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A SELECTION THEOREM FOR MAPPINGS
WITH NONCONVEX NONDECOMPOSABLE VALUES

IN Lp-SPACES

Dušan Repovš1 — Pavel V. Semenov2

1. Introduction

Let T be a set equipped with a probability measure µ, B a Banach space
and Lp = Lp(T,B) the Banach space of all (equivalence classes of) p-summable
mappings from T into B with the usual norm:

‖f‖ =
( ∫

T

|f(t)|pB dµ

)1/p

, 1 ≤ p < ∞.

For every subset E ⊂ B we define

Lp(T,E) = {f ∈ Lp(T,B) | f(t) ∈ E almost everywhere}.

If E is a convex subset of B then Lp(T,E) is a convex subset of Lp(T,B). For an
arbitrary subset E of B one can, in general, state only the decomposability of the
set Lp(T,E) in the Banach space Lp(T,B). Recall that by [4] decomposability
of Z ⊂ Lp(T,B) means that for every f ∈ Z, g ∈ Z and for every µ-measurable
subset A ⊂ T , the function which agrees with f over A and with g over T \ A

is also an element of Z. In [1], [2], and [3] selection theorems were proved for
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decomposable valued lower semicontinuous mappings into spaces L1(T,B) with
nonatomic measure µ and separable B. In other words, decomposability looks
like a suitable substitute for convexity in L1-spaces (cf. [1], [6]).

In the present note we shall consider multivalued mappings whose values
are unions of two intersecting sets Lp(T,E1) and Lp(T,E2), where E1 and E2

are convex. Sets of such type are, in general, nondecomposable and noncon-
vex. However, we shall prove that a selection theorem for lower semicontinuous
mappings holds also in this case under some additional restrictions on E1 and E2.

Definition 1.1. A subset W ⊂ Lp(T,B), p ≥ 1, is said to be semiconvex if

W = Lp(T,E1) ∪ Lp(T,E2)

for some nonempty closed convex subsets E1 ⊂ B, E2 ⊂ B with a convex union
E1 ∪ E2.

Definition 1.2. A subset W ⊂ Lp(T,B), p ≥ 1, is said to be strongly
semiconvex if

W = Lp(T,E−) ∪ Lp(T,E+)

for some nonempty closed convex E− ⊂ B, E+ ⊂ B with a convex union E−∪E+

such that `(E−) ≤ c and `(E+) ≥ c, for some c ∈ R and for some continuous
linear functional ` : B → R.

Theorem 1.3. Every lower semicontinuous mapping from a paracompact
space into the space Lp(T,B), p ≥ 1, with strongly semiconvex values admits a
continuous singlevalued selection.

Theorem 1.3 is a direct corollary of the following theorems:

Theorem 1.4. Every strongly semiconvex subset of Lp(T,B) is α-paracon-
vex in Lp(T,B), where α = (1 + 2−1/p)/2 ∈ [0, 1).

Theorem 1.5. For every α ∈ [0, 1), every lower semicontinuous α-para-
convex valued mapping from a paracompact space into a Banach space admits a
continuous singlevalued selection.

Theorem 1.5 was proved by Michael [5] where the notion of paraconvexity
was also introduced.

Definition 1.6. Let α ∈ [0, 1). A nonempty closed subset P of a normed
space E is said to be α-paraconvex if for every open ball D with radius r and
with D ∩ P 6= ∅, the inequality

dist(q, P ) ≤ αr

holds, for all q from the convex hull conv(D ∩ P ).
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If f is a Lipschitz function (with some constant k) in n variables and with
a convex closed domain, then its graph is an α-paraconvex subset of Rn+1, for
some α = α(k, n) < 1 (see [7]). Another example of a paraconvex subset in the
Hilbert space is given by a bouquet of convex sets (see [8]).

We conclude the introduction by two open questions:

Question 1.7. Let B be a Banach space and L the family of all of its subsets
which admit a representation as the union of two closed convex sets. Is it then
true that every lower semicontinuous mapping F : X → L from a paracompact
space X with equi-LC0 family {F (x)}x∈X of values must always have a selection?

It is easy to show that in the Hilbert space a sufficient condition is that the
set of “angles” between two closed convex sets above has a positive lower bound
(see [8]).

Question 1.8. Does there exist a suitable (for selection theory) notion of
paradecomposability, i.e. a controlled version of the weakening of the concept of
decomposability?

As a test one can consider the case of the union Lp(T,E1) ∪ Lp(T,E2), for
nonconvex E1 and E2, with E1 and E2 separated by a hyperplane.

2. Preliminaries

Given a multivalued mapping F : X → Y with nonempty values, a selection
for F is a continuous singlevalued mapping f : X → Y such that f(x) ∈ F (x),
for each x ∈ X. A multivalued mapping F : X → Y is said to be lower
semicontinuous if {x ∈ X | F (x)∩U 6= ∅} is open in X whenever U is open in Y .

Lemma 2.1. Let P be a closed nonempty subset of a normed space (E, ‖ · ‖),
let x ∈ P , y ∈ P , and let

dist(z0, P ) ≤ αr, 0 ≤ α < 1,

where 2z0 = x + y and ‖x− y‖ = 2r. Then

dist(z, P ) ≤ βr

for all z ∈ [x, y], where β = (1 + α)/2.

Let W be a strongly semiconvex subset of Lp(T,B) and let

W = Lp(T,E−) ∪ Lp(T,E+)

with E−, E+, c ∈ R and ` : B → R from Definition 1.2. Set E0 = E−∩E+, W− =
Lp(T,E−), W+ = Lp(T,E+) and W0 = Lp(T,E0). Clearly, E0 = (E− ∪E+)∩Π
where Π is the hyperplane {x ∈ B | `(x) = c}. Observe that E− \E0 = ∅ implies
that E− ⊂ E+ and W− ⊂ W+, i.e. that W is convex. Thus we can assume that
E− \ E0 6= ∅.
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Lemma 2.2. Let D be an open ball in Lp(T,B) whose intersection with W

is nonconvex. Then the convex hull conv(D ∩W ) equals the union of segments:

⋃
{[f−, f+] | f+ ∈ W+ ∩D, f− ∈ (W− \W0) ∩D}.

In order to prove Theorem 1.4 it suffices, by Lemmas 2.1 and 2.2, to show
that dist(g,W ) ≤ 2−1/pr for 2g = f−+f+ with f+ ∈ W+∩D, f− ∈ (W−\W0)∩D

and ‖f− − f+‖ = 2r.

3. Proofs

Proof of Theorem 1.4. We assume that f+ ∈ W+ ∩D and f− ∈ (W− \
W0) ∩ D are mappings from T into E− ∪ E+ with ‖f− − f+‖ = 2r and with
f+(t) ∈ E+ for almost every t ∈ T and f−(t) ∈ E− \ E0 for almost every
t ∈ T , respectively. So, the segment [f−(t), f+(t)] intersects the hyperplane Π,
for almost every t ∈ T . Because of the convexity of E− ∪ E+ the intersection
Π ∩ [f−(t), f+(t)] lies in E0 and by the assumption f−(t) /∈ Π, this intersection
is a singleton. So, we define a mapping f0 : T → E0 by setting f0(t) = Π ∩
[f−(t), f+(t)], for almost every t ∈ T . Clearly,

|g(t)− f0(t)|B ≤ |f−(t)− f+(t)|B/2

because g(t) is the middle point of the segment [f−(t), f+(t)].

Define mappings g+ : T → E+ and g− : T → E− by setting

g+(t) =

{
g(t) if g(t) ∈ E+,

f0(t) if g(t) ∈ E− \ E0,

and

g−(t) =

{
g(t) if g(t) ∈ E− \ E0,

f0(t) if g(t) ∈ E+.

Assertion 3.1. The mappings f0, g+, g− are elements of Lp(T,B).

By Assertion 3.1 we have g+ ∈ W+ ⊂ W and g− ∈ W− ⊂ W . Thus

dist(g,W ) ≤ min{‖g − g+‖, ‖g − g−‖}.

Let us estimate the right hand side of the inequality above:
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‖g − g+‖p + ‖g − g−‖p =
∫

T

|g(t)− g+(t)|pB dµ +
∫

T

|g(t)− g−(t)|pB dµ

=
∫
{t|g(t)∈E−\E0}

|g(t)− f0(t)|pB dµ

+
∫
{t|g(t)∈E+}

|g(t)− f0(t)|pB dµ

=
∫

T

|g(t)− f0(t)|pB dµ

≤
∫

T

|f−(t)− f+(t)|pB/2p dµ = ‖f− − f+‖p/2p = rp.

Hence
min{‖g − g+‖, ‖g − g−‖} ≤ (rp/2)1/p = 2−1/pr.

This completes the proof of Theorem 1.4. �

Proof of Lemma 2.1. If ‖z − z0‖ ≤ (β − α)r, then

dist(z, P ) ≤ ‖z − z0‖+ dist(z0, P ) ≤ βr

by the triangle inequality. If ‖z − z0‖ > (β − α)r, then z is βr-close to x ∈ P or
z is βr-close to y ∈ P . �

Proof of Lemma 2.2. The inclusion⋃
{[f−, f+] | f+ ∈ W+ ∩D, f− ∈ (W− \W0) ∩D} ⊂ conv(D ∩W )

is obvious. To prove the other inclusion, let us fix f =
∑n

i=1 λifi with λi > 0 and∑n
i=1 λi = 1, for some n ∈ N and for some {f1, . . . , fn} ∈ D∩W . If all f1, . . . , fn

are elements of D∩W+ then f ∈ D∩W+ and hence f ∈ [f−, f ], for an arbitrary
f− ∈ (W− \W0)∩D. If {f1, . . . , fk} ⊂ D∩W+, {fk+1, . . . , fn} ⊂ (W− \W0)∩D

and k < n then

f =(λ1+ . . .+λk)
(

λ1

λ1+ . . .+λk
f1 + . . . +

λk

λ1+ . . .+λk
fk

)
+ (λk+1+ . . .+λn)

(
λk+1

λk+1+ . . .+λn
fk+1 + . . . +

λn

λk+1+ . . .+λn
fn

)
=λf+ + (1− λ)f−

where 0 < λ < 1 and f+ ∈ D ∩W+, f− ∈ D ∩ (W− \W0), by the convexity of
D, W+ and (W− \W0). �

Proof of Assertion 3.1. The mapping f0 : T → E0 admits an analytic
expression

f0(t) = (1− λ(t))f−(t) + λ(t)f+(t)

where

0 < λ(t) =
c− `(f−(t))

`(f+(t)− f−(t))
≤ 1 .
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But f+, f− ∈ Lp(T,B) and ` : B → R is continuous. Hence λ ∈ Lp(T, R) and
thus f0 ∈ Lp(T,B).

Let Tc = {t ∈ T | `(g(t)) ≥ c}. Then Tc is a µ-measurable subset of T , since
g ∈ Lp(T,B) and ` is continuous. So, the characteristic function κc of the set Tc

is a simple measurable function. Therefore

g+ = κcg + (1− κc)f0 ∈ Lp(T,B)

and

g− = κcf0 + (1− κc)g ∈ Lp(T,B).

�

References

[1] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable

values, Studia Math. 40 (1988), 69–86.

[2] A. Fryszkowski, Continuous selections for a class of non-convex multi-valued maps,

Studia Math. 76 (1983), 163–174.

[3] V. V. Goncharov and A. A. Tolstonogov, Compatible continuous selectors of mul-
tivalued mappings with nonconvex values and their applications, Mat. Sb. 182 (1991),

946–949. (Russian)

[4] F. Hiai and H. Umegaki, Integrals, conditional expectations and martingales of mul-

tivalued functions, J. Math. Anal. 7 (1977), 149–182.

[5] E. Michael, Paraconvex sets, Math. Scand. 7 (1959), 372–376.

[6] C. Olech, Decomposability as a substitute for convexity, Lecture Notes in Math. 1091,
Springer-Verlag, Berlin, 1984, pp. 193–205.
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