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LUSIN PROPERTIES AND
INTERPOLATION OF SOBOLEV SPACES

Fon-Che Liu — Wei-Shyan Tai

1. Introduction and preliminaries

Our purpose is first to survey some results on Lusin properties of functions
together with some applications to show their significance. Then we will give a
new form of the Lusin property for Sobolev functions and apply it to interpolation
of Sobolev spaces.

Let D be a Lebesgue measurable set in Rn and k a nonnegative integer. A
real measurable function u defined on D is said to have the Lusin property of
order k if for any ε > 0 there is a Ck-function g on Rn such that |{x ∈ D :
u(x) 6= g(x)}| < ε, where we use the notation |A| for the Lebesgue measure
of a set A in Rn. Unless explicitly stated otherwise a function defined on a
measurable subset D of Rn will be assumed to be real measurable and finite
almost everywhere on D. For a Ck-function g, the polynomial

πk(g;x, y) :=
∑
|α|≤k

1
α!

Dαg(x)(y − x)α

is called the k-Taylor polynomial of g at x. Polynomials of this form are some-
times referred to as polynomials centered at x. We refer to [23, p. 2] for the
standard multi-index notation which appears in the preceding formula.
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A classical theorem of Lusin states that measurable functions which are finite
almost everywhere have the Lusin property of order zero. It then follows by the
Lebesgue density theorem that finite almost everywhere measurable functions
are approximately continuous almost everywhere. Conversely, one verifies by us-
ing Vitali’s covering theorem that functions which are approximately continuous
almost everywhere have the Lusin property of order zero. Since approximate
continuity is a kind of weak regularity for functions, a question immediately
presents itself: whether with increased degree of some form of weak regularity,
a function will have the Lusin properties of higher order. It was Federer who
discovered that a function which is totally differentiable almost everywhere has
the Lusin property of order 1. Whitney’s result [22] for approximately totally
differentiable functions is, to our knowledge, the first definite result in this di-
rection. We shall describe in §2 some results concerning characterizations of
functions which have the Lusin property of order k for k ≥ 1.

For a nonnegative integer k and a real number p ≥ 1, a function u defined
on a measurable subset D of Rn is said to have the strong (k, p)-Lusin property
if for any ε > 0 there is a Ck-function g defined on Rn such that |Du

g | < ε and
‖g‖k,p(Du

g ) < ε, where Du
g = {x ∈ D : u(x) 6= g(x)} and

‖g‖k,p(Du
g ) :=

∑
|α|≤k

‖Dαg‖Lp(Du
g ).

We have shown in [12] that if D is a Lipschitz domain, then functions of the
Sobolev space W k

p (D) have the strong (k, p)-Lusin property. When p > 1, this
result has been extended by Michael and Ziemer [16] as follows: Let k,m be
positive integers with m ≤ k, (k−m)p < n and let D be an arbitrary nonempty
open subset of Rn. Then for u ∈ W k

p (D) and ε > 0, there exists a Cm-function
g on D such that

Rk−m,p(Du
g ) < ε and ‖g‖k,p(D) < ε,

where Rk−m,p is a Riesz capacity and ‖g‖k,p(D) is the Sobolev norm of g in
W k

p (D).
We remark here that the strong (1, 1)-Lusin property for u ∈ W k

p (D) is a
consequence of a more general result of Michael [15]: Let u be a function of
bounded variation with compact support on Rn. Then for each ε > 0, there is a
Lipschitz function g on Rn such that |Du

g | < ε and |Var(u)−Var(g)| < ε, where
Var(f) denotes the total variation of a function f . As shown in [2] the Lusin
property established in [16] is closely related to some pointwise inequalities for
Sobolev functions.

Closely related to the strong (1, p)-Lusin property is a Lusin type property
which we shall take up in §3. There we shall also prove another strong Lusin type
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property for functions in W k
∞(D) with application to interpolation of Sobolev

spaces.
In the remaining part of this section we consider some preliminary results.

For a function u defined on an open set D the maximal function of u, Mu, is
defined by

Mu(x) := sup
r>0

1
|B(x, r)|

∫
B(x,r)∩D

|u(y)| dy, x ∈ Rn,

where B(x, r) is the ball with center x and radius r. For properties of maximal
functions we refer to [19] and [23]. We shall also need the modified maximal
function of u, M0(u), which is defined by

M0u(x) := sup
0<r≤δ(x)

1
|B(x, r)|

∫
B(x,r)

|u(y)| dy, x ∈ D,

where δ(x) is min{1, (1/2)dist(x, ∂D)}. If u is locally integrable on D, then
for any compact subset F of D, M0u(x) ≤ M(uIS)(x) for x ∈ F , with S :=⋃

x∈F B(x, δ(x)) and IS being the indicator function of S. Since the closure of S

is a compact subset of D, uIS ∈ L1(D), hence M0u is finite almost everywhere
on D. The Sobolev space W k

p (D) will always be understood with D an open
subset of Rn and W k

p (Rn) will be simply denoted by W k
p . We shall denote by

W k
loc(D) the space of all those locally integrable functions on D whose generalized

partial derivatives up to order k are also locally integrable. For u ∈ W k
loc(D), the

generalized partial derivatives Dαu, |α| ≤ k, will sometimes be written as uα. If
u ∈ W k

loc(D), then for almost all x ∈ D,uα(x) is defined for all α with |α| ≤ k.
For such x we let

πk(u;x, y) :=
∑
|α|≤k

1
α!

uα(x)(y − x)α

and call it the k-Taylor polynomial of u at x. Hence the k-Taylor polynomial
πk(u;x, y) of u is defined for almost all x in D. We shall need the following
lemma concerning k-Taylor polynomials:

Lemma 1. If u ∈ W k
loc(D), then for almost all x ∈ D and r ≤ δ(x) we have

(1)
1

|B(x, r)|

∫
B(x,r)

|u(y)− πk(u;x, y)|
|y − x|k

dy ≤ 2
∑
|α|=k

M0(uα)(x);

and

(2) lim
r→0

1
|B(x, r)|

∫
B(x,r)

|u(y)− πk(u;x, y)|
|y − x|k

dy = 0.
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Proof. If u ∈ W k
loc(D), then, as shown in [12, p. 648], for B(x, r) ⊂ D we

have

(3)
1

|B(x, r)|

∫
B(x,r)

|u(y)− πk(u;x, y)|
|y − x|k

dy

≤ k

∫ 1

0

(1− t)k−1

{ ∑
|α|=k

1
|B(x, rt)|

∫
B(x,rt)

|uα(y)− uα(x)| dy

}
dt.

Since

(4)
1

|B(x, rt)|

∫
B(x,rt)

|uα(y)− uα(x)| dy ≤ 2M0(uα)(x)

for almost all x ∈ D, (1) follows from (3). Let x be a Lebesgue point of all uα

with |α| = k for which both (3) and (4) hold and
∑

|α|=k M0(uα)(x) < ∞. For
this x, since (4) holds, if we let r → 0 on both sides of (3), we may use the
Lebesgue bounded convergence theorem for the right hand side of (3) and the
integration in t to obtain (2). This shows that (2) holds for almost all x.

For a closed set F we denote by tk(F ) the class of all those functions u with
the property that there is a family {p(x, y)}x∈F of polynomials in y of degree
≤ k and a constant M ≥ 0 such that

1) u(x) = p(x, x), x ∈ F ;
2) |Dαp(x, x)| ≤ M , |Dαp(y, y)−Dαp(x, y)| ≤ M |y − x|k−|α|, x, y ∈ F ;
3) limy→x |Dαp(y, y) − Dαp(x, y)| · |y − x|−k+|α| = 0 uniformly on every

compact subset of F .

The smallest such M is denoted by N(u; tk;F ). In the above we have used
Dαp(x, y) to denote the value of Dαp(x, z) when z = y. Here Dα is with respect
to z. Finally, we denote Dαp(x, x) by Dαu(x). By combining arguments of
[19, Chapter 6] and [5, 3.1.14] one obtains the following lemma which is slightly
stronger than Whitney’s extension theorem:

Lemma 2 (Whitney’s Extension Theorem). There is a constant C > 0 de-
pending only on n and k such that for each u ∈ tk(F ) there is g ∈ Ck(Rn) with
g|F = u and N(g; tk; Rn) ≤ CN(u; tk;F ).

In the proof of Theorem (3.5) in [14] we have actually proved the following
lemma:

Lemma 3. Let u ∈ L1
loc(Rn) and let F be a closed subset of Rn. Suppose

that for each x ∈ F there is a polynomial p(x, y) in y of degree at most k such
that for some constant M > 0 we have

sup
r>0

1
|B(x, r)|

∫
B(x,r)

|u(y)− p(x, y)| dy ≤ M, x ∈ F,

|Dαp(x, x)| ≤ M, x ∈ F, |α| ≤ k;
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and
lim
r→0

r−k 1
|B(x, r)|

∫
B(x,r)

|u(y)− p(x, y)| dy = 0

uniformly on each compact subset of F . Then u ∈ tk(F ) and N(u; tk;F ) ≤
C(n, k)M .

2. Approximate Taylor polynomials and Lusin property of order k

If a function u has the Lusin property of order k on D, then it is clear that
for almost every x of D there is a Ck-function g such that the set {z ∈ D :
u(z) = g(z)} contains x and has density one at x. Thus the following condition
holds at almost every point x of D:

(1) ap lim
y→x

|u(y)− πk(g;x, y)|
|y − x|

= 0,

and hence also does the condition

(2) ap lim sup
y→x

|u(y)− πk−1(g;x, y)|
|y − x|k

< ∞.

We recall that ap limy→x u(y) = l means that the set {y ∈ D : |u(y)− l| ≤ ε}
has density one at x for any ε > 0, and that ap lim supy→x u(y) is the infimum
of all those λ ∈ R such that the set {y ∈ D : u(y) > λ} has density zero at x.

Now some definitions are in order. A function u defined on D is said to have
approximate (k − 1)-Taylor polynomial at x if there is a polynomial p(x, y) in y

of degree at most k − 1 such that

(3) ap lim sup
y→x

|u(y)− p(x, y)|
|y − x|k

< ∞;

while u will be said to be approximately differentiable of order k at x if there is
a polynomial p(x, y) in y and of degree at most k such that

(4) ap lim
y→x

|u(y)− p(x, y)|
|y − x|k

= 0.

If (4) is replaced by

(5) lim
y→x

|u(y)− p(x, y)|
|y − x|k

= 0,

then u is said to be differentiable of order k at x. From (1) and (2), if u has the
Lusin property of order k on D, then it is approximately differentiable of order
k and has approximate (k− 1)-Taylor polynomial at almost every point of D. If
u is approximately differentiable (differentiable) of order 1 at x, it will be simply
said to be approximately differentiable (differentiable) at x.

We have shown in [13] the following theorem relating those properties of
functions defined above:
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Theorem 1. For a measurable function u defined on D the following state-
ments are equivalent:

(I) u has the Lusin property of order k on D.
(II) u has approximate (k − 1)-Taylor polynomial at almost every point of

D.
(III) u is approximately differentiable of order k at almost every point of D.

Remark. Since it follows from (2) of Lemma 1 that u is approximately
differentiable of order k almost everywhere on D if u ∈ W k

loc(D), we infer from
Theorem 1 that u has the Lusin property of order k.

As a consequence of Theorem 1 we also establish in [13] the following theorem:

Theorem 2. In order for u to be differentiable of order k almost everywhere
on D it is necessary and sufficient that at almost every point x of D there is a
polynomial p(x, y) in y of degree at most k − 1 such that

(6) lim sup
y→x

|u(y)− p(x, y)|
|y − x|k

< ∞.

We now give some remarks concerning Theorems 1 and 2. When k = 1, the
equivalence of statements (I) and (III) in Theorem 1 is due to Whitney [22],
while the equivalence of statements (I) and (II) is due to Federer [5, 3.1.16]. In
[10], equivalence of (I) and (III) in Theorem 1 is established with the additional
assumption in (III) that each uα is measurable and is approximately differen-
tiable of order k − |α| almost everywhere. Theorem 1 in its generality may be
considered as an answer to a question raised by Federer [5, 3.1.17]. Theorem 2
is a generalization of a well-known result of Rademacher [18] and Stepanoff [21]
to differentiability of higher order. Theorem 2 is also more general in that we do
not assume D to be open.

Now we mention two applications of Theorem 1 with k = 1. From its proof,
the Corollary on p. 261 of [19] can be restated as the following lemma:

Lemma 4. Suppose that u is defined in a neighborhood of D and suppose
that u has the Lusin property of order 1 on D. If

(7) lim sup
|y|→0

|u(x + y) + u(x− y)− 2u(x)|
|y|

< ∞

almost everywhere on D, then u is differentiable almost everywhere on D.

Since a function which is approximately differentiable almost everywhere on
D has the Lusin property of order 1 by Theorem 1, we obtain immediately from
Lemma 4 the theorem below:
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Theorem 3. If a measurable function u defined in a neighborhood of D is
appoximately differentiable almost everywhere on D and if (7) holds at almost
every x ∈ D, then u is differentiable almost everywhere on D.

For another application we will define multiplicity functions for approxi-
mately differentiable mappings. We follow the approach in [11]. Let T be a
measurable mapping from D ⊂ Rn into Rm, n ≤ m. T is said to be approximately
differentiable at a point x ∈ D if its coordinate functions are all approximately
differentiable at x. It follows from Theorem 1 that T is approximately differen-
tiable almost everywhere on D if and only if there is a sequence K = {Kj}∞j=1

of compact subsets of D and a sequence g = {gj}∞j=1 of C1 mappings from Rn

into Rm with the following properties:

(i) K1 ⊂ K2 ⊂ K3 ⊂ . . .;
(ii) |D \

⋃∞
j=1 Kj | = 0;

(iii) T (x) = gj(x) for x ∈ Kj , j = 1, 2, 3, . . .

Such a pair (K, g) will be called a C1-representation of T . If T is approxi-
mately differentiable almost everywhere on D, we will simply say that T is an
approximately differentiable mapping. In this case, if f1, . . . , fm are the coordi-
nate functions of T , then the approximate partial derivatives, still denoted by
∂f i/∂xj , i = 1, . . . ,m, j = 1, . . . , n, exist almost everywhere on D and hence the
function

J(T ;x) :=
{ ∑

1≤i1<...<in≤m

[
∂(f i1 , . . . , f in)
∂(x1, . . . , xn)

]2}1/2

is defined almost everywhere on D, where ∂(f i1 , . . . , f in)/∂(x1, . . . , xn) is the
usual Wronskian determinant with partial derivatives replaced by approximate
partial derivatives; the function J(T ; ·) will be simply called the Jacobian of T .
When D is open and T is a C1 mapping, J(T ; ·) is the usual Jacobian of T .

We now define multiplicity functions for approximately differentiable map-
pings and prove the corresponding area formula. Let T be an approximately dif-
ferentiable mapping from D into Rm, m ≥ n, and let (K, g) be a C1-representation
of T . Consider a measurable subset E of D, and for a positive integer j and
y ∈ Rm let

mj(T,E, y;K) := #{x ∈ Kj ∩ E : T (x) = y},
where #A is the cardinality of the set A. Since mj(T,E, y;K) = #g−1

j (y) ∩
Kj ∩E, mj(T,E, y;K) is an Hn-measurable function in y with Hn being the n-
dimensional Hausdorff measure in Rm. Because mj(T,E, y;K) is nondecreasing
in j, the limit limj→∞ mj(T,E, y;K) exists and will be denoted by m(T,E, y;K).
Now, m(T,E, ·;K) is a Hn-measurable function on Rm and is called a multiplicity
function of T relative to E. When D is open and T is a C1 mapping, then for
any sequence K = {Kj}∞j=1 of compact subsets of D such that D =

⋃∞
j=1 Kj we
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may choose g = {gj}∞j=1 with each gj being a C1 extension of T |Kj
to obtain

a C1-representation of T ; then m(T,E, ·;K) = m(T,E, ·), where m(T,E, y) :=
#{x ∈ E : T (x) = y} is the usual multiplicity function of T relative to E. In
this case we have the following classical area formula:

(8)
∫

E

J(T ;x) dx =
∫

Rm

m(T,E, y) dHn(y).

The theorem that follows establishes the area formula for approximately differ-
entiable mappings.

Theorem 4. Let T be an approximately differentiable mapping from a mea-
surable subset D of Rn into Rm, m ≥ n. Then for any measurable subset E of
D, the following formula holds:

(9)
∫

E

J(T ;x) dx =
∫

Rm

m(T,E, y;K) dHn(y),

where m(T,E, y;K) is any multiplicity function of T relative to E. Furthermore,
if

∫
E

J(T ;x) dx < ∞, then the multiplicity function is uniquely defined Hn-
almost everywhere on Rm and we may simply denote it by m(T,E, ·).

Proof. Let (K, g) be a C1-representation of T . For any positive integer j

we have ∫
Kj∩E

J(T ;x) dx =
∫

Kj∩E

J(gj ;x) dx;

but by the classical area formula for gj we know that∫
Kj∩E

J(gj ;x) dx =
∫

Rm

m(gj ,Kj ∩ E, y) dHn(y),

and then, since m(gj ,Kj ∩ E, y) = mj(T,E, y;K), we have

(10)
∫

Kj∩E

J(T ;x) dx =
∫

Rm

mj(T,E, y;K) dHn(y).

If we let j →∞ on both sides of (10), we obtain (9).
Now suppose

∫
E

J(T ;x) dx < ∞. For any two multiplicity functions
m(T,E, ·;K), m(T,E, ·;K ′) of T relative to E, corresponding respectively to
C1-representations (K, g) and (K ′, g′), (K ∩K ′, g) is a C1-representation of T ,
where K ∩K ′ := {Kj ∩K ′

j}∞j=1; hence by Theorem 4,∫
E

J(T ;x) dx =
∫

Rm

m(T,E, y;K ∩K ′) dHn(y)(11)

=
∫

Rm

m(T,E, y;K) dHn(y) < ∞.
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But m(T,E, y;K ∩ K ′) ≤ m(T,E, y;K) for y ∈ Rm implies together with (11)
that m(T,E, ·;K) equals m(T,E, ·;K ∩K ′) Hn-almost everywhere on Rm. Sim-
ilarly, m(T,E, ·;K ′) equals m(T,E, ·;K∩K ′) Hn-almost everywhere on Rm and
hence m(T,E, ·;K) = m(T,E, ·;K ′) Hn-almost everywhere on Rm.

Theorem 4 immediately yields the well-known area formula for Lipschitz
mappings:

Corollary 1. If T is a Lipschitz mapping, then∫
E

J(T ;x) dx =
∫

Rm

m(T,E, y) dHn(y),

for any measurable subset E of D.

Proof. Let (K, g) be a C1-representation of T . Since T is Lipschitz, the
image T (D \

⋃∞
j=1 Kj) has Hn-measure zero. Now m(T,E, y;K) = m(T,E, y)

except for y ∈ T (D \
⋃∞

j=1 Kj), hence m(T,E, y;K) = m(T,E, y) Hn-almost
everywhere on Rm. The corollary then follows from Theorem 4.

A mapping T from an open set D ⊂ Rn into Rm, m ≥ n, is called a
Sobolev mapping if each coordinate function f i, i = 1, . . . ,m, is in W k

pi
(D) with∑n

l=1 1/pil
≤ 1 for all 1 ≤ i1 < · · · < in ≤ m. This class of mappings is intro-

duced in [7] generalizing that introduced in [17] when n = 2 and the mappings
are continuous.

Corollary 2. If T is a Sobolev mapping from an open set D ⊂ Rn into
Rm, m ≥ n, then for each measurable subset E of D there is a multiplicity
function m(T,E, ·) of T relative to E which is uniquely defined Hn-almost ev-
erywhere on Rm such that∫

E

J(T ;x) dx =
∫

Rm

m(T,E, y) dHn(y).

It is now clear that the same approach can be used to handle changes of
variables by approximately differentiable mappings. We will not do it here, but
refer the reader to [6] and [9].

3. Some strong Lusin properties and interpolation of Sobolev spaces

In [3] Calderón and Zygmund introduce the classes T p
a (x) and tpa(x) of func-

tions, where 1 ≤ p ≤ ∞ and a ≥ np−1. A function f defined on Rn belongs to
T p

a (x) if there exists a polynomial p(y) of degree strictly less than a such that

(1)
{

1
|B(x, r)|

∫
B(x,r)

|f(y)− p(y)|p dy

}1/p

≤ Mra, 0 < r < ∞,
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while f belongs to tpa(x) if there exists a polynomial q(y) of degree at most a

such that{
1

|B(x, r)|

∫
B(x,r)

|f(y)− q(y)|p dy

}1/p

≤ Mra, 0 < r < ∞,

and, in addition, the expression on the left is of order smaller than ra as r → 0.
Under the condition of uniform boundedness of M and of the coefficients of p(y)
or q(y) for x in a closed set F , Calderón and Zygmund obtain in [3] certain reg-
ularity properties of f on F . In particular, they show that functions in W k

p (Rn)
have the Lusin property of order k. We consider instead in [14] functions related
to the definitions of T 1

k (x) and t1k(x) with k a positive integer and use the behav-
ior of these functions to characterize various classes of functions. To introduce
such functions, for a measurable set A with |A| > 0 we shall denote by m(f ;A)
the integral mean of a function f over A, i.e. m(f ;A) := 1

|A|
∫

A
f(y) dy, for no-

tational simplicity. For a positive integer k and a function u defined on Rn, we
let for x ∈ Rn,

M̃k(u;x) := inf sup
r>0

r−km(|u− p|;B(x, r)),

where the infimum is taken over all polynomials p of degree strictly less than k.
If M̃k(u;x) < ∞ there is a unique polynomial p(y) of degree strictly less than k

such that
M̃k(u;x) := sup

r>0
r−km(|u− p|;B(x, r));

the polynomial p(y) can then be expressed as

(2) p(y) =
∑
|α|<k

1
α!

uα(x)(y − x)α.

We denote by D(k) the space of all those functions u for which M̃k(u;x) < ∞
for almost all x. Let now u ∈ D(k). Then the functions uα, |α| < k, are defined
almost everywhere on Rn; it is shown in [3] that for almost all x for which
M̃k(u;x) < ∞ there is a unique polynomial q(y) of degree at most k such that
limr→0 r−km(|u− q|;B(x, r)) = 0. The polynomial q(y) may then be written as∑

|α|≤k

1
α!

uα(x)(y − x)α

without ambiguity because the uα(x) with |α| < k will be the same as those
appearing in (2). For such x we let

m̃k(u;x) := sup
r>0

r−km(|u− q|;B(x, r)).

Otherwise we let m̃k(u;x) := ∞. Thus, for u ∈ D(k), m̃k(u; ·) is defined and
uα, |α| ≤ k, are all defined and finite almost everywhere. We know that uα is
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measurable for |α| ≤ k (see [3] or [23]). Each uα is called an L1-derivative of u.
Since both m̃k(u; ·) and M̃k(u; ·) are approximately lower semicontinuous wher-
ever all uα, |α| ≤ k, are approximately continuous, they are both measurable.
We prove in [14] the following two theorems:

Theorem 5. If u ∈ Lp, 1 < p < ∞, then u ∈ W k
p if and only if u ∈ D(k)

and M̃k(u; ·) ∈ Lp.

Theorem 6. Let u ∈ Lp, 1 ≤ p < ∞. The following statements are equiva-
lent:

1) u ∈ W k
p .

2) u ∈ D(k) with each L1-derivative uα ∈ Lp and there is a positive constant
C such that

|{x ∈ Rn : m̃k(u;x) > λ}| ≤ C/λp,

lim
λ→∞

λp|{x ∈ Rn : m̃k(u;x) > λ}| = 0.

3) There is a positive constant C such that for each λ > 0 there is a closed
set Fλ with the property that |Rn \ Fλ| ≤ Cλ−p, limλ→∞ λp|Rn \ Fλ| = 0, and
u|Fλ

∈ tk(Fλ) with ‖Dα(u|Fλ
)‖Lp ≤ C and N(u; tk;Fλ) ≤ λ.

When k = 1, we denote in [14] the function M̃1(u; ·) by Q(u; ·) and call
it the maximal mean steepness of u. If Qp

w is the class of all those functions
u with Q(u; ·) ∈ Lp

w, then we show in [14] that BV functions are in Q1
w and

W 1
p ⊂ Qp

w. We also show in [14] that Qp
w ∩ Lp enjoys a Lusin-type property

which is stronger than the Lusin property of order 1 but weaker than the strong
(1, p)-Lusin property:

Theorem 7. If u ∈ Qp
w ∩ Lp, 1 ≤ p < ∞, then for any λ > 0 there is a

Lipschitz function g with ‖g‖Lip ≤ λ and |{x ∈ Rn : u(x) 6= g(x)}| ≤ Cλ−p,
where C is some positive constant depending only on n, p, and u, and

‖g‖Lip := sup
x
|g(x)|+ sup

x6=y

|g(y)− g(x)|
|y − x|

.

We now consider another form of the Lusin property for functions in W k
loc(D)

which is suggested by the K-method in interpolation theory. For a real function
u defined on D and λ ≥ 0, t ≥ 0 let

µ(u;λ) := |{x ∈ Rn : |u(x)| > λ}|, u∗(t) := sup{λ : µ(u;λ) > t}.

The function u∗ is called the nonincreasing rearrangement of u. It is well
known that µ(u;u∗(t)) ≤ t (see, for example, [23, p. 26]).
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Theorem 8. There is a positive constant C = C(n, k) such that for u ∈
W k

loc(D) and t > 0, there exist ut ∈ Ck(Rn) and a closed subset Ft of D so that

(i) |D \ Ft| ≤ 2t;
(ii) uα(x) = Dαut(x) for x ∈ Ft, |α| ≤ k; and
(iii) ‖ut‖W k

∞
≤ C(

∑
|α|≤k M0uα)∗(t).

Proof. When (
∑

|α|≤k Muα)∗(t) = ∞, the theorem follows from the fact
that functions in W k

loc(D) have the Lusin property of order k. We now assume
(
∑

|α|≤k Muα)∗(t) < ∞. For u ∈ W k
loc(D) and t > 0, let

Wt :=
{

x ∈ D :
∑
|α|≤k

M0uα(x) ≤
( ∑
|α|≤k

M0uα

)∗

(t)
}

.

Then

|D \Wt| =
∣∣∣∣{x ∈ D :

∑
|α|≤k

M0uα(x) >

( ∑
|α| ≤ kM0uα

)∗

(t)
}∣∣∣∣ ≤ t.

Since we have

r−km(|u− πk(u;x, ·)|;B(x, r)) ≤ 1
|B(x, r)|

∫
B(x,r)

|u(y)− πk(u;x, y)|
|y − x|k

dy,

by Lemma 1 we know that

lim
r→0

r−km(|u− πk(u;x, ·)|;B(x, r)) = 0

for almost all x ∈ Rn. Hence by the Egorov theorem for a continuous parameter
[8, (10.2.64), p. 124] there is a closed subset Ft of Wt with |D \ Ft| ≤ 2t such
that

lim
r→0

r−km(|u− πk(u;x, ·)|;B(x, r)) = 0

uniformly on compact subsets of Ft. Furthermore, we choose Ft so that

sup
r>0

r−km(|u− πk(u;x, ·)|;B(x, r)) ≤ 2
∑
|α|≤k

M0uα(x) ≤ 2
( ∑
|α|≤k

M0uα

)∗

(t),

|uα(x)| ≤
( ∑
|α|≤k

M0uα

)∗

(t)

for x ∈ Ft, |α| ≤ k. We can do this because of formula (1) in Lemma 1 and the
fact that |uα(x)| ≤ Muα(x) for almost all x ∈ D. We may now apply Lemma 3
to conclude that u|Ft

∈ tk(Ft) and

N(u|Ft
; tk;Ft) ≤ 2C(n, k)

( ∑
|α|≤k

M0uα

)∗

(t).
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By Lemma 2, there is a positive constant C depending only on n and k, still
denoted by C(n, k), such that u|Ft can be extended to a function ut ∈ Ck(Rn)
with the properties stated in the conclusion of the theorem.

We now state two lemmas that we need in applying Theorem 8 to interpola-
tion of Sobolev spaces.

Lemma 5 (Hardy–Littlewood). If f and g are finite almost everywhere on
a σ-finite measure space (X, µ), then∫

X

|fg| dµ ≤
∫ ∞

0

f∗(s)g∗(s) ds.

Lemma 6. There is a positive constant C depending only on n such that

(M0f)∗(t) ≤ C

t

∫ t

0

f∗(s) ds,

for every locally integrable function f on an open subset D of Rn and every
t > 0.

The proof of Lemma 5 can be found in [1, p. 44], while the proof of Lemma
6 follows that of the first inequality of [1, Theorem III.3.8, p. 122].

We now prove the following theorem which is first given in [4] under certain
restriction on D:

Theorem 9. The Sobolev space W k
p (D), 1 < p < ∞, is an interpolation

space between the Sobolev spaces W k
1 (D) and W k

∞(D).

Proof. By the K-method in interpolation of Banach spaces (see [4, §5], [1,
Chapter 5]), this amounts to showing that there are positive numbers a and b

such that

(3) a
∑
|α|≤k

∫ t

0

(Dαu)∗(s) ds ≤ K(u, t,W k
1 (D),W k

∞(D))

≤ b
∑
|α|≤k

∫ t

0

(Dαu)∗(s) ds

for every u ∈ W k
1 (D) + W k

∞(D), where the K-functional K is defined by

K(u, t,W k
1 (D),W k

∞(D)) = inf{‖u1‖W k
1

+ t‖u2‖W k
∞

: u = u1 + u2,

u1 ∈ W k
1 (D), u2 ∈ W k

∞(D)}.

As is shown in [4], the left inequality in (3) follows immediately from the defini-
tion of the K-functional. It remains to establish the right inequality in (3). Let
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u be in W k
1 (D) + W k

∞(D). Then u ∈ W k
loc(D). For any t > 0, choose a closed

subset Ft of D and a Ck function ut on Rn as in Theorem 8. Then

K(u, t,W k
1 (D),W k

∞(D)) ≤ ‖u− ut‖W k
1

+ t‖ut‖W k
∞

≤
∑
|α|≤k

‖Dαu‖L1(D\Ft) + Ct

( ∑
|α|≤k

M0uα

)∗

(t),

where C = C(n, k) is the constant in Theorem 8. If we let g be the indicator
function of the set D \ Ft, then by Lemma 5 we have

‖Dαu‖L1(D\Ft) =
∫

D

|Dαu(x)g(x)| dx ≤
∫ ∞

0

(Dαu)∗(s)g∗(s) ds

=
∫ |D\Ft|

0

(Dαu)∗(s) ds ≤ 2
∫ t

0

(Dαu)∗(s) ds;

while from Lemma 6 there is a positive number C1 depending only on n such
that

t(M0D
αu)∗(t) ≤ C1

∫ t

0

(Dαu)∗(s) ds.

Thus,

K(u, t,W k
1 (D),W k

∞(D)) ≤ σ(2 + CC1)
∑
|α|≤k

∫ t

0

(Dαu)∗(s) ds,

where we have used the fact that (
∑

|α|≤k M0D
αu)∗(s) ≤

∑
|α|≤k(M0D

αu)∗(s/σ),
with σ := #{α : |α| ≤ k}. We complete the proof by letting b = 2 + CC1.

Finally, we remark that the strong (k, p)-Lusin property of functions in
W k

p (D) follows from Theorem 8. Indeed, for u ∈ W k
p (D) and t > 0, choose

Ft and ut as in Theorem 8. Then

‖u− ut‖W k
p
≤ A

[
t

( ∑
|α|≤k

M0uα

)∗

(t)
]1/p

≤ A

[
C

∑
|α|≤k

∫ t

0

u∗α(s) ds

]1/p

,

where A is a positive number depending only on n, k and p and C is the constant
in Lemma 6. The strong (k, p)-Lusin property for u then follows.
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