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ON SOLVABILITY OF SOME BOUNDARY VALUE PROBLEMS
FOR DIFFERENTIAL EQUATIONS WITH “MAXIMA”

Eugene Stepanov

The method of a priori estimates based on the Leray–Schauder topolog-
ical degree theory is developed to establish the existence of solutions to general
boundary value problems for differential equations with “maxima”.

1. Introduction

In the theory of automatic control of various technical systems it often oc-
curs that the law of regulation depends on maximum values of some regulated
state parameters over certain time intervals [8]. This is especially the case for
stabilization systems, where the regulated quantity usually represents the devi-
ation of some state parameters from the given value. The mathematical models
for such systems naturally include boundary value problems for differential equa-
tions with “maxima”. As a typical example, consider the following rather general
boundary value problem on a finite time interval:

(1)


ẋ = f(t,x(t),maxτ∈S(t) x(τ)), t ∈ [a, b],

x(t) = 0, t 6∈ [a, b],

φ(x) = 0,

where x : [a, b] → Rn is an unknown vector function, S(t) ⊂ R, maxτ∈S(t) x(τ)
stands for the vector with the components maxτ∈S(t) xi(τ), i = 1, . . . , n, f :
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[a, b] × Rn × Rn → Rn, and φ is some vector functional over a space of vector
functions on [a, b] to be specified in the sequel, which represents the boundary
conditions. We emphasize that the additional assumption x(t) = 0 for t 6∈ [a, b] is
unnecessary if S(t) ⊂ [a, b] for all t ∈ [a, b]. In the opposite case, however, one can
expect different types of such additional assumption depending on applications.
For example, instead of x = 0 it can be required that x(t) = ϕ(t) outside the
interval [a, b], where ϕ(·) ∈ Rn is some given vector function, or x(t) = x(a) for
t ≤ a and x(t) = x(b) for t ≥ b. Furthermore, the right side of the differential
equation in (1) can also be more complex, e.g. there can occur the dependence on
maximum values of different components of the state vector x on different time
intervals. It is also worth noting that in most real systems the law of regulation
depends only on the past and present state, and thus S(t) ⊂ [−∞, t]. In this case
one observes an obvious analogy with retarded functional differential equations.

The questions of solvability of problems of the above type have recently been
raised by V. G. Angelov, D. D. Bainov and S. G. Hristova [1, 4]. In particular,
in [1] initial value problems for some differential equations with “maxima” were
considered in a rather restricted space of continuously differentiable functions
with bounded (on the whole real axis) derivatives, and Cauchy–Picard’s type
existence and uniqueness results were obtained under suitable Lipschitz conti-
nuity assumptions on the right side. In [4] the periodic boundary value problem
was studied by means of monotone iterative techniques with S(t) := [t − h, t],
h > 0, and under some monotonicity assumptions on the right side.

In this paper we continue the research in this field and develop the method
of a priori estimates to get existence results for rather general boundary value
problems of type (1). It will be shown that such problems fit well in the the-
ory of abstract functional differential equations [3], and their solutions will be
searched in spaces of absolutely continuous vector functions. Our results stated
in Section 3 are essentially based on a special development of the Leray–Schauder
topological degree theory, which will be presented in Section 2. In the general
statements of Section 3 we do not assume that S(t) ⊂ [−∞, t], thus allowing
the dependence of the law of regulation on the future. However, we show in a
particular example how such a requirement can help in establishing existence
of solutions via majorant techniques like those developed for general functional
differential equations by V. P. Maksimov [3].

2. Abstract groundwork

Function spaces. Let Lp(a, b) stand for the standard Lebesgue space of
functions integrable on the interval (a, b) with exponent 1 ≤ p < ∞ (or essentially
bounded when p = ∞). In the sequel we make an extensive use of the space
Lp ((a, b); Rn) (denoted by Lp

n for brevity) of functions with values in Rn with
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components in Lp(a, b), equipped with its usual norm

‖x‖p :=

{
(
∫ b

a
|x(τ)|p dτ)1/p, 1 ≤ p < ∞,

ess sup[a,b] |x(t)|, p = ∞,

where | · | stands for the norm in Rn. We denote by ACp
n the space of vector

functions with absolutely continuous components and with derivatives in Lp
n,

equipped with the norm ‖x‖ACp
n

:= |x(a)| + ‖ẋ‖p. Also we denote by Cn[a, b]
(Cn, for short) the space of all Rn-valued functions with continuous components,
equipped with the usual maximum norm.

Abstract scheme. Suppose we have to solve a nonlinear boundary value
problem

(2)

{
Lx = F (x),

φ(x) = 0,

where x ∈ X is an unknown, L : X → Y is some linear operator, F : X → Y

is a nonlinear operator, φ : X → Rn is a vector functional, generally speaking,
nonlinear, and X and Y are given Banach spaces. Let X be isomorphic to the
direct product of some Banach space E and the finite-dimensional space Rn by
an isomorphism

J : E × Rn 3 (u, λ) 7→ Λu + Dλ ∈ X,

where Λ : E → X and D : Rn → X. Assuming that Q = LΛ : E → E is
invertible, we can then reduce the problem (2) to the form

(3)

{
u = F(u, λ),

D(u, λ) = 0,

where u ∈ E and λ ∈ Rn are unknowns, F : E×Rn → E is a nonlinear operator
and D : E ×Rn → Rn a nonlinear vector functional. To study the solvability of
the latter we apply the topological degree theory.

Leray–Schauder degree theory. For the purpose of this paper the Leray–
Schauder topological degree theory will be applied to mappings of the form

(4) Ψ(u, λ) =
{

u−F(u, λ)
D(u, λ)

}
.

Introduce regions (open bounded subsets) Ω1 ⊂ E and Ω2 ⊂ Rn and denote
their boundaries by ∂Ω1 and ∂Ω2 respectively. Also, let Ω = Ω1 × Ω2.

To develop the Leray–Schauder degree theory one needs the compactness of
Ψ, which is provided by the following assumption:

(C) F is a compact and continuous operator, and D is a continuous vector
functional which maps bounded sets into bounded sets.
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In fact, (C) clearly implies that the mapping Ψ is a compact perturbation of
the identity in E × Rn. Then the additional requirement of nondegeneracy
of the mapping Ψ on ∂Ω is enough to define correctly the topological degree
deg(Ψ,Ω, 0), having all the ordinary properties (see [7]). We say that the map-
ping Ψ (the system (3)) is topologically nontrivial on the regions Ω1 ⊂ E and
Ω2 ⊂ Rn (is V (Ω1,Ω2), for short) whenever deg(Ψ,Ω, 0) 6= 0. Thus, if the
system (3) is V (Ω1,Ω2), then it admits at least one solution (u, λ) ∈ Ω.

To calculate the topological degree of Ψ we will use the following result
extending the analogous statements by J. Cronin [7] and S. A. Vavilov [10].
Consider an auxiliary finite-dimensional continuous vector field D0(λ) : Rn →
Rn. In the sequel we will always take D0(λ) := D(0,λ).

Theorem 1. Suppose Ω1 ⊂ E is convex, F is a compact and continuous op-
erator, D is a continuous vector functional which maps bounded sets into bounded
sets, and:

(i) F(∂Ω1, cl Ω2) ⊂ Ω1;
(ii) ∀u ∈ cl Ω1, ∀λ ∈ ∂Ω2, 0 ≤ |D(u, λ)−D0(λ)| < |D0(λ)|.

Then deg(Ψ,Ω, 0) = deg(D0,Ω2, 0). In particular, when the latter is not zero,
then the system (3) has at least one solution (u′,λ′) ∈ Ω. The set of such
solutions can be approximated by the Galerkin numerical scheme applied to (3).

Remark. Suppose 0 ∈ Ω1. The statement of the theorem remains valid if
(i) is replaced by

λ ∈ cl Ω2, t ∈ [0, 1], u = tF(u, λ) ⇒ u 6∈ ∂Ω1.

If, in particular, Ω1 is an open ball with center zero, then the latter condition
follows from the existence of a uniform a priori estimate for u ∈ E from the first
equation of (3).

Proof of Theorem 1. Choose some u0 ∈ Ω1 and consider the homotopy

Ψt(u, λ) =
{

u− (1− t)u0 − tF(u, λ)
D0(λ) + t(D(u, λ)−D0(λ))

}
, t ∈ [0, 1].

Since ∂Ω = ∂Ω1 × cl Ω2 ∪ cl Ω1 × ∂Ω2, we observe that Ψt 6= 0 on ∂Ω for all
t ∈ [0, 1]. Furthermore, clearly deg(Ψ0,Ω, 0) = deg(D0,Ω2, 0) by the properties
of the degree [6]. Thus, noting the compactness of the above homotopy and
applying the homotopy invariance of the degree, we conclude the proof. �

To calculate the topological degree of Ψ we will also use the result stated
in [9] and connected with the analysis of the “iterated” mapping

(5) Ψ(1)(u, λ) =
{

u−F(u, λ)
D(F(u, λ),λ)

}
.
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Theorem 2. If both Ψ and Ψ(1) have the compactness property (C), and one
of them is nondegenerate on ∂Ω, then so is the other. Moreover, in this case

deg(Ψ,Ω, 0) = deg(Ψ(1),Ω, 0).

proof. The first part of the statement is obvious, for the sets of zeros of
Ψ and Ψ(1) coincide. To prove the second part, note that the “vector fields” Ψ
and Ψ(1) can have opposite directions on ∂Ω only if u = F(u, λ). But in this
case their finite-dimensional components are equal and nonzero due to nonde-
generacy. Therefore, Ψ and Ψ(1) never have opposite directions, which implies
the statement. �

3. Existence results

Let the boundary conditions in (1) be represented by a nonlinear vector
functional φ : ACq

n → Rn, 1 < q < ∞. Applying the isomorphism between ACq
n

and Lq
n × Rn given by the formula

J : Lq
n × Rn 3 (u,λ) 7→ x =

∫ t

a

u(τ) dτ + λ ∈ ACq
n,

we reduce the original problem to the following system of type (3):

(6)


u(t) = f

(
t,λ +

∫ t

a

u(τ) dτ, max
(

0S ,λ + max
τ∈S̃(t)

∫ τ

a

u(s) ds

))
,

φ

(
λ +

∫ t

a

u(τ) dτ

)
= 0.

Here and in the sequel we write for brevity S̃(t) := S(t) ∩ [a, b] and

0S(t) =

{
0, S(t) 6= S̃(t),

−∞, S(t) = S̃(t).

Assume, further, that the set function S(·) takes closed values and is measurable
in the sense that for any open V ⊂ R the set

S−1(V ) := {t | S(t) ∩ V 6= ∅}

is measurable. Note that there are various measurability criteria for set functions
(see, for instance, Chapter III of [5]). In particular, our assumptions hold when
S(t) := [r(t), s(t)], where r(·) and s(·) are measurable (not necessarily almost
everywhere finite) functions. Finally, define

γ :=
( sup

⋃
t∈[a,b] S̃(t)− a

b− a

)(q−1)/q

.

To get a solvability result for the original problem, we can now use the topological
degree theory by applying Theorems 1 and 2.

We now pass to important particular examples.
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Consider a general nonlinear two-point boundary value problem for a differ-
ential equation with “maxima”:

(7)


ẋ = f(t,x(t),maxτ∈S(t) x(τ)), t ∈ [a, b],

x(t) = 0, t 6∈ [a, b],

h(x(a),x(b)) = 0,

where h : R2n → Rn. After the above reduction the system (6) assumes the form

(8)


u(t) = f

(
t,λ +

∫ t

a

u(τ) dτ, max
(

0S ,λ + max
τ∈S̃(t)

∫ τ

a

u(s) ds

))
,

h
(

λ,λ +
∫ b

a

u(τ) dτ

)
= 0.

Theorem 3. Assume that the following conditions hold:

(i) f(t,x,y) is a Carathéodory vector function (i.e. continuous in (x,y) ∈
R2n for a.e. t ∈ [a, b] and measurable in t for each (x,y)), while for a.e.
t ∈ [a, b],

|x| ≤ U, |y| ≤ V ⇒ |f(t,x,y)| ≤ α(t, U, V ), ‖α(·, U, V )‖q ≤ Φ(U, V ),

|x1| ≤ U |x2| ≤ U

|y1| ≤ V, |y2| ≤ V

}
⇒

∣∣∣∣ ∫ b

a

(f(t,x1,y1)− f(t,x2,y2)) dt

∣∣∣∣ ≤ Φ1(U, V ).

(ii) The vector function h(x,y) is continuous, and

|x| ≤ U, |y1| ≤ V, |y2| ≤ V ⇒ |h(x,y1)− h(x,y2)| ≤ δ(U, V )|y1 − y2|.

(iii) |D0(λ)| ≥ β(%2) > 0 if |λ| = %2, while deg(D0, |λ| < %2, 0) 6= 0, where

D0(λ) = h
(

λ,λ +
∫ b

a

f(τ,λ,max(0S(τ),λ)) dτ

)
.

(iv) We have

(9)

{
Φ(%2 + %1, %2 + γ%1) < %1/(b− a)(q−1)/q,

δ(%2, %2 + Φ(%2 + %1, %2 + γ%1))Φ1(%2 + %1, %2 + γ%1) < β(%2).

Then the two-point boundary value problem (7) has at least one solution x ∈
ACq

n, 1 < q < ∞, satisfying ‖ẋ‖q < %1/(b− a)(q−1)/q and |x(a)| < %2.

Remarks. 1. In (i) one may choose Φ1(U, V ) := 2(b − a)(q−1)/qΦ(U, V ).
However, in applications one can often get sharper estimates.

2. The theorem also opens the way to numerical treatment of the original
problem (7). Namely, the set of pairs (u,λ) in appropriate regions (see the
proof), which corresponds to the solutions of (7) found in the theorem, can be
approximated by the Galerkin numerical scheme applied to (8). The same refers
to all the statements below.
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Proof of Theorem 3. Substituting the first equation of (8) into the sec-
ond, we obtain the system

(10)



u(t) = f
(

t, λ +
∫ t

a

u(τ) dτ, max
(

0S ,λ + max
τ∈S̃(t)

∫ τ

a

u(s) ds

))
,

h
(

λ,λ +
∫ b

a

f
(

t, λ +
∫ t

a

u(τ) dτ,

max
(

0S ,λ + max
τ∈S̃(t)

∫ τ

a
u(s) ds

))
dt

)
= 0.

Obviously to any solution (u,λ) ∈ Lq
n × Rn of the latter there corresponds a

solution x ∈ ACq
n of the original problem (7). Consider the open balls B1 ⊂ Lq

n

and B2 ⊂ Rn,

B1 := {u | ‖u‖q < %1/(b− a)(q−1)/q}, B2 := {λ | |λ| < %2}.

The statement will be proven if we show that the system (10) is V (B1, B2). For
this purpose we apply Theorem 1.

To verify the compactness assumption (C), note that according to (i) the
Nemytskĭı operator

N : L∞
n × L∞

n 3 (v1,v2) 7→ f(·,v1(·),v2(·)) ∈ Lq
n

is continuous and maps bounded sets into bounded sets. Now define formally an
operator M on the space Cn by

(Mv)(t) := max
τ∈S̃(t)

v(t).

For any v ∈ Cn clearly (Mv)(t) is measurable due to the Krasnosel’skĭı–Lady-
zhenskĭı lemma (see Lemma III.39 of [5] or Theorem 6.2 of [2]) and bounded.
Thus M : Cn → L∞

n and obviously it maps bounded sets into bounded sets. The
continuity of M follows from the fact that if a sequence of continuous functions
converges uniformly on [a, b], then their maxima on any compact subset of [a, b]
converge to the maximum of the limit function on the same subset, the rate of
the latter convergence being independent of the choice of the subset. Hence one
easily shows that the compactness of the nonlinear operator on the right side
of the first equation of (10) is ensured by the compactness of the imbedding
ACq

n ⊂ Cn, while the continuity of the vector functional corresponding to the
second equation is provided by (ii). To conclude the proof it remains to observe
that conditions (i) and (ii) of Theorem 1 are ensured by (9). �

As an important particular case consider the boundary value problem

(11)


ẋ = f(t,x(t),maxτ∈S(t) x(τ)), t ∈ [a, b],

x(t) = 0, t 6∈ [a, b],

x(a) = x(b) + ξh1(x(a),x(b)),
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where h1 : R2n → Rn and ξ ∈ R is a perturbation parameter. For ξ = 0 this
is a periodic-type boundary value problem (however, one should not speak of
periodic solutions unless S(t) ⊂ [−∞, t]). One is therefore interested both in
existence of solutions for ξ = 0 and in whether they do not disappear for small
values of ξ.

Theorem 4. Assume that the following conditions hold:

(i) f(t,x,y) is a Carathéodory vector function, and for a.e. t ∈ [a, b],

|x| ≤ U, |y| ≤ V ⇒ |f(t,x,y)| ≤ α(t, U, V ), ‖α(·, U, V )‖q ≤ Φ(U, V ),

|x1| ≤ U, |x2| ≤ U

|y1| ≤ V, |y2| ≤ V

}
⇒

∣∣∣∣ ∫ b

a

(f(t,x1,y1)− f(t,x2,y2)) dt

∣∣∣∣ ≤ Φ1(U, V ).

(ii) The vector function h1(x,y) is continuous.
(iii) |D0(λ)| ≥ β(%2) > 0 if |λ| = %2, while deg(D0, |λ| < %2, 0) 6= 0, where

D0(λ) =
∫ b

a

f(τ,λ,max(0S(τ),λ)) dτ.

(iv) We have

(12)

{
Φ(%2 + %1, %2 + γ%1) < %1/(b− a)(q−1)/q,

Φ1(%2 + %1, %2 + γ%1) < β(%2).

Then there is ξ∗ > 0 such that for each ξ with |ξ| ≤ ξ∗ the boundary value
problem (11) has at least one solution xξ ∈ ACq

n, 1 < q < ∞, satisfying ‖ẋξ‖q <

%1/(b− a)(q−1)/q and |xξ(a)| < %2.

Remark. As will be clear from the proof, one can in fact also assert that
as ξ → 0, the sets of solutions to (11) found in the theorem are uniformly “at-
tracted” to the set of solutions to the unperturbed problem with ξ = 0 (see [6]).

Proof. Write out the system of type (3) corresponding to the original prob-
lem:

(13)


u(t) = f

(
t, λ +

∫ t

a

u(τ) dτ, max
(

0S ,λ + max
τ∈S̃(t)

∫ τ

a

u(s) ds

))
,∫ b

a

u(τ) dτ + ξh1

(
λ,λ +

∫ b

a

u(τ) dτ

)
= 0,

and consider the iteration, as introduced by (5), of the system obtained by setting
ξ = 0:

(14)


u(t) = f

(
t, λ +

∫ t

a

u(τ) dτ, max
(

0S ,λ + max
τ∈S̃(t)

∫ τ

a

u(s) ds

))
,∫ b

a

f
(

t, λ +
∫ t

a

u(τ) dτ, max
(

0S ,λ + max
τ∈S̃(t)

∫ τ

a

u(s) ds

))
dt = 0.
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Let B1 and B2 be the balls introduced in the proof of Theorem 3. The as-
sumptions imply that (14) is V (B1, B2) according to Theorem 1. Applying the
iteration theorem 2, one observes that the system (13) for ξ = 0 is also V (B1, B2).
The desired conclusion follows now from the stability of topological degree with
respect to small perturbations of the mapping [6]. �

Another classical application is the Cauchy problem

(15)


ẋ = f(t,x(t),maxτ∈S(t) x(τ)), t ∈ [a, b],

x(t) = 0, t 6∈ [a, b],

x(a) = λ0,

where λ0 ∈ Rn. It is worth noting that the system (8) in this case is reduced to
a single equation:

(16) u(t) = f
(

t,λ0 +
∫ t

a

u(τ) dτ, max
(

0S ,λ0 + max
τ∈S̃(t)

∫ τ

a

u(s) ds

))
.

The following statement can be obtained either as a simple corollary of Theo-
rem 3 or independently by applying the Schauder fixed point principle to (16).

Theorem 5. Assume that the following conditions hold:

(i) f(t,x,y) is a Carathéodory vector function, and for a.e. t ∈ [a, b],

|x| ≤ U, |y| ≤ V ⇒ |f(t,x,y)| ≤ α(t, U, V ), ‖α(·, U, V )‖q ≤ Φ(U, V ).

(ii) We have

(17) Φ(|λ0|+ %1, |λ0|+ γ%1) < %1/(b− a)(q−1)/q.

Then the Cauchy problem (15) admits at least one solution x ∈ ACq
n, 1 < q < ∞,

satisfying ‖ẋ‖q < %1/(b− a)(q−1)/q.

It should be noted that usually one can get significantly stronger results on
solvability of boundary value problems of the above types provided that the
assumption S(t) ⊂ [−∞, t] holds. In fact, the operator M introduced in the
proof of Theorem 3 is a Volterra operator. This simplifies the situation and
enables one to use various majorant techniques described in [3] (in particular,
Cauchy majorant problems) to get the necessary a priori estimates. To show
this we make the above-mentioned assumption in the following simple example
which rather frequently appears in applications (see, for instance, the model of
stabilization system for a direct current generator [4]):

(18)

{
ẋ = F(t) + B(t) maxτ∈S(t) x(τ), t ∈ [a, b],

x(t) = x(a) = x(b), t ≤ a,

where B(·) is an n × n matrix function, and F(·) is a vector function. For
brevity set B :=

∫ b

a
B(t) dt, F :=

∫ b

a
F(t) dt, β1 :=

∫ b

a
|||B(t)||| dt, f(t) := |F(t)|,
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b(t) := |||B(t)|||, where ||| · ||| stands for the matrix norm compatible with the
norm in Rn. Also, let

µ(t) := b(t) exp
( ∫ t

a

b(τ) dτ

)
.

Theorem 6. Let f ∈ Lq
1, b ∈ Lq

1 and θ := inf |λ|=1 |Bλ| > 0. Then the
problem (18) admits at least one solution x ∈ ACq

n, 1 < q < ∞, provided that

(b− a)(q−1)/q‖µ‖qβ1 < θ.

Proof. Write out the system of equations of type (3) corresponding to the
problem (18):

(19)


u(t) = F(t) + B(t)

(
λ + max

(
0S , max

τ∈S̃(t)

∫ τ

a

u(s) ds

))
,

F + Bλ +
∫ b

a

B(t) max
(

0S , max
τ∈S̃(t)

∫ τ

a

u(s) ds

)
dt = 0.

We will prove that for some B1 ⊂ Lq
n and B2 ⊂ Rn this system is V (B1, B2)

according to Theorem 1, and thus show the statement. In fact, let B1 be as in
the proof of Theorem 3 and B2 ⊂ Rn be the ball |λ − λ∗| < %2, λ∗ := −B−1F .
Consider the auxiliary vector field

D0(λ) := F + Bλ.

It is clear that deg(D0, B2, 0) 6= 0 and |D0(λ)| ≥ θ%2 when |λ − λ∗| = %2.
Condition (ii) of Theorem 1 then holds provided that

(20) β1%1 < θ%2.

Now turn to the first equation of (19). To abbreviate the notation, let y(t) :=
|u(t)| and y0 := |λ|. Obviously this equation implies

y(t) ≤ f(t) + b(t)
(

y0 +
∫ t

a

y(τ) dτ

)
,

and constructing the Cauchy majorant problem and using a Chaplygin type
result on differential inequalities [3] one easily concludes that

y(t) ≤ f(t) + µ(t)
(

y0 +
∫ t

a

(f(τ)/µ(τ)) dτ

)
.

Hence if λ ∈ cl B2, then ‖u‖q ≤ c1 +‖µ‖q(%2 +c2), where c1, c2 are some positive
constants. Condition (i) of Theorem 1 will then hold provided that

(21) c1 + ‖µ‖q(%2 + c2) < %1/(b− a)(q−1)/q.

It remains to note that under the conditions of the theorem being proved the
relations (20) and (21) are valid simultaneously for sufficiently large %2 > 0. �
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Analogous results can be easily provided for more general problems

(22)

{
ẋ = F(t) +A(t)x(t) + B(t) maxτ∈S(t) x(τ), t ∈ [a, b],

x(t) = x(a) = x(b), t ≤ a,

where A(·) is an n×n matrix function. In this case seeking solutions in the form

x(t) = X(t)λ + X(t)
∫ t

a

X−1(τ)u(τ) dτ,

where X(t) is the fundamental matrix of the system ẋ − A(t)x = 0, we obtain
an auxiliary system of type (19) to be analyzed,

u(t) = F(t) + B(t) max
(

λ, X(t)λ + max
τ∈S̃(t)

X(τ)
∫ τ

a

X−1(s)u(s) ds

)
,

F̃ + (X(b)− In)λ

+ X(b)
∫ b

a

B(t) max
(

λ, X(t)λ + max
τ∈S̃(t)

X(τ)
∫ τ

a

X−1(s)u(s) ds

)
dt = 0,

where F̃ = X(b)
∫ b

a
X−1(t)F(t) dt and In is the n× n identity matrix.
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