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VARIATIONAL EIGENCURVE AND BIFURCATION
FOR TWO-PARAMETER NONLINEAR

STURM–LIOUVILLE EQUATIONS

Tetsutaro Shibata

1. Introduction

We consider the following two-parameter nonlinear Sturm–Liouville equa-
tion:

(1.1)

u′′(x) + µu(x)p = λu(x)q, x ∈ I = (0, 1),

u(x) > 0, x ∈ I,

u(0) = u(1) = 0,

where 1 < q < p < q + 2 and µ, λ > 0 are eigenvalue parameters.
In order to describe and motivate the results of this paper, let us briefly recall

some of the known results concerning two-parameter Sturm–Liouville problems.
There are many works concerning linear two-parameter problems. One of

the main objectives is to investigate asymptotic properties of eigenvalues. In
this direction, for instance, there are works of Binding and Browne [1], Faierman
[2], Turyn [6] and Weinstein and Keller [7]. We also refer to Faierman [3] and
the references cited therein. In particular, Binding and Browne [1] considered
the following equation:

(1.2) u′′(x) + µr1(x)u(x) = λr2(x)u(x), x ∈ I.
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Under suitable boundary conditions and assumptions on r1 and r2, they estab-
lished the following asymptotic formula: as µ →∞,

(1.3)
λn(µ)

µ
→ ess sup

x∈I

r1(x)
r2(x)

.

Here λn(µ) is the nth eigenvalue of (1.2) for given µ ∈ R. The main tool used
there was modified Prüfer transformation.

However, it seems that few results concerning nonlinear two-parameter prob-
lems are obtained. Recently, motivated by [1], Shibata [5] considered the non-
linear two-parameter equation of the form

(1.4)
u′′(x) + µu(x) = λ(1 + |u(x)|p−1)u(x), x ∈ I,

u(0) = u(1) = 0.

By using a variational method due to Zeidler [8], the nth variational eigenvalue
λ = λn(µ, α) was defined and the asymptotic formula for λn(µ, α) as µ → (nπ)2

was obtained:

(1.5)
λn(µ, α)

(µ− (nπ)2)(p+1)/2
→ π−1/2 Γ((p + 3)/2))

2pα(p−1)/2Γ((p + 2)/2)
.

Here α > 0 is a normalizing parameter of a general level set, which will be defined
precisely later. In the proof of (1.5), the homogeneity of the left hand side of the
equation (1.4) played an important role. We note here that we do not have this
property any more in our problem (1.1).

In this paper, we consider a typical kind of nonlinear two-parameter prob-
lem, which is completely different from (1.4), in connection with a bifurca-
tion problem. More precisely, we shall show the existence of an eigencurve
(µ, λ(µ), uµ) ∈ R+×R+×W 1,2

0 (I) bifurcating from the trivial solution (0, 0, 0) ∈
R+ ×R+ ×W 1,2

0 (I) of (1.1). Furthermore, we shall establish an asymptotic for-
mula for λ(µ) as µ → 0.

We explain notations before stating our results. Let X = W 1,2
0 (I) denote the

closure of C∞0 (I) (the space of all real-valued, infinitely differentiable functions
with compact support in I) in the usual Sobolev space W 1,2(I). We equip X with
the norm ‖u‖2X =

∫
I
|u′(x)|2 dx, while ‖u‖s will denote the norm of u ∈ Ls(I).

We define the general level set Nµ,α by

(1.6) Nµ,α :=
{

u ∈ X :
1
2
‖u‖2X − µ

p + 1
‖u‖p+1

p+1 = −α

}
,

where α > 0 is a normalizing parameter. Hereafter, we fix α > 0. Now we shall
give the definition of variational eigenvalue λ(µ). We call λ = λ(µ) a variational
eigenvalue for µ > 0 if λ(µ) > 0 and the associated eigenfunction uµ ∈ Nµ,α
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satisfies the following conditions (1.7)–(1.8):

(µ, λ(µ), uµ) ∈ R+ × R+ ×Nµ,α satisfies (1.1),(1.7)
1

q + 1
‖uµ‖q+1

q+1 = β(µ) := inf
u∈Nµ,α

1
q + 1

‖u‖q+1
q+1.(1.8)

λ(µ) is obtained as a Lagrange multiplier of the minimizing problem (1.8) and
represented explicitly as follows:

(1.9) λ(µ) =
2α +

p− 1
p + 1

µ‖uµ‖p+1
p+1

‖uµ‖q+1
q+1

.

The latter is obtained as follows. Multiplying (1.1) by uµ and integration by
parts we obtain

(1.10) −‖uµ‖2X + µ‖uµ‖p+1
p+1 = λ(µ)‖uµ‖q+1

q+1;

this along with the fact that uµ ∈ Nµ,α implies (1.9).
Now we are ready to state our main results.

Theorem 1.1. There exists a unique variational eigenvalue for µ > 0, that
is, if (µ, λ1(µ), uµ,1) and (µ, λ2(µ), uµ,2) satisfy (1.7) and (1.8) for the same
µ > 0, then λ1(µ) = λ2(µ). Furthermore, λ(µ) is continuous in µ > 0.

Theorem 1.2. As µ → 0, the following asymptotic formula holds:

(1.11) λ(µ) = C1µ
(q−1)/(p−1) + o(µ(q−1)/(p−1)),

where

C1 =
(p− 1)‖v∞‖p+1

p+1

(p + 1)‖v∞‖q+1
q+1

and v∞ is a unique positive solution of the minimizing problem

Minimize
1

q + 1
‖w‖q+1

q+1 under the constraint(1.12)

w ∈ V0 :=
{

w ∈ X :
1
2
‖w‖2V =

1
p + 1

‖w‖p+1
p+1, w 6≡ 0

}
.(1.13)

Remark. We note that for µ > 0, Nµ,α 6= ∅. In fact, for t ≥ 0 and 0 6≡ u

∈ X, we define

h(t) = h(t, µ, u) :=
1
2
‖tu‖2X − 1

p + 1
µ‖tu‖p+1

p+1(1.14)

=
1
2
‖u‖2Xt2 − 1

p + 1
µ‖u‖p+1

p+1t
p+1.

Then it is easy to see by direct calculation that there exists a unique t = tu
such that h(tu) = −α, that is, tuu ∈ Nµ,α. On the other hand, it is clear that
Nµ,α = ∅ for µ ≤ 0.
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The remainder of this paper is organized as follows. In Section 2, we prove
Theorem 1.1. Section 3 is devoted to the proof of Theorem 1.2.

2. Proof of Theorem 1.1

The proof of Theorem 1.1 consists of three lemmas: existence, uniqueness
and continuity.

Lemma 2.1. There exists a variational eigenvalue λ(µ) for µ > 0.

Proof. For the existence of λ(µ), we apply the result of Zeidler [8, Propo-
sition 6a]. We shall check the following property: For fixed µ > 0, the set

(2.1) Wb :=
{

u ∈ Nµ,α :
1

q + 1
‖u‖q+1

q+1 < b

}
⊂ X

is bounded for all b > 0. All the other conditions imposed in [8, Proposition 6a]
are easily checked. By Hölder’s inequality we obtain, for u ∈ X and 0 < γ < q+1,

‖u‖p+1
p+1 =

∫
I

uγup+1−γ dx(2.2)

≤
(∫

I

uγ(q+1)/γ dx

)γ/(q+1)

×
(∫

I

u(p+1−γ)(q+1)/(q+1−γ) dx

)(q+1−γ)/(q+1)

= ‖u‖γ
q+1‖u‖

p+1−γ
(p+1−γ)(q+1)/(q+1−γ) ≤ ‖u‖γ

q+1‖u‖
p+1−γ
X .

Then for u ∈ Wb we obtain, by (2.2),

(2.3) ‖u‖2X ≤ 1
p + 1

µ‖u‖p+1
p+1 ≤

1
p + 1

µ‖u‖γ
q+1‖u‖

p+1−γ
X ≤ 1

p + 1
µb‖u‖p+1−γ

X ;

this implies that

(2.4) ‖u‖1+γ−p
X ≤ 1

p + 1
µb.

We choose γ > 0 satisfying 1+γ−p > 0, that is, γ > p−1. Hence, γ must satisfy
p − 1 < γ < q + 1 and it is possible to choose such γ > 0 under the condition
p < q + 2. Thus we obtain (2.1). Therefore, we can apply [8, Proposition 6a] to
obtain the existence of λ(µ) for µ > 0. �

Remark 2.2. (1) It follows from the proof of Lemma 2.1 that β(µ) > 0 for
µ > 0. In fact, if β(µ) = 0 for some µ > 0, then there exists u ∈ Nµ,α such that

1
q+1‖u‖

q+1
q+1 = β(µ) = 0. Then by (2.3) we obtain ‖u‖X = 0. However, this is

impossible, since 0 6∈ Nµ,α.
(2) Let 0 6≡ u ∈ X be fixed. Furthermore, let h(t) := h(t, µ, u) be the

function defined in (1.14). Then it is obvious that there exists a unique tµ,u > 0
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such that h(tµ,u) = −α, that is, tµ,uu ∈ Nµ,α. Furthermore, if h(t) < −α, then
tµ,u < t.

Next, we show the uniqueness of λ(µ).

Lemma 2.3. Let (µ, λ1(µ), u1) and (µ, λ2(µ), u2) satisfy (1.7) and (1.8) for
the same µ > 0. Then λ1(µ) = λ2(µ).

Proof. We know from Gidas, Ni and Nirenberg [4] that the solution of (1.1)
is symmetric with respect to x = 1/2 and u′(x) ≥ 0 for 0 ≤ x ≤ 1/2. We assume
that u′1(0) < u′2(0). Multiplying (1.1) by u′µ(x), we obtain

u′′µ(x)u′µ(x) + µuµ(x)pu′µ(x)− λ(µ)uµ(x)qu′µ(x) = 0;

that is,

d

dx

{
1
2
u′µ(x)2 +

1
p + 1

µuµ(x)p+1 − 1
q + 1

λ(µ)uµ(x)q+1

}
= 0;

by putting x = 0 we have

(2.5)
1
2
u′µ(x)2 +

1
p + 1

µuµ(x)p+1 − 1
q + 1

λ(µ)uµ(x)q+1 =
1
2
u′µ(0)2.

Since ‖u1‖q+1 = ‖u2‖q+1 by (1.8) and 0 < u′1(0) < u′2(0), there exists x1 ∈
(0, 1/2) such that

u1(x) < u2(x) for 0 < x < x1,

u1(x1) = u2(x1) = U and u′1(x1) ≥ u′2(x1).

Then by putting x = x1 in (2.5), we obtain

1
2
u′1(x1)2 +

1
p + 1

µUp+1 − 1
q + 1

λ1(µ)Uq+1

=
1
2
u′1(0)2 <

1
2
u′2(0)2 =

1
2
u′2(x1)2 +

1
p + 1

µUp+1 − 1
q + 1

λ2(µ)Uq+1;

this implies that

(2.6)
1

q + 1
(λ1(µ)− λ2(µ))Uq+1 >

1
2
(u′1(x1)2 − u′2(x1)2) ≥ 0.

Therefore, we obtain λ1(µ) > λ2(µ).
Next, we integrate (2.5) over I to obtain

(2.7)
1
2
‖uµ‖2X +

1
p + 1

µ‖uµ‖p+1
p+1 −

1
q + 1

λ(µ)‖uµ‖q+1
q+1 =

1
2
u′µ(0)2.

By (1.9) and (1.10) we obtain

‖uµ‖2X =
2

p− 1
λ(µ)‖uµ‖q+1

q+1 −
2(p + 1)
p− 1

α,(2.8)

µ‖uµ‖p+1
p+1 =

p + 1
p− 1

(λ(µ)‖uµ‖q+1
q+1 − 2α).(2.9)
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Now by using (2.7)–(2.9) we obtain

(2.10)
2q + 3− p

(p− 1)(q + 1)
λ(µ)‖uµ‖q+1

q+1 −
p + 3
p− 1

α =
1
2
u′µ(0)2.

Then

(2.11)
2q + 3− p

p− 1
λ1(µ)β(µ)− p + 3

p− 1
α

=
1
2
u′1(0)2 <

1
2
u′2(0)2 =

2q + 3− p

p− 1
λ2(µ)β(µ)− p + 3

p− 1
α.

Noting that 2q+3−p > 2q+3−(q+2) = q+1 > 0 and β(µ) > 0, we deduce that
λ1(µ) < λ2(µ). This is a contradiction. Hence, u′1(0) < u′2(0) is impossible. By
this argument, we see that u′1(0) > u′2(0) is also impossible. Hence, we obtain
u′1(0) = u′2(0). Then by (2.10),

2q + 3− p

p− 1
λ1(µ)β(µ)− p + 3

p− 1
α

=
1
2
u′1(0)2 =

1
2
u′2(0)2 =

2q + 3− p

p− 1
λ2(µ)β(µ)− p + 3

p− 1
α;

this along with Remark 2.2(1) implies that λ1(µ) = λ2(µ). �

In order to prove continuity of λ(µ), we prepare the following lemma.

Lemma 2.4. β(µ) is continuous in µ > 0.

Proof. We fix µ0 > 0. Let µ → µ0. Firstly, we show that

(2.12) lim sup
µ→µ0

β(µ) ≤ β(µ0).

Since uµ0 ∈ Nµ0,α, we have

(2.13)
1
2
‖uµ0‖2X − 1

p + 1
µ‖uµ0‖

p+1
p+1 = −α− 1

p + 1
(µ− µ0)‖uµ0‖

p+1
p+1.

For h(t) = h(t, µ, uµ0), which is defined in (1.14), let tµ > 0 satisfy h(tµ) = −α.
Then tµuµ0 ∈ Nµ,α and we see by (1.8) that

(2.14) β(µ) ≤ 1
q + 1

tq+1
µ ‖uµ0‖

q+1
q+1 = tq+1

µ β(µ0).

We show that tµ → 1 as µ → µ0. By definition of h, we have

−α = h(tµ) =
1
2
t2µ‖uµ0‖2X − 1

p + 1
µtp+1

µ ‖uµ0‖
p+1
p+1(2.15)

= t2µ

(
1

p + 1
µ0‖uµ0‖

p+1
p+1 − α

)
− 1

p + 1
µtp+1

µ ‖uµ0‖
p+1
p+1;

that is,

(2.16)
1

p + 1
‖uµ0‖

p+1
p+1{(µ0 − µ)t2µ + µt2µ(1− tp−1

µ )} = α(t2µ − 1).
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There are three cases to consider. Firstly, if there exists a subsequence of {tµ},
which we write {tµ} again, such that tµ → ∞ as µ → µ0, then it is clear that
the left hand side of (2.16) tends to −∞ as µ → µ0, while the right hand side of
(2.16) tends to ∞ as µ → µ0. This is a contradiction.

Secondly, if there exists a subsequence of {tµ}, which we write {tµ} again,
such that tµ < 1 − δ for some 0 < δ � 1, then the left hand side of (2.16) is
positive when µ and µ0 are close enough, while the right hand side of (2.16) is
negative. This is a contradiction. Similarly, we can show that there exists no
subsequence of {tµ} which satisfies tµ > 1+δ for some δ > 0. Thus, we conclude
that tµ → 1 as µ → µ0. Then (2.12) follows immediately from (2.15).

Next, we show that

(2.17) β(µ0) ≤ lim inf
µ→µ0

β(µ).

Let tµ > 0 satisfy tµuµ ∈ Nµ0,α, that is,

1
2
‖tµuµ‖2X − 1

p + 1
µ0‖tµuµ‖p+1

p+1 = −α;

this implies that

(2.18)
1

p + 1
‖uµ‖p+1

p+1

{
(µ− µ0)t2µ + µ0t

2
µ(1− tp−1

µ )
}

= α(t2µ − 1).

By Remark 2.2(1), there exists a constant C > 0 such that for |µ− µ0| � 1,

‖uµ‖p+1 ≥ ‖uµ‖q+1 = (q + 1)β(µ) ≥ C > 0.

Then by (2.18) and the same arguments as those used just above, we also find
that tµ → 1 as µ → µ0. Therefore,

β(µ0) ≤
1

q + 1
‖tµuµ‖q+1

q+1 = tq+1
µ β(µ);

by letting µ → µ0, we obtain (2.17). Now our assertion follows from (2.12) and
(2.17). �

Now we are in a position to prove the continuity of λ(µ).

Lemma 2.5. λ(µ) is continuous for µ > 0.

Proof. For convenience, we identify notations of subsequences with those
of the original sequences. Let µ → µ0 > 0. We know from (2.3) that

(2.19) ‖uµ‖1+γ−p
X ≤ 1

p + 1
µ‖uµ‖γ

q+1 =
1

p + 1
µ((q + 1)β(µ))γ/(q+1).

Then it follows from Lemma 2.4 and (2.19) that {uµ} ⊂ X is bounded. Hence,
by Sobolev’s embedding theorem, we see that there exist a subsequence of {uµ}
and u∞ ∈ X such that

(2.20) uµ → u∞ weakly in X, uµ → u∞ in Lp+1(I), Lq+1(I).
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Then

‖u∞‖2X ≤ lim inf
µ→µ0

‖uµ‖2X = lim
µ→µ0

(
2

p + 1
µ‖uµ‖p+1

p+1 − 2α

)
=

2
p + 1

µ0‖u∞‖p+1
p+1 − 2α;

this implies that

(2.21) −2α∞ := ‖u∞‖2X − 2
p + 1

µ0‖u∞‖p+1
p+1 ≤ −2α.

We show that α∞ = α. For t ≥ 0, let h(t) = h(t, µ0, u∞), which is defined in
(1.14). Then clearly, h(t1) ≤ h(t2) < 0 implies that t2 ≤ t1. Since h(1) = −α∞,
there exists a unique t∞ ≤ 1 such that h(t∞) = −α, that is, t∞u∞ ∈ Nµ0,α.
Then by (1.8), (2.20) and Lemma 2.4,

β(µ0) ≤
1

q + 1
‖t∞u∞‖q+1

q+1 = tq+1
∞ lim

µ→µ0

1
q + 1

‖uµ‖q+1
q+1(2.22)

= tq+1
∞ lim

µ→µ0
β(µ) = tq+1

∞ β(µ0).

This implies that t∞ = 1, that is, α∞ = α. Therefore, u∞ ∈ Nµ0,α and
1

q+1‖u∞‖
q+1
q+1 = β(µ0).

It follows from (1.9), (2.19) and Remark 2.2(1) that for |µ− µ0| � 1,

(2.23) λ(µ) ≤
2α +

p− 1
p + 1

µ‖uµ‖p+1
p+1

(q + 1)β(µ)
≤ C.

Hence, we can choose a subsequence of {λ(µ)} such that λ(µ) → λ∞ as µ → µ0.
We see from (1.1) that for ϕ ∈ C∞0 (I),

(2.24) −
∫

I

u′µϕ′ dx + µ

∫
I

up
µϕ dx = λ(µ)

∫
I

uq
µϕ dx;

by letting µ → µ0, we obtain

(2.25) −
∫

I

u′∞ϕ′ dx + µ0

∫
I

up
∞ϕ dx = λ∞

∫
I

uq
∞ϕ dx.

Since the equation (1.1) is equivalent to its weak formulation, we find that
(µ0, λ0, u∞) ∈ R+ × R+ × Nµ0,α satisfies (1.7) and (1.8), and by the unique-
ness of λ(µ0), we obtain λ∞ = λ(µ0). Now our assertion follows from a standard
compactness argument. �

Theorem 1.1 follows from Lemmas 2.1, 2.3 and 2.5.

3. Proof of Theorem 1.2

To prove Theorem 1.2, we prepare some lemmas. Hereafter, C denotes vari-
ous positive constants independent of 0 < µ � 1.
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Lemma 3.1. There exists a constant C > 0 such that for 0 < µ � 1,

(3.1) Cµ−1/(p−1) ≤ ‖uµ‖q+1.

Proof. We see from (2.2) that for 0 < γ < q + 1,

(3.2) ‖uµ‖p+1
p+1 ≤ ‖uµ‖γ

q+1‖uµ‖p+1−γ
X ≤ ‖uµ‖γ

q+1

(
2

p + 1
µ‖uµ‖p+1

p+1

)(p+1−γ)/2

.

Let γ = p− 1. Then it follows from (3.2) that

‖uµ‖p+1
p+1 ≤

2
p + 1

µ‖uµ‖p−1
q+1‖uµ‖p+1

p+1;

this implies that
p + 1

2
µ−1 ≤ ‖uµ‖p−1

q+1.

This yields (3.1). �

Lemma 3.2. There exists a constant C > 0 such that for 0 < µ � 1,

(3.3) ‖uµ‖q+1 ≤ Cµ−1/(p−1).

Proof. Fix 0 6≡ v ∈ X. Put

h(t) =
1
2
t2‖v‖2X − 1

p + 1
µtp+1‖v‖p+1

p+1.

Let h(t0) = −α. Furthermore, let t = Cµ−1/(p−1) for sufficiently large C > 0.
Then for 0 < µ � 1,

h(Cµ−1/(p−1)) = C2µ−2/(p−1)

(
1
2
‖v‖2X − 1

p + 1
Cp−1‖v‖p+1

p+1

)
< −α.

Therefore, by Remark 2.2(2) we obtain t0 < Cµ−1/(p−1). Then by (1.8),

‖uµ‖q+1
q+1 ≤ ‖t0v‖q+1

q+1 ≤ (Cµ−1/(p−1))q+1‖v‖q+1
q+1 ≤ Cµ−(q+1)/(p−1).

This implies (3.3). �

Lemma 3.3. There exists a constant C > 0 such that for 0 < µ � 1,

(3.4) Cµ−1/(p−1) ≤ ‖uµ‖p+1 ≤ C−1µ−1/(p−1).

Proof. The first inequality follows immediately from Lemma 3.1 and Höl-
der’s inequality. Hence, we show the second. By Lemma 3.2 and (3.2) we obtain

‖uµ‖(p+1)(1+γ−p)/2
p+1 ≤ C‖uµ‖γ

q+1µ
(p+1−γ)/2(3.5)

≤ Cµ−γ/(p−1)µ(p+1−γ)/2

= Cµ(p+1)(p−γ−1)/(2(p−1)).
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Choose γ > p− 1 to obtain

(3.6) ‖uµ‖p+1 ≤ Cµ−1/(p−1). �

Now we put vµ := µ1/(p−1)uµ. Then by (1.9) we obtain

(3.7) λ(µ) =
p− 1
p + 1

·
‖vµ‖p+1

p+1

‖vµ‖q+1
q+1

µ(q−1)/(p−1) +
2α

‖vµ‖q+1
q+1

µ(q+1)/(p−1).

Furthermore, it follows from (1.1) that vµ satisfies the following equation:

(3.8)

v′′µ(x) + vµ(x)p = λ(µ)µ−(q−1)/(p−1)vµ(x)q, x ∈ I,

vµ(x) > 0, x ∈ I,

vµ(0) = vµ(1) = 0.

Since uµ ∈ Nµ,α,

(3.9) vµ ∈ Vµ,α :=
{

v ∈ X :
1
2
‖v‖2X − 1

p + 1
‖v‖p+1

p+1 = −αµ2/(p−1).

}
Then by Lemma 3.3 we obtain

(3.10)
1
2
‖vµ‖2X ≤ 1

p + 1
‖vµ‖p+1

p+1 ≤ C.

Hence, we can choose a subsequence of {vµ}, which we write {vµ} again, such
that

(3.11) vµ → v∞ weakly in X, vµ → v∞ in C(I), Lp+1(I), Lq+1(I).

Furthermore, it follows from (1.8) that

(3.12) ‖vµ‖q+1
q+1 = k(µ) := inf

v∈Vµ,α

‖v‖q+1
q+1.

We recall that V0 is the set defined in (1.13). Let

(3.13) k(0) := inf
v∈V0

‖v‖q+1
q+1.

We shall show that v∞ is the unique positive solution of the minimizing problem
(3.13). To this end, we prepare Lemmas 3.4–3.8.

Lemma 3.4. Let

(3.14) k1 := inf
w∈X,w 6≡0

(
p + 1

2
·
‖w‖2X‖w‖

p−1
q+1

‖w‖p+1
p+1

)(q+1)/(p−1)

.

Then 0 < k1 ≤ k(0).

Proof. First, we show that k1 > 0. By putting γ = p−1 in (3.2), for w ∈ X

we have
‖w‖p+1

p+1 ≤ ‖w‖2X‖w‖
p−1
q+1;
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this implies that if w 6≡ 0, then

(3.15) 1 ≤ inf
w∈X,w 6≡0

‖w‖2X‖w‖
p−1
q+1

‖w‖p+1
p+1

.

Thus our assertion follows from (3.15).
Next, we show that k1 ≤ k(0). Let {vn} ⊂ V0 be a minimizing sequence of

the problem (3.13). Then

(3.16) k1 ≤
(

p + 1
2

·
‖vn‖2X‖vn‖p−1

q+1

‖vn‖p+1
p+1

)(q+1)/(p−1)

= ‖vn‖q+1
q+1;

by letting n →∞, we obtain k1 ≤ k(0). �

Lemma 3.5. k(µ) → k(0) as µ → 0.

Proof. Firstly, we show that

(3.17) lim sup
µ→0

k(µ) ≤ k(0).

Fix a small ε > 0. Then there exists v1 ∈ V0 such that

(3.18) 0 < k(0) ≤ ‖v1‖q+1
q+1 < k(0) + ε.

For t ≥ 0, put

(3.19) h(t) :=
1
2
‖tv1‖2X − 1

p + 1
‖tv1‖p+1

p+1 =
1

p + 1
‖v1‖p+1

p+1(t
2 − tp+1).

It is clear that if h(t0,µ) = −αµ2/(p−1), then t0,µv1 ∈ Vµ,α. Furthermore, if
h(tµ) < −αµ2/(p−1), then t0,µ < tµ. We put tµ = 1 + Cµ2/(p−1). Then

t2µ = 1 + 2Cµ2/(p−1) + o(µ2/(p−1)),(3.20)

tp+1
µ = 1 + (p + 1)Cµ2/(p−1) + o(µ2/(p−1)).(3.21)

If we choose C > 0 so large that C ≥ 2(p + 1)/((p − 1)(k(0) + ε)), then by
(3.19)–(3.21) we obtain

(3.22) h(tµ) =
1

p + 1
‖v1‖p+1

p+1{−(p−1)Cµ2/(p−1)+o(µ2/(p−1))} < −αµ2/(p−1).

Therefore, t0,µ ≤ 1 + Cµ2/(p−1). Then by (3.18) we obtain

lim sup
µ→0

k(µ) ≤ lim sup
µ→0

‖t0,µv1‖q+1
q+1 ≤ lim sup

µ→0
tq+1
0,µ (k(0) + ε)(3.23)

≤ lim sup
µ→0

(1 + Cµ2/(p−1))q+1(k(0) + ε) = k(0) + ε.

Since ε > 0 is arbitrary, we obtain (3.17) from (3.23).
Next, we show that

(3.24) k(0) ≤ lim inf
µ→0

k(µ).
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For t ≥ 0 and 0 < µ � 1 we put

h(t, µ) :=
1
2
t2‖vµ‖2X − 1

p + 1
tp+1‖vµ‖p+1

p+1(3.25)

=
(

1
p + 1

‖vµ‖p+1
p+1 − αµ2/(p−1)

)
t2 − 1

p + 1
tp+1‖vµ‖p+1

p+1.

Therefore, we see that h(t0, µ) = 0, where

t0 =
(‖vµ‖p+1

p+1 − (p + 1)αµ2/(p−1)

‖vµ‖p+1
p+1

)1/(p−1)

< 1.

Then t0vµ ∈ V0 and by (3.13),

(3.26) k(0) ≤ tq+1
0 ‖vµ‖q+1

q+1 < k(µ).

By letting µ → 0 in (3.26), we obtain (3.24).
Finally, combining (3.17) and (3.24), we obtain our conclusion. �

Lemma 3.6. Let v∞ be the function obtained in (3.11). Then v∞ is a non-
negative solution of the minimizing problem (3.13).

Proof. We know from (3.11) that v∞ ≥ 0 in I. Furthermore, by (3.11) we
obtain

1
2
‖v∞‖2X ≤ lim inf

µ→0

1
2
‖vµ‖2X = lim inf

µ→0

(
1

p + 1
‖vµ‖p+1

p+1 − αµ2/(p−1)

)
(3.27)

=
1

p + 1
‖v∞‖p+1

p+1.

We assume

(3.28)
1
2
‖v∞‖2X − 1

p + 1
‖v∞‖p+1

p+1 < 0

and derive a contradiction. For t ≥ 0 put

h(t) :=
1
2
t2‖v∞‖2X − 1

p + 1
tp+1‖v∞‖p+1

p+1.

Then it is clear that h(1) < 0 and there exists a unique t0 < 1 such that h(t0) = 0,
that is, t0v∞ ∈ V0. Then by (3.11), (3.13) and Lemma 3.5,

(3.29) k(0) ≤ ‖t0v∞‖q+1
q+1 < ‖v∞‖q+1

q+1 = lim
µ→0

‖vµ‖q+1
q+1 = lim

µ→0
k(µ) = k(0).

This is a contradiction. Therefore, t0 = 1, that is, v∞ ∈ V0. Furthermore, it
follows from (3.29) that ‖v∞‖q+1

q+1 = k(0). �
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Lemma 3.7. Let v∞ ≥ 0 be a function defined in (3.11). Then v∞ > 0 in I.

Proof. By Lemma 3.6, we find that v∞ satisfies the following equation:

(3.30)

v′′(x) + v(x)p = Cvv(x)q, x ∈ I,

v(x) ≥ 0, x ∈ I,

v(0) = v(1) = 0.

Here,

Cv =
p− 1
p + 1

·
‖v∞‖p+1

p+1

k(0)
is a Lagrange multiplier. If there exists x0 ∈ I such that v∞(x0) = 0, then clearly
v′∞(x0) = 0, since v∞ ≥ 0 in I. Then we deduce by the uniqueness theorem for
ODE that v∞ ≡ 0 in I. However, this is impossible, since we know from Lemmas
3.4 and 3.6 that 1

q+1‖v∞‖
q+1
q+1 = k(0) > 0. Hence, v∞ > 0 in I. �

Lemma 3.8. Let v1, v2 > 0 satisfy the minimizing problem (3.13). Further-
more, let Cj = Cvj (j = 1, 2) be positive constants defined in (3.30). Then
C1 = C2.

Proof. We assume that v′1(0) < v′2(0). Since v1 and v2 satisfy (3.13), there
exists x1 ∈ (0, 1/2) such that

(3.31)
v1(x) ≤ v2(x) for any x ∈ (0, x1),

v1(x1) = v2(x1) = d > 0, v′1(x1) ≥ v′2(x1).

By the same argument as that used to obtain (2.5), we deduce from (3.30) that
for x ∈ I and j = 1, 2,

(3.32)
1
2
v′j(x)2 +

1
p + 1

vj(x)p+1 − 1
q + 1

Cjvj(x)q+1 =
1
2
v′j(0)2.

Then by putting x = x1 in (3.32), we infer by (3.31) that

0 ≤ 1
2
(v′1(x1)2 − v′2(x1)2)(3.33)

=
1
2
v′1(0)2 − 1

p + 1
dp+1 +

1
q + 1

C1d
q+1

− 1
2
v′2(0)2 +

1
p + 1

dp+1 − 1
q + 1

C2d
q+1;

this implies that

(3.34) 0 <
1
2
(v′1(x1)2 − v′2(x1)2) +

1
2
(v′2(0)2 − v′1(0)2) =

1
q + 1

(C1 − C2)dq+1.

Thus we obtain C1 > C2.
Next, by integrating (3.32) over I, we obtain, for j = 1, 2,

(3.35)
1
2
‖vj‖2X +

1
p + 1

‖vj‖p+1
p+1 −

1
q + 1

Cj‖vj‖q+1
q+1 =

1
2
v′j(0)2.
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Since vj ∈ V0, we find by (3.13) and (3.35) that for j = 1, 2,

(3.36)
2

p + 1
‖vj‖p+1

p+1 −
1

q + 1
Cjk(0) =

1
2
v′j(0)2.

Multiplying vj by (3.30) and integrating by parts we obtain, for j = 1, 2,

(3.37) −‖vj‖2X + ‖vj‖p+1
p+1 = Cj‖vj‖q+1

q+1 = Cjk(0).

Since vj ∈ V0, we see by (3.37) that for j = 1, 2,

(3.38) ‖vj‖p+1
p+1 =

p + 1
p− 1

Cjk(0).

Now, by using (3.36) and (3.38), for j = 1, 2 we obtain

(3.39)
2q + 3− p

(p− 1)(q + 1)
Cjk(0) =

1
2
v′j(0)2.

Since 2q + 3− p > 2q + 3− (q + 2) = q + 1 > 0, it follows from (3.39) that

2q + 3− p

(p− 1)(q + 1)
C1k(0) =

1
2
v′1(0)2 <

1
2
v′2(0)2 =

2q + 3− p

(p− 1)(q + 1)
C2k(0);

this implies that C1 < C2. This is a contradiction. Hence, v′1(0) ≥ v′2(0).
However, by the same arguments as those used just above, we find that v′1(0) >

v′2(0) is also impossible. Hence, we obtain v′1(0) = v′2(0). Then our assertion
follows immediately from (3.39). �

Proposition 3.9. Let v1, v2 > 0 satisfy (3.13). Then v1 ≡ v2.

Proof. It follows from Lemma 3.8 that C1 = C2. Hence v1 and v2 satisfy
(3.30) for the same C = Cv1 = Cv2 . By (3.39) we have v′1(0) = v′2(0). Hence,
our conclusion follows immediately from the uniqueness theorem for ODE. �

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Let v∞ be the unique positive solution of (3.13).
Then by Lemma 3.8, the constant Cv∞ which appears in (3.30) is uniquely
determined, namely, C1 = Cv∞ , where C1 is the constant defined in Theorem
1.2. Then by (3.7), (3.11), Lemmas 3.6–3.8 and Proposition 3.9, we conclude
that as µ → 0,

λ(µ)µ−(q−1)/(p−1) =
p− 1
p + 1

·
‖vµ‖p+1

p+1

‖vµ‖q+1
q+1

+ O(µ2/(p−1)) → p− 1
p + 1

·
‖v∞‖p+1

p+1

‖v∞‖q+1
q+1

= C1. �
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