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HETEROCLINICS FOR A HAMILTONIAN
SYSTEM OF DOUBLE PENDULUM TYPE

Paul H. Rabinowitz

1. Introduction

Consider

(HS) q̈ + V ′(q) = 0

where q ∈ R2 and V satisfies

(V1) V ∈ C2(R2,R) and V (x) is Ti-periodic in xi, i = 1, 2.

This system arises as a simpler model of the double pendulum. Indeed, the
Lagrangian associated with (HS) is

L(q) = 1
2 |q̇|

2 − V (q).

The actual double pendulum has a related Lagrangian of the form

L1(q) =
2∑

i,j=1

aij(q)q̇iq̇j − V (q)

where the matrix (aij(x)) is positive definite and periodic in the components
of x with the same periods as in (V1). The existence results obtained for (HS)
can also be obtained for the Hamiltonian system associated with L1(q) but we
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prefer to deal with the simpler case. It will also be assumed for convenience that
T1 = 1 = T2.

The maximum of the potential V occurs on a lattice of points, say Z2. Further
assume

(V2) V (x) < V (0) = 0, x ∈ R2 \ Z2.

By (V2), each x ∈ Z2 is an equilibrium solution of (HS). It is known that
for each such x, there is a heteroclinic solution of (HS) joining x to Z2 \ {x}
(see [12]). Because of (V1), R2 can be viewed as the covering space of T 2 and
these heteroclinics can be interpreted as homoclinic solutions of (HS) on T 2.
Furthermore, as is well known, straightforward minimization arguments show
that for each T > 0 and each k ∈ Z2 \ {0}, (HS) has a solution p satisfying

(1.1) p(t+mT ) = p(t) +mk

for all m ∈ Z. Viewed on T 2, p is a T -periodic solution of (HS) of homotopy
type k. Actually the above cited results are true for the analogous more general
Rn setting.

The main goal of this paper is to establish the existence of orbits of (HS)
which viewed on T 2 are heteroclinic to 0 and to one of the periodic orbits p
mentioned above. Before formulating a theorem, a more precise description
must be given of the heteroclinics of [12] and above periodics. These solutions
are obtained by variational arguments. Set

I(q) =
∫

R
L(q) dt.

Let k ∈ Z2 \ {0},

Gk = {q ∈W 1,2
loc (R,R2) | q(−∞) = 0, q(∞) = k}, G =

⋃
k∈Z2\{0}

Gk,

and

(1.2) ck = inf
Gk

I.

Further, set

(1.3) c0 = inf
G
I = inf

k∈Z2\{0}
ck.

It was shown in [12] that there is a q0 ∈ G such that I(q0) = c0 and q0 is
a heteroclinic solution of (HS) with q0(−∞) = 0 and q0(∞) = k0 ∈ Z2 \ {0}.
Moreover (see [13–14]), for each k ∈ Z2 \ {0}, there is a heteroclinic chain of
solutions of (HS) joining 0 and k and

ck =
j∑
i=1

I(qi)
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where the functions qi are heteroclinic solutions of (HS) joining qi−1(∞) =
qi(−∞) to qi(∞) = qi+1(−∞) with q1(−∞) = 0 and qj(∞) = k. In fact,
qi − qi(−∞) minimizes I on Gki

where ki = qi(∞)− qi(−∞).
To get the solutions of (HS) corresponding to (1.1), for each k ∈ Z2 \ {0}, let

Fk =
⋃
T>0

{q ∈W 1,2
loc | q(t+ T ) = q(t) + k} ≡

⋃
T>0

Fk,T .

As we noted earlier, viewed on T 2, q ∈ Fk is a closed W 1,2 curve of homotopy
type k. For q ∈ Fk, set

I∗(q) =
∫ T/2

−T/2
L(q) dt.

Let

(1.4) c∗k,T = inf
Fk,T

I∗.

Then there is a qk,T ∈ Fk,T satisfying (HS) with I∗(qk,T ) = c∗k,T . Let

(1.5) c∗k = inf
T>0

c∗k,T .

Since any q ∈ Gk can be obtained as a W 1,2
loc limit of elements of Fk, it follows

that

(1.6) c∗k ≤ ck.

Moreover, elementary arguments as in [12] show that if along some minimizing
sequence for (1.5), (Tm) is bounded, then along a subsequence, Tm → T ∗k > 0,
and qk,Tm

converges to a solution q∗k of (HS) with I∗(q∗k) = c∗k. On the other
hand, if (Tm) is unbounded, qk,Tm

will “converge” to a heteroclinic chain of
solutions of (HS) corresponding to c∗k as in [12–14].

Let

(1.7) c∗ = inf
k∈Z2\{0}

c∗k.

Then there is a k∗ ∈ Z2 \ {0} such that c∗ = c∗k∗ and by (1.6) and (1.3),

(1.8) c∗ ≤ c0.

Assume that

(1.9) c∗ < c0.

Since c0 = ck for some k ∈ Z2 \ {0}, a sufficient condition for (1.9) to hold is
that there is a T > 0 and q ∈ Fk,T satisfying I∗(q) < c0. It is not difficult to
impose conditions on V so that this is the case.

By the remarks following (1.6), there are T ∗ > 0 and p∗ ∈ Fk∗,T∗ such that

(1.10) c∗k∗ = I∗(p∗).
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Certainly p∗ is not unique. For θ ∈ R, the time translates

τθq(t) = q(t− θ)

satisfy I∗(τθp∗) = I∗(p∗). Note also that I∗(p∗ + j) = I∗(p∗) for all j ∈ Z2.
Moreover, since (HS) is time reversible, I∗(p∗(−t)) = c∗ with p∗(−t) ∈ F−k∗ and
it is possible that there are other values of T, k, and p ∈ Fk,T with I∗(p) = c∗.
Let

Pk = {p ∈ Fk | I∗(p) = c∗k}.
Then we have

Theorem 1.11. Suppose that V satisfies (V1), (V2), and (1.9) holds. Then
there is a p ∈ Pk∗ and a solution Q of (HS) such that Q(−∞) = 0 and Q is
asymptotic to p as t→∞.

In fact, the construction that gives q also shows there is a second such solution
asymptotic to p(−t) ∈ P−k∗ and a second pair of such solutions asymptotic to
another p(t), p(−t) where p ∈ Pk∗ and is adjacent to p∗ with 0 lying between
the curves p and p. These results are special cases of a more general theorem.
Choose k = (k1, k2) ∈ Z2 \ {0} with k1, k2 relatively prime. Then there are
associated minimization values c∗k and ck.

Theorem 1.12. Suppose that V satisfies (V1)–(V2) and

(1.13) c∗k < ck

where k = (k1, k2) with k1, k2 relatively prime. Then (HS) has two solutions
Q−k , Q

+
k which are heteroclinic to 0 and an adjacent pair p−, p+ ∈ Pk and two

solutions Q−−k, Q
+
−k which are heteroclinic to 0 and to p−(−t), p+(−t).

More precise geometrical information on the nature of these heteroclinics is
given in conjunction with their proofs. Of course (1.13) is more difficult to verify
than (1.9). Hypothesis (1.13) has another interesting consequence. Namely
it implies for some β ∈ N, β ≥ 2, that (HS) has a pair of solutions q−m, q+m
heteroclinic to 0 and to mk for all m ≥ β. This is in the spirit of a related kind
of result in the setting of a singular Hamiltonian system due to Caldiroli and
Jeanjean [6]. Moreover, certain monotonicity properties of q±m permit us to give
a further characterization of Q±k as a limit of the functions q±m.

Theorems 1.11–1.12 are reminiscent of old results of Morse [11] and Hedlund
[8] on the existence of geodesics heteroclinic to an adjacent pair of periodic
geodesics in a given homotopy class in T 2. See also the interesting paper of
Bangert [2] for a more modern view of this work and its connections to several
other problems such as the work of Aubry and LeDaeron [1] and of Mather [9].
After completing this paper, we learned of the related work of Bolotin and Negrini
[5] who, among other things, also consider (HS) on T 2 and establish an analogue
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of Theorem 1.12 using tools from Riemannian geometry in the spirit of [8, 11].
The primary concern of [5] is a variational criterion for the nonintegrability of
(HS) when V is analytic and (1.13) holds. The current paper has some ideas in
common with [5, 11] although our approach is rather different and our motivation
to study the problem came from [12] and [15]. (See also Bolotin [3–4].)

Variational arguments will be used to establish the existence of the hetero-
clinic orbits. Indeed, one feature of the argument presented here is that it yields
a direct variational characterization of the heteroclinic, Q+

k , joining 0 to some
p+ ∈ Pk, rather than requiring approximation arguments because of the difficul-
ties of dealing with a geodesic of infinite length in the Jacobi metric and with
the points where the metric degenerates. Furthermore, in a natural way, it gives
more geometrical information about the solutions than the approaches using the
Jacobi metric. In §2, some preliminaries concerning the properties of Pk will be
carried out. It will also be shown that there is a heteroclinic orbit joining 0 and
k corresponding to ck, i.e. when (1.13) holds, the heteroclinic chain joining 0 and
k consists of a single orbit. Then in §3 the variational problem used to find the
heteroclinic orbit, Q = Q+

k , asymptotic to 0 and some p ∈ Fk will be formulated.
This entails introducing both an appropriate class of functions, Γ, and an asso-
ciated functional, J , and seeking Q as the infimum of J over Γ. That J has a
minimizer in Γ will be established in §4 and that Q is a solution of (HS) will be
proved in §5. Some further properties of Q will also be obtained in §5. Lastly, in
§6, it is shown that (1.13) implies the existence of heteroclinic solutions of (HS)
in Gmk for all m large enough and these solutions possess certain monotonicity
properties with respect to each other that lead to a new characterization of Q±k
as their limit.

We thank Sufian Husseini and Joel Robbin for several helpful conversations
and Sergey Bolotin for informing us of his joint work with Negrini [5].

2. Some preliminaries

This section is devoted to some properties of Pk and the existence of a hete-
roclinic connection between 0 and k. It is always assumed for what follows that
V satisfies (V1)–(V2) and (1.13) holds.

Proposition 2.1. Let p ∈ Fk,T minimize I∗|Fk
.

(a) p|T0 is a simple curve.
(b) If k = k∗, then p|T∗0 /Z2 is a simple curve, i.e. p is a simple curve on

T 2.
(c) If k = (k1, k2) with k1, k2 relatively prime, then

(2.2) c∗mk = mc∗k.
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(d) (Minimality property) If k is as in (c), for any a < b ∈ R, and any
q ∈W 1,2[a, b] where q(a) = p(a), q(b) = q(b), then

(2.3)
∫ b

a

L(p) dt ≤
∫ b

a

L(q) dt

with equality only if b− a = b− a and q(a+ t) = p(a+ t) where defined.
(e) If k is as in (c), then p is a simple curve on R.
(f) If q ∈ Fk and minimizes I∗ on Fk, then either p(R) ∩ q(R) = ∅ or

q = τθp for some θ ∈ R.

Proof. (a) If not, there exists 0 ≤ σ < s < T such that p(σ) = p(s).
Excising the closed loop p([σ, s)) from p|T0 yields a new curve p ∈ Fk with I∗(p) <
I∗(p) = c∗k, contrary to (1.5).

(b) If not, there are σ, s as in (a) and p ∈ Z2 \ {0} such that p(σ) = p(s) + j.
But then q = p|sσ ∈ F−j,s−σ with I∗(q) < I∗(p), contrary to (1.7).

(c) To prove (2.2), first the case of m = 2 will be verified. Let ε > 0 and
q ∈ F2k be such that

(2.4) I∗(q) ≤ c∗2k + ε.

Let L, L be lines of slope 2k such that q lies between L and L and is tangent to
each line. Without loss of generality, q(0) ∈ L and if q ∈ F2k,T , there is a smallest
t ∈ (0, T ) such that q(t ) ∈ L. If q(σ) + k = q(s) for some 0 ≤ σ < s ≤ T , then
q|sσ, q|T+σ

s ∈ Fk so

(2.5) c∗2k + ε ≥
∫ T+σ

σ

L(q) dt =
∫ s

σ

L(q) dt+
∫ T+σ

s

L(q) dt ≥ 2c∗k.

On the other hand, p|2T0 ∈ F2k so

(2.6) 2c∗k =
∫ 2T

0

L(p) dt ≥ c∗2k.

Since ε is arbitrary, combining (2.5)–(2.6) yields (2.2) for m = 2. To obtain σ

and s, consider q(t) + k for t ∈ [0, t ]. If q(0) + k = q(s) for some s ∈ (0, T )
or q(t ) + k = q(s) for some s ∈ (t, T ], we are through. Otherwise for small
t > 0, q(t) + k lies inside the region bounded by L and q|T0 while for t < t and
near t, q(t) + k lies outside this region. Hence there is a σ ∈ (0, t) such that
q(σ) + k = q(s) and the case of m = 2 is complete.

For the general case, suppose that (2.2) holds for m − 1. Again, let ε > 0
and q ∈ Fmk be such that

I∗(q) ≤ c∗mk + ε.
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The argument producing σ and s works in exactly the same fashion. Hence
q(T + σ)− q(s) = (m− 1)k so the analogue of (2.5) is

c∗mk
+ ε ≥

∫ s

σ

L(q) dt+
∫ T+σ

s

L(q) dt ≥ c∗k + c∗(m−1)k = mc∗k

and (2.2) follows as for m = 2.
(d) Suppose there is a q ∈W 1,2[a, b] such that

(2.7)
∫ b

a

L(q) dt <
∫ b

a

L(p) dt.

Choose j, l ∈ Z such that jT < a < b < lT . Define r(t) via

(2.8) r(t) =

{
q(t), t ∈ [a, b],

p(t), otherwise.

Then r|lTjT ∈ F(l−j)k but

(2.9) c∗(l−j)k ≤
∫ lT

jT

L(r) dt <
∫ lT

jT

L(p) dt = (l − j)c∗k

by (c). Hence the first assertion of (d) follows.
Choose α < s so that p(b) − p(α) = lk for some l ∈ N. Extend q to [a −

(a − α), b] via q(a − s) = p(a − s) for s ∈ [0, a − α]. Thus p and q so extended
lie in Flk and I∗(p) = c∗lk = lc∗k = I∗(q). Hence q ∈ Plk and is a solution of
(HS) which coincides with p on an interval. Therefore q(a+ t) = p(a+ t) for all
t ∈ [a− (a− α), b− a ].

(e) Given (d), a self-intersection of p leads to a contradiction as in (a).
(f) Suppose that p(R) ∩ q(R) 6= ∅. Then p(0) = q(s) for some s ∈ R. Set

r = τ−sq so r ∈ Fk and r(0) = p(0). Suppose r ∈ Fk,T . Set ϕ(t) = r(t) on
[−T , 0) and ϕ(t) = p(t) on [0, T ]. Then ϕ ∈ F2k and I∗(ϕ) = 2c∗k = c∗2k via (c).
Hence ϕ minimizes I∗ on F2k and therefore is a solution of (HS). Due to the
definition of ϕ, r(t) ≡ p(t) = τ−sq(t) or q = τsp.

Remark. See also [11] and [8] for closely related results in their setting.
Since (HS) is a Hamiltonian system, for any solution p of (HS),

(2.10) 1
2 |ṗ(t)|

2 + V (p(t)) ≡ constant ≡ αp.

Proposition 2.11. If k ∈ Z2 \ {0} and p ∈ Pk, αp = 0.

Proof. This simple result is probably well known. See e.g. T. Maxwell [10]
for a more general result. Since the proof of this special case is brief we give the
details.
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Let q ∈ Fk,T . There is a corresponding u ∈ W 1,2[0, 1] via q(t) = u(t/T ) ≡
u(s) and ∫ T

0

L(q) dt =
∫ 1

0

(
1

2T

∣∣∣∣duds
∣∣∣∣2 − TV (u)

)
dt ≡ Φ(T, u).

Hence

c∗k = inf{Φ(T, u) | T > 0 and u ∈W 1,2[0, 1] with u(1)− u(0) = k}.

In particular, at the pair T , p = u(t/T ), the Fréchet derivative of Φ with
respect to (T, u) vanishes:

Φ′(T, u)(σ, ϕ) = 0 =
∫ 1

0

(
1
2
u̇ · ϕ̇− TV ′(u) · ϕ

)
ds(2.12)

− σ

∫ 1

0

(
1

2T 2
|u̇|2 + V (u)

)
ds.

The first term on the right in (2.12) vanishes since p is a solution of (HS). Hence∫ 1

0

(
1

2T 2
|u̇|2 + V (u)

)
ds = 0 = T

∫ T

0

(
1
2
|ṗ|2 + V (p)

)
dt = T 2αp

so αp = 0.

Corollary 2.13. p(R) ∩ Z2 = ∅.

Proof. If p(σ) = j ∈ Z2 for some σ ∈ R, then (2.10) with t = σ, Proposition
2.11, and (V2) imply ṗ(σ) = 0. But then the uniqueness of solutions of the initial
value problem for (HS) implies p(t) ≡ j. Since j 6∈ Fk, we have a contradiction.

By Corollary 2.13, 0 ∈ R2 \Pk. Let p−, p+ denote the curves in Pk which are
the boundaries of the component, C, of R2\Pk to which 0 belongs. (Geometrically
for what follows, we think of p− as being to the left and p+ to the right of 0.)

Proposition 2.14. C ∩ Z2 = Zk.

Proof. Certainly Zk ⊂ C. Suppose j ∈ Z2 \ Zk with j ∈ C. Consider the
straight line segment joining 0 and j. Its endpoints lie in C. Hence the straight
line extension of the segment intersects p− and p+. Suppose e.g. the extension in
the direction of j intersects p+. Then p+−j ∈ Pk with 0 to the left of p+−j. By
Proposition 2.1(f), either (p+(R)− j) ∩ p−(R) = ∅ in which case 0 lies between
p− and p+ − j, contrary to the choice of p+, or p+(R)− j = τθp−(R) = p−(R),
which again is impossible since 0 lies to the left of p+ − j. Hence there is no
such j.

As was mentioned in the introduction, there is a heteroclinic chain of solu-
tions of (HS) joining 0 and k. The next result shows that in fact for the current
setting, there is a single heteroclinic orbit joining 0 and k.
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Theorem 2.15. Suppose V satisfies (V1)–(V2), k = (k1, k2) ∈ Z2 \{0} with
k1, k2 relatively prime, and (1.13) holds. Then (HS) has a heteroclinic solution,
q∗, with q∗(−∞) = 0, q∗(∞) = k and q∗(t) ∈ C for all t ∈ R.

Proof. It was shown in [12] and [13] that any appropriately normalized
minimizing sequence (qm) for (1.2) “converges” to a heteroclinic chain of solu-
tions of (HS) joining 0 and k and if Q1, . . . , Qj are the “links” in the chain,
then

(2.16) ck =
j∑
i=1

I(Qi).

We claim each qm can be assumed to lie in C. Assuming this for the moment,
the arguments of [12], [13] show Qi ∈ C and therefore by Proposition 2.14,
Qi(±∞) ∈ Zk. If j > 1 and any Qi is such that Qi(∞) − Qi(−∞) = ±k, then
translation and, if necessary, time reversal yield a Q̂ ∈ Gk such that

I(Q̂) =
∫

R
L(Qi) dt < ck

contrary to the definition of ck. Thus each Qi has Qi(∞)−Qi(−∞) = ±lk for
some l ∈ N \ {1}. Choose i so that

(2.17)
∫

R
L(Qi) dt = min

1≤n≤j

∫
R
L(Qn) dt.

Again translation and time reversal yield Q̂ such that Q̂(−∞) = 0, Q̂(∞) = lk,
and ∫

R
L(Q̂) dt =

∫
R
L(Qi) dt.

The argument of Proposition 2.1(c) shows Q̂ and Q̂+ k intersect. Suppose that
Q̂(σ) = Q̂(s) + k. Let

(2.18) Q̃(t) =

{
Q̂(t), −∞ ≤ t ≤ σ,

Q̂(s+ σ − t) + k, σ ≤ t ≤ ∞.

Then Q̃ ∈ Gk and

(2.19) I(Q̃) < 2I(Q̂) ≤
j∑
i=1

I(Qi) = ck,

a contradiction. Hence j = 1 and q∗ = Q1. To see that q∗(R) ⊂ C, suppose
q∗(R) ∩ Pk 6= ∅. Then q∗ and p have a point in common where p = p− or p+.
Say q∗(σ) = p(s). Moreover, p is tangent to q∗ at that point. Since both p and
q∗ satisfy

(2.20) 1
2 |q̇(t)|

2 + V (q(t)) ≡ 0, t ∈ R,
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it follows that q∗(t) ≡ p(t) or q∗(t) ≡ p(−t). But then q∗ 6∈ Gk. Hence q∗ lies
in C.

Finally, to show that the minimizing sequence (qm) can be assumed to be
in C, suppose this is not the case. Then for some m and p as above, there
are numbers σ1 < s1 and σ < s such that qm(σ1) = p(σ), qm(s1) = p(s) and
qm(t) 6∈ C for t ∈ (σ1, s1). But then by Proposition 2.1(d),

(2.21)
∫ s1

σ1

L(qm) dt >
∫ s

σ

L(p) dt.

Therefore replacing qm|s1σ1
by p|sσ and doing the same for any other such interval

where qm lies outside C yields a new function q̂m ∈ Gk with I(q̂m) < I(qm).

This section concludes with the construction of an orbit joining 0 and p+.
Let

Λ = {q ∈W 1,2
loc | q(0) ∈ p+(R) and q(∞) = 0}.

Consider the problem of minimizing

(2.22)
∫ ∞

0

L(q) dt

for q ∈ Λ. A straightforward minimization argument as in [17] produces z+
0 ∈ Λ,

a solution of (HS), which minimizes the functional in (2.22). Moreover, as in the
proof of Theorem 2.15, z+

0 intersects p+ only at z+
0 (0) and intersects {q∗ +mk |

m ∈ Z} only at z+
0 (∞) = 0. It is possible that z+

0 is not unique. However, if
z+ ∈ Λ with ∫ ∞

0

L(z+) dt =
∫ ∞

0

L(z+
0 ) dt,

then as above, z+ and z+
0 intersect only at their endpoints.

For j ∈ Z, set z+
j = z+

0 + jk. Then the curves z+
j−1, z

+
j , p+, and q∗+(j−1)k

bound a “rectangle” Rj−1. Set R =
⋃
i∈Z Ri.

Remark 2.23. By the above arguments, if z+
0 is not a unique minimizer in

Λ, any other minimizer z+ cannot cross z+
j and if z+ and z+

j touch for j 6= 0,
they must be identical as in Corollary 2.13.

3. Formulation of a variational problem

In this section a class of curves, Γ, will be introduced. These curves start at
t = −∞ at 0, lie in C, and are asymptotic to p+ as t→∞. A functional, J , will
be defined on Γ, and the first heteroclinic solution of (HS) that we seek will be
obtained by minimizing J over Γ.

To begin, let

Γ = {q ∈W 1,2
loc (R,R2) | (Γ1)–(Γ5) hold}
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where

(Γ1) q(−∞) = 0,
(Γ2) q lies in R, and
(Γ3) q intersects z+

i for all i ∈ N.

To state (Γ4)–(Γ5), some further remarks are necessary. For i ∈ N and q

satisfying (Γ1)–(Γ3), let ti(q) denote the smallest value of t such that q intersects
z+
i . When the choice of q is evident, we just write ti. Let s0(q) = ∞ and for
i ∈ N, define si(q) ∈ [0,∞] via z+

i (si(q)) = q(ti(q)). The final requirements for
q ∈ Γ are

(Γ4) q(t) ∈ R0 for t ∈ [−∞, t1] and for i ∈ N, q(t) ∈ Ri for t ∈ [ti, ti+1],
(Γ5) si+1(q) ≤ si(q) for all i ∈ N.

At this point fix the time scale for p+ by requiring that p+(0) = z+
0 (0).

Therefore p+(iT ) = z+
i (0) for all i ∈ N and (Γ5) is equivalent to

|q(ti+1)− p+((i+ 1)T )| ≤ |q(ti)− p+(iT )|.

For q ∈ Γ, define

(3.1) a1(q) =
∫ t1(q)

−∞
L(q) dt− c∗k

and for i ≥ 2,

(3.2) a2(q) =
∫ ti(q)

ti−1(q)

L(q) dt− c∗k.

Now for q ∈ Γ, set

(3.3) J(q) =
∞∑
i=1

ai(q)

and define

(3.4) c = inf
Γ
J.

Theorem 3.5. If V satisfies (V1)–(V2), k = (k1, k2) ∈ Z2 \ {0} with k1,
k2 relatively prime, and (1.13) holds, then there is a q ∈ Γ such that I(Q) = c.
Moreover, Q is a solution of (HS) with Q(−∞) = 0 and Q(t) − p+(t) → 0 as
t→∞.

The proof of Theorem 3.5 will be accomplished in §§3–5. Some properties of
J will be established next. Let K =

∫∞
0
L(z+

0 ) dt.
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Proposition 3.6.

(a) For each q ∈ Γ, J(q) ≥ −K.
(b) −K ≤ c ≤ K.
(c) If q ∈ Γ and J(q) ≤M , then

∞∑
i=1

|ai(q)| ≤M + 2K.

Proof. (a) For i ≥ 2, let ψi denote the curve obtained by gluing together
z+
i−1|

si−1
si and q|titi−1

. Then ψi extends to R with Ti ≡ si−1 − si + ti − ti−1 via
(1.1) and belongs to Fk. Therefore by (1.5),

(3.7) I∗(ψi) ≥ c∗k

or

(3.8) ai(q) ≥ −
∫ si−1

si

L(z+
0 ) dt.

The same inequality holds for i = 1 via an approximation argument. Adding
these inequalities then yields (a).

(b) The lower bound is immediate from (a) and (3.4). For the upper bound,
set q(t) = z+

0 (−t), −∞ ≤ t ≤ 0 and q(t) = p+(t), t ≥ 0. Then q ∈ Γ and
J(q) = K.

(c) Set N−(q) = {l ∈ N | al(q) < 0} and

J−(q) =
∑

i∈N−(q)

ai(q).

Then by (3.8),

(3.9) −J−(q) ≤ K.

Hence

(3.10) J+(q) ≡ J(q)− J−(q) ≤M +K

and

(3.11)
∞∑
i=1

|ai(q)| ≤M + 2K.

The next result establishes the asymptotic behavior of q ∈ Γ when J(q) <∞.
Recall that p+ ∈ Fk,T .
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Proposition 3.12. If q ∈ Γ and J(q) ≤M , then as i→∞,

(a) ti+1(q)− ti(q) → T , and
(b) ‖q − p+‖L∞[ti,ti+1] → 0.

Proof. Since J(q) ≤M , ai(q) → 0 as i→∞. Therefore

(3.13)
∫ ti

ti−1

L(q) dt→ c∗k

as i → ∞. Consider the functions ψi defined in the proof of Proposition 3.6.
Translating time and subtracting (i−1)k from ψi, it can be assumed that ψi(0) =
z+
0 (si) and ψi(Ti) = z+

1 (si). For large i,

0 < |k| = |z+
1 (si)− z+

0 (si)| =
∣∣∣∣ ∫ Ti

0

ψi dt

∣∣∣∣(3.14)

≤ T
1/2
i

( ∫ Ti

0

|ψi|2 dt
)1/2

≤ T
1/2
i (c∗k + 1)1/2

via (3.13). By (Γ5), si decreases monotonically to s∗ ≥ 0. Hence (3.14) shows
that ti − ti−1 is bounded from below by a positive constant and in particular
cannot approach 0.

The L2 bounds for ψ̇i given by (3.13) and L∞ bound for ψi imply ψi is
bounded in W 1,2

loc and therefore converges along a subsequence weakly in W 1,2
loc

and strongly in L∞loc as i→∞ to ψ ∈ W 1,2
loc . If (ti − ti−1) is bounded, there is a

T > 0 such that ti − ti−1 → T along a subsequence and

(3.15)
∫ T

0

L(ψ) dt ≤ lim
i→∞

∫ ti

ti−1

L(ψi) dt ≤ c∗k.

Moreover, ψ(0) = z+
0 (s∗) and ψ(T ) = z+

1 (s∗). Therefore ψ ∈ Fk so

(3.16)
∫ T

0

L(ψ) dt ≥ c∗k.

Hence equality holds in (3.16) so ψ ∈ Pk. Moreover, the construction of R then
implies T = T , s∗ = 0, and ψ = p+. Thus ψi converges to p+ in L∞[0, T ]
along the subsequence. The uniqueness of the limit implies the entire sequence
converges to p+.

To complete the proof, it remains to show that (ti − ti−1) is bounded. Thus
suppose that ti − ti−1 → ∞ as i → ∞ along a subsequence. Let ε > 0. For i
sufficiently large,

(3.17)
∫ Ti

0

L(ψi) dt ≤ c∗k + ε.
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Let Bδ(x) denote an open ball about x of radius δ in R2. For any δ > 0 and all
large i, ψi intersects Bδ(Z2)∩R0, for otherwise by (V2), there is a γ = γ(δ) > 0
such that −V (ψi(t)) ≥ γ for all t ∈ [0, Ti]. Therefore

(3.18)
∫ Ti

0

L(ψi) dt ≥ γ(ti − ti−1) →∞

as i → ∞. Thus for some yi ∈ [0, Ti], ψi(yi) ∈ Bδ({0} ∪ {k}). The same
argument applies in either event so suppose ψi(yi) ∈ Bδ(0). Append a straight
line segment, Si, run back and forth from ψi(yi) to 0 to ψi(yi) and call the
resulting curve χi. It can be assumed that |χ′i(t)| = |ψi(yi)| for t ∈ Si and that
χi spends time 2Li traversing Si back and forth. Therefore

(3.19)
∣∣∣∣ ∫ Ti

0

L(ψi) dt−
∫ Ti+2Li

0

L(χi) dt
∣∣∣∣ =

∣∣∣∣ ∫
Si

L(χi) dt
∣∣∣∣ = o(1)

as δ → 0 uniformly for large i. Define

(3.20) ϕi(t) =

{
χi(t+ yi + Li), 0 ≤ t ≤ Ti − yi + Li,

k + χi(t− Ti + yi − Li), Ti − yi + Li ≤ t ≤ Ti + 2Li,

i.e. ϕi follows χi from 0 to ψi(yi) along Si, then follows ψi from ψi(yi) to z1(s∗),
and then follows k + ψi(y) from z+

1 (s∗) to k.
Further, extend ϕi to R via ϕi(t) = 0 for t ≤ 0 and ϕi(t) = k for t ≥ Ti+2Li.

Then ϕi ∈ Gk and by (3.19),

(3.21)
∫ Ti+2Li

0

L(χi) dt =
∫

R
L(ϕi) dt =

∫ Ti

0

L(ψi) dt+ o(1) as δ → 0.

Since ϕi ∈ Gk, by (3.17) and (3.21),

(3.22) ck ≤
∫

R
L(ϕi) dt ≤ c∗k + ε+ o(1) as δ → 0.

Choose e.g. ε = 1
3 (ck − c∗k) and δ so small that o(1) ≤ ε. Then (3.22) shows

(3.23) ck < c∗k,

contrary to (1.13). The proof is complete.

Remark 3.24. By Proposition 3.12, once it is shown that there is Q ∈ Γ
such that J(Q) = c, it follows that Q has the desired asymptotic behavior as
t→∞.
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4. The minimization argument

The goal of this section is to establish the existence ofQ ∈ Γ such that J(Q) =
c. Although the ideas are elementary, the details are lengthy and technical.
Observe first that if q ∈ Γ, then τθq ∈ Γ for all θ ∈ R and ti(τθq) = ti(q) + θ.
Moreover,

(4.1) J(τθ(q)) = J(q).

Now let (qm) be a minimizing sequence for (3.4). A normalization can be
made for (qm). Let δ > 0 be so small that Bδ(0)∩Z2 = {0} and Bδ(0)∩ z+

1 = ∅.
Then there is a smallest value of t, t0 = t0(q), such that q(t0) ∈ ∂Bδ(0) and
q(t) ∈ Bδ(0) for t ∈ [−∞, t0). By (4.1), the normalization that t0(qm) = 0 for
all m ∈ N can be made.

The remainder of this section is divided into three main steps, namely proving
that

(A) qm converges, along a subsequence, weakly in W 1,2
loc and strongly in L∞loc,

to a function Q ∈W 1,2
loc ,

(B) Q ∈ Γ, and
(C) J(Q) = c.

The proof of (A) requires two preliminaries:

Lemma 4.2. There is a β = β(M) > 0 such that if q ∈ Γ and J(q) ≤ M ,
then for all i ∈ N, ti(q)− ti−1(q) ≥ β.

Proof. By (3.11), for i ≥ 2,

(4.3)
∫ ti

ti−1

L(q) dt ≤M + 2K + c∗k ≡M1

and

(4.4)
∫ ti

ti−1

|q̇|2 dt ≤ 2M1 ≡M2
2 .

The lower bound then follows as in (3.14) for any β ≤ (|k|/M2)2. A similar
argument gives the lower bound for i = 1.

Lemma 4.5. (qm) is bounded in W 1,2
loc .

Proof. Since qm(0) lies on ∂Bδ(0) ∩ R0, to prove the result it suffices to
find a bound for q̇m in L2[−l, l] for each l > 0. Choose im so that

(4.6) tim(qm) ≤ l < tim+1(qm).
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Therefore∫ l

−l
|q̇m|2 dt ≤ 2

∫ tim+1

−∞
L(qm) dt ≤ 2

( im+1∑
i=1

ai(qm) + (im + 1)c∗k

)
(4.7)

≤ 2(M + 2K + (im + 1)c∗k)

via (3.11). By Lemma 4.2,

(4.8) tim(qm) =
im∑
i=1

(ti(qm)− ti−1(qm)) ≥ imβ

so (4.6)–(4.8) yield the bound for ‖q̇m‖L2[−l,l].

Now by Lemma 4.5, a subsequence of (qm) which can be taken to be the
entire sequence converges weakly in W 1,2

loc and strongly in L∞loc to Q ∈W 1,2
loc with

Q(0) ∈ ∂Bδ(0) ∩R0 and (A) has been established.
To prove (B), (Γ1)–(Γ5) must be verified for Q. By (3.11),

(4.9)
∫ 0

−∞
L(qm) dt ≤M1.

The convergence of qm to Q obtained in (A) and standard weak lower semicon-
tinuity arguments (see e.g. [12]) then imply

(4.10)
∫ 0

−∞
L(Q) dt ≤M1.

The form of L and (4.10) show Q has a limit as t→ −∞ and Q(−∞) ∈ V −1(0) =
Z2. But for t ≤ 0, Q(t) ∈ Bδ(0) and Bδ(0) ∩ Z2 = {0}. Hence Q(−∞) = 0 and
Q satisfies (Γ1). The L∞loc convergence of qm to Q further implies that (Γ2) holds
for Q. Properties (Γ3)–(Γ5) for Q will follow from the next result.

Proposition 4.11. For each i ∈ N, there is an Ai > 0 such that ti(qm) ≤ Ai
for all m ∈ N.

Assuming Proposition 4.11 for the moment, the uniform m-independent
bounds for (ti(qm)) and the L∞loc convergence of (qm) imply (Γ3) for Q. It can
be assumed that ti(qm) → ti = ti(Q) as m → ∞ for all i ∈ N. Hence by (Γ3)
for qm, Q(t) ∈ Ri for t ∈ (ti−1, ti] (and Q(t) ∈ R0 for t ∈ [−∞, t1)). More-
over Q(t) ∈ Ri for t = ti−1(Q), ti(Q). Therefore Q(t) ∈ Ri−1 ∩ Ri = z+

i for
t ∈ [ti(Q), ti(Q)]. Consequently, Q satisfies (Γ4). That (Γ5) holds for Q will be
established in the course of the proof of Proposition 4.11.

Proof of Proposition 4.11. Arguing indirectly, suppose there is a small-
est j ∈ N such that tj(qm) →∞ along a subsequence.
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Case 1: j = 1. By (1.11),

∫ t1(qm)

−∞
L(qm) dt ≤M + 2K + c∗k ≡M3.

Hence for any r > 0,

(4.12)
∫ r

−∞
L(qm) dt ≤M3

and (4.12) implies

(4.13)
∫

R
L(Q) dt ≤M3.

Since qm(t) ∈ R0 for all t ∈ (−∞, t1(qm)), Q(t) ∈ R0 for all t ∈ R so either
(a) Q(∞) = 0, or (b) Q(∞) = k. It will be shown that each of (a) and (b) leads
to the conclusion that (qm) is not a minimizing sequence.

(a) Recall that qm(0) and therefore Q(0) lie on ∂Bδ(0) ∩ R0. Let % < δ/4.
Then there is an S = S(%) ∈ R such that Q(t) ∈ B%(0) for t ≥ S. Therefore for
m large, qm(S) ∈ B2%(0). As in the construction of z+

0 , there is a curve q∗m(t)
such that q∗m(−∞) = 0, q∗m(S) = qm(S), and q∗m ∈ R0 for t ∈ [−∞, S]. Extend
q∗m to R via q∗m(t) = qm(t) for t ≥ S. Then q∗m ∈ Γ and

(4.14) J(qm)− J(q∗m) =
∫ S

−∞
L(qm) dt−

∫ S

−∞
L(q∗m) dt.

As % → 0, the second integral in (4.14) approaches 0. Since for t ∈ [−∞, S],
qm emanates from 0, intersects ∂Bδ(0), and returns to ∂B%(0), there is a γ =
γ(δ) > 0 such that

(4.15)
∫ S

−∞
L(qm) dt ≥ γ.

But then (4.14)–(4.15) show (qm) is not a minimizing sequence for (3.4) so (a)
is impossible.

(b) Since Q(∞) = k, as in (a), for all % > 0, there is an S = S(%) > 0 such
that Q(t) ∈ B%(k) for t ≥ S. Therefore qm(S) ∈ B2%(k) for all m large. As in
(a), there is a q∗m(t) such that q∗m(t) = qm(t) for t ≤ S, q∗m(∞) = k, q∗m ∈ R0,
and ∫ ∞

S

L(q∗m) dt→ 0
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as %→ 0. Note that q∗m ∈ Gk. Now

J(q∗m) =
∫ S

−∞
L(qm) dt+

∫ t1(qm)

S

L(qm) dt− c∗k +
∞∑
i=2

ai(qm)(4.16)

=
∫

R
L(q∗m) dt−

∫ ∞

S

L(q∗m) dt+
∫ t1(qm)

S

L(qm) dt

− c∗k +
∞∑
i=2

ai(qm)

≥ ck − c∗k −
∫ ∞

S

L(q∗m) dt+
∫ t1(qm)

S

L(qm) dt+
∞∑
i=2

ai(qm).

Observe that

(4.17)
∫ ∞

s1(qm)

L(z∗1) dt ≤
∫ ∞

S

L(q∗m) dt+
∫ t1(qm)

S

L(qm) dt.

Combining (4.16)–(4.17) gives

(4.18) J(q∗m) ≥ ck − c∗k − 2
∫ ∞

S

L(q∗m) dt+
∫ ∞

s1(qm)

L(z∗1) dt+
∞∑
i=2

ai(qm).

Define

(4.19) q̂m(t) =

{
z+
0 (−t), −∞ < t < −s1(qm),

qm(t+ s1(qm) + t1(qm))− k, t ≥ −s1(qm).

Then q̂m ∈ Γ and

(4.20) J(q̂m) =
∫ ∞

s1(qm)

L(z+
1 ) dt+

∞∑
i=2

ai(qm).

Therefore by (4.18) and (4.20),

(4.21) J(qm) ≥ J(q̂m) + ck − c∗k + o(1)

as % → 0. Consequently, by (1.13), (qm) is not a minimizing sequence for (3.4)
and (b) is not possible.

Remark 4.22. By Case 1, t1(Q) ≤ t1(Q) <∞. Moreover, s1(Q) < s0(Q) =
∞. Indeed, if s1(Q) = ∞, then Q(t1(Q)) = k and a slightly simpler version of
the argument of (b) shows (qm) is not a minimizing sequence.

Case 2: j > 1. Then ti(Q) ≤ ti(Q) <∞, 1 ≤ i ≤ j−1, and Q(t) ∈ Rj−1 for
t > tj−1(Q) so (a) Q(∞) = (j − 1)k or (b) Q(∞) = jk. It will again be shown
that (a) and (b) are impossible as for Case 1. To do so we require
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Proposition 4.23. si−1(Q) ≤ si(Q), 1 ≤ i ≤ j − 1.

Proof. Define si = si(Q) via

(4.24) Q(ti) = z+
i (si).

Since

(4.25) Q(ti) = lim
m→∞

qm(ti(qm)) = lim
m→∞

z+
i (si(qm)),

it follows that

(4.26) si = lim
m→∞

si(qm).

Hence by (Γ5) for (qm),

(4.27) si ≤ si−1.

Therefore if tl(Q) = tl(Q), l = i− 1, i, then

(4.28) si ≤ si−1.

Thus suppose that tl(Q) 6= tl(Q) for at least one of i − 1, i. The worst case
in which inequality holds for both i − 1 and i will be treated. The remaining
cases are handled similarly. Let Ln = Q([tn(Q), tn(Q)]), n = i− 1, i. By earlier
remarks, Li−1 and Li − k lie on z+

i−1. If the intersection of these curves is
empty or a single point, since Q(ti−1) ∈ Li and Q(ti) ∈ Li+1, (4.27) implies
Li−1 lies to the left of Li − k on z+

i−1. Hence Q(ti−1(Q)) = zi−1(si−1(Q)) is to
the left of or equals z+

i (si(Q)) − k = Q(ti(Q)) − k, i.e. si(Q) ≤ si−1(Q). Thus
suppose the intersection of Li−1 and Li−k is a nontrivial curve. Then there are
σi−1 ∈ (ti−1(Q), ti−1(Q)) and σi ∈ (ti(Q), ti(Q)) such that Q(σi) = Q(σi−1) + k

and Q(σi−1) 6∈ p+.
Proceeding formally for the moment, suppose Q ∈ Γi and minimizes J .

Define

(4.29) Q̂(t) =

{
Q(t), t ≤ σi−1,

Q(t+ σi − σi−1)− k, t ≥ σi−1.

Then Q̂ ∈ Γ and since Q|σi
σi−1

∈ Fk,

(4.30) J(Q)− J(Q̂) =
∫ σi

σi−1

L(Q) dt− c∗k > 0

unlessQ coincides with a translate of p+ on [σi−1, σi]. ButQ(σi−1) 6∈ p+ excludes
the latter possibility. Hence

(4.31) J(Q)− J(Q̂) ≥ 2γ > 0.
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so Q would not be a minimizer of J on Γ. Now replacing qm by q̂m in the spirit
of (4.29) but with an extra small modification and using the convergence of qm
to p+ shows

(4.32) J(q̂m) ≤ J(qm)− γ,

again contradicting that (qm) is a minimizing sequence.

Remark 4.33. It will be seen in §5 that tj(Q) = tj(Q).

Completion of proof of Proposition 4.11.

Case 2(a): Q(∞) = (j − 1)k. As earlier, there is an S = S(%) such that
Q(t) ∈ B%((j − 1)k) for t ≥ S. Define ŝ by z+

j−1(ŝ) ∈ ∂B%((j − 1)k) ∩ z+
j−1 and

let ϕm(t), t ∈ [0, 1], be a curve in Rj−1 joining qm(S) to z+
j−1(ŝ) with∫ 1

0

L(ϕm) dt = o(1) as %→ 0.

Note that

(4.34)
∫ s

sj−1(qm)

L(z+
j−1) dt ≤

∫ 1

0

L(ϕm) dt+
∫ S

tj−1(qm)

L(qm) dt.

Define

(4.35) q∗m(t) =



qm(t), t ≤ tj−1(qm),

z+
j−1(t− tj−1(qm) + sj−1(qm)),

tj−1(qm) ≤ t ≤ tj−1(qm) + s− sj−1(qm) ≡ S1,

ϕm(t− S1), S1 ≤ t ≤ 1 + S1,

qm(t+ S − (1 + S1)), t ≥ 1 + S1.

Then q∗m ∈ Γ and

J(qm)− J(q∗m) =
∫ S

tj−1(qm)

L(qm) dt(4.36)

−
∫ S

sj−1(qm)

L(q∗j−1) dt−
∫ 1

0

L(ϕm) dt

≥ − 2
∫ 1

0

L(ϕm) dt

via (4.34). Let q̂m ∈ Γ be the function obtained from q∗m by setting q̂m(t) =
q∗m(t), t ≤ tj−2(qm), excising qm|

tj−1
tj−2

and z+
j−1|

sj−2
sj−1 from q∗m, and shifting the

remainder of q∗m by −k. Then

(4.37) J(q∗m)− J(q̂m) =
∫ tj−1(qm)

tj−2(qm)

L(qm) dt+
∫ sj−2(qm)

sj−1(qm)

L(z+
j−1) dt− c∗k.

Since the excised portion of q∗m lies in Fk, the right hand side of (4.37) exceeds
2γ > 0 independently of m unless the integrals on the left in (4.37) converge to
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(j−2)T
L(p+) dt and in particular qm|

tj−1
tj−2

→ p+|(j−1)T
(j−2)T and sj−1(qm) → 0. But

then sj(qm) → 0 and the contribution to J(qm) from aj(qm) will be bounded
from below by some γ > 0 independently of m so a modification of qm in
[tj−1(qm), tj(qm)] shows (qm) is not a minimizing sequence. Combining (4.36)–
(4.37) shows (qm) is not a minimizing sequence.

Case 2(b): Q(∞) = jk. This follows the same lines as (a) so we will be brief.
Let ϕm join qm(S) to z+

j (ŝ) with ŝ as in (a). Let q∗m = qm up to S, then follow
ϕm to z+

j (ŝ), follow z+
j to z+

j (sj(qm)) and then follow qm. Obtain q̂m from q∗m
by excising qm|Stj−1

, ϕm, and z+
j |bssj−1

and shifting the remaining portion of q̂m
by −k so q̂m ∈ Γ. Again J(qm)− J(q̂m) ≥ γ > 0.

With the completion of Proposition 4.11, it has been verified that Q ∈ Γ.

Lemma 4.38. min(sj(Q), sj(Q)) ≥ max(sj+1(Q), sj+1(Q)).

Proof. If the inequality fails, Q̂ can be defined as in (4.29). Since Q ∈ Γ,
we have Q̂ ∈ Γ and the reasoning of Proposition 4.23 again shows (qm) is not a
minimizing sequence.

To complete this section, it will be shown that

(C) J(Q) = c.

The proof of (C) will be carried out in 3 steps. For each i ∈ N, set

Ji(q) =
i∑
l=1

al(q).

Lemma 4.39. For each i ∈ N,

Ji(Q) ≤ lim
m→∞

Ji(qm).

Proof. Observe that

(4.40) Ji(qm) =
∫ ti(qm)

−∞
L(qm) dt− ic∗k.

For any ε > 0,

(4.41) lim
m→∞

ti(qm) = ti ≥ ti(Q) > ti(Q)− ε.

Hence

Ji(Q) = lim
ε→0

∫ ti(Q)−ε

−∞
L(Q) dt− ic∗k(4.42)

≤ lim
ε→0

lim
m→∞

∫ ti(Q)−ε

−∞
L(qm) dt− ic∗k

≤ lim
ε→0

lim
m→∞

∫ ti(qm)

−∞
L(qm) dt− ic∗k = lim

m→∞
Ji(qm).



62 P. H. Rabinowitz

Lemma 4.43. −K ≤ J(Q) ≤ 5K.

Proof. The lower bound follows from Proposition 3.6(a). By Lemma 4.39,

(4.44) Ji(Q) ≤ lim
m→∞

i∑
l=1

al(qm) ≤ lim
m→∞

∞∑
l=1

|al(qm)|.

By Proposition 3.6(b), it can be assumed that J(qm) ≤ K. Hence by (4.44) and
Proposition 3.6(c),

(4.45) Ji(Q) ≤ 3K

independently of i. Let

J−i (q) =
∑

l≤i, l∈N−(q)

al(q), J+
i (q) =

∑
l≤i, l∈N+(q)

al(q)

where N+(q) = N \N−(q). Then as in Proposition 3.6(a),

(4.46) −J−i (Q) ≤ −J−(Q) ≤ K

independently of i. Therefore by (4.45), (4.46),

(4.47) J+
i (Q) = Ji(Q)− J−i (Q) ≤ 4K

and

(4.48)
i∑
l=1

|al(Q)| ≤ 5K

independently of i, from which the lemma follows.

Finally, we have

Proposition 4.49. J(Q) = c.

Proof. Let ε > 0. Since Q ∈ Γ, si(Q) → 0 as i→∞ via Proposition 3.12.
Choose l = l(ε) so that

(4.50) si(Q) < ε for i ≥ l.

By Lemma 4.43, the series J(Q) converges. Thus it can be further assumed that
for i ≥ l,

(4.51) J(Q) ≤ Ji(Q) + ε.

By Lemma 4.39, there is an n = n(ε) such that for all m ≥ n,

(4.52) Jl(Q) ≤ Jl(qm) + ε.

Now

(4.53) Jl(qm) = J(qm)−
∑
l<i

ai(qm) ≤ J(qm)−
∑

l<i∈N−(qm)

ai(qm).
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Since (qm) is a minimizing sequence for (3.5), there is an n = n(ε) such that for
all m ≥ n,

(4.54) J(qm) ≤ c+ ε.

Hence by (4.51)–(4.54) and (3.8) for m ≥ max(n, n),

J(Q) ≤ c+ 3ε+
∑
l<i

∫ si−1(qm)

si(qm)

L(z+
0 ) dt(4.55)

= c+ 3ε+
∫ sl(qm)

0

L(z+
0 ) dt.

Now sl(qm) → sl(Q) as m→∞ so further requiring m ≥ n1(ε),

(4.56) sl(qm) ≤ sl(Q) + ε.

By Lemma 4.38, sl(Q) → 0 as l→∞. Hence for l large enough,

(4.57) J(Q) ≤ c+ 3ε+
∫ 2ε

0

L(z+
0 ) dt.

Since ε is arbitrary and Q ∈ Γ, it now follows that J(Q) = c.

5. Q is a solution of (HS)

The main goal of this section is to prove that Q is a solution of (HS). In the
process, some further qualitative properties of Q will be obtained. It will also
be shown that (HS) has three additional solutions of heteroclinic type.

Lemma 5.1. Q is a simple curve.

Proof. By (Γ4), it suffices to show that Q restricted to [−∞, t1] and to
[ti, ti+1] for i ∈ N are simple curves. But by the usual “curve shortening”
argument, if any of these curves were not simple, slicing off a closed loop yields
Q̂ ∈ Γ with J(Q̂) < J(Q) = c, contrary to (3.5).

Lemma 5.2. si+1(Q) < si(Q) for all i ∈ N unless si(Q) = 0 in which case
Q(t) = p+(t) for t ≥ ti(Q).

Proof. If si(Q) = si+1(Q), as in (4.29), set

(5.3) Q̂(t) =

{
Q(t), t ≤ ti(Q),

Q(t+ ti+1 − ti)− k, t ≥ ti(Q).

Then Q̂ ∈ Γ and J(Q̂) < J(Q) unless Q(t) = p+(t) for t ∈ [ti, ti+1]. But then
si(Q) = 0 and by (Γ5), sj(Q) = 0 for all j > i. Hence the argument just given
implies Q|tj+1

tj = p+|(j+1)T
jT for all j > i.
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Proposition 5.4. Q is a solution of (HS).

Proof. A local argument will be used to show Q is a solution of (HS) near
each t∗ ∈ R. Note that by Lemma 5.2, Q(t∗) 6∈ Z2. Let Q =

⋃
j∈N∪{0}(q

∗(R)+j)
and Z =

⋃
i∈N∪{0} z

+
i (0,∞]. Set

T = {t ∈ R | Q(t) ∈ p+(R) ∪Q ∪ Z}.

Choose σ < t∗ < s with σ and s near t∗. A standard variational argument yields
a solution p of (HS) joining Q(σ) and Q(s) and lying near Q(t∗). Indeed, it is
obtained by minimizing

∫
L(q) dt over all W 1,2 curves joining Q(σ) and Q(s).

Now either Q|sσ is a minimizer of this problem and therefore Q is a solution of
(HS) on (σ, s) or there is a minimizer p with

(5.5)
∫
L(p) dt <

∫ s

σ

L(Q) dt.

If, further, t∗ 6∈ T , then replacing Q|sσ by p produces Q̂ ∈ Γ such that J(Q̂) <
J(Q), which is impossible. Hence for all t∗ 6∈ T , Q satisfies (HS) for t near t∗.

It remains to study t∗ ∈ T .

Case 1: Q(t∗) ∈ Q. Let σ < t∗ < s as above. If Q|sσ is not a local minimizer,
there is a p as in (5.5). If p lies inR, the above argument showsQ|sσ satisfies (HS).
Thus suppose p does not lie in R. Then p has a subarc p(σ1, s1) such that p(σ1),
p(s1) ∈ Q and p(σ1, s1) 6∈ R. Now p(σ1) = q∗(α) + mk, p(s1) = q∗(β) + mk,
the same value of m appearing since Q(t∗) 6∈ Z2 implies Q(t∗) is not at an
intersection of the heteroclinics that constitute Q. The minimality properties of
q∗ and p now imply p = q∗|βα so in fact p lies in R and Q satisfies (HS) for this
case.

Case 2: Q(t∗) ∈ Z. If Q(t∗) = z+
0 (s∗), the minimality property of z∗0 implies

Q coincides with z∗0 |∞s∗ . A priori it is possible that s∗ = 0, which will be discussed
in Case 3 below. Thus suppose that Q(t∗) 6= p+(0). Then for σ < t∗ < s we
are in the setting of Case 1 with z+

0 replacing q∗ and the argument given there
shows Q|sσ satisfies (HS).

Next suppose that Q(t∗) ∈ z+
i for some i ∈ N and Q(t∗) 6= z+

i (0). Again
arguments as above using the minimality property of z+

i show Q|sσ satisfies (HS).

Case 3: Q(t∗) ∈ p+. Choose σ < t∗ < s and p as earlier allowing for the
possibility that Q(σ) ∈ z+

i and Q(s) ∈ p+. Once again familiar arguments using
the minimality properties of z+

i and p+ show Q satisfies (HS) on (σ, s).

Corollary 5.6. 1
2 |Q̇(t)|2 + V (Q(t)) = 0 for all t ∈ R.

Proof. Since Q is a solution of (HS), its energy is constant. Moreover,
Q(−∞) = 0, so V (Q(−∞)) = 0. Thus to prove the result, it suffices to show
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|Q̇(t)| → 0 as t → −∞. By (HS) and (V2), |Q̈(t)| → 0 as t → −∞. Let ε > 0.
By a standard interpolation inequality (see e.g. [7]) there is a K(ε) so that

‖q̇‖L∞[a,b] ≤ ε‖q̈‖L∞[a,b] +K(ε)‖q‖L∞[a,b]

where K also depends on |b − a|. Taking [a, b] = [n, n + 1], q = Q, and letting
n→ −∞ shows Q̇(−∞) = 0 and the corollary is proved.

Now that it is known that Q is a solution of (HS) with energy 0, some of
the possibilities encountered in the proof of Proposition 5.4 and earlier can be
excluded.

Corollary 5.7. For t ∈ R, Q(t) ∩ (Q ∪ p+(R) ∪ z∗0(R+)) = ∅. Moreover,
Q(t) ∩ z+

i = Q(ti) for i ∈ N. In particular, ti(Q) = ti(Q).

Proof. For t ∈ R, if Q(t) ∈ Q, p+(R) or z+
0 (R+), by Corollary 5.6, it must

be tangent to the corresponding curve and therefore by an earlier argument must
coincide with it, an impossibility. Similarly if Q(t) intersects z+

i at more than
one point, it must coincide with this curve, which is impossible.

Corollary 5.8. si+1(Q) < si(Q) for all i ∈ N ∪ {0}.

Proof. Q ∈ Γ implies si+1(Q) ≤ si(Q). Corollary 5.7 and the argument of
(4.29)–(4.31) show equality is not possible.

The next result and its corollary give some further qualitative information
on Q.

Proposition 5.9. Q/Z2 is simple, i.e. Q is a simple curve on T 2.

Proof. If not there are numbers σ < s and j ∈ Z2 such that Q(σ) =
Q(s) + j. Since Q lies between p− and p+, this is only possible if j = mk for
some m ∈ N ∪ {0}. Proposition 5.1 implies m 6= 0, σ ∈ (−∞, t1] or [ti, ti+1] for
some i ≥ 1, and s ∈ (tl, tl+1) for some l > i. Now q = Q|sσ ∈ Fmk so

(5.10)
∫ s

σ

L(Q) dt > c∗mk = mc∗k.

The inequality in (5.10) is strict via Corollary 5.7. Now by a familiar argument
excising Q|sσ from Q leads to Q̂ ∈ Γ with J(Q̂) < J(Q), a contradiction. Hence
Q is simple on T 2.

The next result shows Q approaches p0 monotonically in an appropriate
sense. Set Q1 = Q|t1−∞ and for i > 1, set Qi = Q|titi−1

. Let pi = p0|iT(i−1)T .

Corollary 5.11. For all i ∈ N, Qi+1 − k lies between Qi and pi.

Proof. Qi+1 lies to the left of pi+1 by construction. Hence Qi+1− k lies to
the left of pi+1 − k = pi. By Corollary 5.8, the endpoints of Qi are to the left of
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those of Qi+1 − k. Moreover, Qi and Qi+1 − k cannot intersect via Proposition
5.9 and the corollary follows.

Finally, observe that the construction employed to get a solution of (HS)
lying between Q and p+ and heteroclinic to 0 and p+ works equally well to get a
second solution lying between Q and p− and heteroclinic to 0 and p−. The same
reasoning also yields a pair of solutions of (HS) heteroclinic to 0 and to p+(−t),
p−(−t) respectively. Denoting these solutions by Q+

k , Q
−
k , Q

+
−k, Q

−
−k respectively,

this completes the proof of Theorem 1.12.

Remark 5.12. The heteroclinic solution Q+
k of (HS) (and similarly for its

three relatives) may not be unique in Γ. However, the usual minimization argu-
ment as e.g. in Lemma 5.1 implies that any two such minimizers Q and P in Γ
intersect only at 0. Therefore one of these solutions, e.g. P , lies between Q and
p+. Hence there is a unique Q+

k such that every other minimizer P lies between
Q+
k and p+, i.e. Q+

k is the minimizer farthest to the left of p+. It is this solution
that will be further characterized as a limit of homoclinics (on T 2) in §6.

6. More homoclinics on T 2

In this final section it will be shown that (HS) has two additional families of
heteroclinic solutions q±m ∈ Gmk with q+m and q−m lying on opposite sides of Q.
These solutions are homoclinic to 0 on T 2. Moreover, q+m (resp. q−m) converges in
a monotone sense that will be made precise below to Q+

k ∪Q
+
−k (resp. Q−k ∪Q

−
−k),

thus finishing an additional characterization of these solutions. Related but more
restrictive results in another setting were obtained by Caldiroli and Jeanjean [6].
Their analogue qm of q±m is characterized by the number of times it winds around
a singularity. Some of their estimates play a role in obtaining q±m below.

To begin, observe that the same argument establishing the existence of z+
0

yields z−0 , a solution of (HS) with z−0 ∈ p− and z−0 (∞) = 0. For j ∈ N, let
z−j = z−0 + jk. Now set

(6.1) G±mk = {g ∈ Gmk | q lies between Q and p± and q lies above z±0 }

Define

(6.2)± c±mk = inf
q∈G±mk

I(q).

Taking e.g. the + case and arguing again as in [13] or [16], any minimizing
sequence for (6.2)+ converges to a chain of functions u1, . . . , uj with j = j(m) ly-
ing between Q and p+ and above z+

0 with u1(−∞) = 0, uj(∞) = mk, ui(−∞) =
ui−1(∞), ui(∞)− ui(−∞) = wik with wi ∈ Z,

∑j
i=1 wi = m, and

(6.3) c+m,k =
j∑
i=1

I(ui)
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Now (6.3), i.e. the minimality of the chain, and the argument of Proposition
5.4 show ui is a solution of (HS), 1 ≤ i ≤ j, and therefore ui does not intersect
p+ or z+

0 (except for t = −∞). Moreover, ui(t) ∈ Q for t 6= ±∞ implies ui ⊂ Q,
in which case |wi| = 1.

It will be shown next that for m sufficiently large, j(m) = 1 and u1 = q±m ∈
G±mk. More precisely:

Theorem 6.4. Let V satisfy (V1)–(V2) and suppose (1.13) holds. Then
there are numbers β± ≥ 2 such that for each m ≥ β±, there is a solution
q±m ∈ G±mk of (HS) with I(q±m) = c±mk. Moreover, for l > m, q±l lies between q±m
and p±.

Remark 6.5. The minimizers q±m ∈ G±mk of (6.2)± need not be unique. The
second assertion of Theorem 6.4 applies to any pair of minimizers q±l , q

±
m with

l > m.

The first step in the proof of Theorem 6.4 is

Lemma 6.6. For m large, c±mk < mck.

Proof. Let m ∈ N. Define q ∈ G+
mk via

(6.5) q(t) =


z+
0 (−t), −∞ ≤ t ≤ 0,

p+(t), 0 ≤ t ≤ mT,

τmT z
+
m(t), mT ≤ t ≤ ∞.

Then by (1.13), for m sufficiently large,

(6.6) I(q) = 2
∫ ∞

0

L(z+
0 ) dt+mc∗k < mck.

Therefore

(6.7) c+mk < mck.

A similar argument shows c−mk < mck. Let β± be the smallest value of m for
which c±mk < mck.

Proposition 6.8. There is a solution q±β± ∈ G±β±k of (HS) with I(q±β±) =
c±β±k.

Proof. Dropping ±, by the above remarks, a minimizing sequence for cβk
converges to the chain u1, . . . , uj . If |wi| < β for all i, then I(ui) = |wi|ck and
by (6.3),

(6.9) cβk =
j∑
i=1

I(ui) =
( j∑
i=1

|wi|
)
ck ≥

( j∑
i=1

wi

)
ck = βck,
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contrary to the choice of β. Therefore |wi| > β for some i. If |wi| > β, without
loss of generality, wi > 0 and the argument of Proposition 2.1(c) shows ui and
ui + k intersect. Repeated application of this fact and the excision of an appro-
priate portion of ui yields u ∈ Gβk with I(u) < I(ui) ≤ cβk, contrary to the
definition of cβk. Therefore |wi| = β and again it can be assumed that wi = |wi|.
Moreover, i = 1 and ui = qβ . The proposition is proved.

Remark 6.10. For the sequel, note that by the choice of β (dropping ± for
β, C, and G),

(6.11)
cβk
β

<
c(β−1)k

β − 1
= ck.

Moreover, the argument of Proposition 2.1(c) yields numbers σβ < sβ such that
qβ(s) = qβ(σ) + k. Set

(6.12) ϕβ−1(t) =

{
qβ(t), t ≤ σβ ,

qβ(t− σβ + sβ), t ≥ σβ ,

and

(6.13) ϕβ+1(t) =

{
qβ(t), t ≤ sβ ,

qβ(t− sβ + σβ) t ≥ sβ .

Then ϕβ±1 ∈ G(β±1)k and therefore

(6.14) c(β±1)k = I(ϕβ)±
∫ sβ

σβ

L(qβ) dt = cβk ±
∫ sβ

σβ

L(qβ) dt.

Hence

(6.15) c(β+1)k − cβk ≤
∫ sβ

σβ

L(qβ) dt ≤ cβk − c(β−1)k.

Proof of Theorem 6.4. Again dropping ± as in Remark 6.10, suppose
solutions qi of (HS) have been obtained with qi ∈ Gik, I(qi) = cik,

(6.16)
cik
i
<
c(i−1)k

i− 1

and

(6.17) c(i+1)k − cik ≤
∫ si

σi

L(qi) dt ≤ cik − c(i−1)k,

where β ≤ i ≤ m. Note that these conditions hold for i = β via Remark 6.10.
To obtain the existence of qm+1 satisfying (6.16)–(6.17) for i = m+ 1, note first
that by (6.16)–(6.17) for i = m,

(6.18) c(m+1)k ≤ cmk + cmk − c(m−1)k < cmk +
cmk
m
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and (6.18) is equivalent to (6.16) for i = m+1. As earlier, there is a heteroclinic
chain u1, . . . , uj of solutions of (HS) joining 0 and (m+ 1)k with

(6.19) c(m+1)k =
j∑
i=1

I(ui)

and

(6.20) I(ui) =
j∑
i=1

cwik

with wi as in the proof of Proposition 6.8. If j = 1, then u1 ≡ qm+1 is the desired
solution. If j > 1 and wi < m+ 1 for all i, then by (6.16) (for β ≤ i ≤ m+ 1),

(6.22) c(m+1)k =
j∑
i=1

cwik >

j∑
i=1

wi
m+ 1

c(m+1)k ≥ c(m+1)k

since
∑j
i=1 wi ≥ (m+ 1)k. Hence wi ≥ m+ 1 for some i. If wi = m+ 1, then

(6.23) I(ui) <
j∑
l=1

I(ul) = c(m+1)k

contrary to the definition of c(m+1)k. If wi > m+ 1, repeated excisions of ui as
in (2.18) yield a vi ∈ G(m+1)k with

(6.24) I(vi) < I(ui) < c(m+1)k,

again a contradiction. Therefore j = 1 and the existence of qm+1 has been
established. Finally, the argument of (6.14)–(6.15) gives these inequalities and
hence (6.17) for m+ 1. This proves the first assertion of Theorem 6.4.

To get the second assertion of the theorem, observe that since qm is a
minimizer for (6.2), as is ql for the associated problem with m replaced by l,
qm∩ql = {0}, i.e. the function cannot intersect except when t = −∞. Therefore
if l > m, then q±l must be between q±m and p±.

Remark 6.25. The above reasoning also shows that for l > m, q±l lies be-
tween q±m and Q±k . This monotonicity of q±m with respect to m suggests that Q±k
may in some sense be the limit of (q±m). This possibility will be studied next.

Normalize q±m in the same fashion as Q±k , i.e. since τθq±m also minimizes I in
G±km, it can be assumed that q±m(0) ∈ ∂Bδ(0) for all m ∈ N and q±m(t) ∈ Bδ(δ)
for all t < 0 where δ is as in §4. Now the functions (q±m) lie between Q and Q±k
and (q±m) are solutions of (HS). Therefore they are bounded in C2

loc. Hence (q±m)
converges along a subsequence in C2

loc to Q±, where Q± is a solution of (HS)
with Q±(0) ∈ ∂Bδ(0), Q±(t) ∈ Bδ(0) for t < 0, and Q± lies between Q and Q±k .
Moreover, Q± does not touch Q or Q±k except at 0 unless it coincides with Q±k .
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Finally, observe that since q±m lies between q±m−1 and q±m+1, the entire sequence
converges to Q±.

It will be shown next that Q± = Q±k . Note that a set of functions Γ− can
be defined in an analogous fashion to Γ ≡ Γ+.

Proposition 6.26. Q± ∈ Γ±.

Proof. This will be proved for Q+. For notational simplicity, the ±’s will
be dropped below. Suppose that there is an M > 0 such that

(6.27)
∫ 0

−∞
L(q+m) dt ≤M.

Then as in [12] or [17], the functions (q+m) are bounded in

E = {u ∈W 1,2
loc | u(−∞) = 0}

under the norm ( ∫ 0

−∞
|u̇|2 dt+ |u(0)|2

)1/2

.

Then as in (4.10),

(6.28)
∫ 0

−∞
L(Q+) dt ≤M

and Q+(−∞) = 0. Thus Q+ satisfies (Γ1).
To get the estimate (6.27), arguing essentially as in [17], for each b ∈ Bδ(0),

there is a solution ux of (HS) such that ux(−∞) = 0, ux(0) = x, and

(6.29)
∫ 0

−∞
L(ux) dt = inf

u∈Ex

∫ 0

−∞
L(u) dt

where Ex = {u ∈ E | u(0) = x}. Now (6.29) and a straightforward comparison
argument show there is an M as in (6.27).

Since (q±m) ⊂ R and converge pointwise to Q+, (Γ2) is satisfied by Q+. For
verification of (Γ3), it suffices to show that for each j ∈ N, tj(q+m) is bounded
from above independently of m. Then the L∞loc convergence of q+m to Q+ yields
(Γ3). To get the bounds for tj(q+m), note first that∫ tj(q

+
m)

−∞
L(q+m) dt ≤

∫ ∞

−∞
L(q+j ) dt+

∫ ∞

sj(qm)

L(z+
0 ) dt(6.30)

≤ cjk +
∫ ∞

0

L(z+
0 ) dt.

Now (6.30) gives an m-independent bound for q̇+m in L2(−∞, tj(q+m)). Since

(6.31) 1
2 |q̇

+
m(t)|2 + V (q+m(t)) ≡ 0,
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it follows that

(6.32)
∫ tj(q

+
m)

0

1
2 |q̇

+
m|2 dt = −

∫ tj(q
+
m)

0

V (q+m(t)) dt.

Now by the argument of Proposition 4.11 (Case 1(a)), q+m(t) cannot get too
close to 0 for t > 0 (independently of m). Therefore there is a % > 0 such that
|q+m(t)| ≥ % for t > 0. Moreover, |q+m(t)−Z2| ≥ % for t ∈ (0, tj(q+m)). Hence there
is a γ(%) > 0 such that

(6.33) −
∫ tj(q

+
m)

0

V (q+m) dt ≥ γtj(q+m).

Combining (6.30), (6.32)–(6.33) gives the upper bounds for tj(q+m) and (Γ3).
Since (q+m) satisfy (Γ4), the bounds for tj(q+m) readily imply (Γ4) for Q+.

It remains only to show that Q+ satisfies (Γ5). By (Γ1), s0(Q+) = ∞ >

s1(Q+). Suppose there is some i such that si+1(Q+) > si(Q+). Then by a
familiar argument, there is a σi−1 ∈ (ti−1(Q+), ti(Q+)] (or (−∞, t1(Q+)) if
i = 1) and σi ∈ (ti(Q+), ti+1(Q+)) such that Q+(σi)−Q+(σi−1) = k. Moreover,
since Q+|σi

σi−1
∈ Fk and Q+ is not a translate of p+, there is a γ > 0 such that

(6.34)
∫ σi

σi−1

L(Q+) dt ≥ c∗k + 2γ.

Excise q+m|σi
σi−1

from q+m, shift q+m|∞σi
by −k, and join q+m(σi−1) to q+m(σi) − k

by a straight line segment Li. Let qm denote the resulting function. Then
qm ∈ G(m−1)k and since qm|σi

σi−1
→ Q+ in C2 as m→∞, it can be assumed that

(6.35) I(q+m)− I(qm) ≥ c∗k + γ.

Let am = c+mk −mc∗k = I(q+m)−mc∗k. Then for all large m,

(6.36) am+1 = I(q+m+1)− (m+ 1)c∗k ≥ I(qm+1) + c+k + γ − (m+ 1)c∗k

so (am) is an unbounded sequence. On the other hand, as in (6.6),

(6.37) am ≤ 2
∫ ∞

0

L(z+
0 ) dt

so (am) is bounded from above. Thus si+1(Q+) > si(Q+) is impossible and (Γ5)
holds for Q+.

Since Q+ lies in Γ, an immediate consequence of (Γ1) and Proposition 3.12
is:

Corollary 6.38. Q+ is heteroclinic to 0 and p+.

Now finally it can be shown that Q+ coincides with Q+
k .
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Proposition 6.39. Q+ = Q+
k .

Proof. If not, then Q+ lies between Q and Q+
k . Moreover, since Q+

k is, by
definition, the minimizer of J in Γ farthest to the left of p+, there is a % > 0
such that

(6.40) J(Q+) ≥ J(Q+
k ) + %.

This inequality will lead to a contradiction.
First observe that the functions (q+m) can be used to produce another het-

eroclinic solution of (HS) lying between the natural extension of Q below z+
0

and Q+
−k. Indeed, supplement Q by

⋃−1
m=−∞(q∗(R) + mk), still denoting the

extension by Q. Let ψm(t) = q+m(−t)−mk. Then ψm is a solution of (HS) hete-
roclinic to 0 and −mk and lying between Q and Q+

−k. Choose θm > 0 such that
ϕm(t) = τθm

ψm(t) ∈ Bδ(0) for t < 0 and ϕm(0) ∈ ∂Bδ(0). Then the arguments
given above for Q+ show ϕm converges to P+, a solution of (HS) heteroclinic to
0 and p+(−t) and lying between Q and Q+

−k. Let Γ+ be the analogue of Γ = Γ+

for functions lying between Q and p+(−t) and set

(6.41) J+(q) =
−1∑

i=−∞
ai(q)

Therefore Q+
−k minimizes J+ on Γ+ and

(6.42) J+(P+) ≥ J+(Q+
−k).

Let

(6.43) 0 < ε < %/11.

Then there is an n0 = n0(ε) such that for n ≥ n0,

(6.44) −ε+
n∑
i=1

ai(Q+
k ) ≤ J(Q+

k )

and

(6.45) −ε+
−1∑
i=−n

ai(Q+
−k) ≤ J+(Q+

−k).

Note that

Q+
−k(t−n(Q

+
−k)) + 2nk = z+

n (s−n(Q+
−k)).

Define a function un(t) ∈ G+
2nk as follows. Set

un(t) = Q+
k (t), t < tn(Q+

k ).
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Glue to Q+
k (tn(Q+

k )) the portion of z+
n joining z+

n (sn(Q+
k )) to z+

n (s−n(Q+
−k)).

Finally, join to this the function Q+
−k(−t) for t ≥ t−n(Q+

−k). For n0 sufficiently
large, both sn(Q+

k ) and s−n(Q+
−k) are near 0 and

(6.46)
∣∣∣∣ ∫ s−n(Q+

−k)

sn(Q+
k )

L(z+
n ) dt

∣∣∣∣ < ε.

Therefore by (6.44)–(6.46),

(6.47)
n∑
i=1

ai(Q+
k ) +

−1∑
i=−n

ai(Q+
−k) ≥ I(un)− 2nc+k − ε ≥ c+2nk − 2nc+k − ε.

Combining (6.40), (6.42), (6.44)–(6.45) and (6.47) yields

(6.48) J(Q+) + J+(P+) ≥ c+2nk − 2nc∗k − 3ε+ %.

It remains to get an appropriate upper bound for the right hand side of
(6.48). As above for l ≥ l1(ε),

(6.49) J(Q+) ≤
l∑
i=1

ai(Q+) + ε

and

(6.50) J+(P+) ≤
−1∑
i=−l

ai(P+) + ε.

Hence

(6.51) J(Q+) + J+(P+) ≤
∫ tl(Q

+)

−∞
L(Q+) dt+

∫ t−l(P
+)

−∞
L(P+) dt− 2lc∗k + 2ε.

Now the C2
loc convergence of q+m to Q+ and transversal crossing of z+

l by q+m and
Q+ implies

(6.52) tl(Q+) = lim
m→∞

tl(q+m).

Similarly

(6.53) t−l(P+) = lim
m→∞

t−l(ϕm).

Therefore

(6.54)
∫ tl(Q

+)

−∞
L(Q+) dt ≤ lim

m→∞

∫ tl(q
+
m)

−∞
L(q+m) dt

and

(6.55)
∫ t−l(P

+)

−∞
L(P+) dt ≤ lim

m→∞

∫ t−l(ϕm)

−∞
L(ϕm) dt
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Hence for all m ≥ m0(l, ε), along an appropriate sequence of m’s,

(6.56)
∫ tl(Q

+)

−∞
L(Q+) dt+

∫ t−l(P+)

−∞
L(P+) dt

≤ 2ε+
∫ tl(q

+
m)

−∞
L(q+m) dt+

∫ t−l(ϕm)

−∞
L(ϕm) dt.

Now ∫ t−l(ϕm)

−∞
L(ϕm) dt =

∫ t−l(ψm)+θm

−∞
L(ψm(t− θm)) dt(6.57)

=
∫ t−l(q

+
m(−t)−mk)

−∞
L(q+m(−t)−mk) dt

=
∫ ∞

tm−l(q
+
m)

L(q+m) dt.

Therefore by (6.56)–(6.57),

(6.58)
∫ tl(Q

+)

−∞
L(Q+) dt+

∫ t−l(P
+)

−∞
L(P+) dt

≤ 2ε+
∫ tl(q

+
m)

−∞
L(q+m) dt+

∫ ∞

tm−l(q
+
m)

L(q+m) dt

= 2ε+ c+mk −
∫ tm−l(q

+
m)

tl(q
+
m)

L(q+m) dt.

For l ≥ l2(ε),

(6.59)
∫ sl(Q

+)

0

L(z+
l ) dt ≤ ε

and

(6.60)
∫ s−l(P

+)

0

L(z+
−l) dt ≤ ε.

By (6.52)–(6.53),

(6.61) sl(Q+) = lim
m→∞

sl(q+m)

and

(6.62) sl(P+) = lim
m→∞

s−l(Qm).

Therefore for m ≥ m1(l, ε),

(6.63)
∫ sl(q

+
m)

0

L(z+
m) dt ≤ 2ε
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and

(6.64)
∫ s−l(ϕm)

0

L(z+
−l) dt ≤ 2ε.

Choose l(ε) = max(l1(ε), l2(ε)) and with this choice of l, let m ≥ maxm0(l(ε), ε),
m1(l(ε), ε)). Then

(6.65)
∫ tm−l(q

+
m)

tl(q
+
m)

L(q+m) dt+
∫ sl(q

+
m)

0

L(z+
l ) dt+

∫ sl(q
+
m)

0

L(z+
m−l) dt ≥ (m−2l)c∗k

Combining (6.51), (6.58), (6.63)–(6.65) yields

(6.66) J(Q+) + J+(P+) ≤ 8ε+ c+mk −mc∗k.

Choosing m = 2n and comparing (6.48) and (6.68) shows

(6.67) 11ε ≥ %,

contrary to (6.43). The proof is complete.
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