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ON THE PERIODIC SOLUTIONS PROBLEM FOR
PARABOLIC INCLUSIONS WITH A LARGE PARAMETER

M. I. Kamenskĭı — P. Nistri — P. Zecca

0. Introduction

In this paper we study the dependence on a parameter of the periodic solu-
tions of a system of parabolic inclusions of the form

(1) y′i(t) ∈ Aiyi + fi(t, y1, . . . , yn), i = 1, . . . , n,

where X1, . . . , Xn are separable Banach spaces, Ai are the generators of analytic
semigroups eAit in Xi, i = 1, . . . , n, and

fi : R×X1 × . . .×Xn ( Xi, i = 1, . . . , n,

are nonlinear multivalued maps which are T -periodic with respect to the first
variable. We consider here the case when the analytic semigroups eAit are not
compact.

We consider two different types of dependence of the right hand side of (1) on
a large parameter µ. In both cases the right hand side does not have a limit as
µ→∞. But we can construct a formal limit of inclusions in such a way that the
vector fields whose fixed points represent the periodic solutions of the inclusions
depending on the parameter and the vector fields of the limit inclusions are
homotopic.
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The first case is the following:

(2) y′i(t) ∈ Aiyi + fi(µ t, y1, . . . , yn), i = 1, . . . , n.

This inclusion describes the influence on the system of exterior forces of high
frequency. We will provide an averaging principle for system (2). For this, we
propose a method which permits formulating the averaging principle in terms of
the topological index for multivalued mappings. This formulation allows us to
obtain, in a topological setting, an analogue of the classical second theorem of
N. N. Bogolyubov for o.d.e.’s (see e.g. [2]). Since the involved semigroups are not
compact we cannot apply the topological degree theory for compact multivalued
operators; indeed, we employ the degree theory for condensing operators (see [1],
[3]). For parabolic equations with compact semigroups we refer to [7], [8]. With
respect to the results contained in [11] and [12] we give new and more general
conditions in order to guarantee that the integral operator corresponding to
the periodic problem is condensing. The measure of noncompactness we use
here is the one proposed in [9] for abstract parabolic differential equations with
noncompact semigroups. This measure of noncompactness is not semi-additive,
and so we cannot use a linear homotopy to the limit operator. We overcome
this difficulty by using a linear homotopy to a compact multivalued operator
which belongs to the same class of homotopy of the limit condensing operator.
For recent investigations on parabolic inclusions in Banach spaces based on the
degree theory for multivalued maps we refer to [10]–[12], [14] and [15].

In the second case the parameter µ can be interpreted as a large coefficient
of a diffusion problem and the relative model is of the form

(3) y′i(t) ∈ µAiyi + fi(t, y1, . . . , yn), i = 1, . . . , n.

We consider here the case when zero is a point of the spectrum of the natural
operator generated by the operators Ai in the product space X. Under our
conditions zero is an eigenvalue whose geometric and algebraic multiplicities
coincide. In this case the limit inclusion is an ordinary differential inclusion in
the finite-dimensional eigenspace corresponding to the eigenvalue zero.

1. Definitions and preliminary results

Let X and Y be topological spaces; a multivalued map M from X to Y will
be denoted by the symbol M : X ( Y .

Definition 1.1. A multivalued map M : X ( Y is said to be upper semi-
continuous (briefly u.s.c.) if the set

M−1(V ) = {x ∈ X : M(x) ⊆ V }

is open in X for every open set V ⊆ Y .
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A multivalued map M : X ( Y is said to be closed if its graph

GrM = {(x, y) ∈ X × Y : y ∈M(x)}

is a closed subset of X × Y .

Let us recall the following concepts (see, e.g. [1], [3]).

Definition 1.2. Let X be a Banach space. A function ψ defined on the
collection of all subsets of X with values in some partially ordered (≤) set is
called a measure of noncompactness in X if

ψ(co Ω) = ψ(Ω)

for every Ω ∈ X. A measure of noncompactness ψ is called

(i) monotone if Ω0, Ω1 ∈ 2X and Ω0 ⊆ Ω1 imply ψ(Ω0) ≤ ψ(Ω1);
(ii) compactly invariant if ψ(Ω ∪K) = ψ(Ω) for every compact set K ⊂ X

and Ω ∈ 2X ;
(iii) regular if ψ(Ω) = 0 is equivalent to the relative compactness of Ω;
(iv) semi-additive if ψ(Ω0 ∪ Ω1) = max{ψ(Ω0), ψ(Ω1)} for every Ω0, Ω1 ∈

2X .

A well known example of a measure of noncompactness with properties (i)–
(iv) is the Hausdorff measure of noncompactness

χ(Ω) = inf{ε > 0 : Ω has a finite ε-net}.

We now give another example of a measure of noncompactness which we will use
in the sequel.

Example 1.3. Let X = X1 × . . . × Xn and let CT (X) be the space of
all T -periodic continuous functions with values in X. Consider the measure of
noncompactness ϕ in CT (X) defined by the formula

ϕ(Ω) = (χ1(Ω1(t)), . . . , χn(Ωn(t)), lim
δ→0

sup
x∈Ω

max
0≤τ≤δ

‖x(t)− x(t+ τ)‖)

where Ωi is the projection of Ω into CT (Xi) and Ωi(t) = {y(t) : y ∈ Ωi}. The
values of this measure of noncompactness belong to the space MT (Rn)×R where
MT (Rn) is the space of T -periodic, measurable functions with values in Rn. The
measure of noncompactness ϕ has properties (i)–(iii), but it does not fulfill (iv).
Observe that the ordering related to property (i) is defined as follows: the space
Rn is ordered by the cone Rn

+ of positive coordinates while the space MT (Rn) is
ordered by the cone

K = {y : y ∈MT (Rn), y(t) ∈ Rn
+ a.e.},

and the space MT (Rn)× R is ordered by K× [0,∞).
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Let L(E) be the space of all bounded linear operators defined on the Banach
space E. The χ-norm (see [1]) of the operator B ∈ L(E) is defined as

‖B‖(χ) := χ(BS),

where S is the unit sphere in E. We will use the following properties of the
χ-norm.

Lemma 1.4 (cf. [1]). If B ∈ L(E), then

χ(B Ω) ≤ ‖B‖(χ) χ(Ω)

for every nonempty bounded set Ω ⊆ E.

Lemma 1.5 (cf. [10]). Let E be separable, B ∈ L(E), ‖B‖(χ) < 1 and the
operator I −B be invertible. Then

‖(I −B)−1‖(χ) ≤
(
1− ‖B‖(χ)

)−1
.

Definition 1.6 (cf. [3]). Let E be a Banach space, and let U ⊂ E be a
bounded, open set. Let F : U ( E be an u.s.c., multivalued mapping with
nonempty, compact, convex values, and let ψ be a measure of noncompactness
in E. The operator F is said to be ψ-condensing if Ω ⊆ U and ψ(F (Ω)) ≥ ψ(Ω)
imply that Ω is relatively compact.

Definition 1.7 (cf. [3]). An u.s.c. family of multivalued maps

(4) F : [0, 1]× U ( E

with nonempty, compact, convex values is called ψ-condensing if Ω ⊂ U and
ψ(F([0, 1]× Ω)) ≥ ψ(Ω) imply that Ω is relatively compact.

Proposition 1.8 (cf. [1]). Let ψ be a monotone, invariant measure of non-
compactness. Let F be an u.s.c., ψ-condensing operator on U and F̂ be a closed,
compact operator on U . Then the family F(λ, x) = (1 − λ)F (x) + λ F̂ (x) is an
u.s.c. ψ-condensing family.

Definition 1.9 (cf. [3]). Two ψ-condensing multivalued maps

F0, F1 : U → 2E

are said to be homotopic if there exists a ψ-condensing family (4) such that
F0( · ) = F(0, · ), F1( · ) = F(1, · ) and F(λ, · ) has no fixed points on ∂U for
λ ∈ [0, 1]. The family F is called a homotopy. If the measure of noncompactness
ψ is monotone and compactly invariant and F has no fixed points on ∂U , one
can define (see [1], [3]) an integer-valued characteristic deg(I − F,U), which is
called degree and has the following properties:
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1◦. Homotopic ψ-condensing operators have equal degrees. In the class of
ψ-condensing operators homotopic to F there exists a compact operator F̂ such
that F(λ, x) = (1− λ)F (x) + λ F̂ (x) is a homotopy.

2◦. Let Ui, i ∈ N, be a family of pairwise disjoint open subsets of U and
suppose F has no fixed points on U \

⋃∞
i=1 Ui. Then the degrees deg(I − F,Ui)

are defined for all i ∈ N; only a finite number of them are different from zero,
and

deg(I − F,U) =
∞∑

i=1

deg(I − F,Ui).

3◦. If F (x) ≡ x0, then deg(I − F,U) =

{
1 if x0 ∈ U,
0 if x0 /∈ U.

4◦. If deg(I − F,U) 6= 0 then F has at least one fixed point in U .

Theorem 1.10 (cf. [11]). Let L be a closed subspace of E and let F : U ( L

be an u.s.c., ψ-condensing multivalued mapping with nonempty, compact, convex
values which has no fixed points on ∂ U . Then

degE(I − F,U) = degL(I − F,U).

A multivalued map G : [a, b] ( E with nonempty, compact, convex values is
said to be measurable if it satisfies any of the following two equivalent conditions:

(i) the set G−1(V ) = {t ∈ [a, b] : G(t) ⊆ V } is measurable for every open
set V ⊆ E;

(ii) there exists a sequence {gn}∞n=1 of measurable functions gn : [a, b] → E

such that G(t) = {gn(t)}∞n=1 for all t ∈ [a, b] (see e.g. [4]).

We denote by S1
G the set of all Bochner integrable selectors of the multivalued

map G : [a, b] ( E, i.e.

S1
G = {g ∈ L1([a, b], E) : g(t) ∈ G(t) a.e.}.

If S1
G 6= ∅, then G is called integrable and∫

I
G(s) ds :=

{ ∫
I
g(s) ds : g ∈ S1

G

}
for every measurable set I ⊆ [a, b].

Clearly, if G is measurable and integrably bounded (i.e. there exists α ∈
L1

+([a, b]) such that ‖G(t)‖ := max{‖y‖ : y ∈ G(t)} ≤ α(t) a.e.), then G is
integrable.

We also need the following property:
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Lemma 1.11 (cf. [11]). Let G : [a, b] ( E be a multivalued map with
nonempty bounded values. Assume G is integrable, integrably bounded and

χ(G(t)) ≤ γ(t) a.e. on [a, b],

where γ ∈ L1
+([a, b]). Then

χ

( ∫
I
G(s) ds

)
≤

∫
I
γ(s) ds

for every measurable set I ⊆ [a, b]. In particular, if χ(G( · )) ∈ L1
+([a, b]), then

χ

( ∫
I
G(s) ds

)
≤

∫
I
χ(G(s)) ds.

We also recall some results from the theory of semigroups which we will use
in the sequel (see e.g. [13]).

Theorem 1.12. A closed operator A is the infinitesimal generator of the
analytic semigroup eAt if and only if the resolvent set of A contains a half-plane
Reλ ≤ σ0 and the resolvent satisfies there the inequality

(5) ‖(λI −A)−1‖ ≤ C(1 + |λ|)−1 for some C > 0.

If A is the infinitesimal generator of the analytic semigroup eAt, then

eAt = − 1
2πi

∫
Π(β,σ)

eλt(λI −A)−1 dλ, t > 0,

where Π(β, σ) consists of the two rays

λ = σ + % e−iβ and λ = σ + % eiβ , σ ≤ σ0, arcsin
1
C
< β <

π

2
.

If σ0 < 0, then the negative fractional powers of A are defined by the formula

A−α = − 1
2πi

∫
Π(β,σ)

λ−α(λI −A)−1 dλ, 0 < α < 1.

The operator

Aα eAt = − 1
2πi

∫
Π(β,σ)

λα eλt(λI −A)−1 dλ, t > 0,

satisfies the estimate

(6) ‖Aα eAt‖ ≤ Ct−α.

From this inequality one obtains

(7) ‖A−α(eAt − I)‖ ≤ Ctα.

In what follows, when no confusion can arise, the constants will be indicated
by the same letter C.
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2. The integral operator

In this section we want to investigate the existence of periodic solutions of
(1) when fi, i = 1, . . . , n, have nonempty convex values. We study first the
properties of the integral operator

Γx =
{
y : y ∈ CT (X), y(t) = eAt[I − eAT ]−1

∫ T

0

eA(T−s)g(s) ds

+
∫ t

0

eA(t−s)g(s) ds, g ∈ S1
Φ( · ,x( · )), g is T -periodic

}
where

eAτg = (eA1τg1, . . . , e
Anτgn),(8)

Φ(s, y) = (f1(s, y1, . . . , yn), . . . , fn(s, y1, . . . , yn)).(9)

For one parabolic inclusion this operator was considered in [11], [12].
We assume the following conditions on the operators fi and Ai, i = 1, . . . , n:

(F1) fi is T -periodic in the first variable, i.e.

fi(t+ T, · ) ≡ fi(t, · ), t ∈ R;

(F2) for every x ∈ X the multivalued map fi( · , x) : [0, T ] → Kc(Xi) ad-
mits a measurable selector. Here Kc(Xi) denotes the collection of all
nonempty, compact, convex subsets of Xi;

(F3) for almost all t ∈ [0, T ], the multivalued map fi(t, · ) : X → Kc(Xi) is
u.s.c.;

(F4) there exists an (n × n)-matrix M with nonnegative components (mij)
such that

χi(fi([0, T ]×D1 × . . .×Dn)) ≤
n∑

j=1

mijχj(Dj)

for every bounded D1 ⊂ X1, . . . , Dn ⊂ Xn. Here χi denotes the Haus-
dorff measure of noncompactness in the space Xi, i = 1, . . . , n;

(A) for any i = 1, . . . , n, the closed linear operator Ai defined on the sepa-
rable Banach space Xi generates the analytic semigroup eAit satisfying

(10) ‖eAit‖(χ) ≤ e−γi(t−s),

where γi > 0 and the zero solution of the system of ordinary differential
equations

(11) z′i = −γi zi +
n∑

j=1

mijzj , i = 1, . . . , n,

is exponentially stable.
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Without loss of generality we can assume that the semigroup

eAtx =
(
eA1tx1, . . . , e

Antxn

)
in the space X satisfies the inequality

(12) ‖eAt‖ ≤ Ce−dt,

where d > 0 and C ≥ 1. In order to obtain this estimate, it is sufficient to
subtract and add to the right hand side of every inclusion (1) the term Lyi with
the constant L sufficiently large and to consider as new Ai the operator Ai −LI
and as new fi the multivalued map fi(t, y1, . . . , yn) + Lyi. It is easy to see that
for the new Ai and fi conditions (A), (F1)–(F4) and the estimate (12) are still
satisfied. Observe that (12) implies 1 /∈ σ(eAT ) and so 0 /∈ σ(A).

From condition (F4) it follows that fi is bounded on every bounded set and
so every measurable selector from (F2) is integrable. As in [12] one can prove
the following result.

Proposition 2.1. For every sequence {xm} of continuous functions, where
xm ∈ C([0, 1], X), uniformly convergent to x0, the sequence of selectors gm(s) ∈
fi(s, xm(s)) is weakly compact in L1([0, T ], Xi) and its limit points are selectors
of fi( · , x0( · )).

Following the lines of [12] it is easy to see that the integral operator Γ is
u.s.c. The following theorem shows that it is also condensing with respect to the
measure of noncompactness ϕ given in Example 1.3.

Theorem 2.2. Let conditions (F1)–(F4) and (A) be satisfied. Then Γ is a
ϕ-condensing operator.

To prove the theorem we need the following lemma.

Lemma 2.3. Let v ∈ CT (Rn). Assume that its components vi(t), i =
1, . . . , n, satisfy the following integral inequalities:

vi(t) ≤ e−γit(I − e−γiT )−1

∫ T

0

e−γi(T−s)
n∑

j=1

mijvj(s) ds

+
∫ t

0

e−γi(t−s)
n∑

j=1

mijvj(s) ds, i = 1, . . . , n,

where γi and mij are the constants of condition (A). Then v(t) ≡ 0.
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Proof. Let u(t) = (u1(t), . . . , un(t)) be the function in CT (Rn) defined by

ui(t) = e−γit(I − e−γiT )−1

∫ T

0

e−γi(T−s)
n∑

j=1

mijvj(s) ds

+
∫ t

0

e−γi(t−s)
n∑

j=1

mijvj(s) ds, i = 1, . . . , n.

Then for i = 1, . . . , n, we have vi(t) ≤ ui(t). The functions ui(t) are continuously
differentiable and

u′i(t) = −γiui(t) +
n∑

j=1

mijvj(t) ≤ −γiui(t) +
n∑

j=1

mijuj(t).

From the comparison theorem it follows that ui(t) ≤ zi(t), where z(t) =
(z1(t), . . . , zn(t)) is the solution of system (11) with the initial condition

zi(0) = (I − e−γiT )−1

∫ T

0

e−γi(T−s)
n∑

j=1

mijvj(s) ds, i = 1, . . . , n.

On the other hand, all solutions of (11) tend to zero as t → ∞. Hence by the
T -periodicity of v we obtain the assertion.

Proof of Theorem 2.2. Let Ω be a bounded subset of CT (X) such that

(14) ϕ(Ω) ≤ ϕ(ΓΩ),

where the ordering (≤) is the one defined in Example 1.3. Note that the set
Γ Ω is bounded and equicontinuous (see [11]). Then Ω is equicontinuous and
therefore the functions χi(Ωi( · )), i = 1, . . . , n, are continuous. From (11), (14)
and Lemmas 1.5 and 1.11, we have

χi(Ωi(t)) ≤ χi

({
eAit[I − eAiT ]−1

∫ T

0

eAi(T−s)gi(s) ds

+
∫ t

0

eAi(t−s)gi(s) ds, gi ∈ S1
fi( · ,Ω( · )), gi is T -periodic

})
≤ e−γit(I − e−γiT )−1

∫ T

0

e−γi(T−s)χi(fi(s,Ω1(s), . . . ,Ωn(s))) ds

+
∫ t

0

e−γi(t−s)χi(fi(s,Ω1(s), . . . ,Ωn(s))) ds

≤ e−γit(I − e−γiT )−1

∫ T

0

e−γi(T−s)
n∑

j=1

mijχj(Ωj(s)) ds

+
∫ t

0

e−γi(t−s)
n∑

j=1

mijχj(Ωj(s)) ds, i = 1, . . . , n.
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Since the functions vi(t) = χi(Ωi(t)) satisfy the conditions of Lemma 2.3, we
have χi(Ωi(t)) ≡ 0. So by the Arzelà criterion we have the relative compactness
of Ω.

3. Averaging principle

In this section we consider the system (2) where the operators fi and Ai

satisfy conditions (F1)–(F4) and (A).
If we consider the change of variables τ = µt, x(τ) = y(µ−1τ), then the

problem of finding (T/µ)-periodic solutions of (2) is equivalent to the problem
of finding T -periodic solutions of the system

(15) x′i(t) ∈ εAixi + ε fi(t, x1, . . . , xn), i = 1, . . . , n,

where ε = 1/µ.
Denote by f0

i the multioperator defined by the formula

(16) f0
i (v) =

1
T

∫ T

0

fi(s, v) ds.

Clearly, f0
i : X → Kc (Xi). In fact, a convex combination of selectors is also a

selector. Moreover, if ym ∈ f0
i (v) and ym → y0, then the sequence of selectors

gm such that

ym =
1
T

∫ T

0

gm(s) ds

is relatively weakly compact by Proposition 2.1. Therefore if a subsequence
{gmk

} weakly converges to g ∈ S1
f( · ,v), then

1
T

∫ T

0

gmk
(s) ds w−→ 1

T

∫ T

0

g(s) ds

and so y0 = 1
T

∫ T

0
g(s) ds.

Lemma 3.1. The operator f0
i defined in (16) is u.s.c. on X.

Proof. Assume by contradiction that f0
i is not u.s.c. at some point v0.

Then there exist vm → v0, a 2d-neighbourhood V2d of f0
i (v0) and {ym} such

that ym ∈ f0
i (vm) and ym /∈ V2d for any m ∈ N. Because the sequence {ym} is

relatively compact and f0
i (v0) is closed and convex, without loss of generality,

we can assume that there exists a functional ` such that

(17) 〈`, ym〉 ≥ d and 〈`, f0
i (v0)〉 ≤ 0.

Consider a sequence {gm(s)} of selectors of fi(s, vm) such that

ym =
1
T

∫ T

0

gm(s) ds
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and {gmk
} is a subsequence weakly convergent to g. Then

1
T

∫ T

0

g(s) ds = y ∈ f0
i (v0)

and
1
T

∫ T

0

〈`, gmk
(s)− g(s)〉 ds→ 0 as n→∞.

On the other hand, from (16) we have

1
T

∫ T

0

〈`, gm(s)− g(s)〉 ds = 〈`, ym〉 − 〈`, y〉 ≥ d > 0,

which is a contradiction. This concludes the proof.

Observe that by Lemma 1.11,

χi(f0
i (D1 × · · · ×Dn)) ≤

n∑
j=1

mijχj(Dj).

Thus the operators f0
i , i = 1, . . . , n, satisfy assumptions (F1)–(F4) for an arbi-

trary T . Observe that any constant function with value in f0
i (v) is a selector of

f0
i (v).

Denote by Φ0 the operator defined by

Φ0(y) = (f0
i (y1, . . . , yn), . . . , f0

n(y1, . . . , yn)).

Let us consider the operator A−1Φ0. If we take as selectors the constant
functions as described above, then it is easy to see that

A−1Φ0(v)=
{
y : y ∈ CT (X), y(t) = eAt[I − eAT ]−1

∫ T

0

eA(T−s)g ds

+
∫ t

0

eA(t−s)g ds, g ∈ S1
Φ0(v), g is constant

}
.

So, as in Theorem 2.2, we deduce that A−1Φ0 is ψ-condensing in X with respect
to the measure of noncompactness ψ defined by

ψ(Ω) = (χ1(Ω1), . . . , χn(Ωn)),

where Ωi is the projection of Ω to Xi. Here the ordering in Rn is given by the
cone Rn

+ (see Example 1.3).

Theorem 3.2. Let conditions (F1)–(F4) and (A) be satisfied. Suppose that
the inclusion v ∈ A−1Φ0(v) has a solution v∗ and degX(I−A−1Φ0, BX(v∗, r)) 6=
0 for some r. Then, for ε sufficiently small, the inclusion (15) has a T -periodic
solution xε such that

max
t
‖xε(t)− v∗‖ ≤ r.

In order to prove this theorem, we need the following lemma.
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Lemma 3.3. Assume that the infinitesimal generator A of the analytic semi-
group eAt satisfies (10). Let εm → 0, let {gm}, gm ∈ L1([0, T ], X), be a sequence
weakly convergent to g and suppose the set

(18) {gm(s) : s ∈ [0, T ], m = 1, 2, . . . }

is bounded. Then

εm(I − eεmAT )−1

∫ T

0

eεmA(T−s)gm(s) ds w−→ A−1 1
T

∫ T

0

g(s) ds as m→∞.

Proof. We have to prove that for every functional ` ∈ X∗ we have〈
`, εm(I − eεmAT )−1

∫ T

0

eεmA(T−s)gm(s) ds
〉

→
〈
`, A−1 1

T

∫ T

0

g(s) ds
〉

as m→∞.

For this, for a given ν > 0 we choose d > 0 such that∣∣∣∣〈`, εm(I − eεmAT )−1

∫ T

T−d

eεmA(T−s)gm(s) ds
〉∣∣∣∣ < ν

3
, m = 1, 2, . . . ,

and ∣∣∣∣〈`, A−1 1
T

∫ T

T−d

g(s) ds
〉∣∣∣∣ < ν

3
.

This is possible since the set in (18) is bounded, ‖eεmA(T−s)‖ ≤ C for some
C > 0 and

‖εm(I − eεmAT )−1‖ ≤ εm

(
1 +C

∞∑
k=1

e−εmkdT

)
≤ C εm

∞∑
k=0

e−εmkdT ≤ 2C/(dT ).

Moreover, for any α ∈ (0, 1),

(19) εm(I − eεmAT )−1AαeεmA(T−s) → 1
T
A−1+α, s ∈ [0, T − d],

where the convergence is in the L(X)-norm. In fact,

εm(I − eεmAT )−1AαeεmA(T−s)

= − 1
2πi

∫
Π(β,σ)

εm(1− eεmλT )−1λαeεmλ(T−s)(λI −A)−1 dλ

=
1
T

(
− 1

2πi

∫
Π(β,σ)

εmλT (1− eεmλT )−1eεmλ(T−s)λ−1+α(λI −A)−1 dλ

)
,

and the last integral converges uniformly, since the function

εmλT (1− eεmλT )−1 eεmλ(T−s)
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is uniformly bounded for s ∈ [0, T −d] and the resolvent (λI−A)−1 satisfies (5).
Therefore, one can pass to the limit under the integral obtaining (19). Further-
more, by (19) and the boundedness of the set defined by (18) we have〈

(A−α)∗`, εm(I − eεmAT )−1

∫ T−d

0

AαeεmA(T−s)gm(s) ds

−A−1+α 1
T

∫ T−d

0

gm(s) ds
〉
→ 0,

and so we can choose m1 in such a way that the absolute value of this term is
less than ν/6 for m > m1. Furthermore, since gm

w→ g we obtain〈
(A−α)∗`, A−1+α 1

T

∫ T−d

0

gm(s) ds−A−1+α 1
T

∫ T−d

0

g(s) ds
〉
→ 0,

and so we can choose m2 > m1 such that for m > m2 the inequality∣∣∣∣〈(A−α)∗`, A−1+α 1
T

∫ T−d

0

gm(s) ds−A−1+α 1
T

∫ T−d

0

g(s) ds
〉∣∣∣∣ ≤ ν

6

is satisfied.
Finally, for m > m2 we have∣∣∣∣〈`, εm(I − eεmAT )−1

∫ T

0

eεmA(T−s)gm(s) ds−A−1 1
T

∫ T

0

g(s) ds
〉∣∣∣∣

≤
∣∣∣∣〈`, εm(I − eεmAT )−1

∫ T

T−d

eεmA(T−s)gm(s) ds
〉∣∣∣∣ +

∣∣∣∣〈`, A−1 1
T

∫ T

T−d

g(s) ds
〉∣∣∣∣

+
∣∣∣∣〈(A−α)∗`, εm(I − eεmAT )−1

∫ T−d

0

AαeεmA(T−s)gm(s) ds

−A−1+α 1
T

∫ T−d

0

g(s) ds
〉∣∣∣∣

+
∣∣∣∣〈(A−α)∗`, A−1+α 1

T

∫ T−d

0

gm(s) ds−A−1+α 1
T

∫ T−d

0

g(s) ds
〉∣∣∣∣ ≤ ν.

Proof of Theorem 3.2. Since A−1Φ0 is a ψ-condensing operator, there
exists (see property 1◦ of Definition 1.9) a compact operator Â−1Φ0 such that
the following condition is satisfied:

(LH) the linear homotopy λA−1Φ0(v) + (1 − λ)Â−1Φ0(v) has no fixed points
on ∂BX(v∗, r) = SX(v∗, r).

Consider in CT (X) the operator which associates with every x ∈ CT (X)
the set of constant functions Â−1Φ0(x(0)). This operator is compact. We now
prove that the integral operator Γε, associated with (15), is linearly homotopic to
Â−1Φ0(x(0)) on SCT

(v∗, r) for ε sufficiently small. Assume the contrary. Then
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there are sequences εm → 0, λm ∈ [0, 1], λm → λ0 and xm ∈ SCT
(v∗, r) such

that

xm ∈ λmΓεm
xm + (1− λm)Â−1Φ0(xm(0)).

Or equivalently,

xm(t) = λm εm eεmAt(I − eεmAT )−1

∫ T

0

eεmA(T−s)gm(s) ds

+ λm εm

∫ t

0

eεmA(t−s)gm(s) ds+ (1− λm)wm,

where gm ∈ S1
Φ( · ,xm( · )), gm is T -periodic and wm ∈ Â−1Φ0(xm(0)). The se-

quence {wm} is relatively compact.
We want to prove that the sequence {xm} is relatively compact. For this, we

first prove that

(20) ‖xm(t)− xm(0)‖ → 0 as m→∞, whenever t ∈ [0, T ].

Since the functions xm are T -periodic it is sufficient to estimate the difference
xm(t)− xm(0) only for t ∈ [0, T ]. We have

xm(t)− xm(0) = λm εm(eεmAt − I)(I − eεmAT )−1

∫ T

0

eεmA(T−s)gm(s) ds

+ λm εm

∫ t

0

eεmA(t−s)gm(s) ds, t ∈ [0, T ].

For the second term on the right hand side we have∥∥∥∥λm εm

∫ t

0

eεmA(t−s)gm(s) ds
∥∥∥∥ ≤ CTεm → 0 as m→∞.

For the first term, if we put N = [1/εm] and M = supm sups ‖gm(s)‖ we obtain∥∥∥∥εm(eεmAt − I)(I − eεmAT )−1

∫ T

0

eεmA(T−s)gm(s) ds
∥∥∥∥

=
∥∥∥∥A−α(eεmAt − I)εm

∞∑
k=0

ekεmAT

∫ T

0

AαeεmA(T−s)gm(s) ds
∥∥∥∥

≤ (εmt)α

(∥∥∥∥εm

N∑
k=0

∫ T

0

AαeεmA(T (k+1)−s)gm(s) ds
∥∥∥∥

+
∥∥∥∥εm

∞∑
k=0

ekεmAT

∫ T

0

AαeεmA(T (N+2)−s)gm(s) ds
∥∥∥∥)

≤ (εmT )α

(
CMεm

N∑
k=0

∫ T

0

ds

εα
m(T (k + 1)− s)α
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+
Cεm

1− e−εmdT

∫ T

0

ds

(εmT (N + 1))α

)

≤ (εmT )αCM

(
ε1−α

m

1− α

N∑
k=0

((T (k + 1))1−α − (Tk)1−α)

+
2

d(εmT (N + 1))α

)
≤ (εmT )αC(α)M((εm(N + 1))1−α + (εm(N + 1))−α)

≤ 3C(α)M(εmT )α → 0 as m→∞.

The relation (20) implies that

(21) χi({(xm(t))i}) ≡ χi({(xm(0))i}), i = 1, . . . , n.

As the functions xm are T -periodic,

xm(([1/εm] + 1)T ) = xm(0).

Therefore,

λmεme
εmA([1/εm]+1)T (I − eεmAT )−1

∫ T

0

eεmA(T−s)gm(s) ds

+ λmεm

∫ ([1/εm]+1)T

0

eεmA(([1/εm]+1)T−s)gm(s) ds+ (1− λm)wm

= λmεm(I − eεmAT )−1

∫ T

0

eεmA(T−s)gm(s) ds+ (1− λm)wm,

since

(I − eεmAT )−1

∫ T

0

eεmA(T−s)gm(s) ds

= (I − eεmA([1/εm]+1)T )−1

∫ ([1/εm]+1)T

0

eεmA(([1/εm]+1)T−s)gm(s) ds.

Finally,

xm(t) = λmεme
εmAT (I − eεmA([1/εm]+1)T )−1

·
∫ ([1/εm]+1)T

0

eεmA(([1/εm]+1)T−s)gm(s) ds

+ λmεm

∫ t

0

eεmA(T−s)gm(s) ds+ (1− λm)wm.
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Making the change of variables xm(τ/εm) = vm(τ), εms = ξ, we obtain

vm(τ) = λme
Aτ (I − eεmA([1/εm]+1)T )−1

·
∫ εm([1/εm]+1)T

0

eA(([1/εm]+1)T−ξ) g̃m(ξ) dξ

+ λm

∫ τ

0

eA(τ−ξ) g̃m(ξ) dξ + (1− λm)vm,

where g̃m(ξ) ∈ Φ(ξ/εm, vm(ξ)).
From (20) we have

‖vm(τ)− vm(0)‖ = ‖xm(τ/εm)− xm(0)‖ to0 as m→∞.

And so from (21),

(22) χi({(vm(τ))i}) ≡ χi({(vm(0))i}) = χi({(xm(0))i}), i = 1, . . . , n.

In order to estimate χi({(vm(τ))i}), we now prove that the sequence {Bmw}
defined by

Bmw = (I − eεmA([1/εm]+1)T )−1

∫ εm([1/εm]+1)T

0

eA(([1/εm]+1)T−ξ) w(ξ) dξ

converges in norm to

Bw = (I − eAT )−1

∫ T

0

eA(T−ξ)w(ξ) dξ.

In fact, let εm([1/εm] + 1) = 1 + % εm, where % ∈ [0, 1], and consider

‖Bmw−Bw‖(23)

≤‖(I − eAT (1+% εm))−1‖ · ‖(eAT (1+% εm) − eAT ‖

· ‖(I − eAT )−1‖
∥∥∥∥∫ T (1+% εm)

0

eA(T (1+%εm)−ξ)w(ξ) dξ
∥∥∥∥

+ ‖(I − eAT )−1‖
∥∥∥∥∫ T (1+% εm)

T

eA(T (1+%εm)−ξ)w(ξ) dξ
∥∥∥∥

+ ‖(I − eAT )−1‖

·
∫ T

0

‖AαeA(T−ξ)‖ · ‖A−α(eA% εm − I)‖ · ‖w(ξ)‖ dξ.

All the terms on the right hand side of (23) tend to zero since

‖eAT (1+% εm) − eAT ‖ → 0 as m→∞,

and ∥∥∥∥∫ T (1+% εm)

T

eA(T+(1+% εm)−ξ)w(ξ) dξ
∥∥∥∥ ≤ C % εm‖w‖
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and from (6), (7) we have∫ T

0

‖AαeA(T−ξ)‖ · ‖A−α(eA% εm − I)‖ · ‖w(ξ)‖ dξ ≤ CTα(C % εm)α‖w‖.

Let us note now that

χi({(λmg̃m(ξ))i}) ≤ χi({(λmΦ(ξ/εm, vm(ξ)))i})

≤ χi(co fi([0, T ]× {vm(ξ)})) = χi(fi([0, T ]× {vm(ξ)}))

≤
n∑

j=1

mijχj({(vm(s))j}).

On the other hand (see (22)), χi({(vm(τ))i}) satisfies the following inequalities

χi({(vm(τ))i}) ≤ χi

({
eAiτ (I − eεmAi([1/εm]+1)T )−1

·
∫ εm([1/εm]+1)T

0

eAi(([1/εm]+1)T−ξ)λm(g̃m(ξ))i dξ

+
∫ τ

0

eεmA(τ−ξ)λm(g̃m(ξ))i dξ + (1− λm)wm

})
= χi

({
eAiτ (I − eεmAiT )−1

∫ T

0

eAi(T−ξ)λm(g̃m(ξ))i dξ

+
∫ τ

0

eA(τ−ξ)λm(g̃m(ξ))i dξ

})
≤ e−γit(I − e−γiT )−1

∫ T

0

e−γi(T−s)
n∑

j=1

mijχj({(vm(s))j}) ds

+
∫ t

0

e−γi(t−s)
n∑

j=1

mijχj({(vm(s))j}) ds, i = 1, . . . , n.

Since the functions χi({(vm(τ))i}), i = 1, . . . , n, satisfy the conditions of
Lemma 2.3, we have χi({(vm(τ))i}) ≡ 0, i = 1, . . . , n. Therefore, from (22),
χi({(xm(0))i}) = 0, i = 1, . . . , n, and in virtue of (20) the sequence {xm} is
relatively compact. Without loss of generality, we may suppose that

xm → x0 ∈ SCT
(v∗, r) and wm → w0 as m→∞.

Then from (20), x0 is a constant function and x0 ∈ SX(v∗, r). As already
noticed in the proof of Proposition 2.1, the sequence {gm} is weakly compact.
Assume that {gm} weakly converges to some g0; then g0 ∈ S1

Φ( · ,x0)
(see Sec-

tion 2). Since the operator Â−1Φ0 is closed, we have w0 ∈ Â−1Φ0(x0). By
Lemma 3.3 we can pass to the limit in the equality

xm(0) = λm εm(I − eεmAT )−1

∫ T

0

eεmA(T−s)gm(s) ds+ (1− λm)wm,



74 M. I. Kamenskĭı — P. Nistri — P. Zecca

obtaining

x0(0) = λ0A
−1 1
T

∫ T

0

g0(s) ds+ (1− λ0)w0.

Hence, x0 ∈ SX(v∗, r) and

x0 ∈ λ0A
−1Φ0(x0) + (1− λ0)Â−1Φ0(x0),

which contradicts (LH). Therefore, by Proposition 1.8 and property 1◦ of Defi-
nition 1.9, for ε > 0 sufficiently small, we obtain

degCT
(I − Γε, BCT

(v∗, r)) = degCT
(I −A−1Φ0, BCT

(v∗, r))

and by Theorem 1.10,

degCT
(I −A−1Φ0, BCT

(v∗, r)) = degX(I −A−1Φ0, BX(v∗, r)) 6= 0.

Finally, by property 4◦ of Definition 1.9, there exists a fixed point of Γε in
BCT

(v∗, r) and so a T -periodic solution xε of the inclusion (15). This concludes
the proof.

4. Inclusions with large coefficient of diffusion

This section deals with the problem of finding T -periodic solutions of inclu-
sion (3), which we rewrite in the form

(24) y′(t) ∈ µAy + Φ(t, y),

where the operators A and Φ are defined in (8) and (9).
In addition to conditions (F1)–(F4) and (A) we assume:

(A+) 0 ∈ σ(A) and it is a simple pole of the resolvent (λI −A)−1, that is,

(λI −A)−1 = λ−1P + P0 + λP1 + . . . ,

where P is the Riesz projector. Furthermore,

(25) ‖eAt(I − P )‖ ≤ Ce−dt

for some d > 0.

From inequality (10) it follows that the projector P has a finite-dimensional range
and zero is an eigenvalue of A. The expansion of the resolvent means simply that
the geometric and the algebraic multiplicities of the zero eigenvalue coincide.

Consider now the finite-dimensional inclusion

(26) x′(t) ∈ PΦ(t, x(t)),
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where x(t) ∈ PX, t ∈ [0, T ], and Φ is defined by (9). A T -periodic solution
of (26) is a solution of the integral inclusion x ∈ Γ0 x, where

Γ0 x =
{
y : y ∈ CT (X), y(t) = e−t[I − e−T ]−1

∫ T

0

e−(T−s)g(s) ds

+
∫ t

0

e−(t−s)g(s) ds, g ∈ S1
PΦ( · ,x( · ))+Px( · ), g is T -periodic

}
.

Note that Γ0 is a compact operator since the projector P is finite-dimensional.

Theorem 4.1. Let conditions (F1)–(F4), (A), (A+) be satisfied and as-
sume that the inclusion (26) has a T -periodic solution x0 such that deg(I −
Γ0, B(x0, r)) 6= 0 for some r > 0. Then for µ sufficiently large, the inclusion (3)
has a T -periodic solution xµ such that

max
t
‖xµ(t)− x0(t)‖ ≤ r.

Proof. Rewrite the inclusion (24) in the form

(27) y′(t) ∈ (µA− P )y + Φ(t, y) + Py.

The operators Φ + P and µA− P satisfy conditions (F1)–(F4) and (A), respec-
tively. Since 1 /∈ σ(e(µA−P )T ), we can define the integral operator Γ for (27) as
in Section 2, and we denote it by Γµ. By Proposition 1.9 the family

F(λ, x) = λΓµx+ (1− λ)Γ0 x

is ϕ-condensing. We want to prove that for µ sufficiently large, F(λ, x) is a
homotopy on SCT

(x0, r). Assume the contrary; then there exist sequences µm →
∞, λm ∈ [0, 1], λm → λ0 and xm ∈ SCT

(x0, r) such that

xm ∈ λmΓµm
xm + (1− λm)Γ0xm.

Or equivalently,

xm(t) = λme
(µmA−P )t(I − e(µmA−P )T )−1(28)

·
∫ T

0

e(µmA−P )(T−s)gm(s) ds

+ λm

∫ t

0

e(µmA−P )(t−s)gm(s) ds

+ (1− λm)e−t(I − e−T )−1

∫ T

0

e−(T−s)ĝm(s) ds

+ (1− λm)
∫ t

0

e−(t−s)ĝm(s) ds,

where gm ∈ S1
Φ( · ,xm( · ))+Pxm( · ), ĝm ∈ S1

PΦ( · ,xm( · ))+Pxm( · ) and gm, ĝm are T -
periodic.
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Now the sequence of operators Bm defined by the formulas

Bmy(t) = e(µmA−P )t(I − e(µmA−P )T )−1

∫ T

0

e(µmA−P )(T−s)y(s) ds

+
∫ t

0

e(µmA−P )(t−s)y(s) ds

converges to the compact operator

B0y(t) = e−t(I − e−T )−1

∫ T

0

e−(T−s)Py(s) ds+
∫ t

0

e−(t−s)Py(s) ds.

in the operator norm. In fact, PBmy = B0y, and

‖(I−P )Bmy‖

≤ C

( ∫ T−δ

0

‖e(µmA−P )(T−s)(I − P )‖ ds+
∫ T

T−δ

‖e(µmA−P )(T−s)‖ ds
)
‖y‖

+ C

( ∫ t−δ

0

‖e(µmA−P )(t−s)(I − P )‖ ds+
∫ t

t−δ

‖e(µmA−P )(t−s)‖ ds
)
‖y‖.

Using (25) we obtain ‖(I −P )Bmy‖ ≤ C(1/(dµm) + δ), and from this the asser-
tion.

Since the sequence {xm} is relatively compact, by the results of Section 2
the sequences {gm} and {ĝm} are weakly compact. Without loss of generality,
we assume that

xm −→ x0 ∈ SCT
(x0, r),

gm
w−→ g0 ∈ S1

Φ( · ,x0( · ))+Px0( · ),

ĝm
w−→ ĝ0 ∈ S1

PΦ( · ,x0( · ))+Px0( · ).

Therefore we can pass to the limit in equation (28) to obtain

x0(t) = e−t(I − e−T )−1

∫ T

0

e−(T−s)(λ0Pg0(s)(1− λ0)ĝ0(s)) ds

+
∫ t

0

e−(t−s)(λ0Pg0(s)(1− λ0)ĝ0(s)) ds.

On the other hand, Pg0 ∈ S1
PΦ( · ,x0( · ))+Px0( · ) and so x0 ∈ Γ0 x0, which is a

contradiction. Thus, from properties 1◦, 4◦ of Definition 1.9 and Theorem 1.10
we obtain the assertion.
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