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REMARKS ON “THE CLASSIFICATION OF
REVERSIBLE CUBIC SYSTEMS WITH CENTER”

Henryk Żołądek

The paper [8] from the title was very long and rather technical. Nevertheless
it has drawn attention of some people who have pointed out to the author some
mistakes and inaccuracies. Especially, the author thanks A. P. Sadovski for
sending him a list of mistakes. Also the author himself found some misprints,
mistakes and one incomplete proof. Moreover, some new results about this
subject have appeared meantime.

1. The problem of center

In the introduction of [8] four classes of polynomial vector fields with cen-
ter were introduced: with Darboux integral, with Darboux–Schwartz–Christoffel
(DSC) integral, with Darboux-hyperelliptic (DHE) integral, and rationally re-
versible ones.
The Darboux integrals are of the form

H = eg
∏
f
aj
j

where fi(x, y) are polynomials and g(x, y) is a rational function.
The DSC integrals are of the form

H =Weg(U)
∏
(U − uj)aj +

∫ U
eg(u)
∏
(u− uj)aj−1P (u) du
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336 Reversible Cubic Systems

where U(x, y), W (x, y), g(·) are rational functions and P (·) is a polynomial.
The DHE integrals are of the form

H =
∏(Ri −√S(X)

Ri +
√
S(X)

)ai
exp
[
T
√
S(X) +

∫ X
W (u)

√
S(u) du

]

with rational functions Ri(x, y), X(x, y), T (x, y) and X(·),W (·). A rationally
reversible system V at a center O admits some rational non-invertible map Φ :
R2 → R2 and a polynomial vector field V ′ on R2 such that: (i) Φ∗V and V ′ ◦Φ
are collinear; (ii) the curve of non-invertibility ΓΦ of Φ passes through O and
there is a neighbourhood U ⊂ R2 of O such that the boundary of Φ(U) contains
a part the curve Γ′ = Φ(ΓΦ), the vector field V ′ is tangent to Γ′ at Φ(O) from
the outside of Φ(U) and V ′(Φ(O)) 6= 0. (As noticed by D. Schlomiuk, in [8] the
author has erroneously written that V ′ is a polynomial vector field on RP 2.)
Now the author thinks that one should consider another classification of known
cases of centers for polynomial vector fields: with Liouvillian integral (see below)
and rationally reversible.

However, in [2] it was proved that there exist local analytic vector fields
with center which are not reversible (by means of a local analytic non-invertible
map) and are not locally Liouvillian integrable (where in the definition below
one starts from the field of germs of meromorphic functions). These centers
are non-elementary. Thus one should not expect that non-elementary centers
can be easily classified. One may hope that the alternative: either rationally
reversible or Liouvillian integrable, holds for polynomial elementary centers and
for polynomial nilpotent centers. Also the author’s conjecture that any cubic
center is either rationally reversible or Darboux integrable remains unchanged.

The class of Liouvillian functions (or functions expressed by quadratures)
on Cn is defined as the class obtained from rational functions by application
of the operations: algebraic operations, compositions, exponentiations (ef(x))
and integration (

∫ x
f dxi). Liouvillian functions include Darboux integrals, DSC

integrals and DHE integrals. Recently there have appeared two important papers
about Liouvillian functions.

In [6] Singer has shown (using differential algebra) that if a polynomial vector
field on C2 has a Liouvillian first integral then the integrating factor can be
chosen in the form M = exp(

∫ (x,y)
Udx + V dy), where Udx + V dy is a closed

rational 1-form. Christopher [4] has noticed that this multiplier can be written
in the Darboux form M = eg

∏
faii .

In [5] Khovanski has published the proofs of half of his Ph.D. thesis (written
25 years ago). There he introduces the monodromy group of a function (its defi-
nition is also in [8]). This group is a topological invariant. Functions expressible
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by quadratures have solvable monodromy groups. In particular, the monodromy
group associated with the Darboux integral is abelian.

Recently, the author has found a large class of Liouvillian first integrals which
he calls multiple DSC integrals:

H = Y S(X)p/q +
∫ X
s(u)p/qW (u) du+

s∑
i=1

∫ Xi
up/q

ri∏
j=1

(u− uij)aij du

where X(x, y), Y (x, y), Xi(x, y), S(·), W (·) are rational functions, p/q, aij are
rational numbers and uij ∈ C. Some additional conditions must be satisfied in
order that these functions represent first integrals for polynomial vector fields.

Examples. 1. The logarithm of the DHE integral is

T
√
S(X) +

∫ X√
S(u)W (u) du+

∑
2ai

∫ S(X)/R2i √u du
1− u

.

2. The system

ẋ = −y(1 + xn + λyn − 2λx2yn−2) = P (x, y),
ẏ = x(1 + xn + λyn − 2x2yn−2) = Q(x, y),

has a first integral

H =
∫
f−(n+4)/(2n)(Qdx− Pdy)

=
(4λ)2/n

n

∫ X1
u−(n+4)/(2n)(u− 1)(2−n)/n du

+
42/n

n

∫ X2
u−(n+4)/(2n)(u− 1)(2−n)/n du

where

f = 1 + 2(xn + λyn) + (xn − λyn)2,
X1 = f(1− xn + λyn)−2, X2 = f(1 + xn − λyn)−2.

This example comes from the work [3] of Chavarriga, where the existence of the
integrating factor was proved.

The monodromy groups associated with DSC integrals and with multiple
DSC integrals are solvable and can be embedded into the group of affine diffeo-
morphisms of a complex line. Using the Singer theorem one can prove that the
same holds for any Liouvillian first integral. Now the author is working on the
proof that any Liouvillian first integral is of the Darboux, DSC or multiple DSC
type.
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2. Rational curves in CP 2

In the proof of Proposition 1 (p. 116 of [8]) the author needed the following
fact: If C ⊂ C2 is a rational curve then there is an invertible rational map
(x, y) → (X,Y ) such that C = {X = 0}. It is the Abhyankar–Moch theorem
[1], well known in algebraic geometry. The author thanks T. Maszczyk for this
reference. The very short arguments given in [8] are insufficient.

3. Cubic centers

In Theorem 1 of [8] the list of reversible centers is presented. There are given
only the maps Φ and the vector fields V ′ (in the image). The formulas for the
vector fields V are given in the course of the proofs in Section 5. However, not
all formulas are there, some are in implicit form and (as Sadovski has pointed
out) they contain some misprints and mistakes. Sadovski investigated the center
conditions using different methods (reduction to a system of non-linear oscilla-
tions and applying the Cherkas methods). He informed the author that several
of the cases from [8] coincide with some of his cases. Because there is an interest
we present a complete list of reversible V ’s.
The author together with J. Sokulski tried to classify the cubic Darboux

centers. We have found 35 cases but we do not know whether the list is complete.
Sokulski [7] gave a complete list but under some restrictions (on degrees etc.).
We use the oportunity to present also all known cubic Darboux centers, where
the first 18 cases come from [7] and the others are new. Thus we have all 52
cases of cubic centers in one place.

Reversible centers (The upper index denotes the codimension).

CR
(7)
1 : ẋ= k + lx2 +my + ny2 + px2y + qy3

ẏ = 2x(r + sx2 + ty + qy2)

CR
10)
2 : ẋ= (k + lx+mx2)(2x+ y)

ẏ = y[(n+ px)(x+ y) + qy2 + (k + lx+mx2)]

CR
(10)
3 : ẋ= (k + lx+mx2)y

ẏ = A+Bx+ Cx2 +Dxy + Ey2 + Fx3 +Gx2y +Hxy2 + Iy3

where A = 2[(3a−b2)bk+(b2−2a)l−bm], B = 2[(2a2+2ab2−b4)k+(b2−a)bl−
(2a + b2)m], C = 2a[(5a − 2b2)bk + 2(b2 − a)l − 3bm], D = 3A/2, E = 2bk − l,
F = 2a2[(2a2−b)k+bl−2m], G = 3F/(2a), H = (5a/2−b2)k+bl−m, I = k/2.
This case is parametrized by a, b, c, k, l, m. (In Theorem 1 of [8] the formula
for p should be changed to p = 4a[(2a− b2)k + bl − 2m].)

CR
(8)
4 : ẋ= −(x+ c)(kxy + l +mTx)− x(ny2 + pTy + qT 2)

ẏ = (2x+ y + c)(ny2 + pTy + qT 2)− y(kxy + l +mTx)
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Here and in the cases CR(∗)i , i 6= 16, below,

T = x+ y + c.

CR
(8)
5 : ẋ =−kxy2 − l +mx2y − (nxy + p+ qTx)(2x+ y + c)

ẏ =x[l + p+mcx+ (k + n)xy +mx2 + qTx]

CR
(7)
6 : ẋ =−nT + ny + (l − k − p)xy2 + (m− l − q)xyT − (m+ r)xT 2

ẏ =−ny + (p− l)xy2 + ky3 + (q −m)xyT + py2T + rxT 2

+qyT 2 + rT 3

CR
(9)
7 : ẋ =x[−(n+ k) + (l −m)xy − (l + p)xT ]

ẏ =nx+ ky + nT + (m− l)x2y + px2T +mxyT + pxT 2

CR
(10)
8 : ẋ =x[−k − 2nT + 2(l −m)xy − lxT ]

ẏ =2[ky + nxT + nT 2 + (m− l)x2y +mxyT ]

CR
(10)
9 : ẋ =x[−lT + 2(l −m)y − kxy − 2nT 2]

ẏ =2[(m− l)xy +myT + kxy2 + nxT 2 + nT 3]

CR
(10)
10 : ẋ =x[−k + 3(l −m)xy − lxT − 3nT 2]

ẏ =3[ky + nxT 2 + (m− l)x2y +mxyT + nT 3]

CR
(7)
11 : ẋ =2x[−(p+ k)x+ (l − n)y2 + (m− l − q)yT − (m+ r)T 2]

ẏ =2px2 − kxy − pxT + 2(n− l)xy2

+2(q −m)xyT − ny2T + 2rxT 2 − qyT 2 − rT 3

CR
(7)
12 : ẋ =2[(m− k − q)xy − (m+ r)xT + ly3 + (p− n)yT 2

+(n− l)y2T − pT 3]
ẏ =−ky2 + 2(q −m)xy + 2rxT − 2ly3 − pqT
−rT 2 − 2ny2T − 2pyT 2

CR
(10)
13 : ẋ =3x[−kx+ 2(l −m)y2 − lyT − 2nxT ]

ẏ =2[−kxy −my2T + 3(m− l)xy2 + 3nx2T − nxT 2]

CR
(9)
14 : ẋ =3[−kxy − 2px2 + 2ly3 + 2(m− n)xyT − ly2T −mxT 2]

ẏ =2[3px2 − ky2 − pxT − 3ly3 + 3(n−m)xyT − nyT 2]

CR
(10)
15 : ẋ =(2y − T )(ky2 + lx)− 4x(my + nT 2)

ẏ =(4x− T )(my + nT 2)− 2y(ky2 + lx)

CR
(5)
16 : ẋ =−x(ky + lx)− (my + nx)T2

+(bx+ 2cy + e)[−qx2 + (n− p)xy +my2]
ẏ =−y(ky + lx)− (py + qx)T2
−(2ax+ by + d)[−qx2 + (n− p)xy +my2]

where T2 = ax2 + bxy + cy2 + dx+ ey + 1.
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CR
(12)
17 : ẋ = k[(x− ay + a+ 2)(2η − 3ηy + 3x2 + 6x+ 6)− 3ηηy

−9x2ηy + 9(2ax2 + (2a− 1)x+ 2a)]
ẏ =3ky[(x− ay + a+ 2)(−3x+ y + 2) + 3(x2 + x− 2)]

where η = xy − ay2 + 2x + 2(1 + a)y + 1 − a. (In Theorem 1 of [8] there is a
mistake in the formula for η.)

Darboux centers. The vector field is of the form

V =
1
Z

r∑
i=1

aiXfi
∏
j 6=i

fj

where Z(x, y), fi(x, y) are polynomials and Xf denotes the Hamiltonian vector
field. The function H =

∏
faii is a first integral for V . We present the list of

first integrals and the polynomials Z.

CD
(8)
1 : H =xαyβ(x+ y − 1)γ(ax+ by + 1); Z = 1

CD
(8)
2 : H =xαyβ(x2 + axy + y2 + bx+ cy + 1); Z = 1

CD
(7)
3 : H =xα(x2y + xy2 + ay3 + bxy + cy2 + dx+ ey + 1); Z = 1

CD
(8)
4 : H =(1 + xy)α(x2 + axy + by2 + cx+ dy + 1); Z = 1

CD
(6)
5 : H =xy(x2 + ay2) + x3 + by3 + cx2

+dxy + ey2 + fx+ gy; Z = 1

CD
(9)
6 : H = (x2 + y)3

(x3 + axy + by2 + cx+ dy + 1)2
; Z = 1

CD
(9)
7 : H = (x2 + y)5

(x5 + 5x3y/2 + 15xy2/8 + axy + by2 + cx+ dy + 1)2
; Z = 1

CD
(9)
8 : H = (x3 + xy + ay + 1)4

(x4 + 4x2y/3 + 4axy/3 + 2y2/9 + bx+ cy + d)3
; Z = 1

CD
(11)
9 : H = (x3 + y)5

(x5 + 5x2y/3 + ax+ by + 1)3
; Z = 1

CD
(11)
10 : H =

(x3 + y)7

(x7 + 7x4y/3 + 14xy2/9 + ax+ by + 1)3
; Z = 1

CD
(12)
11 : H =

(x4 + x2 + y)5

(x5 + 5x3/4 + 5xy/4 + 5x/32 + a)4
; Z = 1

CD
(12)
12 : H =

(x4 + xy + 1)3

(x6 + 3x3y/2 + 3x2/2 + 3y2/8 + a)2
; Z = 1

CD
(10)
13 : H =

x2−2β(x2 + y)β

x2 + ax+ by + 1
; Z = 1

CD
(10)
14 : H =

x3−2β(x2 + y)β

x3 + βxy + ax+ by + 1
; Z = 1
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CD
(11)
15 : H =

x3−3β(x3 + x2 + y)β

x3 + βx2 + β(β − 1)x/2 + βy + a ; Z = 1

CD
(11)
16 : H =

x4−3β(x3 + x2 + y)β

x4 + βx3 +
(
β

2

)
x2 + βxy +

(
β

3

)
x+ β(β − 1)y + a

; Z = 1

CD
(11)
17 : H =

(x2 + y)3/2−β(x2 + ay + 1)β

x3 + (3/2 + (a− 1)β)xy + βx+ b ; Z = 1

where 4β(β − 1)a2 + 4β(3− 2β)a+ (3− 2β)(1− 2β) = 0.

CD
(10)
18 : H =

x2−β−2γ(x+ 1)β(x2 + y)γ

x2 + βx+ γy + a
; Z = 1

CD
(10)
19 : H =

(1 + xy)α

1 + αxy + x2(ax+ by + 1)
; Z = x

CD
(10)
20 : H =

(1 + x)α(1 + xy)β

1 + αx+ βxy + ax2
; Z = x

CD
(10)
21 : H =

(1 + xy)α

1 + αxy + α(α− 1)x2y2/2 + x3(ax+ by + 1) ; Z = x
2

CD
(11)
22 : H =

(1 + x+ x2y)α

1 + αx+ α(α− 1)x2/2 + αx2y + bx3 ; Z = x
2

CD
(11)
23 : H =

(1 + x+ x2y)α

1 + αx+
(
α

2

)
x2 +
(
α

3

)
x3 + αx2y + 2

(
α

2

)
x3y + bx4

; Z = x3

CD
(12)
24 : H =

(1 + x2 + x3y)α

1 + αx2 + α(α− 1)x4/2 + αx3y ; Z = x
4

CD
(11)
25 : H =

y3−α(y + x+ x2)α

y3 + αxy2 +
(
α

2

)
x2y +

(
α

3

)
x3 + αx2y2 + 2

(
α

2

)
x3y + ax4

;

Z =x3

CD
(11)
26 : H =

y1−α(y + xy + x2)α

y + αxy + αx2 + α(α− 1)x2y/2 + ax3 ; Z = x
2

CD
(11)
27 : H =

y1−α(y + xy + x2)α

y + αxy + αx2 +
(
α

2

)
x2y + 2

(
α

2

)
x3/2 +

(
α

3

)
x3y + ax4

; Z = x3

CD
(10)
28 : H =

y1−α(y + x+ xy + ax2)α

y + αx+ αxy + bx2
; Z = x

CD
(12)
29 : H =

(1 + xy + x3)4

(x4 + 4x2y/3 + 4bxy/3 + b)3
; Z = x

CD
(11)
30 : H =

(xy2 + x+ ay + 1)3

x(xy3 + 3xy/2 + 3ay2/2 + 3y/2 + b)2
; Z = 1
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CD
(12)
31 : H =

(xy2 + x+ 1)5

x3(xy5 + 5xy3/2 + 5y3/2 + 15xy/8 + 15y/4 + a)2
; Z = 1

CD
(12)
32 : H =

[(1 + xy)2 + x3(1 + ax)]3

[(1 + xy)3 + 3(1 + xy)x3(1 + ax)/2 + 3x6/8]2
; Z = x6

CD
(10)
33 : H =

(1 + xy)1−β(1 + x+ axy + bx2)β

1 + βx+ (1− β + aβ)xy + ((β(β − 1)/2 + bβ)x2 ; Z = x
2

CD
(10)
34 : H =

(y + x2)1−β(y + x+ ax2)β

y + βx+ bx2
; Z = x

CD
(10)
35 : H =

y3−β(y + x)β

y3 + βxy2 +
(
β

2

)
x2y +

(
β

3

)
x3 + x4(ax+ by + 1)

; Z = x3
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