state the following results.
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Proposition 2.1. For any continuous function g : ∂Ω → R there exists
a unique function φ : Ω → R such that φ ∈ C2(Ω) ∩ C(Ω) and

(2.1)

{
∆φ = 0 in Ω,

φ = g on ∂Ω.

Proof. By a generalization of Weierstrass Theorem (see [13, Theorem 1.2])
the functional

L(u) =
1
2

∫
Ω

|∇u|2 dx, u ∈ E,

attains its infimum at a point φ ∈ E. Classical results imply that φ is the only
smooth solution of (2.1). �

From now on, fixed g ∈ C(∂Ω), let φ be a smooth solution of the correspond-
ing problem (2.1). It is easy to see that the following lemma holds.

Lemma 2.2. The following items are equivalent:

(i) the function u = u(x) is a classical solution of the problem (1.1),
(ii) the function v = v(x) is a classical solution of the following Dirichlet

problem:

(2.2)

{
∆v + |v + φ|p−2(v + φ) = 0 in Ω,

v = 0 on ∂Ω,

where it is u(x) = v(x) + φ(x) for all x ∈ Ω.

By Lemma 2.2 we are interested in classical solutions of the Dirichlet prob-
lem (2.2), then, by standard regularity arguments, it is enough to prove the ex-
istence of infinitely many critical points of the functional

(2.3) I(v) =
1
2

∫
Ω

|∇v|2 dx− 1
p

∫
Ω

|v + φ|p dx

in the Sobolev space H1
0 (Ω).

Since the functional (2.3) is not even, the classical Symmetric Mountain Pass
Theorem, or some of its generalizations, can not apply (see e.g. [11]). Hence,
arguing as in [8] or [10], it is necessary to introduce a modified functional whose
critical levels are related to those ones of (2.3).

Let Φ ∈ C∞(R, [0, 1]) be a decreasing cut–function such that

(2.4) Φ(s) =

{
1 if s ≤ 1,

0 if s ≥ 2,

and Φ′(s) ∈ ]−2, 0[ for all s ∈ ]1, 2[. Let A = A(p, φ) > 0 be a suitable constant
(for more details, see Remark 2.11). Define the modified functional

(2.5) J(v) =
1
2

∫
Ω

|∇v|2 dx− 1
p

∫
Ω

|v|p dx− Ψ(v)
p

∫
Ω

(|v + φ|p − |v|p) dx,
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v ∈ H1
0 (Ω), where it is

(2.6)
Ψ(v) = Φ(H(v)), H(v) =

1
Q(v)

∫
Ω

|v + φ|p dx,

Q(v) = 2pA(I2(v) + 1)1/2.

It can be easily proved that J is a C1-functional in the Sobolev space H1
0 (Ω).

Remark 2.3. By definition (2.4) it follows that

v ∈ H1
0 (Ω), H(v) < 1 ⇒ J(v) = I(v), J ′(v) = I ′(v).

Before proving the propositions which justify the introduction of (2.5), let us
give the following technical lemma.

Lemma 2.4. Let a, b ≥ 0 be fixed and consider q > 1. Then for every ε > 0
there exists β(ε) > 0 such that β(ε) → +∞ if ε → 0 and

(2.7) aq−1b ≤ εaq + β(ε)bq.

Proof. Let ε > 0 be fixed. By the well known Young inequality there
results

aq−1b = (εµ)1/µaq−1 b

(εµ)1/µ
≤ εaµ(q−1) +

1
ν

(
b

(εµ)1/µ

)ν

,

for any µ, ν > 1 such that 1/µ + 1/ν = 1. Then by choosing µ = q/(q − 1) it is
ν = q and (2.7) follows if we assume

(2.8) β(ε) =
1
q

(
q − 1
εq

)q−1

. �

Proposition 2.5. If the constant A is large enough, then every critical point
of I is also a critical point of the modified functional J .

Proof. By Remark 2.3 we have just to prove that, for A large enough, if v

is a critical point of I in H1
0 (Ω) then H(v) ≤ 1/2, that is∫

Ω

|v + φ|pdx ≤ pA(I2(v) + 1)1/2.

Let v ∈ H1
0 (Ω) be such that I ′(v) = 0. Taken any ε > 0, by Lemma 2.4 there

results

I(v) = I(v)− 1
2

I ′(v)[v]

=
p− 2
2p

∫
Ω

|v + φ|p dx− 1
2

∫
Ω

|v + φ|p−2(v + φ)φ dx

≥ p− 2
2p

∫
Ω

|v + φ|p dx− 1
2

∫
Ω

|v + φ|p−1|φ| dx

≥ p− 2
2p

∫
Ω

|v + φ|p dx− ε

2

∫
Ω

|v + φ|p dx− 1
2
β(ε)

∫
Ω

|φ|p dx.
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Choosing ε = (p− 2)/2p, then the inequality

I(v) ≥ p− 2
4p

∫
Ω

|v + φ|p dx− 1
2

β(ε)
∫

Ω

|φ|p dx

implies ∫
Ω

|v + φ|p dx ≤ 4p

p− 2

(
I(v) +

1
2
β(ε)|φ|pp

)
.

Setting

(2.9) γ0 = max
{

1,
1
2
β(ε)|φ|pp

}
,

it is ∫
Ω

|v + φ|p dx ≤ 4p

p− 2
γ0(|I(v)|+ 1) ≤ p

4
√

2
p− 2

γ0(I2(v) + 1)1/2.

Hence, the condition

(2.10) A ≥ 4
√

2
p− 2

γ0

concludes the proof. �

Remark 2.6. By (2.8) and (2.9) Proposition 2.5 holds if A verifies (2.10)
with

(2.11) γ0 = max
{

1,
1
2p

(
2
p− 1
p− 2

)p−1

|φ|pp
}

.

Proposition 2.7. If the constant A is large enough, then there exists M0 >0
such that if v ∈ H1

0 (Ω) is a critical point of J and J(v) ≥ M0, then v is a critical
point of I and I(v) = J(v).

For the proof of Proposition 2.7 the following lemmas need.

Lemma 2.8. There exist two positive constants c1 and c2 such that∣∣∣∣ ∫
Ω

(|v + φ|p − |v|p) dx

∣∣∣∣ ≤ c1|I(v)|(p−1)/p + c2 for all v ∈ suppΨ.

Proof. By Lagrange Theorem and some simple inequalities for any v ∈
H1

0 (Ω) there exists θ ∈ [0, 1] such that∣∣∣∣ ∫
Ω

(|v + φ|p − |v|p) dx

∣∣∣∣ = p

∣∣∣∣ ∫
Ω

|v + θφ|p−2(v + θφ)φdx

∣∣∣∣
≤ p

∫
Ω

|v + θφ|p−1|φ| dx

≤ 2p−2p

∫
Ω

|v + φ|p−1|φ| dx + 2p−2p

∫
Ω

|φ|p dx

≤ 2p−2p|φ|p
( ∫

Ω

|v + φ|p dx

)(p−1)/p

+ 2p−2p|φ|pp.
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If v ∈ suppΨ, that is H(v) ≤ 2, then

(2.12)
∫

Ω

|v + φ|p dx ≤ 4pA(I2(v) + 1)1/2 ≤ 4pA(|I(v)|+ 1);

moreover, it is

(|I(v)|+ 1)(p−1)/p ≤ 2(p−1)/p(|I(v)|(p−1)/p + 1).

Hence the conclusion follows by the previous inequalities. �

Lemma 2.9. There exist M1 > 0 and ρ > 0 such that for any M ≥ M1 there
results

v ∈ suppΨ, J(v) ≥ M ⇒ I(v) ≥ ρM.

Proof. Let v ∈ suppΨ. By

(2.13) J(v) = I(v) +
1
p
(1−Ψ(v))

∫
Ω

(|v + φ|p − |v|p) dx

and 0 ≤ Ψ(v) ≤ 1, Lemma 2.8 implies

I(v) = J(v)− 1
p
(1−Ψ(v))

∫
Ω

(|v + φ|p − |v|p) dx

≥ J(v)−
∣∣∣∣ ∫

Ω

(|v + φ|p − |v|p) dx

∣∣∣∣ ≥ J(v)− c1|I(v)|(p−1)/p − c2.

Hence

(2.14) I(v) + c1|I(v)|(p−1)/p ≥ J(v)− c2.

Moreover, as c2 > 0 is fixed, there exists M1 > 0 such that if M ≥ M1 and
J(v) ≥ M it is

(2.15) J(v)− c2 ≥ M/2.

Then (2.14) and (2.15) imply

(2.16) I(v) + c1|I(v)|(p−1)/p ≥ M/2.

If I(v) ≤ 0 then (2.16) gives

c1|I(v)|(p−1)/p ≥ M/2 + |I(v)|;

on the other hand, by Young inequality there results

c1|I(v)|(p−1)/p ≤ cp
1

p
+

p− 1
p

|I(v)|;

whence

(2.17) cp
1 − pM/2 ≥ |I(v)|.
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Since we can choose M1 so large that cp
1 − pM1/2 < 0, then (2.17) is impossible

and it is I(v) > 0, hence (2.16) becomes

(2.18) I(v) + c1I
(p−1)/p(v) ≥ M/2.

By (2.18) it follows that

I(v) ≥ M

2(1 + c1)
or I(p−1)/p(v) ≥ M

2(1 + c1)
;

so if M1 > 1 there results

I(v) ≥ ρM, ρ =
(

1
2(1 + c1)

)p/p−1

. �

In order to study the critical points of J we examine the expression of J ′(v).
By definitions (2.5), (2.6) and simple calculations it follows

J ′(v)[v] =
∫

Ω

|∇v|2 dx−
∫

Ω

|v|p dx

+ 4pA2 Φ′(H(v))H(v)I(v)
Q2(v)

I ′(v)[v]
∫

Ω

(|v + φ|p − |v|p) dx

− Φ′(H(v))
Q(v)

∫
Ω

|v + φ|p−2(v + φ)v dx

∫
Ω

(|v + φ|p − |v|p) dx

−Ψ(v)
∫

Ω

(|v + φ|p−2(v + φ)v − |v|p)dx.

Assuming

T1(v) = 4pA2 Φ′(H(v))H(v)I(v)
Q2(v)

∫
Ω

(|v + φ|p − |v|p) dx,

T2(v) =
Φ′(H(v))

Q(v)

∫
Ω

(|v + φ|p − |v|p) dx + T1(v),

by

I ′(v)[v] =
∫

Ω

|∇v|2 dx−
∫

Ω

|v + φ|p−2(v + φ)v dx

there results

(2.19) J ′(v)[v] = (1 + T1(v))
∫

Ω

|∇v|2 dx− (1−Ψ(v))
∫

Ω

|v|p dx

− (T2(v) + Ψ(v))
∫

Ω

|v + φ|p−2(v + φ)v dx.

Lemma 2.10. If v ∈ H1
0 (Ω) is such that J(v) ≥ M and M → +∞ then

T1(v) and T2(v) go to 0, that is for every δ > 0 there exists M > 0 large enough
such that

v ∈ H1
0 (Ω), J(v) ≥ M ⇒ |T1(v)| ≤ δ, |T2(v)| ≤ δ.
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Proof. Let M1 be as in Lemma 2.9. Let v ∈ H1
0 (Ω) be such that J(v) ≥ M

and M ≥ M1. If v /∈ suppΨ, the proof is trivial.
Let v ∈ suppΨ. Then 0 ≤ H(v) ≤ 2 and |Φ′(H(v))| ≤ 2; moreover, by

Lemma 2.9, it is I(v) > 0. Lemma 2.8 and (2.6) imply

|T1(v)| =4pA2 |Φ′(H(v))|H(v)I(v)
Q2(v)

∣∣∣∣ ∫
Ω

(|v + φ|p − |v|p) dx

∣∣∣∣
≤ 16pA2 I(v)

Q2(v)
(c1 I(p−1)/p(v) + c2) =

4I(v)
p (I2(v) + 1)

(c1 I(p−1)/p(v) + c2).

Hence

(2.20) |T1(v)| ≤ 4(c1 I−1/p(v) + c2I
−1(v)).

In a similar way there results

(2.21)
|Φ′(H(v))|

Q(v)

∣∣∣∣ ∫
Ω

(|v + φ|p − |v|p) dx

∣∣∣∣ ≤ 1
pA

(c1 I−1/p(v) + c2I
−1(v)).

Thus Lemma 2.9, (2.20) and (2.21) imply the proof. �

Proof of Proposition 2.7. Let v ∈ H1
0 (Ω) be such that J ′(v) = 0.

By (2.19) and simple calculations it is

I(v) = I(v)− J ′(v)[v]
2(1 + T1(v))

= − 1
p

∫
Ω

|v + φ|p dx +
1−Ψ(v)

2(1 + T1(v))

∫
Ω

|v|p dx

+
T2(v) + Ψ(v)
2(1 + T1(v))

∫
Ω

|v + φ|p−2(v + φ)v dx

=
(

1
2
− 1

p

)
T2(v) + Ψ(v)

1 + T1(v)

∫
Ω

|v + φ|p dx− T1(v)− T2(v)
2(1 + T1(v))

∫
Ω

|v|p dx

− T2(v) + Ψ(v)
2(1 + T1(v))

∫
Ω

|v + φ|p−2(v + φ)φdx

+
1
p

(
T2(v) + Ψ(v)

1 + T1(v)
− 1

) ∫
Ω

(|v + φ|p − |v|p) dx

−
(

1
2
− 1

p

)(
T2(v) + Ψ(v)

1 + T1(v)
− 1

) ∫
Ω

|v|p dx.

By Lagrange Theorem there exists θ ∈ [0, 1] such that

I(v) =
(

1
2
− 1

p

)
T2(v) + Ψ(v)

1 + T1(v)

∫
Ω

|v + φ|p dx− T1(v)− T2(v)
2(1 + T1(v))

∫
Ω

|v|p dx

− T2(v) + Ψ(v)
2(1 + T1(v))

∫
Ω

|v + φ|p−2(v + φ)φdx

+
(

T2(v) + Ψ(v)
1 + T1(v)

− 1
) ∫

Ω

|v + θφ|p−2(v + θφ)φ dx
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−
(

1
2
− 1

p

)(
T2(v) + Ψ(v)

1 + T1(v)
− 1

) ∫
Ω

|v + φ|p dx

+ p

(
1
2
− 1

p

)(
T2(v) + Ψ(v)

1 + T1(v)
− 1

) ∫
Ω

|v + θφ|p−2(v + θφ)φ dx

=
(

1
2
− 1

p

) ∫
Ω

|v + φ|p dx− T1(v)− T2(v)
2(1 + T1(v))

∫
Ω

|v|p dx

− T2(v) + Ψ(v)
2(1 + T1(v))

∫
Ω

|v + φ|p−2(v + φ)φdx

+
p

2

(
T2(v) + Ψ(v)

1 + T1(v)
− 1

) ∫
Ω

|v + θφ|p−2(v + θφ)φdx.

By Lemma 2.10 there exists M2 ≥ M1 such that if J(v) ≥ M2 then∣∣∣∣T2(v) + Ψ(v)
1 + T1(v)

∣∣∣∣ ≤ 2,

∣∣∣∣T2(v) + Ψ(v)
1 + T1(v)

− 1
∣∣∣∣ ≤ 2.

Moreover, p > 2 implies

|v + θφ|p−1 ≤ 2p−2(|v + φ|p−1 + |φ|p−1), |v|p ≤ 2p−1(|v + φ|p + |φ|p).

Therefore, by Lemma 2.4, for any ε > 0 there results

I(v) ≥ p− 2
2p

∫
Ω

|v + φ|p dx− 2p−1

∣∣∣∣T1(v)− T2(v)
2(1 + T1(v))

∣∣∣∣ ∫
Ω

(|v + φ|p + |φ|p) dx

−
∫

Ω

|v + φ|p−1|φ| dx− p2p−2

∫
Ω

(|v + φ|p−1 + |φ|p−1)|φ| dx

=
(

p− 2
2p

− 2p−2

∣∣∣∣T1(v)− T2(v)
1 + T1(v)

∣∣∣∣) ∫
Ω

|v + φ|p dx

− (1 + p2p−2)
∫

Ω

|v + φ|p−1|φ| dx

− 2p−2

(∣∣∣∣T1(v)− T2(v)
1 + T1(v)

∣∣∣∣ + p

) ∫
Ω

|φ|p dx

≥
(

p− 2
2p

− 2p−2

∣∣∣∣T1(v)− T2(v)
1 + T1(v)

∣∣∣∣) ∫
Ω

|v + φ|p dx

− (1 + p2p−2)
∫

Ω

(ε|v + φ|p + β(ε)|φ|p) dx

− 2p−2

(∣∣∣∣T1(v)− T2(v)
1 + T1(v)

∣∣∣∣ + p

)
|φ|pp

=
(

p− 2
2p

− 2p−2

∣∣∣∣T1(v)− T2(v)
1 + T1(v)

∣∣∣∣− ε(1 + p2p−2)
) ∫

Ω

|v + φ|p dx

−
(

(1 + p2p−2)β(ε) + 2p−2

(∣∣∣∣T1(v)− T2(v)
1 + T1(v)

∣∣∣∣ + p

))
|φ|pp.
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Let ε∗ = (p−2)/8p(1+p2p−2). By Lemma 2.10 there exists M3 ≥ M2 such that
if J(v) ≥ M3 then

2p−2

∣∣∣∣T1(v)− T2(v)
1 + T1(v)

∣∣∣∣ ≤ p− 2
8p

,

hence

I(v) ≥ p− 2
4p

∫
Ω

|v + φ|p dx−
(

(1 + p2p−2)β(ε∗) +
p− 2
8p

+ p2p−2

)
|φ|pp

which implies∫
Ω

|v + φ|p dx ≤ 4p

p− 2

[
I(v) +

(
(1 + p2p−2)β(ε∗) +

p− 2
8p

+ p2p−2

)
|φ|pp

]
.

Whence, if

(2.22) γ1 = max
{

1,

(
(1 + p2p−2)β(ε∗) +

p− 2
8p

+ p2p−2

)
|φ|pp

}
,

it is ∫
Ω

|v + φ|p dx ≤ p
4
√

2
p− 2

γ1(I2(v) + 1)1/2.

So, if A satisfies

(2.23) A ≥ 4
√

2
p− 2

γ1,

it follows that if v is such that J ′(v) = 0 and J(v) ≥ M3, then H(v) ≤ 1/2
and therefore v is a critical point of I. �

Remark 2.11. By (2.8) and (2.12) it is

γ1 = max
{

1,

(
1
p

(
8

p− 1
p− 2

)p−1

(1 + p2p−2)p +
p− 2
8p

+ p2p−2

)
|φ|pp

}
.

Since by (2.11) there results γ1 ≥ γ0, it follows that (2.23) implies (2.10), then
from now on the constant A introduced in (2.6) is choosen such to satisfy (2.23).

Remark 2.12. The choice of the homogeneous term |v|p−2v needs only in
the proof of Proposition 2.7. On the contrary it can be proved that all the other
results hold also for more general odd superlinear functions.

3. Proof of Theorem 1.1

In order to find infinitely many critical levels of the not-even functional J ,
for several times we will apply a non-symmetric variational principle which was
introduced by Rabinowitz in [10]. For completeness here we recall this theorem
in the version due to Struwe (see [13, Ch. II, Theorem 7.1]).
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Theorem 3.1. Let H be a Hilbert space endowed with the norm ‖ · ‖. Sup-
pose J ∈ C1(H) satisfies the Palais–Smale condition, that is any sequence
(vn)n∈N ⊂ H such that (J(vn))n∈N is bounded and J ′(vn) → 0 has a converging
subsequence. Let V ⊂ H be a finite-dimensional subspace of H and v∗ ∈ H\V ;
moreover, define

V ∗ = V ⊕ span{v∗}, V ∗
+ = {v + tv∗ : v ∈ V, t ≥ 0}.

Suppose

1. J(0) ≤ 0,
2. there exists R > 0 such that for any v ∈ V , ‖v‖ ≥ R implies J(v) ≤

J(0),
3. there exists R∗ ≥ R such that for any v ∈ V ∗, ‖v‖ ≥ R∗ implies

J(v) ≤ J(0),

and let

Γ = {h ∈ C(H,H) : h is odd, h(v) = v if max{J(v), J(−v)} ≤ 0}.

Then, if
α∗ = inf

h∈Γ
sup

v∈V ∗
+

J(h(v)) > α = inf
h∈Γ

sup
v∈V

J(h(v)) ≥ 0,

the functional J possesses a critical value greater than α∗.

Since we have to prove that J satisfies the Palais–Smale condition (at least
at high levels) and the geometrical hypotheses of Theorem 3.1 are satisfied, we
state the following lemmas.

Lemma 3.2. There exist two positive constants c1 and c2 such that∣∣∣∣ ∫
Ω

(|v + φ|p − |v|p) dx

∣∣∣∣ ≤ c1 |J(v)|(p−1)/p + c2 for all v ∈ suppΨ.

Proof. By (2.13) and simple inequalities it is

|I(v)|(p−1)/p ≤ 2(p−1)/p

(
|J(v)|(p−1)/p +

∣∣∣∣ ∫
Ω

(|v + φ|p − |v|p) dx

∣∣∣∣(p−1)/p)
,

hence by Lemma 2.8 it follows∣∣∣∣ ∫
Ω

(|v + φ|p − |v|p) dx

∣∣∣∣ ≤ 2(p−1)/pc1|J(v)|(p−1)/p

+ 2(p−1)/pc1

∣∣∣∣ ∫
Ω

(|v + φ|p − |v|p) dx

∣∣∣∣(p−1)/p

+ c2.

By a suitable version of Lemma 2.4 for ε = 1/2 there exists a constant c3 > 0
such that

2(p−1)/pc1

∣∣∣∣ ∫
Ω

(|v + φ|p − |v|p) dx

∣∣∣∣(p−1)/p

≤ 1
2

∣∣∣∣ ∫
Ω

(|v + φ|p − |v|p) dx

∣∣∣∣ + c3,

then the conclusion holds. �
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Lemma 3.3. There exists c∗ > 0 such that

|J(v)− J(−v)| ≤ c∗(|J(v)|(p−1)/p + 1) for all v ∈ suppΨ.

Proof. Taken v ∈ suppΨ, by Lagrange Theorem and some calculations it
follows∣∣∣∣ ∫

Ω

(|v − φ|p − |v|p) dx

∣∣∣∣ ≤ 2p−2p

∫
Ω

|v + φ|p−1|φ| dx + 22p−3p

∫
Ω

|φ|p dx,

then, by (2.12) and working as in the proofs of Lemmas 2.8 and 3.2, there exist
c3, c4 > 0 such that

(3.1)
∣∣∣∣ ∫

Ω

(|v − φ|p − |v|p) dx

∣∣∣∣ ≤ c3 |J(v)|(p−1)/p + c4.

Hence the proof follows by the inequality

|J(v)− J(−v)| ≤ Ψ(v)
p

∣∣∣∣ ∫
Ω

(|v + φ|p− |v|p) dx

∣∣∣∣ +
Ψ(−v)

p

∣∣∣∣ ∫
Ω

(|v−φ|p− |v|p) dx

∣∣∣∣,
Lemma 3.2 and (3.1). �

Proposition 3.4. There exists η > 0 such that J satisfies the Palais–Smale
condition in J−1([η,∞[).

Proof. Let M1 > 0 be as in Lemma 2.9 and take η ≥ M1. Let (vn)n∈N be
such that

(3.2) η ≤ J(vn) ≤ k for every n ∈ N, lim
n→∞

J ′(vn) = 0,

for some k > η. Let us assume that, up to subsequences, it is vn ∈ suppΨ for
every n ∈ N (otherwise it is J(vn) = I∗(vn), J ′(vn) = (I∗)′(vn), where I∗ is
defined in (1.2), and I∗ satisfies the Palais–Smale condition). First of all let us
remark that (3.2) implies that there exists k1 > 0 such that

(3.3) I(vn) ≤ k1 for all n ∈ N.

In fact, taken n ∈ N by (2.13) and Lemma 3.2 it follows

I(vn) ≤ J(vn) +
∣∣∣∣ ∫

Ω

(|vn + φ|p − |vn|p) dx

∣∣∣∣
≤ J(vn) + c1|J(vn)|(p−1)/p + c2 ≤ k + c1 k(p−1)/p + c2.

On the other hand (3.2) and Lemma 2.9 imply

(3.4) I(vn) ≥ ρη for all n ∈ N.
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By (2.19) and some calculations it follows

pJ(vn)− J ′(vn)[vn] =
(

p

2
− 1− T1(vn)

) ∫
Ω

|∇vn|2 dx + T2(vn)
∫

Ω

|vn + φ|p dx

− (T2(vn) + Ψ(vn))
∫

Ω

|vn + φ|p−2(vn + φ)φ dx,

while by (2.3) it is

(3.5)
∫

Ω

|vn + φ|p dx =
p

2

∫
Ω

|∇vn|2 dx− pI(vn),

hence there results

pJ(vn) − J ′(vn)[vn]

=
(

p

2
− 1− T1(vn) +

p

2
T2(vn)

) ∫
Ω

|∇vn|2 dx

− (T2(vn) + Ψ(vn))
∫

Ω

|vn + φ|p−2(vn + φ)φdx− pT2(vn)I(vn)

≥
(

p

2
− 1− T1(vn) +

p

2
T2(vn)

) ∫
Ω

|∇vn|2 dx

− |T2(vn) + Ψ(vn)||φ|∞
∫

Ω

|vn + φ|p−1 dx− pT2(vn)I(vn).

By (3.4), (3.5) and simple calculations there exist some positive constants c4, c5

and c6 such that∫
Ω

|vn +φ|p−1 dx ≤ c4

( ∫
Ω

|vn +φ|p dx

)(p−1)/p

≤ c5

( ∫
Ω

|∇vn|2 dx

)(p−1)/p

+c6;

whence

pJ(vn)− J ′(vn)[vn] ≥
(

p

2
− 1− T1(vn) +

p

2
T2(vn)

) ∫
Ω

|∇vn|2 dx

− c5|T2(vn) + Ψ(vn)||φ|∞
( ∫

Ω

|∇vn|2 dx

)(p−1)/p

− c6|T2(vn) + Ψ(vn)||φ|∞ − p|T2(vn)|I(vn).

By Lemma 2.10, choosen δ > 0 such that δ < (p− 2)/(p + 2) and taken η large
enough, for all n ∈ N there results

(3.6) |T1(vn)| ≤ δ, |T2(vn)| ≤ δ, c7 = p/2− 1− (1 + p/2)δ > 0.

Moreover, by (3.3) it is p|T2(vn)|I(vn) ≤ pδk1, then there exist c8, c9 > 0 such
that

(3.7) pJ(vn)− J ′(vn)[vn] ≥ c7‖vn‖2 − c8‖vn‖2(p−1)/p − c9.

Whence (3.2) and (3.7) imply that (vn)n∈N has to be bounded in H1
0 (Ω). Since

by (1.3) it follows p < 2N/(N − 2) if N ≥ 3, then a well known embedding
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theorem implies that there exists v ∈ H1
0 (Ω) such that, up to a subsequence,

vn ⇀ v weakly in H1
0 (Ω) and vn → v strongly in Lp(Ω). Moreover, by

J ′(vn) = − (1 + T1(vn))∆vn − (1−Ψ(vn))|vn|p−2vn

− (T2(vn) + Ψ(vn))|vn + φ|p−2(vn + φ),

(3.2), (3.6) and standard compacteness arguments imply that vn → v strongly
in H1

0 (Ω). �

Now, suitable finite-dimensional subspaces of H1
0 (Ω) have to be introduced.

Let λk be the kth eigenvalue (counting multiplicities) of the linear operator −∆ :
H1

0 (Ω) → H−1(Ω). Let (ϕk)k≥1 denote an orthonormalized set of eigenfunctions
of H1

0 (Ω) such that ϕk is associated with λk, that is −∆ϕk = λkϕk.
Let us recall that by the formula of the asymptotic behaviour of λk it is

(3.8) λk ∼ Ck2/N as k →∞

(see [1] or [7]). For any m ≥ 1, define

Vm = span{ϕ1, . . . , ϕm}, V +
m = {v + tϕm+1 : v ∈ Vm, t ≥ 0}.

Let Γ be as in Theorem 3.1, that is

Γ = {h ∈ C(H1
0 (Ω),H1

0 (Ω)) : h is odd , h(v) = v if max{J(v), J(−v)} ≤ 0}.

Lemma 3.5. For every m ∈ N there exists R(m) > 0 such that for any
v ∈ Vm with ‖v‖ ≥ R(m) it results J(v) ≤ J(0) ≤ 0.

Proof. Let v ∈ Vm. By definition (2.5), Lagrange Theorem and some
calculations it follows

J(v) ≤ 1
2
‖v‖2 − 1

p
|v|pp + 2p−2

∫
Ω

|v|p−1|φ| dx + 2p−2|φ|pp,

then, applying Lemma 2.4, for any ε > 0 it is

J(v) ≤ 1
2
‖v‖2 −

(
1
p
− ε2p−2

)
|v|pp + 2p−2(β(ε) + 1)|φ|pp.

By choosing ε̃ = 1/p2p−1 and since in Vm there exists d = d(m) > 0 such that
|v|p ≥ d‖v‖, there results

J(v) ≤ 1
2
‖v‖2 − dp

2p
‖v‖p + 2p−2(β(ε̃) + 1)|φ|pp

which implies that J(v) → −∞ as v ∈ Vm, ‖v‖ → +∞. �

Remark 3.6. Since Vm ⊂ Vm+1 it is possible to choose R(m) < R(m + 1).

Arguing as in [14], the following result can be proved.
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Proposition 3.7. Let k1 > 0 be given and assume

K(v) =
1
2

∫
Ω

|∇v|2 dx− k1

∫
Ω

|v|p dx, v ∈ H1
0 (Ω).

If N ≥ 3 there exists C0 > 0 such that

inf
h∈Γ

sup
v∈Vm

K(h(v)) ≥ C0 m[p/(p−2)][2/N ],

while if N = 2 for every σ > 0 there exists C0σ > 0 such that

inf
h∈Γ

sup
v∈Vm

K(h(v)) ≥ C0σmp/(p−2)−σ.

Proof of Theorem 1.1. For any m ∈ N, m ≥ 1, define

(3.9) αm = inf
h∈Γ

sup
v∈Vm

J(h(v)), α+
m = inf

h∈Γ
sup

v∈V +
m

J(h(v)).

Since Proposition 3.4, Lemma 3.5 and Remark 3.6 hold, in order to apply The-
orem 3.1 we have just to prove that for some m it is

(3.10) α+
m > αm ≥ η,

where η is as in Proposition 3.4. Let us remark that by Lagrange Theorem
and Lemma 2.4 there exist two positive constants k1 and k2 such that

(3.11) J(v) ≥ 1
2

∫
Ω

|∇v|2 dx− k1

∫
Ω

|v|p dx− k2, v ∈ H1
0 (Ω).

Then (3.11) and Proposition 3.7 imply that, if N ≥ 3, there exist C0 > 0
and m0 ∈ N such that

(3.12) αm ≥ C0 m[p/(p−2)][2/N ] ≥ η for all m ≥ m0,

while if N = 2 for every σ > 0 there exists C0σ > 0 and m0σ ∈ N such that

(3.13) αm ≥ C0σmp/(p−2)−σ ≥ η for all m ≥ m0σ.

Now, let N ≥ 3 and fix m ≥ m0. Obviously Vm ⊂ V +
m implies α+

m ≥ αm,
then (3.10) holds if α+

m 6= αm. Assume

(3.14) α+
m = αm.

By (3.9) and (3.14) for any ε > 0 there exists hε ∈ Γ such that

(3.15) sup
v∈V +

m

J(hε(v)) < αm + ε.

By Lemma 3.5, the Weierstrass Theorem implies that there exists vε
m+1 ∈ Vm+1

such that ‖vε
m+1‖ ≤ R(m + 1) and

J(hε(vε
m+1)) = sup

v∈Vm+1

J(hε(v)).
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Hence there results

(3.16) αm+1 ≤ J(hε(vε
m+1)),

moreover, Vm+1 = V +
m ∪ (−V +

m ) implies vε
m+1 ∈ V +

m or −vε
m+1 ∈ V +

m .
If vε

m+1 ∈ V +
m by (3.15) and (3.16) it follows

(3.17) αm+1 < αm + ε.

On the contrary, if −vε
m+1 ∈ V +

m , (3.15) implies

(3.18) J(hε(vε
m+1)) ≤ sup

v∈V +
m

J(hε(v)) + |J(hε(vε
m+1))− J(hε(−vε

m+1))|

<αm + ε + |J(hε(vε
m+1))− J(hε(−vε

m+1))|.

We claim that there exist m1 ≥ m0 and two positive constants c∗1 and c∗2 such
that for all m ≥ m1 and ε > 0 there results

(3.19) |J(hε(vε
m+1))− J(hε(−vε

m+1))| ≤ c∗1|J(hε(−vε
m+1))|(p−1)/p + c∗2.

The proof of (3.19) is trivial if both hε(vε
m+1) and hε(−vε

m+1) are not in suppΨ.
On the contrary it follows by hε(vε

m+1) = −hε(−vε
m+1) and Lemma 3.3 if

hε(−vε
m+1) ∈ suppΨ. Let

(3.20) hε(−vε
m+1) /∈ suppΨ and hε(vε

m+1) ∈ suppΨ.

By Lemma 3.3 it follows

(3.21) |J(hε(vε
m+1))− J(hε(−vε

m+1))| ≤ c∗(|J(hε(vε
m+1))|(p−1)/p + 1).

Obviously (3.21) implies (3.19) if we prove that there exist m1 ≥ m0 and c∗3, c∗4 >

0 such that

(3.22) |J(hε(vε
m+1))| ≤ c∗3|J(hε(−vε

m+1))|+ c∗4 for all m ≥ m1, ε > 0.

By (2.5), (3.20) and Lemma 3.2 it follows

J(hε(vε
m+1)) ≤ J(hε(−vε

m+1)) +
∣∣∣∣ ∫

Ω

(|hε(vε
m+1) + φ|p − |hε(vε

m+1)|p) dx

∣∣∣∣
≤ J(hε(−vε

m+1)) + c1|J(hε(vε
m+1))|(p−1)/p + c2,

then there results

(3.23) J(hε(vε
m+1))− c1|J(hε(vε

m+1))|(p−1)/p ≤ J(hε(−vε
m+1)) + c2.

By (3.12) and (3.16) it follows that there exists m1 ≥ m0 such that for all
m ≥ m1 and ε > 0 it is c1J

−1/p(hε(vε
m+1)) < 1/2; hence

(3.24) J(hε(vε
m+1))/2 ≤ J(hε(vε

m+1))− c1J
(p−1)/p(hε(vε

m+1)).
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Whence (3.22) follows by (3.23) and (3.24). Now, we prove that there exists
m2 ≥ m1 such that

(3.25) J(hε(−vε
m+1)) > 0 for all m ≥ m2, ε > 0.

Indeed, by (3.19) it is

J(hε(−vε
m+1)) + c∗1|J(hε(−vε

m+1))|(p−1)/p ≥ J(hε(vε
m+1))− c∗2;

then (3.12) and (3.16) imply (3.25).
Let m ≥ m2. By (3.15), (3.18), (3.19) and (3.25) it follows that the inequal-

ities

J(hε(vε
m+1)) <αm + ε + c∗1

(
sup

v∈V +
m

J(hε(v))
)(p−1)/p

+ c∗2

<αm + ε + c∗1(αm + ε)(p−1)/p + c∗2

hold for all ε > 0; whence by (3.16) there results

(3.26) αm+1 ≤ αm + c∗1α
(p−1)/p
m + c∗2.

Obviously by (3.17) this inequality holds even if vε
m+1 ∈ V +

m . Then there exist
m3 ≥ m2 and c∗3 > 0 such that by (3.12) and (3.26) it follows

(3.27) m ≥ m3, αm = α+
m implies αm+1 ≤ αm + c∗3α

(p−1)/p
m .

At last, we are ready to prove that for all m ≥ m3 there exists m ≥ m such that
it is αm 6= α+

m, αm ≥ M0 (M0 as in Proposition 2.7). Arguing by contradiction,
there exists m ≥ m3 such that for all m ≥ m (3.27) holds, then by [4, Lemma 5.3]
there exists c∗4 > 0 such that

(3.28) αm ≤ c∗4m
p for all m ≥ 1.

Hence the contradiction follows by (1.3), (3.12) and (3.28).
Let us remark that if N = 2 the same arguments hold; moreover, (1.3) means

2 < p < 3. Then there exists σ > 0 such that p < p/(p− 2)− σ, whence (3.13)
and (3.28) imply the proof. �
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