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AN ELLIPTIC PROBLEM WITH POINTWISE
CONSTRAINT ON THE LAPLACIAN

Riccardo Molle — Donato Passaseo

Introduction

This paper deals with a class of variational inequalities, coming from vari-
ational problems with unilateral constraints. The presence of the constraint
modifies the structure of the corresponding functional and increases the topolog-
ical complexity of its sublevels, giving rise to some phenomena which are typical
of nonlinear elliptic equations.

Let Ω be a bounded domain of Rn, λ a real parameter, ψ and h two functions
in H1,2

0 (Ω) and in L2(Ω) respectively.
Set Kψ = {u ∈ H1,2

0 (Ω) | ∆u ≤ ∆ψ (in weak sense)} (Kψ is a convex cone
with vertex at ψ) and consider the problem

Pψ(h)

{
u ∈ Kψ,∫
Ω
[DuD(v − u)− λu(v − u) + h(v − u)] dx ≥ 0 ∀v ∈ Kψ.

The solutions can be obtained as lower critical points (see Definition 1.4) of
the functional

fh(u) =
1
2

∫
Ω

(|Du|2 − λu2) dx+
∫

Ω

hu dx

constrained on the convex cone Kψ.
The aim of this paper is to study the solvability of problem Pψ(h) for a

generic pair (ψ, h): we describe the set of pairs (ψ, h) for which Pψ(h) has
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solutions; for these pairs we analyse the structure of the set of solutions and
evaluate the number of solutions under suitable assumptions on the position of
the parameter λ with respect to the eigenvalues λi of the Laplace operator −∆
in H1,2

0 (Ω).
The results we obtain (see, for example, Theorem 4.8) exhibit a “folding type

behaviour”: the set of pairs (ψ, h) such that Pψ(h) has solution is a convex cone
and, if λ1 < λ < λ2 (λ1 and λ2 being the first and second eigenvalues of −∆),
then Pψ(h) has at least one solution for (ψ, h) on the boundary of this cone, at
least two distinct solutions if (ψ, h) lies in its interior (while the functional fh
without the constraint Kψ has a unique critical point for every h ∈ L2(Ω)).

This behaviour makes evident an interesting analogy with a well known result
stated by Ambrosetti and Prodi in [2], concerning problems with “jumping”
nonlinearity like

(1) ∆u+ g(u) = h in Ω, u = 0 on ∂Ω,

where

(2) lim
t→−∞

g(t)/t < λ1 < lim
t→∞

g(t)/t < λ2.

Notice that, despite the evident analogy of these results, there is a deep difference
between our methods and those used in [2], the latter being based on the analysis
of singularities that could not be applied in our problem.

Comparing the sublevels of the corresponding functionals, one could see that,
roughly speaking, the presence of the constraint Kψ in problem Pψ(h) has the
same role played in [2] by the condition

lim
t→−∞

g(t)/t < λ1.

In [14, 17–19, 21–23] an analogous jumping behaviour was shown for some
problems with constraints like

(3) K̃ϕ = {u ∈ H1,2
0 (Ω) | u ≥ ϕ a.e. in Ω} (ϕ ∈ L2(Ω))

in place of Kψ.
Several papers have been devoted to variational inequalities (see [11, 12,

etc.]); they involve unilateral pointwise constraints on the function (like K̃ϕ), or
on the laplacian (like Kψ) or also on the gradient: for example, a constraint like

(4) Kγ = {u ∈ H1,2
0 (Ω) | |Du| ≤ γ in Ω}

arises in the problem of the elastic-plastic torsion of a bar (see [5, 10]).
Usually, constraints on the function or on the gradient (like K̃ϕ or Kγ)

have been used in second order variational inequalities, while constraints on
the laplacian (like Kψ) have been considered in some fourth order variational
inequalities (for example for the biharmonic operator: see [6]). However, for the
second order variational inequalities we are considering in this paper, the jumping
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behaviour arises only when we use constraints like K̃ϕ or Kψ; no analogous
folding type result occurs if in problem Pψ(h) the convex cone Kψ is replaced
by a convex set like Kγ or {u ∈ H1,2

0 (Ω) | (Du, x) ≤ γ in Ω}, with x ∈ Rn.
An important tool is the use of supersolutions in order to analyse the prop-

erties of the pair (ψ, h) for which Pψ(h) has solution or to describe the structure
of the set of solutions of Pψ(h) (for example the existence of a minimal solution).

In [14, 17–19], where constraints like K̃ϕ involve only the function, the clas-
sical notion of supersolution for the operator ∆ + λI − h has been sufficient
(u is said to be a supersolution if ∆u + λu − h ≤ 0 in weak sense, see [1, 3,
etc.]).

In this paper a new notion of supersolution (see Definition 2.1) turns out to
be appropriate and useful to handle constraints on the laplacian like Kψ. It is
natural to call them supersolutions with respect to the operator I+∆−1(λI−h),
since (see Proposition 2.2) u is a supersolution if u + ∆−1(λu − h) ≥ 0 (the
operator ∆−1 is considered in H1,2

0 (Ω)).
Notice that, unlike [1] (where monotone iterations are used), we use the

supersolutions as “upper fictitious obstacles” (see Lemma 2.3); this property
allows us to prove that there exists a minimal solution, that the set of pairs
(ψ, h) for which Pψ(h) has solution is a closed convex cone, etc.

In a different situation, the use of supersolutions as fictitious obstacles to
analyse the structure of the set of solutions has been introduced, for example, in
[13, 14, 17–20].

This paper is organized as follows: in Section 1 we introduce the problem and
characterize its solutions as lower critical points of the functional fh constrained
on the convex cone Kψ; moreover, we prove the equivalence of problem Pψ(h)
to another variational inequality, which makes evident the pointwise properties
of solutions; in Section 2 we introduce the supersolutions and state their main
properties, which are used in Section 3 to analyse the solvability of Pψ(h) for a
generic pair (ψ, h) and to describe the properties of the set of solutions; in Section
4 we obtain the alternatives exhibiting the jumping behaviour for λ1 < λ < λ2;
in Section 5 they are extended to the case λ = λ2, while Section 6 is devoted to
the case λ = λ1.

1. The problem, the variational setting and preliminary remarks

Let Ω be a bounded domain of Rn, λ a real number, ψ and h two functions
that we assume, for simplicity, in H1,2

0 (Ω) and L2(Ω) respectively. We consider
the following problem:

Definition 1.1. Let

Kψ =
{
u ∈ H1,2

0 (Ω)
∣∣∣∣ ∫

Ω

DuDw dx ≥
∫

Ω

DψDw dx ∀w ∈ C∞0 (Ω), w ≥ 0
}

;
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we say that u is a solution of problem Pψ(h) if{
u ∈ Kψ,∫
Ω
[DuD(v − u)− λu(v − u) + h(v − u)] dx ≥ 0 ∀v ∈ Kψ.

Remark. Notice that, if we can apply the Gauss–Green formula, the in-
equality of problem Pψ(h) becomes∫

Ω

[u+ ∆−1(λu− h)]∆(v − u) dx ≤ 0 ∀v ∈ Kψ,

whose pointwise meaning would be{
u+ ∆−1(λu− h) = 0 a.e. where ∆u < ∆ψ,

u+ ∆−1(λu− h) ≥ 0 a.e. where ∆u = ∆ψ,

or, equivalently {
u ≥ −∆−1(λu− h) a.e. in Ω,

u > −∆−1(λu− h) ⇒ ∆u = ∆ψ.

This remark is made precise in the following lemma.

Lemma 1.2. Assume ψ ∈ H1,2
0 (Ω), k ∈ L2(Ω) and set

K = {u ∈ H1,2
0 (Ω) : u ≥ ∆−1k a.e. in Ω}.

Then a function u ∈ H1,2
0 (Ω) solves the problem

(5)

{
u ∈ Kψ,∫
Ω
DuD(v − u) dx+

∫
Ω
k(v − u) dx ≥ 0 ∀v ∈ Kψ,

if and only if it is a solution of the variational inequality

(6)

{
u ∈ K,∫
Ω
DuD(w − u) dx−

∫
Ω
DψD(w − u) dx ≥ 0 ∀w ∈ K.

Proof. Suppose that u ∈ Kψ solves problem (5). If, for every δ ∈ C∞0 (Ω),
δ ≥ 0 in Ω, we take v = u−∆−1δ, then v ∈ Kψ and the inequality (5) implies∫

Ω

(u−∆−1k)δ dx ≥ 0.

Therefore u ∈ K. Now, if w is in K, then

(7)
∫

Ω

DuD(w − u) dx−
∫

Ω

DψD(w − u) dx

=
∫

Ω

(Du−Dψ)D(w − u) dx ≥
∫

Ω

(Du−Dψ)D(∆−1k − u) dx,
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where the last inequality is true because ∆u ≤ ∆ψ (in weak sense) and w ≥
∆−1k. The last integral in (7) is equal to∫

Ω

DuD(ψ − u) dx+
∫

Ω

k(ψ − u) dx,

which is nonnegative by assumption (notice that ψ ∈ Kψ).
Conversely, let u ∈ K be a solution of problem (6). If, for every α ∈ C∞0 (Ω),

α ≥ 0 in Ω, we take w = u+ α, then w ∈ K and inequality (6) implies∫
Ω

(Du−Dψ)Dαdx ≥ 0.

Therefore u ∈ Kψ. Now, if v is in Kψ, then

(8)
∫

Ω

DuD(v − u) dx+
∫

Ω

k(v − u) dx

=
∫

Ω

D(u−∆−1k)D(v − u) dx ≥
∫

Ω

D(u−∆−1k)D(ψ − u) dx,

where the last inequality is true because u ≥ ∆−1k and ∆(ψ − u) ≥ ∆(v − u)
(in weak sense). The last integral in (8) is equal to∫

Ω

DuD(∆−1k − u) dx−
∫

Ω

DψD(∆−1k − u) dx,

which is nonnegative by assumption because ∆−1k ∈ K. �

Notations. Let λ1 < λ2 < . . . be the eigenvalues of the operator −∆ in
H1,2

0 (Ω) and e1 the positive eigenfunction corresponding to the first eigenvalue
and such that

∫
Ω
e21 dx = 1. Moreover, let X1 and X2 be the vector spaces

spanned by the eigenfunctions corresponding to λ1 and λ2 respectively and set
X3 = (X1 ⊕X2)⊥. Finally, let Π1, Π2 and Π3 be the projections on the spaces
X1, X2 and X3 respectively.

Definition 1.3. Let X be a set and V ⊆ X. We define the indicator
function of the set V as the function IV : X → R ∪ {∞} such that

IV (u) =

{
0 if u ∈ V
∞ if u ∈ X \ V.

Let h ∈ L2(Ω) and ψ ∈ H1,2
0 (Ω); we denote by fh,ψ : L2(Ω) → R ∪ {∞} the

functional fh,ψ = fh + IKψ , where

fh(u) =

{
1
2

∫
Ω
(|Du|2 − λu2) dx+

∫
Ω
hu dx if u ∈ H1,2

0 (Ω),

∞ if u ∈ L2(Ω) \H1,2
0 (Ω),

and IKψ is the indicator function of the set Kψ.
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Let f ′h(u) be the differential of fh in u, that is,

f ′h(u)[w] =
∫

Ω

[DuDw − λuw + hw] dx ∀u,w ∈ H1,2
0 (Ω).

Let H be a Hilbert space with inner product (·, ·) and norm ‖·‖. Let W ⊂ H

and consider f : W → R ∪ {∞}. We define the domain of f to be the set

D(f) = {u ∈W | f(u) <∞}.

Definition 1.4 (see [4, 8, 9]). Let u ∈ D(f). We define the subdifferential
of f at u to be the set ∂−f(u) consisting of all α in H such that

lim inf
v→u

f(v)− f(u)− (α, v − u)
‖v − u‖

≥ 0.

If ∂−f(u) 6= ∅, then we define the subgradient of f at u, denoted by
grad− f(u), to be the element of ∂−f(u) having minimal norm (it is easy to
check that ∂−f(u) is a closed and convex subset of H).

Lastly, we say that u is a lower critical point for f if 0 ∈ ∂−f(u), that is, if
grad− f(u) = 0.

Remark 1.5. The functional fh,ψ is lower semicontinuous in the metric of
L2(Ω) and its domain is D(fh,ψ) = Kψ.

Furthermore, it is easy to verify that

fh(v) = fh(u) + f ′h(u)[v − u] +
1
2
‖v − u‖2

H1,2
0
− λ

2
‖v − u‖2

L2 ∀u, v ∈ H1,2
0 (Ω).

Hence α ∈ ∂−fh,ψ(u) if and only if

f ′h(u)[v − u] ≥ (α, v − u) ∀v ∈ Kψ

and

fh(v) ≥ fh(u) + (α, v − u) +
1
2
‖v − u‖2

H1,2
0
− λ

2
‖v − u‖2

L2

∀u, v ∈ H1,2
0 (Ω), ∀α ∈ ∂−f(u).

We get immediately the following result:

Proposition 1.6. The function u is a solution of problem Pψ(h) if and only
if u is a lower critical point for fh,ψ.

Remark 1.7. If λ < λ1, then there exists a unique solution to problem
Pψ(h) for every h ∈ L2(Ω) and ψ ∈ H1,2

0 (Ω).
In fact, the functional fh,ψ introduced in Definition 1.3 is coercive and strictly

convex if λ < λ1; thus it has only one lower critical point: its unique minimum
point.
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2. Supersolutions as fictitious obstacles

In this section we introduce the notion of supersolution for our problem.
Then (see Lemma 2.3) we point out a useful and simple connection with the
solutions of problem Pψ(h).

In the next sections the results obtained here will be used to get information
about the set of data for which there exist solutions and about their multiplicity.

Definition 2.1. We say that a function u ∈ H1,2
0 (Ω) is a supersolution for

the operator I + ∆−1(λI − h) if∫
Ω

(DuDw − λuw + hw) dx ≥ 0 ∀w ∈ K0.

Remark. It is evident that every solution of problem Pψ(h) is a superso-
lution for the operator I + ∆−1(λI − h).

Let us point out that this definition of supersolution is rather different from
the usual one (used, for example, in [18, 19]) because it makes use of test func-
tions w such that ∆w ≤ 0 in weak sense, instead of the more general functions
w such that w ≥ 0. The next proposition suggests why we use the name “super-
solutions for I + ∆−1(λI − h)” for the ones introduced in Definition 2.1, while
it is natural to call the other ones “supersolutions for the operator ∆ + λI − h”.

Proposition 2.2. The function u is a supersolution for the operator I +
∆−1(λI − h) (in the sense of Definition 2.1) if and only if u+ ∆−1(λu− h) ≥ 0
a.e. in Ω.

Proof. If u is a supersolution, then Definition 2.1 (with w = −∆−1ϕ)
implies ∫

Ω

[u+ ∆−1(λu− h)]ϕ ≥ 0 ∀ϕ ∈ L2(Ω) such that ϕ ≥ 0;

so u+ ∆−1(λu− h) ≥ 0 a.e. in Ω.
Conversely, if u+ ∆−1(λu−h) ≥ 0, then multiplying by ∆w for w ∈ C∞0 (Ω)

such that ∆w ≤ 0, we get∫
Ω

[u+ ∆−1(λu− h)]∆w dx ≤ 0,

which implies ∫
Ω

(DuDw − λuw + hw) dx ≥ 0.

Hence it suffices to remark that the last inequality can be extended to all w ∈ K0

by density arguments. �
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Lemma 2.3 and Proposition 2.4 below exhibit an important property of super-
solutions: a constraint like {u ∈ L2(Ω) | u ≤ u} is in a certain sense a fictitious
obstacle if u is a supersolution for I + ∆−1(λI − h) according to Definition 2.1.

Lemma 2.3. Let u ∈ Kψ be a supersolution for the operator I+∆−1(λI−h)
with λ ≥ 0; set K = {u ∈ Kψ | u ≤ u} and assume that w is a lower critical
point for fh + IK . Then w is a solution of problem Pψ(h).

Proof. Let us remark, first of all, that u ≥ −∆−1(λu − h) a.e., because u
is a supersolution. Moreover, λw − h ≤ λu − h, because w ∈ K and λ ≥ 0, so
we obtain

(9) −∆−1(λw − h) ≤ −∆−1(λu− h) ≤ u.

The function w satisfies∫
Ω

[DwD(v − w)− λw(v − w) + h(v − w)] dx ≥ 0 ∀v ∈ K;

therefore, if we put

f̃(u) =
1
2

∫
Ω

|Du|2 dx+
∫

Ω

[h− λw]u dx,

then w is a lower critical point for f̃ + IK . The functional f̃ is strictly convex,
lower semicontinuous and coercive; so there exists only one minimum point for
f̃ on Kψ; let us call it w̃.

The function w̃ satisfies

(10)
∫

Ω

Dw̃D(v − w̃) dx−
∫

Ω

(λw − h)(v − w̃) dx ≥ 0 ∀v ∈ Kψ.

The functional f̃ + IK admits only one lower critical point (its unique minimum
point), because it is strictly convex; so, if we show that w̃ ≤ u, then we have
w̃ = w and (10) gives us the desired conclusion.

Applying Lemma 1.2 with k = h−λw, we see that w̃ is a lower critical point
for the functional

F (u) =
1
2

∫
Ω

|Du|2 dx−
∫

Ω

DψDudx

constrained on the set

K = {u ∈ H1,2
0 (Ω) | u ≥ ∆−1(h− λw) a.e. in Ω}.

The function u is in K by (9) and it satisfies ∆u ≤ ∆ψ (in weak sense) by
assumption; thus it is a supersolution for the operator F ′ (in the usual sense:
see, for example, [18, 19]).

Therefore, as stated in [18], the functional F + IK has a lower critical point,
which we call w′; furthermore, this point satisfies w′ ≤ u; but F + IK has only
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one critical point, because it is strictly convex, so w̃ = w′. This implies that
w̃ ≤ u and so w̃ = w, which completes the proof. �

Proposition 2.4. Let u ∈ Kψ be a supersolution for the operator I +
∆−1(λI − h); then problem Pψ(h) has a solution w such that w ≤ u a.e.

For the proof it is sufficient to apply the previous lemma, with w a minimum
point of the functional fh + IK (notice that K 6= ∅ because u ∈ K and moreover
fh + IK has a minimum because K is bounded in L2(Ω) and so the sublevels of
fh + IK are bounded in H1,2

0 (Ω)).

Lemma 2.5. Let λ ≥ 0; if u1 and u2 are supersolutions for the operator
I + ∆−1(λI − h), then so is u1 ∧ u2.

Proof. It suffices to remark that

u1 ≥ −∆−1(λu1 − h) ≥ −∆−1(λ(u1 ∧ u2)− h) a.e. in Ω,

u2 ≥ −∆−1(λu2 − h) ≥ −∆−1(λ(u1 ∧ u2)− h) a.e. in Ω,

because u1 and u2 are supersolutions and λ ≥ 0. Therefore

u1 ∧ u2 ≥ ∆−1(λ(u1 ∧ u2)− h) a.e. in Ω,

that is, u1 ∧ u2 is a supersolution, by Proposition 2.2. �

Theorem 2.6. If u1 and u2 are solutions of problem Pψ(h), then there
exists a solution u such that u ≤ u1 ∧ u2.

Proof. The functions u1 and u2 are supersolutions for the operator I +
∆−1(λI − h), because they are solutions of problem Pψ(h) and so, by Lemma
2.5, also the function u1 ∧ u2 is a supersolution.

By Proposition 2.4, it suffices that u1 ∧ u2 ∈ Kψ, which is stated in the next
proposition (that we prove for sake of completeness). �

Proposition 2.7. Let u1 and u2 be in Kψ; then also u1 ∧ u2 ∈ Kψ.

Proof. Set u = u1 ∧ u2, π(v) = v ∧ u1 and let F : H1,2
0 (Ω) → R be defined

by

F (u) =
1
2

∫
Ω

|Du|2 dx−
∫

Ω

DψDudx.

Then
F (u) ≥ F (v) + F ′(v)[u− v] ∀u, v ∈ H1,2

0

because the functional F is convex.
So, if w ∈ C∞0 (Ω), we have

F (u+ w) ≥ F (π(u+ w)) + F ′(π(u+ w))[u+ w − π(u+ w)],

F (π(u+ w)) ≥ F (u) + F ′(u)[π(u+ w)− u].
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Now, if w ≥ 0, it follows that

F ′(π(u+ w))[u+ w − π(u+ w)] = F ′(u1)[u+ w − π(u+ w)]

because π(u+ w) = u1 where u+ w − π(u+ w) 6= 0.
So, since u1 ∈ Kψ and u+ w − π(u+ w) ≥ 0, it follows that

(11) F ′(π(u+ w))[u+ w − π(u+ w)] ≥ 0.

Analogously

(12) F ′(u)[π(u+ w)− u] = F ′(u2)[π(u+ w)− u] ≥ 0.

Finally, the inequalities (11) and (12) imply that F (u+w) ≥ F (u), which yields
F ′(u)[w] ≥ 0, and this is the desired conclusion. �

Lastly, will need the following results about supersolutions, whose proofs are
straightforward.

Proposition 2.8. Let h′ and h′′ be in L2(Ω); if u′ and u′′ are supersolutions
for the operators I+∆−1(λI−h′) and I+∆−1(λI−h′′), respectively, then u′+u′′

is a supersolution for the operator I + ∆−1[λI − (h′ + h′′)]. In particular, the
assertion is true if u′ and u′′ are solutions for problems Pψ′(h′) and Pψ′′(h′′),
respectively, for some obstacles ψ′ and ψ′′ in H1,2

0 (Ω).

Proposition 2.9. If u is a supersolution for the operator I+∆−1(λI−h) (in
particular, if u is a solution for some problem Pψ(h)), then u is a supersolution
for the operator I + ∆−1(λI − h′) for every h′ in L2(Ω) such that h′ ≥ h.

3. Some properties of the set of solutions

Let us define

R = {(ψ, h) | ψ ∈ H1,2
0 (Ω), h ∈ L2(Ω), Pψ(h) has solution}.

In this section we use supersolutions to study some properties of the set of
solutions for problem Pψ(h) and to describe the set R.

Theorem 3.1. Let h ∈ L2(Ω) and ψ ∈ H1,2
0 (Ω); if there exists a solution

for Pψ(h), then there is a solution for problem Pψ′(h′) for every pair (ψ′, h′) with
h′ ∈ L2(Ω) and ψ′ ∈ H1,2

0 (Ω) such that ∆ψ′ ≥ ∆ψ in weak sense and h′ ≥ h.

This follows easily from Propositions 2.4 and 2.9.

Theorem 3.2. The set R is a convex cone whose vertex is the origin.

Proof. It is clear that if u is a solution for Pψ(h) then αu solves Pαψ(αh)
for every α ≥ 0. Moreover, if Pψ′(h′) and Pψ′′(h′′) have a solution, say u′ and
u′′ respectively, it follows from Propositions 2.8 and 2.4 that Pψ′+ψ′′(h′ + h′′)
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also has a solution; in fact, u′ + u′′ ∈ Kψ′+ψ′′ and it is a supersolution for the
operator I + ∆−1[λI − (h′ + h′′)]. This completes the proof. �

Before enunciating some closure properties of R, let us state the following
results.

Lemma 3.3. Let u be in Kψ; then

(13)
∫

Ω

[(λ1 − λ)u+ (h− α)]e1 dx ≥ 0 ∀α ∈ ∂−fh,ψ(u).

Proof. We have (see Remark 1.5)

(14)
∫

Ω

α(v − u) dx ≤ f ′h(u)[v − u] ∀v ∈ Kψ;

so, if we put v = u + e1 in (14) (notice that v = u + e1 is in Kψ), we obtain
inequality (13). �

Lemma 3.4. Let λ 6= λ1 and assume that, for every m ∈ N, ψm, ψ ∈
H1,2

0 (Ω), hm, h ∈ L2(Ω). Suppose also that ∆ψm ≥ ∆ψ in weak sense and that
ψm → ψ in H1,2

0 (Ω) and hm → h in L2(Ω) as m → ∞; furthermore, suppose
that problem Pψm(hm) has a solution um. Then:

(a) the sequence (um)m is bounded in H1,2
0 (Ω);

(b) if (um)m (or a subsequence) converges to u in L2(Ω) and weakly in
H1,2

0 (Ω), then u solves problem Pψ(h);
(c) there exists a solution to problem Pψ(h).

Proof. In this proof we are using the notations introduced in the first sec-
tion.

If λ < λ1, the assertion follows from fhm,ψm(un) ≤ fhm,ψm(u) ≤ const, for
u ∈ Kψ fixed, because the solution um is the minimum point for the functional
fhm on Kψm and Kψ ⊆ Kψm for all m.

If λ > λ1, we have

fhm,ψm(v) ≥ fhm,ψm(u) + 〈α, v − u〉+
1
2
‖v − u‖2

H1,2
0
− λ

2
‖v − u‖2

L2

∀u, v ∈ Kψm , ∀α ∈ ∂−fhm,ψm ;

in particular, for u = um and v = ψ (notice that ψ ∈ Kψ ⊆ Kψm), we get

fhm(ψ) ≥ fhm(um)− λ

2
‖ψ − um‖2

L2(15)

=
1
2

∫
Ω

|Dum|2 dx−
λ

2

∫
Ω

u2
m dx

+
∫

Ω

hmum dx−
λ

2
‖ψ − um‖2

L2 .
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Let us prove that the sequence (um)m is bounded in L2(Ω). If we suppose, by
contradiction, that this is not the case, then up to taking a subsequence, we have
limm→∞ ‖um‖L2 = ∞. If we put zm = um/‖um‖L2 , from (15) we deduce that
(zm)m is bounded in H1,2

0 (Ω); so a subsequence of it converges in L2(Ω) and a.e.
in Ω, to a function z ∈ H1,2

0 (Ω); then it follows that ‖z‖L2 = 1; moreover, z ≥ 0
in Ω, because um ≥ ψm a.e. in Ω, and ψm → ψ in H1,2

0 (Ω).
By Lemma 3.3 we have

1
‖um‖L2

∫
Ω

[(λ1 − λ)um + h]e1 dx ≥ 0,

from which, as m → ∞, we obtain (λ1 − λ)
∫
Ω
ze1 dx ≥ 0, which is impossible

because λ > λ1, z ≥ 0 and ‖z‖L2 = 1. So the sequence (um)m has to be bounded
in L2(Ω) and then, from (15), it follows that it is also bounded in H1,2

0 (Ω). So
(a) is proved.

Let us prove (b): since Kψ ⊆ Kψm for all m ∈ N, we have

fhm(v) ≥ fhm(um)− λ

2
‖v − um‖2

L2 ∀v ∈ Kψ ∀m ∈ N;

so, letting m→∞, we get

fh(v) ≥ fh(u)−
λ

2
‖v − u‖2

L2 ∀v ∈ Kψ,

which gives (b).
The third conclusion follows from (a) and (b). �

Lemma 3.4 allows us to prove the following closure property of the set R.

Theorem 3.5. Let λ 6= λ1 and assume that, for every m ∈ N, ψm ∈
H1,2

0 (Ω) ∩ H2,2(Ω), hm ∈ L2(Ω), ψm → ψ in H2,2(Ω), hm → h in L2(Ω) and
(ψm, hm) ∈ R (i.e. Pψm(hm) has solution). Then problem Pψ(h) has solution
(i.e. (ψ, h) ∈ R).

Proof. If λ < λ1, then the assertion is trivial because of Remark 1.7. If
λ > λ1, let (ψm)m and (hm)m be two sequences converging to ψ and to h in
H2,2(Ω) and in L2(Ω) respectively, such that, for every m ∈ N, Pψm(hm) has
a solution. If we define ϕn = ∆−1(∆ψ ∨ ∆ψm), also problem Pϕm(hm) has a
solution: indeed, if um is a solution for Pψm(hm), then um is a supersolution for
I + ∆−1(λI − hm). Furthermore, ∆um ≤ ∆ψm implies that ∆um ≤ ∆ϕm (in
weak sense), that is, um ∈ Kϕm . So we can apply Proposition 2.4 in order to get
a solution for Pϕm(hm). If we observe that ϕm → ψ in H1,2

0 (Ω), applying the
previous lemma to the sequence (ϕm, hm)m, we have the desired conclusion. �

Remark. Notice that Theorem 3.5 does not hold for λ = λ1. In fact, if, for
example, (ψm)m, with ∆ψm ∈ C∞0 (Ω) for all m ∈ N, is a sequence converging
in H2,2(Ω) to a function ψ ∈ H1,2

0 (Ω) such that supΩ ψ/e1 = ∞, then problem
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Pψm(0) has solution for every m ∈ N, but Pψ(0) has no solution because, when
λ = λ1 and h = 0, the solutions of problem Pψ(h) solve the equation ∆u+ λ1u

= 0, as we shall prove in Section 6 (see Theorem 6.1 and the related example).

Now we recall a proposition from [8] which is useful to prove the next result
about the existence of a minimal solution.

Proposition 3.6. Let H be a Hilbert space and f : H → R ∪ {∞} a lower
semicontinuous function. Suppose there exists λ ∈ R such that

f(v) ≥ f(u) + 〈α, v − u〉 − λ

2
‖v − u‖2 ∀α ∈ ∂−f(u) ∀u, v ∈ D(f).

Let (um)m and (αm)m be two sequences such that um ∈ D(f), αm ∈ ∂−f(um)
for every m ∈ N, limm→∞ um = u, and αm ⇀ α weakly in H. Then u ∈ D(f),
limm→∞ f(um) = f(u) and α ∈ ∂−f(u).

Proposition 3.7. If problem Pψ(h) has solution, then there exists a mini-
mal solution u (that is, u ≤ u a.e. in Ω for every solution u for Pψ(h)).

Proof. Let (um)m be a sequence of solutions such that

lim
m→∞

∫
Ω

um dx = inf
{∫

Ω

u dx

∣∣∣∣u solution of Pψ(h)
}

(notice that this infimum is finite because there exists a solution).
If we fix v ∈ Kψ, we get

fh(v) ≥ fh(um)− λ

2
‖v − um‖2

L2(16)

=
1
2

∫
Ω

|Dum|2 dx−
λ

2

∫
Ω

u2
m dx

+
∫

Ω

hum dx−
λ

2
‖v − um‖2

L2 .

We say that supm∈N ‖um‖L2 <∞. If this is not so, then up to taking a subse-
quence, we can assume limm→∞ ‖um‖L2 = ∞; let us consider zm = um/‖um‖L2 ;
from (16) we deduce that supm∈N ‖zm‖H1,2

0
<∞ and consequently (zm)m (or a

subsequence) converges in L2(Ω) and a.e. in Ω to a function z with ‖z‖L2 = 1
and z ≥ 0, because um ≥ ψ. Hence limm→∞

∫
Ω
zm dx =

∫
Ω
z dx > 0. But this

is impossible: in fact, limm→∞
∫
Ω
zm dx = limm→∞(1/‖um‖L2)

∫
Ω
um dx ≤ 0

because limm→∞
∫
Ω
um dx <∞ and limm→∞ ‖um‖L2 = ∞.

So (um)m must be bounded in L2(Ω) and, from (16), it follows that it is also
bounded in H1,2

0 (Ω); therefore, up to taking a subsequence, it converges in L2(Ω)
and weakly in H1,2

0 (Ω) to a function u that, by Proposition 3.6, is a solution for
Pψ(h). Let us remark that

(17)
∫

Ω

u dx = min
{∫

Ω

u dx

∣∣∣∣u solution of Pψ(h)
}
.
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Hence we deduce that u is the minimal solution. In fact, if there exists a solution
u such that u∧u 6= u, then there exists another solution w ≤ u∧u, by Theorem
2.6. Therefore

∫
Ω
w dx <

∫
Ω
u dx, contrary to (17). �

4. Alternative theorems when λ1 < λ < λ2

In order to study the solvability of problem Pψ(h) and evaluate the number
of solutions (see Theorems 4.7 and 4.8), we use in this section too the functionals
fh and fh,ψ and the other notations introduced in the first section.

Definition 4.1. Let h ∈ L2(Ω), ψ ∈ H1,2
0 (Ω), λ ∈ R, λ < λ2; let Sh,ψ :

R → R ∪ {∞} be the function defined by

Sh,ψ(t) = min{fh,ψ + IPt}

where Pt = {u ∈ L2(Ω) |
∫
Ω
ue1 dx = t} and IPt is its indicator function.

Let us remark that, if λ < λ2, such a minimum exists and, if it is finite, it
is achieved at a unique point because in this case fh,ψ is strictly convex, lower
semicontinuous and coercive on every hyperplane Pt.

The next lemma says that, if λ < λ2, then searching the solutions of problem
Pψ(h) is equivalent to looking for the lower critical points of Sh,ψ.

Lemma 4.2. Let λ < λ2 and u be a minimum point for fh,ψ + IPt , where
t =

∫
Ω
ue1 dx. Then k ∈ ∂−Sh,ψ(t) if and only if ke1 ∈ ∂−fh,ψ(u). In particular,

if k = 0, then t is a lower critical point for Sh,ψ if and only if the minimum
point for fh,ψ + IPt is a lower critical point for fh,ψ.

Proof. Assume that k ∈ ∂−Sh,ψ(t). We have to estimate

L = lim inf
v→u

fh(v)− fh(u)− (ke1, v − u)
‖v − u‖L2

.

Observe that, if
∫
Ω
ve1 dx =

∫
Ω
ue1 dx, then fh(v) ≥ fh(u), by definition of u.

Hence, if

M = lim inf
v→uR

Ω ve1 dx6=t

fh(v)− Sh,ψ(t)− k(
∫
Ω
ve1 dx− t)

|
∫
ve1 dx− t|

≥ 0,

then L ≥ 0, because

0 <
|
∫
ve1 dx− t|
‖v − u‖L2

≤ 1.

By definition fh(v) ≥ Sh,ψ(
∫
Ω
ve1 dx); furthermore, v → u in L2(Ω) implies∫

Ω
ve1 dx→

∫
Ω
ue1 dx, so

M ≥ lim inf
t→t

Sh,ψ(t)− Sh,ψ(t)− k(t− t)
|t− t|

≥ 0

by assumption.
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Conversely, let us remark, first of all, that fh = fh ◦Π1 + fh ◦Π2 + fh ◦Π3,
where fh ◦Π2 and fh ◦Π3 are convex. Therefore we have

fh,ψ(v) ≥ fh,ψ(u) + f ′h(u)[v − u] +
1
2
(λ1 − λ)

(∫
Ω

(v − u)e1 dx
)2

.

By assumption ke1 ∈ ∂−fh,ψ(u) and so

fh,ψ(v) ≥ fh,ψ(u) +
∫

Ω

ke1(v − u) dx+
1
2
(λ1 − λ)

(∫
Ω

(v − u)e1 dx
)2

;

if we set t =
∫
Ω
ve1 dx and t =

∫
Ω
ue1 dx, by simple arguments it follows that

Sh,ψ(t) ≥ Sh,ψ(t) + k(t− t) +
1
2
(λ1 − λ)(t− t)2,

which implies k ∈ ∂−Sh,ψ(t). �

Definition 4.3. If λ < λ2, let σh,ψ : R → R ∪ {∞} be defined by

σh,ψ(t) = min{fh ◦ (Π2 + Π3) + IKψ + IPt}

with the usual notations.

The following lemma states a simple property of σh,ψ, which can be easily
proved.

Lemma 4.4. Let Sh,ψ and σh,ψ be the functions defined above. Then

Sh,ψ(t) = σh,ψ(t)− (λ− λ1)
t2

2
+ t

∫
Ω

he1 dx.

Lemma 4.5. The projection (Π2 +Π3)(Kψ) is dense in (X2⊕X3)∩H1,2
0 (Ω)

with respect to the H1,2
0 (Ω) norm.

Proof. Consider u ∈ Kψ; we have

(Π2 + Π3)(Kψ) ⊇ (Π2 + Π3)(Ku) = (Π2 + Π3)(u) + (Π2 + Π3)(K0).

The projection (Π2+Π3)(K0) includes (Π2+Π3)(C∞0 (Ω)). In fact, if w ∈ C∞0 (Ω),
then there exists τ ∈ R such that ∆(w + τe1) = ∆w + τ∆e1 ≤ 0, because
∆e1 = −λ1e1 < 0 in Ω. So w+τe1 ∈ K0 and (Π2+Π3)(w+τe1) = (Π2+Π3)(w) ∈
(Π2+Π3)(K0). The projection (Π2+Π3)(C∞0 (Ω)) is dense in (X2⊕X3)∩H1,2

0 (Ω),
and so the lemma follows. �

Lemma 4.6. Let λ < λ2. Then the function σh,ψ has the following proper-
ties:

(a) Dσh,ψ = [
∫
Ω
ψe1 dx,∞);

(b) σh,ψ is bounded from below, nonincreasing, convex and lower semicon-
tinuous;

(c) limt→∞ σh,ψ(t) = min fh ◦ (Π2 + Π3);
(d) σh,ψ+µe1(t+ µ) = σh,ψ(t) for all µ ∈ R.
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Proof. (a) If u ∈ Kψ, then u ≥ ψ and so
∫
Ω
ue1 dx ≥

∫
Ω
ψe1 dx because

e1 > 0 on Ω. Furthermore, for every t ≥ 0, ψ + te1 ∈ Kψ.

(b) σh,ψ is bounded from below because min fh ◦ (Π2 + Π3) > −∞ if λ < λ2.
It is nonincreasing because, since ∆e1 < 0, we have

(Π2 + Π3)(Kψ ∩ Pt1) ⊂ (Π2 + Π3)(Kψ ∩ Pt2) if t1 < t2.

σh,ψ is convex because fh ◦ (Π2 + Π3) is convex.
σh,ψ is continuous in the interior of the interval [

∫
Ω
ψe1 dx,∞), which is its

domain, because it is convex; in order to prove also in the extremum the lower
semicontinuity, it suffices to remark that fh ◦ (Π2 + Π3) is lower semicontinuous
in the L2(Ω) norm and, furthermore, that its sublevels are bounded in H1,2

0 (Ω)
on every set like{

u ∈ L2(Ω)
∣∣∣∣ t1 ≤ ∫

Ω

ue1 dx ≤ t2

}
, t1, t2 ∈ R,

because

fh ◦ (Π2 + Π3)(u) ≥
λ2 − λ

2

∫
Ω

|D(Π2 + Π3)(u)|2 dx−
∫

Ω

h(Π2 + Π3)(u) dx.

(c) Let u be the minimum point for fh on (X2 ⊕ X3) ∩ H1,2
0 (Ω). By the

previous lemma there exists a sequence (wn)n in Kψ such that (Π2+Π3)wn → u,
which implies

lim
n→∞

fh ◦ (Π2 + Π3)(wn) = min fh ◦ (Π2 + Π3).

Then we have

min fh ◦ (Π2 + Π3) ≤ lim inf
t→∞

σh,ψ(t) ≤ lim
n→∞

σh,ψ

(∫
Ω

wne1 dx

)
≤ min fh ◦ (Π2 + Π3),

which proves the statement.
(d) This follows because fh ◦ (Π2 + Π3) is invariant under translations along

the e1 axis. �

Theorem 4.7. Let ψ ∈ H1,2
0 (Ω) and h ∈ L2(Ω); assume λ1 < λ < λ2. If

we write ψ = ψ0 + τe1, with ψ0 ∈ X2⊕X3, then there exists τ ∈ R (τ depending
on ψ0 and h) such that:

(a) if τ > τ , then problem Pψ(h) has no solution;
(b) if τ = τ , then problem Pψ(h) has at least one solution;
(c) if τ < τ , then problem Pψ(h) has at least two solutions.
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Proof. By Lemma 4.2 it is sufficient to find t ∈ R such that 0 ∈ ∂−Sh,ψ(t),
that is, by Lemma 4.4, t ∈ R such that

(18) (λ− λ1)t−
∫

Ω

he1 dx ∈ ∂σh,ψ(t).

By the properties of σh,ψ, ∂σh,ψ is an increasing maximal monotone operator
(see [4]); furthermore, according to Lemma 4.6(a),

∂σh,ψ(t) = ∅ if t <

∫
Ω

ψe1 dx = τ ;

moreover, limt→∞∂σh,ψ(t) = 0 because σh,ψ is convex, nonincreasing and boun-
ded from below.

From Lemma 4.6(d) it follows that

∂σh,ψ(t) = ∂σh,ψ0+τe1(t) = ∂σh,ψ0(t− τ);

hence (18) is equivalent to

(λ− λ1)τ −
∫

Ω

he1 dx ∈ ∂σh,ψ0(t− τ)− (λ− λ1)(t− τ),

that is, to

(19) (λ− λ1)τ ∈ ∂σh,ψ0(t− τ)− (λ− λ1)(t− τ) +
∫

Ω

he1 dx.

Since

lim
t→∞

(
∂σh,ψ0(t− τ)− (λ− λ1)(t− τ) +

∫
Ω

he1 dx

)
= −∞,

we have

M = max
{
α− (λ− λ1)t+

∫
Ω

he1 dx

∣∣∣∣ t ∈ R, α ∈ ∂σh,ψ0(t)
}
∈ R.

Such a maximum depends only on ψ0 and h, and M ≤
∫
Ω
he1 dx because

∂σh,ψ0(t− τ) ⊆ (−∞, 0] if t ≥ τ and ∂σψ0(t− τ) = ∅ if t < τ .
Now, if we set τ = M/(λ− λ1), then the theorem follows from the equation

(19) and from the shape of ∂σh,ψ0 . �

Theorem 4.8. Let ψ ∈ H1,2
0 (Ω) and h ∈ L2(Ω); assume λ1 < λ < λ2. If

we write h = h0 + τe1, with h0 ∈ X2 ⊕X3, then there exists τ ∈ R (τ depending
on h0 and ψ) such that:

(a) if τ < τ , then problem Pψ(h) has no solution;
(b) if τ = τ , then problem Pψ(h) has at least one solution;
(c) if τ > τ , then problem Pψ(h) has at least two solutions.
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Proof. To prove this theorem we proceed as for the previous one, starting
from (18); in this case

(20) −τ ∈ ∂σh,ψ(t)− (λ− λ1)t.

The right hand side term does not depend on τ because σ depends only upon
(Π2 + Π3)(h) = h0; so, if we set

τ = −max{α− (λ− λ1)t | t ∈ R, α ∈ ∂σh,ψ(t)},

we obtain the desired conclusion. �

5. The case λ = λ2

In this section we want to extend to the case λ = λ2 the results obtained in
the preceding sections when λ1 < λ < λ2.

In particular, we show that Theorems 4.7 and 4.8 still hold for λ = λ2.
However, let us point out that for λ = λ2 the functional fh is not coercive on

the hyperplanes Pt (see notations introduced in the previous sections) and so an
essential role in order to apply the previous methods is played by the following
lemma.

Lemma 5.1. Let λ = λ2; if t ∈ R and the set Pt = {u ∈ L2(Ω) |
∫
Ω
ue1 dx

= t} meets Kψ, then the minimum of the functional fh on Pt ∩Kψ exists.

Proof. It is sufficient to show that the sublevels of fh + IKψ + IPt are
bounded in H1,2

0 (Ω).
If we write

fh = fh ◦Π1 + fh ◦Π2 + fh ◦Π3,

we observe that fh ◦ Π1 is constant on the hyperplanes Pt and that, if λ = λ2,
there exist positive constants c1, c2 and c3, depending on h, such that for every
u ∈ H1,2

0 (Ω) we have

fh ◦Π3(u) ≥ −c1 + c2‖Π3u‖2
H1,2

0
, fh ◦Π2(u) ≥ −c3‖Π2u‖.

It follows that on the sublevels of fh + IPt we have

(21) ‖Π2u‖ ≥ −c4 + c5‖Π3u‖2
H1,2

0

where c4 and c5 are suitable positive constants.
It remains to prove that ‖Π2u‖ is bounded in the sublevels of fh+ IKψ + IPt .

If this is not so, then there exists a subsequence (un)n in a sublevel such that
limn→∞ ‖Π2u‖ = ∞; it follows from (21) that

lim
n→∞

‖Π3un‖H1,2
0
/‖Π2un‖ = 0.
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If we fix u0 ∈ Kψ ∩ Pt (a convex set) we have

u0 +
k

‖Π2un‖
(Π1un + Π2un + Π3un − u0) ∈ Kψ ∩ Pt for 0 ≤ k ≤ ‖Π2un‖.

Hence, letting n → ∞, we get (up to taking a subsequence), for every k ≥ 0,
u0 + kv ∈ Kψ ∩ Pt for a function v ∈ X2 such that ‖v‖ = 1; this is impossible,
because v is negative on a set of nonzero measure; this completes the proof. �

The previous lemma allows us to define the functions Sh,ψ and σh,ψ (see
Section 4) also when λ = λ2; moreover, Lemma 4.2 can be stated also in the
case λ = λ2 with an analogous proof and so we can again look for lower critical
points of the function Sh,ψ in order to obtain solutions of problem Pψ(h).

It is clear that also for λ = λ2 the functions Sh,ψ and σh,ψ have the same
properties that we have seen in the previous section. In particular, Lemma
4.6 also holds for λ = λ2, with the only difference that, since in this case
infPt fh ◦ (Π2 + Π3) = −∞ if Π2h 6= 0, we have limt→∞ σh,ψ(t) = −∞. But
the properties of σh,ψ allow us to state Theorems 4.7 and 4.8 also in the case
λ = λ2. Their proofs are similar to the case λ1 < λ < λ2; but, since for λ = λ2

the functional fh ◦ (Π2 + Π3) is not strictly convex, it could happen that, for a
lower critical point t for Sh,ψ, the functional fh,ψ + IPt could have more than
one minimum point. So the set of solutions of Pψ(h) has a different structure,
which will be described in Proposition 5.3; its proof needs the following lemma.

Lemma 5.2. Suppose λ = λ2; if u and v solve problem Pψ(h) and we have∫
Ω
(v − u)e1 dx = 0, then v − u ∈ X2 and we have

∫
Ω
h(v − u) dx = 0.

Proof. First remark that u and v minimize fh,ψ on Pt, with t =
∫
Ω
ue1 dx =∫

Ω
ve1 dx, because they are solutions of problem Pψ(h) and fh,ψ + IPt is convex.
Consider the function D : [0, 1] → R defined by

D(s) = fh,ψ(u+ s(v − u))

(notice that u+ s(v − u) ∈ Pt ∩Kψ for every s ∈ [0, 1]). We have

D′′(s) =
∫

Ω

|D(v − u)|2 dx− λ2

∫
Ω

(v − u)2 dx ≥ 0

because Π1(v − u) = 0. But, since u and v minimize fh,ψ + IPt , we must have
D′′(s) = 0, that is, v − u ∈ X2. This implies

D′(s) =
∫

Ω

h(v − u) dx,

which must be equal to zero because D(0) = D(1) = Sh,ψ(t). �
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Proposition 5.3. Under the same assumptions of Theorem 4.7 (or, equiv-
alently, of Theorem 4.8), with λ = λ2, the set S of solutions of problem Pψ(h),
if it is not empty, is the union of a point u0 and of a family (Si)i∈I of pairwise
disjoint convex sets: S = {u0} ∪

⋃
i∈I Si; furthermore:

(a) u0 ≤ ui for all ui ∈ Si, i ∈ I;
(b) ui ∈ Si ⇒ Si = {ui + v | v ∈ X2, ui + v ∈ Kψ,

∫
Ω
hv dx = 0} for all

i ∈ I.

Proof. Since Pψ(h) has solution, Sh,ψ has lower critical points (by Lemma
4.2). Moreover, since Pψ(h) has a minimal solution u0 (see Proposition 3.7),
t0 =

∫
Ω
u0e1 dx is the minimum lower critical point of Sh,ψ (because e1 > 0).

Let t0 and (ti)i∈I be the lower critical points of Sh,ψ and set

Si = {u ∈ Pti ∩Kψ | u is a minimum point for fh,ψ + IPti}.

We claim that S0 = {u0}. Suppose, contrary to our claim, that there exists
ũ 6= u0, ũ ∈ S0; then, by Theorem 2.6, there exists a solution u ≤ u0 ∧ ũ and
moreover, by Lemma 4.2, τ =

∫
Ω
ue1 dx is a lower critical point for Sh,ψ. By the

previous lemma, ũ− u0 ∈ X2, and so it cannot have constant sign. Therefore

τ =
∫

Ω

ue1 ≤
∫

Ω

(u0 ∧ ũ)e1 <
∫

Ω

u0e1 = t0,

which is a contradiction since t0 is the minimum lower critical point of Sh,ψ.
(b) follows easily from the previous lemma. �

Now let us show in a simple example the situation of the previous proposition.

Example. Let λ = λ2, h = 0 and ψ = −e1. Then one can easily verify that
the minimal solution is u0 = ψ = −e1 (because u0 +λ2∆−1u0 > 0 in Ω) and the
set S of solutions of problem P−e1(0) is S = {u0} ∪ S1 where

S1 =
{
u ∈ X2

∣∣∣∣u ≥ −λ1

λ2
e1

}
.

For the proof it suffices to remark that

Sh,ψ(t) =

{
(λ1 − λ2)t2/2 if t ≥ −1,

∞ if t < −1,

and so t0 = −1 and t1 = 0 are the unique lower critical points of Sh,ψ.

6. The case λ = λ1

If λ = λ1, the solvability of problem Pψ(h) is described by the following
theorem.
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Theorem 6.1. Assume λ = λ1; then the solutions of problem Pψ(h) are the
minimum points of the functional fh,ψ; furthermore:

(a) if
∫
Ω
he1 dx < 0, then there is no solution for Pψ(h);

(b) if
∫
Ω
he1 dx = 0, then u is a solution of Pψ(h) if and only if u ∈

Kψ and ∆u + λ1u = h, that is, the solution set of problem Pψ(h) is
Kψ ∩ (∆ + λ1)−1h and so, if it is not empty, it is a half-line parallel to
e1;

(c) if
∫
Ω
he1 dx > 0, then there is a unique solution for Pψ(h).

Remark. Let us observe that, while in case (b) the existence of a solution
depends upon the obstacle ψ, in cases (a) and (c) it is independent of it.

Example. Let h = 0 and assume supΩ ψ/e1 = ∞. Then there is no solution
to Pψ(h): indeed, by Theorem 6.1(b), a solution would be an eigenfunction for
the first eigenvalue (which cannot belong to Kψ under our assumption).

Proof of Theorem 6.1. If λ = λ1, the functional fh,ψ is convex and then
the solutions of Pψ(h), the lower critical points of fh,ψ, are its minimum points.

(a) It is sufficient to take the function v = u + e1 as a test function and to
remark that f ′h(u)[e1] < 0 for every u ∈ H1,2

0 (Ω).
(b) Let u be a solution for Pψ(h); for every γ ∈ C∞0 (Ω) let t > 0 be small

enough so that it is ∆(e1 + tγ) < 0 (observe that ∆e1 < 0). If we set v =
u+ tγ + e1, we obtain tf ′h(u)[γ] ≥ 0 and the assertion follows.

(c) Let us prove that the minimum of fh,ψ exists: we remark that

fh = fh ◦ (Π2 + Π3) + fh ◦Π1,

fh ◦Π1(u) =
(∫

Ω

he1 dx

)(∫
Ω

ue1 dx

)
∀u ∈ H1,2

0 (Ω);

it results, for suitable positive constants c1 and c2, that

fh ◦ (Π2 + Π3)(u) ≥ −c1 + c2‖(Π2 + Π3)u‖H1,2
0

∀u ∈ H1,2
0 (Ω);

moreover, we have, obviously,
∫
Ω
ue1 dx ≥

∫
Ω
ψe1 dx for every u ∈ Kψ; it follows

that the sublevels of fh,ψ are bounded in H1,2
0 (Ω) and so there exists at least

one minimum point, because fh,ψ is lower semicontinuous in L2(Ω).
Let us prove that there exists a unique minimum point (note that fh,ψ is not

strictly convex): let u and v be two minimum points, and define

N(t) = fh,ψ(u+ t(v − u));

then N : [0, 1] → R because u, v ∈ Kψ and Kψ is convex.
We have

N ′′(t) =
∫

Ω

|D(v − u)|2 dx− λ1

∫
Ω

(v − u)2 dx,
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which implies (Π2 + Π3)(v − u) = 0 because the function N cannot be strictly
convex (u and v are minimum points); furthermore, (Π2 + Π3)u = (Π2 + Π3)v
implies

N ′(t) =
∫

Ω

h(v − u) dx =
∫

Ω

he1 dx

∫
Ω

(v − u)e1 dx,

which must be zero because N(0) = N(1) = min fh,ψ. Therefore also Π1v = Π1u

and so u and v coincide. �

Notice that Theorem 6.1(b) implies that, if λ = λ1 and
∫
Ω
he1 dx = 0, and if

the minimum of fh,ψ exists, then min fh,ψ = min fh.
Let us point out that, however, in this case, inf fh,ψ = min fh (even if fh,ψ

has no minimum).
In fact, one can infer from Lemma 4.5 that

inf[fh ◦ (Π2 + Π3) + IKψ ] = inf fh ◦ (Π2 + Π3)

and so, in order to get inf fh,ψ = min fh, it suffices to remark that fh = fh ◦
(Π2 + Π3) if λ = λ1 and

∫
Ω
he1 dx = 0.
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[7] G. Čobanov e D. Scolozzi, Equazioni di Von Karman rispetto ad un ostacolo. Esis-
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