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EQUIVARIANT DEGREE FOR ABELIAN ACTIONS
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Dedicated to Louis Nirenberg on his 70th birthday

Introduction

This paper represents the second part of the study of the equivariant degree
for abelian actions and constitutes another step towards the completion of our
rather long journey along the paths of equivariant homotopy and equivariant
degree theory initiated in [7]. A program of development of this theory was
announced in [8] and followed chronologically in [9] and [10].

Here, using the results of [10], we compute the equivariant degree for abelian
actions and use it in order to prove results on twisted orbits, Borsuk—Ulam type
theorems, symmetry breaking problems and applications to ODE’s.

Let us briefly subsume our definition of equivariant degree in the finite-
dimensional setting (see [8]). Let V' and W be finite-dimensional spaces and
let T be a (not necessarily abelian) compact Lie group acting linearly (isomet-
rically) on both V' and W (with possibly different actions). Let & C V be a
I-invariant open and bounded subset of V and let f : Q@ — W be a continuous
I-equivariant map such that f(z) # 0 on the boundary 992 of Q. Now, our con-
struction is as follows. Take a sufficiently large ball B C V centered at the origin
such that Q@ C B and let ]?: B — W be a I'-equivariant continuous extension
of f. Let N be a bounded, open and I'-invariant neighborhood of 90 such that
f(x) # 0 for any # € N. Let F : [0,1] x B — R x W be the continuous map
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defined by F(t,z) = (2t + 2¢(z) — 1, f(x)), where ¢ : B — [0,1] is a T-invariant
Urysohn function such that ¢(z) = 0 if x € Q and ¢(z) = 1 if x ¢ QUN. We
assume, moreover, that I" acts trivially on both [0,1] and R. Clearly, F (t,z) =0
only if z € Q, f(:c) = f(z) = 0 and ¢t = 1/2. Thus, F can be regarded as a
[-equivariant map from SY 22 9([0, 1] x B) into S = R x W\ {0}. Following [8]
we define the T'-degree of f, denoted by degp(f; ), as the I'-equivariant homo-
topy class [ﬁ |r considered as an element of the I'-equivariant homotopy group of
spheres Hgv (SW). Tt is not hard to show that if ' reduces to the trivial group,
I' = {e}, then degp(f; Q) is nothing else but the classical Brouwer topological
degree of f.

The infinite-dimensional case, dim V = dim W = oo, can be handled with
appropriate I'-equivariant suspension theorems (cf. [10, Theorem 9.1]) after im-
posing the usual compactness assumptions on f. Thus, for example, if ' = {e}
and f is a compact perturbation of the identity, our I'-degree reduces to the
classical topological Leray—Schauder degree (see [8]).

Even though the above definition runs for any compact Lie group I', we shall
stick in this paper, as in [10], to the case when I' is abelian.

A description of the structure of the present paper is in order. Section 0 is
essentially a collection of results from [10] (in some cases suitably reformulated)
that permit us to proceed efficiently towards further investigations. It also con-
tains the important assumption (H) that will hold true almost throughout this
paper. In Section 1 we refine some results of [10] related to the action of a torus
that allow us to recover some well-known results contained in [13]. In Section 2
we show that in some cases the computation of the I'-degree may be reduced to
the computation of the classical degree of the corresponding Poincaré sections.
In Section 3 we compute the index of isolated orbits (see Theorem 3.2). As
a consequence we obtain interesting global bifurcation results involving period
doubling phenomena (see Corollary 3.1). In Section 4 we apply these degree
computations to Borsuk—Ulam type theorems. Section 5 deals with the index
of an isolated loop of stationary solutions and its applications to abstract Hopf
bifurcation. Section 6 treats the problem of symmetry breaking, products and
composition of mappings.

Finally, let us mention that [10] contains some misprints in the References.
For example references [1], [2], [3] should be cyclically permuted and reference
[16] should be split into two references: the one reported in [10] under [16] and
another one, say [16a], which is reference [3] of the present paper.

0. Preliminaries

In this section we shall collect the results from [10] which are most frequently
used in the present paper.
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I'2T" X Zp, X ...X Zn, is a compact abelian Lie group acting linearly,
via isometries, on finite-dimensional spaces V' and W (in the case of infinite-
dimensional spaces one has to reduce the study to maps which have the right
compactness properties). If Bg is the ball of radius R centered at the origin in
V and t is in I = [0, 1], one considers the I'-homotopy classes of I'-equivariant
maps F(t, X) with F(t,vX) =7F(t,X) from 9(I x Bg) into R x W\ {0}. The
resulting abelian group was called ITL, (S") in [8] and if f: V D Q — W is a
I'-equivariant map which is not zero on 92, where Q is an open, bounded, and
I-invariant subset of V, then the I'-degree of f is an element of II5, (SV), as
recalled in the introduction.

In most of this paper, unless specified otherwise, we shall assume the following
standing hypothesis:

(H) V =R¥ x U, and for any pair of isotropy subgroups H and K for U, one
has dim U# N UK = dimWH n Wk,

If (H) holds, then there is a “suspension” map from (V1)+ into (W)L given
by z; — xéj, which is I'-equivariant [10, Lemma 7.1]. Furthermore, Hgv (SW) =
;1 X Z x ... x Z, where II;_; corresponds to the isotropy subgroups K with
dimT'/K < k and there is one Z for each isotropy subgroup H with dimT'/H = k
[10, Theorem 7.1]. There are explicit generators, [Fg|r, for each of the Z-
components. If [F]p € II(H), defined as the set of I'-homotopy classes of maps
such that FX = I x BE — Rx WX\ {0} for any K > H, then, if dimI'/H =k,
one has II(H) = Z and [FH]r is given by the “extension degree”, degy(F), of
FH_ defined on the “fundamental cell” C = {(t,z1,...,2;) € IxVH :0<t < 1,
|z;] < R, 0 < Arga; < 27 /k;} where k; = |H;_1/H;| and H; = H, N ...N H,
with H; being the isotropy subgroup of x;. In this case there are exactly k
variables, z1,...,2x, with k; = oo for j = 1,...,k. Furthermore, if B =
{(t,X) € I x BE : z; real and positive for j = 1,...,k}, then deg(F; BH) =
(ITk;) degg (F), where the product is taken over all finite k;’s [10, Theorem 4.1].

If k = 0, then ITL, (V) = Hg/‘,,(SW/) where IV = T/T™, V! = VT" W' =

WT", and if k = 1, then Iy = IIL,, (V") = [[II(H) with [T/H| < oo [10,
Corollary 5.1]. Furthermore, if I'/H is a finite group and if for each z; with
kj > 1 there is another variable 2 with the same isotropy (two variables if z; is
real and T acts as Zs, i.e. a suspension result), then II(H) is a finite group [10,
Theorem 8.2]. In particular, if V=R x W and I'/H = Z,, X ... X Z,, then
II(H) = Zgy X...XZg,, withqy = g.c.d.(2,p1,...,Dm), ¢m = lcm.(2,p1,...,Pm),
q; = k;/kj—1, where k; is the largest common factor of all possible products of
j of the p;’s. Hence, if any two p;, p; are relatively prime and odd, then II(H) =
Zair/p|- There are explicit generators 7,7 such that 277 = 0 and ¢;(n; +7) = 0.
For example, if I'/H = Z,,, then II(H) & Zg X Z,, if n is even and II(H) = Za,
if n is odd [10, Theorem 8.5].
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Finally, for all the above cases any element of II(H) if dimT'/H = k, or any
element of Hgv (SW) if k =0 or 1, is achieved as the I'-degree of a map from 2
into W, provided Qf # ) [10, Theorem 2.2]. We would also like to stress our
results on the suspension, [10, Theorem 9.1], which will automatically hold in
the present paper.

REMARKS. 1) Some of the results listed above hold with weaker hypothe-
ses, as proved in [10]. In case of need we shall recall these hypotheses in the
appropriate places of the present paper.

2) In [10], Lemma 7.1, and hence Theorems 7.1, 8.2 and 9.2, were stated with
the hypothesis (H3): dim U = dim W which is incomplete, as the following
example shows:

On C2?, consider the following action of Zy2q, where p and ¢ are relatively
prime. On (z1,20) in U, T' acts via (e27k/P* ¢2mik/(0)) for k = 0,...,p%q — 1,
and on (&1, &) in W, T acts via (e27F/P_¢27ik/(0*0)) The isotropy subgroups for
U are H = 7, for k a multiple of p?, and U = {(21,0)}, K & Z,, for k a multiple
of pq, and UK = {(0, 23)}, and U} = U. One has WH# = WK = {(£;,0)} and
(H3) holds but not (H). Also, (UH)+ =0 x C,(WH)L =0 x C and there is no
non-zero equivariant map between these two last spaces, since (UH)+nUX = UK
and (WH)L N WX = {0}. Hence, hypothesis (H2) of [10] is not met.

Consider the equivariant map F(z1, 20) = (27 + 24, z‘f‘zz’g), where ag+ Op =1
(recall that a negative power is taken as a conjugate). The zeros of F'— (¢,0) are
at (0,e'/9¢2k7i/9) and (£'/Pe2k7/P () with index a and 3 respectively. Hence the
degree of F' with respect to any neighborhood of (0,0) is ag+8p = 1: deg F = 1.
Similarly deg F = p, deg FX = q.

Note that we shall prove, in Section 4, that any equivariant map G from
I x B, with B = {(z1,22) : |2i| < 2}, into R x C?\ {0} is classified by [G]r
dr2t — 1, F|r + dg[Fulr + dx[Fx]r + de[Fe]r, where F is the above map, Fyg =
(2t +1— 20212 (27 = 1)28,2020), Fre = (2t + 1 — 2|z, (289 — 1)28, 28, 2020)
and F, = (2t + 1 — 2|z1)2|22|2, (27 — 1)28, 2020 (2828 — 1)).

It is then not difficult to show that

deg GT 1 0 0 0 dr
deg GH p P 0 0 dyg
deg GK - qg O pq 0 dg

deg G 1 Bp* apg p*q de

Lemma 7.1 of [10] is then replaced by
LEMMA 0. Hypothesis (H) holds if and only if

(a) dimUH = dim W#,
(b) there are integers l; such that the map F : (z1,...,2,) — (21, ..., 2k
I'-equivariant.
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PROOF. If (H) holds then, if Hy = () H;, one has UH° = U and one obtains
(a). Also, as in [10, Lemma 7.1] one gets det~ydet” > 0, and one obtains F7
for any maximal H (on U the identity is an appropriate map). Choose such a
maximal H and let K and L be isotropy subgroups for (U#)L. Then

dim (U nUFn(UH)E nUK =dimU N UK —dimUZ nUL nUX.

Let Hy be the isotropy subgroup for UK MU, i.e. Hy is the intersection of the
isotropy subgroups for all the coordinates in that subspace. Then UX N UL ¢
Ufo, Since K and L are also intersections of the corresponding subgroups, it
is clear that K and L are subgroups of Hy and thus, UHe ¢ UK N UL, that
is, Uo = UK N UL while WHe ¢ WX n WL, Since, from (H), dim U =
dim WHe and dim UL NUK = dim WENW X, one gets WHo = WE AW, Thus,
dim (UYL nUE N UL = dim (WH)L n WE N WE| and one may repeat the
argument of Lemma 7.1 in [10] for a maximal isotropy subgroup for (U#)*L.

Note that if T/H = Zy and T'/K = Zy for H # K, then if x belongs to
UH NUX, one has T, > H UK, and since H and K are maximal among
subgroups of I (not just among isotropy subgroups), I, = I'. Thus, for such
subgroups, hypothesis (a) is equivalent to (H).

Conversely, if the map F exists, then it is clear that dim U¥ < dim W#, and
it is easy to give examples with a strict inequality. While, if (a) and (b) hold, it
is easy to see, by inspection, that (H) is true. O

1. Action of a torus

In [10, §1] we gave an explicit form for the action of an abelian group on an
irreducible representation. In the present section we collect some further results
on these actions.

Let T" = {(¢1,...,0n) : 0 < ¢; < 27} act on C™ = {z1,...,2,} via
expi(zyzl né-qu) for I = 1,...,m. The isotropy subgroup H; for z; will consist
of those (¢1,...,¢,) with Znéqﬁj = 0 (mod 27). Assume that dim7T™/(H; N
...NH,,) = k. Then we have seen in [10, §2] that there are exactly k coordinates
(21,...,2x) such that T"/Hy, Hy /H1NHa,...,(HiN...NHi_1)/(H1N...NHy)
are isomorphic to S* and (HyN...N H;_1)/(H; N...N H;) are finite groups for
I > k. Note that without loss of generality we are taking z1, ..., zx to be the first
k coordinates.

LEMMA 1.1. Under the above circumstances there is an action of T* on
C™, generated by ® = (Pq,..., D), such that Z?:I né-d)j = 25:1 NJI-<I>j for
l=1,...,m and for some integers N]l, with N} =0;N;ifj=1,... k.

PROOF. Let A be the m x n matrix given by (né), l=1,....,m,5=1,...,n.
The relation Z?:l né-dy = (A¢); = 0 gives a hyperplane in R™. The hypothesis
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on the isotropy subgroups implies that A has an (n — k)-dimensional kernel and
that if (A¢); =0forl=1,...,k then (A¢); =0 for j = k+1,...,m since if not
one would have an S'-non-trivial action on the corresponding variable Zj.

Let Ag be the matrix obtained from A by taking the first &k rows. Then
Ag is onto R and as such it has a k x k non-zero minor. Assume, without
loss of generality, that it corresponds to the determinant of A; given by (né),
l=1,....k,j=1,... k. It is clear that there are positive integers Ny,..., Ny

such that
~ N 0
Al ! = Al ! !
0 Ny,

has integer entries. Let ®; = (A¢);/N; for j =1,...,k. Then, if ¢* = (ng o7 )
with gZ)T = (¢1,...,0%), one has Agp = A1¢ + B(b = (N1®4,...,N;®;)T and
¢ =A7'® — AT'Bg. Thus,

(Ag) = mjd; = ZN“P £ nld - Zn 1'BO);.
j=1 j=k+1
The relation (A¢); = 0 if &3 = ... = &, = 0 implies that the last two sums
cancel each other. O

Another simple but useful observation is the following

LEMMA 1.2. Let T™ act on 'V via expi(Z?zl né@-),l =1,...,m. Then there
is a morphism S* — T™ given by ¢; = N;¢, N; integers, such that ZJ 1 JN £
0 (mod 27) unless né =0 for all j’s, and vst =T,

PRrROOF. The congruences » n§¢j = 0 (mod 27) give families of hyperplanes
with normal parallel to (n},...,nl), if this vector is non-zero. From the dense-
ness of Q in R, it is clear that one may find integers (Ni,...,N,) such that
the direction {¢; = N;¢} is not in any of the hyperplanes Znéqu = 0 for
l=1,...,m. Thus, Zné»Nj # 0 and, being an integer, this number cannot be

another multiple of 27, unless all n} are zero and one is in v, O

As a simple consequence of this last lemma, one may recover the following
well known results (see [13, Theorem 2.2]).

THEOREM 1.1. Let T™ act on V and W such that dimV = dimW and
dim V™" = dimW7T". Let F be a T"-equivariant map from I x V into R x W
which is non-zero on (I x B). Then

(a) There is a non-zero integer (3, independent of F, such that

deg(F; I x B) = Bdeg(FT";1 x BT").
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(b) If H is any isotropy subgroup of T™ on V and deg(FT" ;I x BT") # 0,

then dim VH < dim WH. In this case 8 = :t(HfZl a;)/(Hf:l ay), where a; is the
!

greatest common divisor of (n},...,nk

) and similarly for a.

PRrROOF. Choose an S*-action as in Lemma 1.2, for V and W. From [8, The-
orem 4.4], one has

T, (0 nl'N)
[T, (0, niNy)

where n}l correspond to the action of 7" on W and k = dimV — dim V7", Tt is

deg(F;I x B) = deg(FT";1 x BT"),

clear that the quotient, 3, is independent of the S!-action chosen. Furthermore,
the dimension inequality of part (b) also follows from the same reference since
FH maps 9(I x BY) into R x W\ {0}.

If for any F' one has deg(FT";I X BT") = 0, then one may as well choose
§ to be 1. If there is an F with deg(FT ;I x BT") = 1, then clearly 3 is an
integer. This is the case if hypothesis (H2)" of [10] is satisfied, i.e. there is an
equivariant map FL : (VT")+\ {0} — (WT")L\ {0}; then one may complement
F* by any map of degree 1 from I x BT" into itself. Note that under hypothesis
(H2)', from [10, Corollary 5.1(a)], 1Ly (S") = Z and [F]» is characterized by
[FT"], i.e. by deg(FT";1 x BT"). Since F and (F™"; F1) have the same degree
for their invariant part, we have [Flrn = [(FT", FY))rn.

If (H2) is not satisfied, let m; = 32", nbN;, M = [Tmy, M" = [[m; and
assume p® is a factor of |M| with p a prime number, and pa/ the corresponding
factor of |[M’|. Take the set of {m;} which are multiples of p and suppose there
are by of them which are multiples of p®!, by which are multiples of p®2, with
as < a1, not including the first set, and so on up to by which are multiples of
pt, with 1 < ap < a1 < ... < ap and not included in the preceding sets.
Let b} be the number of j’s such that a; < o’ and p?; divides |m/|, b; be the
number of j's such that a; < o < a;—1 for i = 1,...,k, and finally, b} , ; the
number of j’s with 1 < o < ay, in case ay > 1. Then a = Zle a;b; and
o = Zf;l a; > 25:1 O‘jbg‘ + b;c-&-l'

Now, if H; = {¢ = 2me/p® : 0 < e < p*i}, then the inequalities dim Vi <
dim Wi and dim V" = dim WS" imply the relations 22:1 b < 22:1 b; for
t=1,...,k+1 (here we are taking by11 = 0 and ax11 = 0). From the telescoping
sum, 25:1 ab; = Z?Zl(aj —j11) S30_, by, one has a < o, which implies that
|M| divides |M’'| and 3 is an integer.

Now, under the above hypothesis, the integer 3 is independent of the N;’s,
provided no my; or mj is zero. Since the number of terms in the quotient is the
same, one sees that 3 is the same if one takes the N;’s to be rational (provided
the new m;’s and mj’s are non-zero) and, by denseness, for N; real, we obtain
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the quotient of homogeneous polynomials of degree 1. Then for each [ there
is a ¢, and conversely, such that Zn;le = cig y_niN; for all N in R, where

cig is a constant. Thus, n}l = cf,n; or else cyaq/a; = m/;/m; = m'/m for all
j=1,...,n, where [m/| and |m| are relatively prime, n? = agm; and n;»l = a;m/;.
But then |m| divides all [m;|’s and [m/[ divides |m}|, and since the |m;|’s are
relatively prime, we have |m| = |m/| = 1. Hence, n;-l = mq(aj/ag)nj for all js,
with || = 1, and |B] = ([Ta})/(I] aq), recovering the result of [13], where one
had the assumption nf, n;l > 0. O

Note that here we are not asking for the condition dim V¥ = dim W#. In
fact, one could have a strict inequality, hence a zero degree for F, for all H’s
but the smallest: take n = 1 and an action on W of the form V¥ where N is a
multiple of all the n;’s; then W = W.

It is easy to show, from [8, Theorem 4.4], that if dimV = dimW but
dim V™" # dim WT" then the degree of F is 0.

Note also that if R(y) is the 2 x 2 real matrix corresponding to the complex
action €' of S, then A = ((1) _(1)) is such that R(p)A = AR(—y), i.e. the real
representations of S given by R(y) and R(—¢) are equivalent and A corresponds
to conjugation [3, p. 110]. However, for the case of a higher dimensional torus,
one may not choose the n;’s to be positive. In fact, there is no real invertible
matrix A such that R(p1 + ¢2)A = AR(p1 — 2): take @1 = o for example.

2. Poincaré sections

In some cases one may compute the I'-degree of a map by reducing the
situation to the computation of ordinary degrees on Poincaré sections. This will
be the case with the “free part” of the I'-degree when considering isolated orbits.

Recall that, under the standing hypothesis (H), one has II%, (") = A x
Z %X ... X Z, where A corresponds to the isotropy subgroups H for V such that
dim W (H) < k and there is one Z for each isotropy subgroup for V such that
dim W (H) = k (see [10, Theorem 7.1]).

In particular, any element [F]p in IIL, (S") can be written as [F]p =
S di[Fir + [F]r, where [F]p € A, [Fi]p are the explicit generators given in
[10, p. 394] and dk are the free components in Z.

Now, we have seen in [10, §2] that if H is such that dim W (H) = k, then
there are exactly k complex coordinates zi,...,2; with corresponding isotropy
subgroups Hi, ..., Hy such that I'/Hy, H1 /H1 N Hy, Hi N Hy/HiNHyNHs, ...,
HiN...NHg_1/HyN...N Hy are isomorphic to S1 i.e. these coordinates define
part of the “fundamental cell” for H. Let Hy = Hi N ... N Hi. Then Hy is
one of the maximal isotropy subgroups for V' with dim W (Hy) = k. Let Hy be
such a maximal isotropy subgroup with the corresponding variables z1, ..., zg.
Note that if H < Hy is an isotropy subgroup with dim W(H) = k, then H
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acts on VI as a finite group: in fact, I'/H ~ (I'/Hy)(Hy/H) and the fact that
dimI'/H = dimI'/Hy implies that Hy/H is finite. Then, as in [10, p. 371],
the set {X € V : |Hy/(Ho NT'x)| < oo} is the subspace VT"" | where T7*
is the maximal torus of Hy, i.e. Hy = T"°F X Zp,, x ... % Ly, where I' =
T" X Zyp, X ... X Ly,. In particular, there is a minimal H, corresponding to
VI"" with H < Hy and dimT'/H = k.

As a last preliminary step, recall that, under our standing hypothesis, for
any isotropy subgroups H; < Hj, there is an equivariant map (z1,...,%,) —
(zr, ..., xb) from (VHi)tmi into (WHi)L#i | the orthogonal complement of Vi
(respectively WHi) in Vi (respectively in W), with index at zero equal to
Bij = [Tl Hence B;; = 1if V=RF x W. Let B, = {(t, X) : 0 <t < 1, X|| <
R, z1,...,z real and positive}. If k = 0, By, is just the ball I x B = {(t,X) :
0<t<1, |X| <R}

We shall consider equivariant maps F': [ x Bp — R x W which are non-zero
on O(I x Bg) and on the sets {z; = 0},j = 1,..., k. For such a map and for
any isotropy subgroup H, F¥ is non-zero from aB,f to I x WH where B ,f and
I x WH have the same dimension. Hence the degree of the Poincaré section
FH|B£1 is well defined. On the other hand, [F]r = Y. dx[Fk]r + [F]r as above.
One has the following result:

THEOREM 2.1. Under the above hypothesis, [F]r =0, dx =0 if K is not a
subgroup of Hy, and

deg(FH

i By = Y. Buds|Ho/Hjl
H;<H;<Ho

for all H < H; < Hy with dimT'/H; =k, k > 0.

The case k = 0 was given in [10, Theorem 6.1]. For k& > 0, the proof is not
straightforward since a T-homotopy on d(I x Br) does not imply, a priori, an
Hy-homotopy on 0By.

PrROOF OF THEOREM 2.1. If K is not a subgroup of Hy, in particular if
dimI'/K < k, then z; = 0 for some j = 1,...,k on VK. This implies that
FX +£ 0, in particular [F]p € II(k), as defined in [10, p. 381], and [F]p = 0.
Furthermore, since 0 = [FX]p = Prem; 4 [F]r, as seen in [10, p. 388], and
noting that at this level the suspension is an isomorphism, one has d; = 0 if
K = H; is maximal, in which case d; is the extension degree for FX. On the
other hand, if K is not maximal, then no H; with K < H; can be a subgroup of
Hyj and it is easily seen that d; = 0 by solving the triangular relations [F' Hilp = 0.
One then has

[Fle =Y. d;[Fr,

H<H;<Hg
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where F} are the corresponding generators. Note that [FH°]r = dp, [Fy]r with
dp, = deg(FH0|BHO;B,f[”)7 according to [10, Theorem 4.1].

k

Let H < Hy with dimI'/H = k. Then [FH]p = ZH<HJ<HO d;[F/']p and on
VH there is an action of T* such that Z;-lzl né«pj = Z?Zl N]l-<I>j with N} =0 N;
if j=1,...,k, as in Lemma 1.1. Furthermore, our standing hypothesis implies
that there is a I'-equivariant map {z;} — {mé’} from (VI)1# into (W')1# | the
orthogonal complements in VH and W respectively. It is clear that such a map
implies that there is also an action of 7% on W i.e. that the action of T" can
be formulated in terms of ®.

Let VH be a T*-space of the same dimension as V¥ and where the action of

Tk differs only on the variables &, ..., &, where it is e®i,j = 1,..., k, instead
of eNi®i. Any T*-equivariant map F(Xo, 21, . ., 2k, 2;) from VI into W will
generate a T*-equivariant map F(Xo,&,...,&,x;) = F(Xo, lNl, cee, l]cv"‘,xj)

from VH into WH. Now, if K is an isotropy subgroup for the action of 7% on
VH with K # {e}, then on VX one has & = 0 for some j in {1,...,k}, and
the original map FH as well as the generators F jH are non-zero on VK. Thus,
[FH] . and [ﬁJH]Tk are elements of II(e, T*), as defined in [10, Theorem 5.1].

Note that the existence of the I'-equivariant map {z;} — {xé’ } implies that
hypotheses (H) and (H2) of [10] are satisfied. Thus, [F#]z. and [ﬁJH]Tk are
uniquely determined by their extension degrees on the corresponding funda-
mental cell C in VH , defined by &;,...,& real and positive. Furthermore, if
By ={(t,X):0<t<1, ||X| <R, &,...,& real and positive} then, from
[10, Theorem 4.1], these extension degrees are the usual degrees of the maps
restricted to By.

Finally, since [FH]pe = 3. d;[F H]7x, as is easily seen from the corresponding
equality for F'1 and a T-action, and since the extension degree is a morphism
onto II(I,T*) (the sum is defined on the t variable), one has, from [10, Theorem
4.3],

deg@ﬂggﬁf) =>4 deg(iﬂggﬁf)-

Since §]I-Vj is deformable to &; on Ek, the same relation holds on Bf' and, from
[10, p. 395], deg(F]H|B£J;B,f) = ([1%)(I1k:) where [[k; = |Ho/H,| and ;
corresponds to the “suspension map” of Vi in VH as defined above, that is,
11l = Bi; for H = H;. O

REMARK 2.1. Let V* = RF x VB, , where one identifies homotopically the
set {z; real and positive} with R. Then F|p, is an Hp-equivariant map and
defines an element of Hg{}*
H < Hj gives an isotropy subgroup of Hy, since if H = I'y = (| H; then

Hox = (\(H; N Hy) = I'x N Hy = H, and conversely. Furthermore, one has

(S™). Now, any isotropy subgroup H of I' with H <
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dim V*# = dim W#. From [10, Theorem 6.1],

[Flpu, = > dj[Fjlm, with dim Ho/Hj =0,
H’<H0

where {d};} is obtained from the set of degrees deg(F H; H/ B ) By applying
this argument to [F|g,|m, — ZE<Hj<Ho Fi| B o s one sees that the corre-
sponding degrees are all 0, from Theorem 2.1 and the fact that the sum of
the degrees is the degree of the sum. This implies that the corresponding
d; are 0, since the triangular matrix for Hy is invertible; thus, [F|p, |, =
> H<m;<H, %Fj|B.]H,, since again the sum is well defined.

Hence, in this case the I'-homotopy implies an Hy-homotopy on V*.

REMARK 2.2. Let F be as in Theorem 2.1, hence [F|r = Zﬁ<Hj<Ho d;[Fj]r
with deg(F* |BH BH) = > ¢€i;Bijd;|Ho/H,| for all H < H;,H; < Hp and
g5 = 1 if H; < H; and 0 otherwise. Now, one may also consider the map F =
(FH, Fé‘), where Fé‘ is the “suspension” map by {xéj} from (VH)L to (W)L
It is clear that FH: = FHi for any H < H; < Hy and that these two maps have
the same set of degrees. Thus, the I'-degrees of these maps are equal, i.e. the
d;’s are the same, and F' and F are T-homotopic on 8(I x Bg). Furthermore, the

preceding remark implies that F|p, and F |, are Hp-homotopic. In particular,
deg(F|p,; Br) = deg(F|p,; Bx) = ([11;) deg(F ¥ |p, ; Bx), that is,

deg(F|p,; Bx) = (Hl ) > Bijd;|Ho/Hj.

REMARK 2.3. The relations given in Theorem 2.1 may be expressed in the

form
deg(FHo; BT) 1 0 dy
deg(FH; B | = | Ba |Ho/Hj| d;
deg(FH; BY) Ba BslHo/Hj| |Ho/H|/) \d,

Since the lower triangular matrix is invertible, the I'-degree is completely
determined by the degrees of the Poincaré sections. One may give a compact
expression for the inverse by using the Mobius inversion formula, as in [11].

3. Index of an isolated orbit

Let f : Q — W be a I'-equivariant map, where € is an open bounded and
invariant subset of V = R¥ x U. Assume that f~1(0) = I' Xy, with I'x, = H such
that dimT'/H = k. Then f has a well defined I'-degree with respect to €, given
by the class of F(t,X) = (2t +2¢(X)—1, f(X)) in ITLy (SY). From the excision
property of the I'-degree we may assume that €2 is a small invariant neighborhood
of the orbit I' Xy. Furthermore, Xy has coordinates z1, ..., zx which are non-zero
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and with Hy = Hy N ...N Hj such that dim W (Hy) = k, as in the preceding
section.

Thus, € can be chosen such that zj|g # 0,5 = 1,...,k, and ¢(X) can be
constructed in such a way that ¢[(.,—oy = 1 for j = 1,..., k: in fact, this can be
done for all the coordinates x; in V' for which XJQ, the corresponding coordinate
of Xy, is non-zero. This implies that F|yx # 0 for any K which is not a subgroup
of H (and not only of Hy as in the last section). As in the proof of Theorem 2.1,

one has degp(f;Q) = Xy, < ;[Fj]r and

deg(fH"|Bf7:;QH" NBy) = Y Bid;|Ho/Hjl.
Hi<H;<H

The fact that deg(FHi|Bfi;Bfi) is the Brouwer degree of fi on QHi N By
follows from [8, p. 447]. Now, |Hy/H;| = |Hy/H|-|H/H;| and, as in [10, p. 377],
due to the Hp-action on By, f~(0)N By, has |Hy/H| points, each with the same
index i; on Vi N By. Hence, one may divide the above relation by |Ho/H| and

obtain the following result.

THEOREM 3.1. Let f be as above and let i; be the Poincaré index of fHi|p,

at Xg. Then
ij= Y eiiByd;|H/Hjl.
H<H;<H

Assume now that f is C' in a neighborhood of I'Xj. It is easy to see that

D f(Xo) has a block-diagonal structure
D fH(Xo) 0

( 0 Df*(Xo) )
and that Dfi(Xy)(Xi) is an H-equivariant map [6, p. 412]. Suppose also
that 0 is a regular value of f on €, that is, Df(Xo)|p, is invertible. Then it
follows from [6, pp. 403—404] that the H-representations V N By and W N By, are
equivalent. We shall then assume that V = R¥ x W. This implies that 3;; = 1
and that i; = Signdet D fi(Xy)|p, = ig Signdet Df+i(X).

On QN By, f(X) is H-deformable to (D fH (Xo)(XH — Xg), Df+(Xo)X ) and
one may compute the H-degree of the linearization Df(Xy)|p, . From Remark

Dfi(Xo) =

2.1, one has
[FlaJu= > dlFlslu
H<H;<H
for the map [2t 4+ 2p(X) — 1, f(X)]g. On the other hand,

2t +20(X) ~ 1, Df(Xo)(X — Xo)lpJu= . d&[Flu
H<H!<H

where Fj are the generators for the action of H on Bj. Now, we have seen
that H acts as a finite group on V*. If one decomposes V* into equivalent
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irreducible representations, then D f(Xy)|p, has a block-diagonal structure [6,
Chapter IV, Theorem 1.2, p. 407], where each block is a real matrix if H acts
as Zo or a complex matrix if H acts as Z,,, m > 3. Furthermore, each block is
H-deformable to a matrix of the form (dgt A ?) if H acts as Zy and to [ if H acts
as Zm,m > 3. This implies that D f(Xy)|p, gives a suspension by the identity on
the irreducible representations where H acts as Z,,, m > 3, and degy (f|n,; Bk)
has to take into account only those H J’ coming from coordinates where H acts
trivially or as Zs, since the suspension is an isomorphism. In other words, one
may consider H} such that H/H} = Zy x ... X Zy and d}; = 0 if H] comes from
an irreducible representation with an action of H of the form Z,,, m > 3.

Now, if H; < H, then, as we have already seen, H; gives an isotropy subgroup
of H on V* and conversely. Furthermore, since (z1, ..., zx) are the first variables,
the fundamental cell for H; as a subgroup of H is the restriction to By of the
fundamental cell for H; as a subgroup of I'. If F; is the generator corresponding
to H;, then it is easy to see that, by construction, Fj| ; B, # 0 for all H; > H;.
Hence the relation [Fi|p,|m = ) dij[Fj|g reduces to [Fi|p, |z = d[F]]g where
d is the extension degree of F;|p,, that is, d = deg(F;|B,; Br)/ 1 %;, as in [10,
Theorem 4.1]. But then it is easy to see directly that d = 1, that is, [F;|p,]u
= [F!]u.

The above arguments imply that d; =d; and that d; =0if H; = HNH;, N
...N H;, (H; corresponding to the irreducible representation of H on V*) and
one of these is such that H/H;, = Z,,, m > 3.

It remains to compute the other d;’s. It is easy to see that dy = iy and, from
ik =dg+2dg, that dg = (ix —ipg)/2 for any maximal K, i.e. with H/K = Zs.
If K is not maximal, with H/K = Zy X ... X Zs, then D f(X()¥|p, has the form
diag(AH, Atrr .. AtKs) with iz = Signdet A7 and ix; = ig Signdet At
where H/K; = Z,. Hence, ix =ing szl(in /im) and Theorem 3.1 gives

S i/ H| = in | [Tl /in) = 1= (ix. fin — 1)
H;<H;
where on the left side one has a sum over those H; which are not maximal, i.e.
different from Ki,..., and on the right the product and the sum are over all
maximal K, with H; < K..

These relations give a lower triangular matrix which is invertible (one may use
the Mdbius inversion formula for example) and the right hand side is completely
determined by iy and igx for all maximal K’s. We have proved the following
result.

THEOREM 3.2. Let V. =R¥ x W and 0 be a regular value of f on Q with
an isolated orbit T Xy such that dimT'/T'x, = k and isotropy I'x, = H. Then
the T'-index of the orbit is given by (dy,dk,,...) such that dy = ip,dk;, =
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(ix, —inm)/2 if H/K; = Zs, di is completely determined by the above integers
if HIK = Zo X ... X Zo with more than one Zy factor, and dx = 0 otherwise.

Here ig is the Poincaré index of f¥ at X,.

REMARK 3.1. If I' = S' and k = 1, these index computations were given in
[9, Proposition 5.2]. In this case H & Z,, and H/K cannot be a product.

REMARK 3.2. A similar result is given in [5, Proposition 4.7] and in [15].

REMARK 3.3. As an example one may consider the action of Zs X Zs on
R? given by (v12,72y,71722) with 7§ = 1d, 73 = Id and f(z,y,2) = —(z,y, 2)
(see [15, p. 85]). One has the following isotropy subgroups and corresponding
subspaces: Hy = Zg X Zo and (0,0,0), Hy = Zyx {1} and (0,y,0), Hy = {1} xZs
and (z,0,0),Hs = {(1,1),(—1,-1)} and (0,0,2),Hy = {(1,1)} and R3. By
adding 2t — 1, with index ig equal to 1 at ¢ = 1/2, one has

i() 1 0 0 0O d()
1 1200 dy
ipg =1 0 2 0 0 da
i3 100 2 0 ds
7 12 2 2 4 dy
Hence, ig =do = 1,ij =d; = =1 for j =1,2,3, 94 = —1 = 419293 and so dy = 1.

As an easy consequence of Theorem 3.2, one may obtain an abstract bifurca-
tion and period doubling result of the following sort: assume f(\, X) is a family
of T-equivariant functions from R¥ x W into W, with 0 as a regular value for
A # Xo. If Xo()) is the corresponding curve in V| where H = I xy(29) With
dimT'/H =k, it is easy to see that ix(\) and dx (\) are well defined for A # Ag
and any K as above.

COROLLARY 3.1. (a) If ig(\) changes sign at Ao, then one has a global
bifurcation at Ao in V.

(b) If ig(N\) is constant and ix(N\) changes sign at \g for some K with
H/K = Zs, then there is a global bifurcation at \g in VX, i.e. with a period
doubling. Topologically all bifurcations are in maximal isotropy subgroups, i.e.
with H/ K = Z,.

PRrROOF. By global bifurcation we mean the existence of a continuum in V' xR
going to infinity or returning to the set (Xo(A), A), for A # Ag, or going to points
where the hypothesis of the corollary does not apply any more (see [6]). The last
sentence of the corollary means that if i and ix, for all K’s with H/K 22 Z,, do
not change, then there will be no other changes for smaller isotropy subgroups.
As is well known this does not hold for non-abelian actions. g

Our last result in this section relates the I'-index to the “Floquet multipliers”
in the generic case of a “hyperbolic orbit” as in [8, p. 474] and [9, p. 106].
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We shall take the following setting: V = R¥ x W, F()\, X) = X — f(\, X) from
V into W is C! and f(\, X) is a compact map with F((\g, Xo) =0, and I'x, = H
is such that W (H) has dimension k. As before we choose the orientation of W in
such a way that the first variables z1, ..., zx have an isotropy subgroup Hy with
I'/Hy = T*, generated by ®1,...,®, as in Section 1, and action on zj given by
etNi®;

Since F'(M\g,vXo) = 0, one has %F()\O,Xo) =0 = Fx (X, X0)A;Xo, where
A; is the generator of the action of ]<I>j. In other words, {A;X(} generate the
Lie algebra of I'/H. Note that 4;X, has isz? as its jth coordinate, hence the
elements {A;Xo} are linearly independent. Here 29 is the jth coordinate of X,

which will be taken, without loss of generality, real and strictly positive.

DEFINITION 3.1. Let K < H. Then (Ao, Xo) is said to be K-hyperbolic if
and only if

(a) dimker(I — f& (X, Xo)) = k,

(b) fr(Ao, Xo) : RE — W is one-to-one, and

(c) Range £y (Ao, Xo) N Range(I — f£(\o, Xo)) = {0}.

Similarly (Ao, Xo) is said to be K-simply-hyperbolic if (Ao, Xo) is K-hyperbolic
and the algebraic multiplicity of 0 as eigenvalue of I — f%(X\o, Xo) is k.

Note that since X is in V¥, it follows that F(\, Xo) belongs to WH  and
thus, f(Xo, Xo)u belongs to WH. Similarly, since I'Xo C V#, A; X, belongs to
VH . We have seen that f£ (), Xo) has the diagonal structure

<f)jg()\o,Xo) 0 )
0 (o, Xo) )’

hence it is easy to see that one has the following result.

PROPOSITION 3.1. (Ao, Xo) is K-hyperbolic if and only if (Ao, Xo) is H-
hyperbolic and I — f)J(‘K 18 tnvertible.

Note that Range fx (Ao, Xo) has the right dimension to complement Range(]—
FH (N Xo)) in WH, Let

K, Y) = (p1 —Imzq,..., pe — Im2zg, (Ao, Xo)p + fx (Mo, Xo)Y).
Then K is a compact linear operator on V and on V¥, for all K < H.
PROPOSITION 3.2. (Ao, Xo) s H-hyperbolic if and only if K is invertible.
Proor. If (I —K)(1,Y) =0 then Imz; = 0, fap = 0 and hence p =0, Y

belongs to ker(I — f&), ie. Y =3 a;A; Xo. By looking at Im z; = oszjz?, one

concludes that o; = 0 and I — K is one-to-one. Since K is compact, I — K is
invertible.
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Conversely, if dimker(I — f&) > k, let Yy be in this kernel and linearly
independent of A;X,. Replacing Yy by Yo — > (Imy;/(N;29))A;Xo where y;
is the jth coordinate of Y, one may assume that Imy; = 0 and (0,Y)) is in
ker(I — K. Similarly if f\(\o, Xo)u = 0, then (M,Z(uj/(sz?))Aon) is in
ker(I — K1), i.e. fn must be one-to-one. Finally, if fxu = —(I — f2)Y, then
(1, Y = 3 ((y5 — p3)/ (N;29))A; Xo) is in ker(I — KH), where y; is the jth coor-
dinate of y. O

Let ix be the index on the Poincaré section given by Rez; > 0, Imz; = 0,
of the map X — f&(\, X) at (Ao, Xp), for X in WX. Since the identity map

(M,..., A, Rezr,Imz,...,Rezg, Imzg,...), with the natural orientation on
R* x WX is homotopic to ((—1)**1Imzy, (—=1)**2Imza, ..., (=1) % Im 2,
Aty ..oy Ak, Rez1, ..., Rezg,...) via a series of permutations, one has

i = (—1)*CF D2 Index((Im 21, . . ., Tm 2, X — XX, X)); (Ao, X0)),

where this Leray—Schauder index is with respect to the natural orientation on
VE. Now, by standard approximation arguments, this index is the index of
(0,0) for the operator (I —K)(u,Y). Here p = X — Ao and ¥ = X — X, since
Im XJ(»J = 0. From this last statement one has ix = iz(—1)"x, where n) is the
number, counted with multiplicity, of real eigenvalues of fj(‘K which are larger
than 1.

Note that n/, is even if H/K is not a product of Zy’s. In fact, if H acts
as S or Z,,,m > 3, on a set of equivalent irreducible representations, then the
H-equivariant linear map f ;K preserves these representations and can be seen

(A+iB)(X +iY) = (g _AB) (ii)

as a real operator. Since

A -B A+iB B I
=P P! with P=
(B A) ( 0 A—z’B) wit (—iI u)’

it follows that

as

det (A IBM A__BM> — |det(A — A +iB)|* > 0
and the algebraic multiplicity of any real eigenvalue is even. Similarly, if (X, Y)?
is an eigenvector with real eigenvalue, then (Y, —X)7 is also an eigenvector and
the geometric multiplicity is even.

It is thus enough to compute igr. Let WH = ker (I — f)™@Range (I — fZ)™,
where the first term is the generalized eigenspace. Then Y = u@v and I — f
leaves each subspace invariant. Choose a basis for the first term in such a way
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that I — f& is in Jordan form on it, i.e., u” = (uy, ... ,uk)T,u;‘»F = (iC]l, . ,x?-j),
with )" «; = «, the algebraic multiplicity, and max «; = m. Then
0 1
(I - fu; = Jo,U; where J=
1
0
Since A; X is written in this basis as ujT =(1,0,...,0),u; =0 for [ # j, we have

u=>y m;AjXO + w, where w corresponds to the other variables. Then

(I K)(u,Y)

= (m}sz? + Im(w; 4+ v;), Jagur — fipe, - s Jag e — fups, (I — i — fow),
where (fip, ..., fuit, foi) are the components of fyu in the basis. Furthermore,

(fim* = (fjlu, ey fjaju) componentwise. Let A be the k x k matrix with jth
row given by fja 7. One has the following result.

THEOREM 3.3. Let (Mo, Xo) be K-hyperbolic. Then:

(a) ig = (71)"%1}1, where n'y is the number of eigenvalues of fj(‘K, counted
with algebraic multiplicity, which are larger than 1.

(b) The matriz A is invertible and iy = (—1)**F+1/2(—1)"# Signdet A,
where ny is the number of eigenvalues of f)lg, counted with algebraic multiplicity,
which are larger than or equal to 1.

PROOF. If u belongs to ker A, then one obtains an element in ker(I — )
by taking v = (I — f}?)_lfv,u,wé- = le-u for 1 <1< a;—1and z; = —Im(w; +
0;)/(N;29).

Thus, is order to compute the index, one may deform linearly, to 0, the terms
fv,f]l» for 1 <1< a; — 1, and then Im(v; + w;) to 0 and sz? to 1. One is left
with the map

1,2 a; 1 Qg 1 [e7%
(1o by @y, 27, o, 2] X, 292 Xy TR D)
1 1 2 a;—1 a1 2 o 2 ar H
— (21, .o, 2y, 2t = s, = xg e — e (L= fx)v).

Via permutations, this map is homotopic to the map
(—(=D) ™ fr —(=1)2 52— (=) 2% xp, a2, (T — fE)v).

One may decompose Range (I — fi)™ into > ker (I — 7, f&)™ @& W, where
7; are the characteristic values of f}Ig with 0 < 73 < 1. On each Jordan block
for I — 7, f of the form J, I — f has the form —I(1 — 1) /7 + J/7;, which is
deformable to —I. On the other hand, on W, the operator I — f)lg is deformable
to the identity. Hence

Iy = (_1)k(3k+1)/2(_1)0‘(—1)k(—1)2"l Signdet A,
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where n; = dimker(I — 7, f). Since k(3k+1)/2+k = 3k(k+1)/2 has the parity
of k(k + 1)/2, one obtains the result. O

REMARK 3.4. In [8, Prop. 4.15, p. 475] and [9, Prop. 5.5, p. 112], a similar
result was stated for the case I' = S! and k = 1, where A was given in terms
of generators of a complement of Range(I — f). By comparing the formulae
it is easy to see that there is a difference of (—1) between the previous results
and the one given here. This is due to the fact that in those papers we used the
index of the Poincaré section given by (X, \) with Rez; > 0,Imz; = 0, while
here the section is given by (A, X): the difference is an orientation factor of (—1),
corresponding to the permutation of A and Re z;.

ExAMPLE 3.1 (Twisted orbits). Consider the problem of finding 27-periodic
solutions to the equation dX/dt = f(X,v), where v could be the frequency, X is
in RY and f is equivariant with respect to the abelian group I'y = T™ x L, X
.+« X L, - This problem has been extensively studied (see e.g. [4]) but here we
shall give a less algebraic presentation of it.

Let X(t) = Y X, e be the Fourier series for X (¢) in V, an appropriate
space of 27-periodic functions. The action of I'y on RY induces a natural action
on CV such that one may find a basis for it such that on the jth coordinate of
CN, Ty acts as exp[2mi((K;/M, L) + (N;, ®))], where the vector K;/M stands
for (k}/may, ..., k}”/mm)T with 0 < k% < mj, Lis in Z™, Nj in Z" and ® in [0, 1]
(see [10, Lemma 1.1]). Then I' =2 Ty x S! acts on X (t) as vX (¢t + ¢) and on
the jth coordinate of X, as exp[2mi((K;/M, L)+ (N;, ®)) + ing]. Let Hj, be its
isotropy subgroup, i.e. the set of {L, ®, ¢} such that the above exponential is 1.

Note that, by [10, Lemma 1.1}, I'/H;,, & S if n # 0 or N; # 0. Hence, for a
fixed v, the only relevant isotropy subgroups for the equivariant degree are those
for which n = 0 and N; = 0, i.e. those for VTHXSI, which give stationary (in
time and with respect to T™) solutions. We shall leave this case to the reader
and concentrate on the case of a free parameter v.

Now, Hj, = {(L,®,¢) : n¢/(2m) + (K;/M,L) + (N;,®) € Z}, in particular
Hjo = H; x S, where H; is the isotropy subgroup of I'y in R¥. In order to apply
Theorem 3.2 to H;,, we need to identify V7", the isotropy subspace for H},,, and
all isotropy subgroups K of I' such that Hj,/K = Z,. Note that K = [ Hy,
for I and k such that (X}); is in VX and K < Hy, N Hj, < Hj,. Thus, either
H; N Hjn = Hjp and Hjn < Hy, i.e. (Xk)l is in an7 or Hyp N Hjn = K with
H;n/K = Zo, ie. if (L,®,¢) is in Hj, then (2L,29,2¢) is in K and in Hy.
Then, if H;o < H, one requires k¢/(2m) + (K;/M, L) + (N;, ®) to be in Z for
all (L,®) in H; and all ¢’s. Taking L = K;M and ® = 0, this is impossible
unless k = 0 and H; < H;. A similar argument with (2L, 2®, 2¢) gives that the
only possibility for Hjo/K = Zg is for k = 0 and H;/H; N H, = Z,. Thus,
V30 c VK c RN, and we are dealing with stationary solutions.
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If n # 0, then Hj, < Hj, implies
(EK; —nK;)/M,L) + (kN; —nN;, ®) = ak — bn

for integers a and b and all (L, ®). Hence kK;/M — nK;/M = kA — nB and
kN; = nN,. For K, upon taking (2L,2®,2¢), the coordinates in V& have to
satisfy 2kK;/M — 2nK;/M = 2kA — nB and kN; = nN;. This last equality
implies that there are a finite number of modes, i.e. of k’s, in VX unless N; =
N; = 0, i.e. with a trivial action of T™. Note also that the element (0,0, 27/n)
in Hj, will be in Hy;, only if k/n is an integer, and its double will be in Hy, only
if 2k/n is an integer.

If N #£0, let Y(t) = A(t)X(t), where A(t) = diag(e™™*1t, ... e~ with
ky such that k;N; = nN; and 0 otherwise, for the finite number of modes which
satisfy the above relation. Here A(t) is written in the representation induced by
I'oon RV, i.e. A(t) is in fact a real matrix, but written this way for convenience.
Then

Y/(t) = A (AT (DY (1) + AW F(ATY (),0) = A (O () + F(Y (), v)

since f is T'g-equivariant (take t = —27n(N;, ®)). Thus, the equation is also
I-equivariant and Yy, = Xy, i.e. one has frozen the rotating wave (see [4]), and
one is back to the study of time stationary solutions. Hence, we shall assume
N; =0.

Take the set of (k,1)’s such that 2k/n is an integer and K; = (2k/n)K;/2 +
(D;/2)M + E;M, where D; has components 0 or 1 and F) is an integer-valued
vector (they depend on k): these will contribute to V¥, while for V" one has
(k,1) with k/n an integer and D; = 0. Let k}/m; = k¥ /m} with kY and mj
relatively prime (if k; = 0 replace it by m; and then these numbers are both 1).
If m? =lcm.(m),...,m},), then there is an L; such that any L can be written
as cL; + Q with 0 < ¢ < 2m?, (K;/(2M),L;) = 1/(2m?) and (K;/(2M), Q) is
an integer (see [10, Lemma 1.1] where those @ for which (K;/M, Q) is odd are
replaced by Q —m/ L; and we allow ¢ to go up to 2m?).

Thus, (K;/M,L) = c¢(2k/n)/(2m?) + (Dy,cL; + Q)/2. In these terms one
has Hj, = {(c,Q,¢) : 0 < ¢ < 2m?, (K;/M,Q) is an even integer and ¢/(2m) =
—c/(nm?)+2d/n} and HixNHj, = K = {(c,Q, ¢) : ¢ as above and (D, cL; +Q)
even}. Thus, if (L,¢) is in K, then (D;, L) is even for all k& and [. Now, if
(Dy,, Lj) is odd for some (ko,l), then any L can be written as L = dL; + L’
with (Dy,, L) even (hence (Dy, L’) is even for all (k,1)), d is the parity of ¢ and
(Dy,cLj + Q) = ¢(Dy, L;j) (mod?2). On the other hand, if for all (k,!) one has
(Dy, L;) even and not all D; are 0, then there is an Ly such that L = dLo + L’
with (Dy, L') even for all (k,l) and an independent Zs-action on VE. However,
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we shall see that this is never the case unless nm? is odd and (D, L;) is even for
all I's.

Fix l and let A ={k > 0:2k/n € Z, K; = 2k/n)K;/2 + D;M/2 + E;M}.
It K = (kj's....k"), M’ = (m},...,m},) and ki = kjmj/m/, then 2K =
(2k/n)K} + DiM’ 4+ 2E;M’. Note that if k is in A;, then so is k 4+ dnm/ for
any integer d, with the same D;. If A; = (), then the corresponding coordinate
does not enter in VX. Furthermore, if k and k; are in A; then 2(k; — k)/n =
(2e; + (dj — di)mj) kY for all i’s. Since mj and k¥ are relatively prime, one has
2(ky — k)/n = ¢;m) = em?. If ¢ = 2d is even, then k; = k + dnm? and D] = Dy,
while if ¢ = 2d + 1, then k1 = k + (2d + 1)nm/ /2 (hence nm/ must be even) and

Dj=D; - (2d+1)m' K} /M’ + 2(E; — Ej) = D+ m’ K} /M’ + 2E,

since m/ K; /M" is integer-valued. Thus, (Dj, L;) = (D, Lj) + 1+ 2e.

Let k; = min AY, where AY = {k € A; : (D, L;) even} and D; be its cor-
responding element. Note that this subset AY of A; is not empty, due to the
alternating parity of (Dj, L;), unless nm/ is odd. In this last case, we shall take
ki = min A; and then (D, L;) has always the same parity. Thus, any k in A?
is of the form k = k; + dnm? with the same D; or, in the complement, of the
form k = k] + dnm? with D] = D; + m?K; /M and k] = k; + nm? /2. Hence,
in all cases, K; = (2k;/n)K;/2 + DiM/2 + E;M and any k in A; is given by
k = k; + dnm? /2, where the parity of d decides the class of k; (d even if nm/ is
odd).

Let 7, = 2k;/n + (Dy, L;)m?, that is, r; = 2 and r, = 2k;/n if the lth
coordinate is in V7™, Then the action of I on the [-coordinate of X} is given
by exp[2mi(cr;/(2m7) + dd; /2 + k¢/(27))], where d = 0 unless nm/ is odd and
(Dy, L;) is even for all [, in which case d; = (Dy, Lo). Hence, 7, = 2k;/m if nm’
is even and r; = 2k;/m+ (Dy, L;)m? if nm? is odd. Note that if, for some k, the
pair (I, k) contributes to V7", then for that pair one has 2k/n even and D; = 0,
that is, 7, = 2k;/n is even. On the other hand, a coordinate will not contribute to
Vinif A # (0, m? is even and r; = 2k;/n is odd, or if A? = (), hence nm/ is odd,
and r; is odd (in this case 2k;/n is always even), or if nm/ is odd, A) = A;, 7 is
even but d; = 1.

Note that if [y = {e}, then m/ = 1 and r; = 2k;/n is even, since the action
has to be trivial. Let 79 be the matrix corresponding to ¢ =1 and d = 0, and v,
be the matrix corresponding to ¢ = 0 and d = 1. Then the action of I'y on RY
is generated by 7y and ;. Since fygmj = Id, one has a natural splitting of RY as
RNo x RM1 | where 'y(’)"j acts as (—1)"Id on RY:, i.e. RNo corresponds to even
and R™M to odd ones. If nm? is odd and r; is even for all I’s, then the splitting
of RN corresponds to the action of 1, since 42 = Id. Thus, if X (¢) is in VI,
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one has

X(t) _ ZXkeikt _ Z Ze27rirl/(2mj)(Xk)leik(t—QTr/(nmJ‘))
l

where the first sum is over k’s with k = k; + dnm? and even r; = 2k;/n. Hence,
X(t) = y0X(t — 2n/(nm?)) and X(t) = 11 X(¢). Conversely, any X (t) which
satisfies these relations is in V7", where the components of X (t) are restricted
to those for which 7; is 2k;/n and even, i.e. in RNo. In fact, there 'y{)”j = Id and
X(t) is 27 /n-periodic and the only modes present in the Fourier expansion of
X (t) are those for which k is a multiple of n and k = k; + dnm/.

For VX the same arguments yield that, if nm/ is even,

X(t) = ( Z Z(Xk)leik(t—Qﬂ'/(nmj)) _ Z Z(Xk)leik(t—%r/(nmj))>

even [ odd I

where the first sum is over k’s for which k = k; + 2dnm? /2 and the second over
k’s with k = [; + (2d + 1)nm/ /2. Then

X(t) = Xo(t) + X1(t) = v0(Xo(t — 2/ (nm?)) — X1 (t — 27/ (nm?))).

Now, X (t) = 72X (t — 47 /(nm?)) and since 72™ = Id, one sees that X (t)
is 47 /n-periodic. Conversely, any X (¢) with that periodicity will have modes
k with 2k/n an integer and X (¢) can be split as above: In fact, by changing
m? to 2m7, one finds as above that 2k/n is an integer and 2k = 2k; + dnm/.
According to the parity, one will have X, or X;. Note that X (¢), Xy and X; have
a spatial splitting on the coordinates of RY, i.e. on RMox RNt even and odd
r’s. The components of Xy in RYo are 27 /n-periodic, while those in RN are
27 /n-antiperiodic. The behavior of the components of X (t) differs by a factor
(—=1)™. Since we are working with 27-periodic functions this implies that X ()
is in R0 if n is odd and m’ even.

If nm? is odd, then the only modes are those of the form k = k; + dnm/.
One then has a spatial splitting, with X (¢) = X, (¢) + X_(¢), with X, in RN
and X _ in RV, Then X (t) = y0(Xy(t — 27/(nm?)) — X_(t — 27/(nm?))), and
both X, are 27 /n-periodic. The converse is clear. Finally, if nm/ is odd and 7!
is even for all [, then X (t) = X, (t) + X_(t) = v X (t — 27/(nm?)), i.e. X(t) is
27 /n-periodic and one has v X4 (t) = £ X1 (¢). Hence, we get

LEMMA 3.1. (a) The elements of V™ are those X (t) = v X (t — 2w /(nm?))
with components in the subspace RNo of RN where 76’” =1d and v; = 1d.
(b) The elements of VX are such that X (t) = Y3 X(t — 4w /(nm?)). If nm’

is odd, then X(t) is as above, with a spatial splitting induced by 76’“ and ;.
Let then X (¢) be in VI™ and a solution of X'(t) = f(X(t),v0). Let B(t) =

Df(X(t),1). Then, since yDf(X,v) = Df(yX,v)y for any ~ in Ty, for 4g"

and ~; which fix X (¢), one has a structure of B(t) of the form diag(B. (t), B_(t))
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where By acts on RV+ and B (t) are 27 /n-periodic. Let ®(¢) be the funda-
mental matrix, i.e. d®/dt = B(t)® and ®(0) = I. From the flow invariance
it is easy to see that ®(t) = diag(®,(¢),®_(t)). Note that X'(t) belongs to
ker(d/dt — B(t)) and that, as seen in [7, Appendix] and [9, Proposition 4.16], the
eigenvalues of Id —Fx are related, including the algebraic multiplicities, to the
X(t) in V™ or VX such that 4 X(t) — B(t)X + AX =0, > 0, which are given
by X (t) = e M®(t)W with W in ker(®(27) —e2™*I), so that X (t) is 27-periodic,

ie. 2™

is a Floquet multiplier for the Poincaré return map ®(27).

Now, if X(t) is in V7™, then X (27/(nm?)) = X (0) and v, 'A,. W =
2™/ ()W swhere ®(27/(nmd)) = diag(Ay, A_). Similarly, if X(¢) is in VE
then 7, >BW = M/ with B = ®(47/(nm?)). Let W(t + 27/ (nm?)) =
Y@ (t)yy . Tt is easy to see that W is also a fundamental matrix, hence ¥(t) =
®(t)C with ¢ = A~'. Then ¥(27rs/(nm?)) = %®(2n(s — 1)/(nm?))y; ' =
®(2ms/(nm?))A~Y. Thus, @(27s/(nm’)) = ~§(7;'A)°. In particular,
DEr) = WA Hence, B4(27) — (5 A", B_(2m) —
(=)™ (75 LA™, 752 B = (1 1 A)?, @ (2m/n) = (5 ' AL)™, @i (4/n)
= (v lAi)2mJ and the generalized spectra of these matrices are easily related.

Since we are interested in the eigenvalues of 7, YA, which are real and larger
than 1, for V7", and in the eigenvalues of (7, 'A)? which are real and larger
than 1, for VX, let 0% = number of real eigenvalues A of vy 1A+ with e\ > 1
and likewise for o€ and A_. If nm/ is odd, then X (t) = 70Xy (t — 27/(nm?)),
hence v, 1AL X, (0) = A2/ (mm?) X (0), while X_(t) = —0X_(t — 27 /(nmd)),
hence 7, "A_X_(0) = —r2m/(nm?) x (0). If 71 # Id, then one has a splitting
according to the eigenvalues of ;. We have proved

PROPOSITION 3.3. If the orbit X (t) is hyperbolic, then i = (—1)”15, where

e depends on how f depends on v (e =1 for f(x,v) = f(z)/v). We have ix =
(71)01+0f+0f-&-0

-¢ if nm? is even. If nm? is odd and v, = 1d, then ix =
(—I)UIJ”’:S, and if nm? is odd and v, # 1d, then ifx = (—l)aiJr”ts.

REMARK 3.4. (a) If nm7 is even, then iy = iy and ix = i, where i/ is
given by the number of eigenvalues of ®(27) which are larger than 1, and
by those eigenvalues of ®(27) which are of absolute value larger than 1. The
same interpretation can be given in the cases of nm’ odd.

(b) One may also use the fact that for any X (¢) in VE one has X (t) = Xo(t)+
Xi(t) with Xo(t) = yXo(t — 2m/(nm/)) and X(t) = —yX1(t — 27/ (nm?));
then one may look at the Floquet multipliers, larger than 1, for the problem
X(t+27/n) = aX(t),0X(t) = bX(t + 27/(nm?)), where |a| = |b| =1 (see [4,
Definition 6.1]). Write o, for the number of these eigenvalues (counted with
multiplicity). Then, if b = 1, X(t) = Xo(t), if b = —1 then X (¢) = X1(¢), if
a = 1 one has to look at positive eigenvalues of 7 14, and if a = —1 at negative
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eigenvalues. Hence aﬁ_ = UL 0y, = 0_, since in the first case Xo(t) is in RNo

and in the second in RV, If b = —1 and a = 1, then J;{_ is afr if m7 is even
(then X; is in RM) and ¢ if m/ is odd (then X is in R™M). If b = —1 and
a = —1, then o;_ is o_ if m? is even (X is in R™') and o7 if m/ is odd (X is

in RNo). Thus ix = (—1)%+ 7+t 70 where of +ol =0 +oj ifmlis
odd.
(c¢) As in [9, Chapter VII], one may define an orbit index as (ig +ix)/2.

EXAMPLE 3.2 (Time dependent equations). Consider the problem of finding
2m-periodic solutions to the problem dX/dt = f(X,t), where f(X,t+ 2n/p) =
f(X,t) for some integer p. By writing X () = 3. X,,e'™, one has inX,, — f,,(X)
=0, where f,(X) = (2m)~! 0271' f(X(t),t)e~"tdt. Replacing X (t) by X(t + )
gives fro(X(t+¢)) = e® f027r f(X(t),t — @)e~"tdt, where one has used the 27-
periodicity of X and 27 /p-periodicity in ¢. Hence f,, (X (t+¢)) = e f,(X (¢)) for
o =2kn/p,k=0,...,p—1, giving a natural Z,-action on these functions. If X (t)
is a 27 /p/-periodic solution with p a multiple of p’, then the linearization near
X will solve the problem dX/dt — Df(X(t),t)X = 0, where B(t) = Df(X(t),t)
is 27 /p’-periodic. It is then easy to compute the indices and relate them to the
Poincaré index of the linearization. We leave this task to the reader.

4. Borsuk—Ulam results

In this section we shall show how many of the extension ideas given implicitly
in [10] can be proved, with less stringent hypotheses, in the case when there are
no extra parameters (in [10] the main interest was on the parameter case where
obstructions are not primary). For the moment the only hypothesis is that V
and W are representations of the compact abelian group I', with a special first
coordinate ¢ in V¥ and WT.

LEMMA 4.1. Let Iso(V) be the set of all isotropy subgroups of T forV and let
A={H €Iso(V): 3K €Iso(V),K < H and dimVE > dim WX + dimT'/K}.

(a) Let Fy be an equivariant map from Ugca SV into Upea WH N\ {0}
Then Fy has an equivariant extension F from SV into W \ {0}.

(b) Let A’ be the subset of Iso(V) defined as A but with diim VE > dim WX +
dimT'/K instead of strict inequalities. Then if F} and G|, are T'-homotopic maps
on Upear SV™ | any two extensions F' and G' are T'-homotopic on SV.

(c¢) If Fy is as in (a) and dimV < dim W, then any extension F is, non-
equivariantly, deformable to a constant.

ProOF. For (a) it is enough to follow the arguments of [10, Theorem 3.1(a)]
on the set CNSY, where C is the fundamental cell, which has the right dimension
for the extension. Note that (Jz .4 SV can be replaced by any invariant set
which contains this union.
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For (b), replace V by I x V and repeat the above argument. Or, consider
[F']r — [G']r in TT%, (S™) (recall that the addition is done on the first variable).
This map is I'-homotopically trivial on ¢ 4/ SVH, i.e. it has a I'-extension to
Unear BH. One may apply directly [10, Theorem 3.1(a)] to get a I-extension
to B, i.e. [F']lr — [G'][r = 0. The same extension problem on A would meet
obstructions given by the extension degree of [10, Theorem 3.1(b)].

(c) is trivial since Hgv (") = 0 in this case. O

Our next result will be used for the construction of the generators in the Hopf
theorem.

LeEMMA 4.2. (a) If H is not in A and dim VH = dim WH+ dimT/H then
there is an equivariant map Fy such that Fg is (1,0) on any BX when K is
not a subgroup of H, and Fy has extension degree 1.

(b) If furthermore the following hypothesis holds:

(Ho) Vv €T, SigndetySigndety > 0,

and dim V¥ = dim W and T'/H is finite, then deg(Fi#; B?) = |T'/H| and
Fy can be constructed in such a way that deg(FE; BX) = Bxp|T'/H| for some
integer B, for any K < H with dimVE = dim WX and T'/K finite, while
this degree is 0 if K is not a subgroup of H.

PROOF. Define Fjy as (1,0) on all the balls BX with K as above. Consider
the fundamental cell Cy for BH, as in [10, Section 3], Cy = {z; : 0 < |z;] <
R,0 < Argz; < 2n/k;}, where k; are defined in [10]. Then Cy is a ball of
dimension equal to dim W#. For k; > 1 and z; = 0, extend Fp as (1,0), as well
for Argz; = 0 and 27 /k;, if 2 < k; < oo, with x; complex if k; = 2. On the rest
of OCy, construct a map of degree 1 with respect to Cy (one may always localize
such a map in a neighborhood of any point of a sphere). This map is clearly
equivariant with respect to the symmetries of dCy (in fact, it is invariant). One
extends this map, by the free action of I'/H, to an equivariant map on B which
is non-zero on OB . Since H ¢ A, one may extend this last map to SV, by using
Lemma 4.1(a) on AU K, for all K’s which are not subgroups of H. Note that
this construction implies that II(H, K) in [10, Theorem 4.2] is Z in this case.

If (Ho) holds, then, from [10, Theorem 4.1], one seces that deg(Fy; Bx) =
[1kjdegg(F) and, in the particular case of H with dimV# = dim W# and
I'/H finite, deg(F{; BH) = |I'/H| degg(F) = |T'/H|. In this case any element in
II(H), as defined in [10], is uniquely determined by its extension degree.

For (b), if K is not a subgroup of H, then Fy = (1,0), with zero degree,
while, if K < H, let ¥, be the components in the orthogonal complement of
VH in VK. Then Cx = Cy % {z1,:0< |z, <R, 0< Argay, <27/k;} and
BX is |T/H| images of Cy cross the ball {X | : || X .| < R} = B,. Now, F}



EQUIVARIANT DEGREE FOR ABELIAN ACTIONS 393

was defined as (1,0) on 9Cy N {X : || X| < R}. By defining F5 as (1,0) on this
last set crossed by B, one obtains, from the dimension arguments of Lemma
4.1(a), an equivariant map Fyy, which is (1,0) on 9Cy N {X : || X|| < R}. Since
(Ho) holds, deg(F%; BK) is the sum of the degrees on Cy x B, and all of them
are equal. Hence deg(Ff; BX) = |T'/H| deg(F%;Cy x B.). O

REMARK 4.1. (a) If there is an equivariant map F from the orthogo-
nal complement of V in VX to the orthogonal complement of WH in WK,
with zero only at 0, then one may take for F the couple (FH, FK) for which
deg(FE; BX) = |T'/H| deg(F¥; B,). If one has the same situation for another
isotropy subgroup L < K, then one would have

deg(Ff;; BY) = deg(Ff;; BX) deg(F{*; BY),

where B’ is a ball in the orthogonal complement of VE in V. This is the case
of hypothesis (H2') in [10] and, in particular, for hypothesis (H) of the present
paper. However, this is not true in general: if one takes the example of Section 0,
then any map G with dr = 1 will have deg G = p(1 + pdy), a multiple of p,
and deg G = 1 + kp, which is not a multiple of the previous degree.

(b) As pointed out above, (Hp) implies that the extension degree, if dim V¥ =
dim W#_ is independent of previous extensions, contrary to the case where
dimT'/H > 0, where one has to add new hypotheses.

(c) If (Hp) holds, then if V'# denotes the orthogonal complement of V' in
VH it is easy to see that |dim V'H# — dim W'H| is even (see [10, p. 376]). In
particular, [dim V# — dim W#| has the parity of |dim V! — dim WT.

We are now ready for the Hopf classification theorem, which should be com-
pared to [10, Theorems 5.2 and 6.1] with a different set of hypotheses, and to
[12] and the references therein, in our particular case of a linear action of an
abelian group.

THEOREM 4.1. Let A= {H €Iso(V): 3K €Iso(V),K < H, and dim VE >
dim WX when |T/K| < 0o or dim VE > dim WK +dim /K when |T/K| = oo},
i.e. AC AC A Assume (Hy) holds. Then if F and Fy are two equivariant maps
which are I'-homotopic on UHeZ SVH, one has integers dg such that

[Fr = [Folr + Y _du[Fulr in gy (SV),
I

where the sum is over the set I of all H s not in A with dim VH = dimWH and
IT'/H| < oo, and Fy is the generator constructed in Lemma 4.2(b). If A =0,

then Fy is not present.

PROOF. Let I(A) = {[F]r : F : UyezSY — UWT\ {0}} (I(A) =
[(1,0)]r if A = @). As in [10], it is easy to see that II(A) is a group. Let II :
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Hgv (S") — II(A) be the map induced by restriction on the isotropy subgroups
in A. From Lemma 4.1, IT is a morphism onto II(A) and kerII corresponds to
those elements F which have an equivariant non-zero extension to all B for
H in A. Note that if |dim VT — dim W' is odd, then, from Remark 4.1(c),
|dim VH — dim WH| is odd for all H. In that case A = A’ and, from Lemma
4.1(b), II is one-to-one, i.e. I, (SV) = II(A), and the theorem is proved.

Let Hy be maximal among the isotropy subgroups not in A with finite Weyl
group and equal dimensions for the corresponding isotropy subspaces, i.e. if
H > Hy, then either H is in A, or dim V¥ < dimW¥#+ dimT'/H. Let F, be
in kerII. Then Fy is extendable to all B¥ with H > Hy, i.e. FOHO belongs to
II(Hy), as defined in [10], and its extendability to BHo will be characterized by its
extension degree, given by the relation deg(Fy°; BHo) = |I'/Hy| degg(Fp). Let
dp, = degg(Fy) and Fp, be the generator of Lemma 4.2(b). Then Fy, is also in
ker IT and [Fy|r —du, [Fu,|r = [Fi]r, which has zero extension degree, is in II(H)
and is extendable to BHo. Let Ay = ﬁU{H : H > Hy}. One may define, as before,
II(Ap) and the projection Iy from II%, (™) onto II(Ap). It is clear that [Fi]r
belongs to ker Il and one may repeat the construction with another maximal
H;. After a finite number of steps, one will arrive at [Fylr — >, dg[Fg]r = 0.
In general, if F' and Fj are as in the statement of the theorem, then [F|r — [Fy|r
is in ker IT and the result follows. O

We leave to the reader the task of verifying that the generators of the example
in Section 0 are the appropriate ones. From the above theorem, one may obtain
Borsuk-Ulam results.

THEOREM 4.2. Let V and W be two arbitrary representations of I' with
dimV =dim W, and let F : V \ {0} — W \ {0} be an equivariant map. Then:

(a) deg(F; B) = 0 if (Hy) does not hold or if dim V™" # dimW7T".

(b) If (Hp) holds and the above subspaces have the same dimension, then
deg(F; B) = Bdeg(FT";BT"), where (3 is the non-zero integer given in Theo-
rem 1.1.

(c) Let A/ = {H € Iso(V) : 3K € Iso(V), T" < K < H with
dimVE > dim WX}, Let Fy be any equivariant extension of F, restricted to
Uner SV* from VT \ {0} into WT" \ {0}. Assume the hypothesis of (b)
holds. Let I = {H € Iso(V): H ¢ A/, T" < H, dim V¥ = dim WH}. Then, for
any Hy € I, one has

deg(FHo; BH0) = deg(Fy"; B") + > du Bu,ull/H|,
I

where Bu,a = 0 if Hy is not a subgroup of H, Buyy = 1, Bu,u are integers
independent of F' and Fy, and dy are integers which depend only on F' and Fy.
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If A =0, then Fy is absent. If, furthermore, W' = {0}, hence VT = {0} (from
the existence of I'), then one has to add, on the right, a term Bp,r.

PROOF. Let us recall that T" € Iso(V), since VT = {X : |T/T x| < oo} (see
[10, p. 371]). Also, if (Hp) does not hold, then deg(F; B) = 0 [10, Remark 4.1].
The fact that deg(F; B) = 0 if the dimensions of V7" and W”" are different
was noted after the proof of Theorem 1.1. If W!' = {0}, hence VI' = {0}
since FT' maps the first space into the second, one may replace V and W by
R x V and R x W and suspend the map F' by the trivial map 2t — 1 with
0 <t <1, with the same degrees. This implies (b). Furthermore, in this case
Iso(R x V) = Iso(V) UT, A’ remains the same and, if A’ = {0}, the set I has to
be supplemented by I'. Then deg(2t — 1;RY) = 1 = dr.

(c) follows from Theorem 4.1 applied to VT, after noting that if 7" < H,
then V# c VT" and [T/H| < co. O

REMARK 4.2. (a) If one takes the usual decreasing order on the elements of I,
then, as in [10], one has a matrix relation (deg(FHo; BHo) — deg(Ff; BHo)) =
B(d), where B is a lower triangular matrix with |I'/Hy| on the diagonal. In
particular, B is invertible. Thus, if F and Fy have the same degrees on all BHo
with Hy in I, one has [FT"|p = [F{ " ]r.

(b) Note also that if H € A’ with dim VH# = dim W# | then deg(F{; BH) = 0
for all the generators Fx with K in I, by construction.

It would be interesting to know under what circumstances one may construct
Fy such that deg(FOH"; BHo) =0 for all Hy in I, or at least for T", besides the
case where A’ is empty, so that deg(F'; B) would be a multiple of the greatest
common divisor of the |I'/H|’s for H in I.

COROLLARY 4.1. (a) Assume that A has a unique minimal element K. If
K is not T', assume furthermore that there is an equivariant map F, from
(VEYLrn A\ {0} dinto (WE)Lrm \ {0}. Then one may construct Fy such that
deg(Ff; BH) =0 for all H in I with H < K, in particular for T™.

(b) If K =T the last hypothesis is not necessary.

(¢) For any minimal element K of A', one has

deg(FHo; BHo) Zd Bl u|K/H|

for all Hy in I with Hy < K, where I is the set of all H in I with H < K, and
BI{I(OH =0 4f Hy is not a subgroup of H.

(d) If for all minimal K; in g’, one has a complementing map Fj_, then
one may construct Fy with deg(Fy; BT") = 0. Note that FJJ_ exists if for all
H € TIso((VE)L) one has dim VHE 0 (VE)L < dim WH 0 (WEi)L
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ProOF. If K is minimal, then dim V¥ > dim W¥ and dim V¥ < dim W#
for all H with T" < H < K. If K is unique, then (J 7, SH = SK and one may
define Fy as (FX, F|). If H is in I with H < K, then, from Lemma 4.1(c), F'H is
deformable (non-equivariantly) to a constant and deg(Fil; BH) = 0. If A = T,
then dim (VT)1# < dim (WT)1# for all H with T™ < H, and one may construct
F, as above.

For (c), for each minimal K, consider F as a K-equivariant map. The isotropy
subgroups are those elements H of Iso(V) with H < K. The corresponding Al
reduces to K and I to Ix. One then applies (b).

For (d), let K, be a minimal element, and let [Fy] be II(F) in II(A’). Define
Fy in TI(A) by the relation [Fy] = [FI, F1] + [Fy] with FE* = (1,0). If K,
is another minimal element, define F5 in H(g') by [Fi] = [Fle,Ff] + [F3] with
Fi = (1,0). Since [Ff%, 2] = [Filys s, (F2)50] = [(1,0, (F2)K0)] is
I-deformable to (1,0) one may use the equivariant Borsuk extension theorem
and assume that Fi** = (1,0). One will arrive at a final map F, with F, = (1,0)
on UHGZ’ sV Hence,

s
[Fo] = Y [F5, F]] in II(A).
j=1
Since the maps on the right have obvious extensions to SY, one may con-
struct Fp in this way. If H is in [ and H < Kj, then dim (VE)L nVH <
dim (WEi)L N VH and (Fi)H is a non-zero equivariant map between these
spaces. Thus, deg([Ffijl,Fi‘]H;BH) = 0. In general deg(F{; B¥) will be the
sum of the degrees of the maps on the right for those j’s such that H is not a sub-
group of K. In particular, deg(Fp; BT") = 0. Note that deg((Ffi’i, Fi)H, BH) =
0 unless dim VEinVH = dim WXiNW*H | in which case this degree is the product
of deg(FI™; (VE:i)-nBH) and deg((Ffijl)H; VEinBH). This last degree is again
0 if VEi nVH c VEi for some i < j — 1, since there F;_; is (1,0). Otherwise,
one could repeat the above argument on V¥ and its corresponding Al O

One has the following extension of [13, Theorem 2.5].

COROLLARY 4.2. Assume that T/T™ is a p-group, i.e. |['/T"| = p* for
some prime number p. If V and W are two arbitrary representations of T' with
dimV =dimW and F : V\{0} — W\{0} is an equivariant map, then deg(F; B)
is a multiple of p unless hypothesis (H) for VT" holds, in which case

deg(F™; Bi') = Y du(Ty m,Li)|T/H|
Ho<H
for all Hy in Iso(V) with T™ < Hy, where the l;’s are given in Lemma 0 and the

product corresponds to the variables in (VH)L+#Ho, Here, |I'/H| is a multiple of p
except for H =T, and dr = deg(F"; BY).
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Proo¥. If (Hp) does not hold, or if dim V™" # dim W”", then deg(F;B)
= 0. Otherwise, if A’ # (), take any minimal element K. Then T™ < K and
for any H in Ik, |K/H]| is a non-zero power of p. Thus, deg(F'; B) would be a
multiple of p (from Corollary 4.1(c)).

Hence, if this degree is not a multiple of p, then (Hp) must hold, dim v =
dimWT" and A’ = 0, in particular dim V¥ < dim WH for all H with T < H.
Now, if there is K such that dim VX < dim WX, then viewing FT" as a K-map,
one should have

deg(F™";B™) = Y dipfi, u|K/H| for H in If,
H<K
hence a multiple of p. Thus, for all H in Iso(V?"), one has dim V¥ = dim W#.
Now, if K and H in Iso(V"") are such that dim V¥ N VX and dim W n wx
are different, consider F¥, from V¥ into WX, as an H-equivariant map. The
fixed point subspaces for the action of H on these spaces are VH N VE and
WH N WE. From the preceding arguments, deg(F*; BX) is a multiple of p.
Now, regarding F7" as a K-map one has, from Corollary 4.1, deg(FT"; BT") =
adeg(FX; BE) 4+ bp, hence, in this case, a multiple of p. In conclusion, (H) holds
for VT and [FT"]r = 3. du[Fu|r, where each generator Fy can be chosen of
the form (Fg,xy) as in Lemma 0, with deg(F/; BH) = |T/H|. O

For instance an even map on R? has degree 0 if d is odd ((Hg) does not hold)
and has even degree if d is even (dr = 2%).

EXAMPLE 4.1. One may wonder if Corollary 4.1(d) depends really on the
existence of the complementing maps. Here is an example to the contrary, which

is inspired by [1, Example 3.21]. Let Z12 act on two copies of C® in the following

2mik/4 2mik /6

on x1,Ts,T3,Ts and as e on y; and yso.

27ik/12

way. On the first copy, as e
On the second copy, as €2™*/2 on &,£5,&5 and as e on 11,1n2,n3. The
elements of Iso(V) are K = Zs (for k a multiple of 4) with VK = {2, 25, 23,74}
and WE = {¢),¢&,63}, H = Zy (for k a multiple of 6) with V# = {y;,9,} and
WH = WK and {e} (and T if one adds a dummy variable t). Here the set I is
reduced to {e}, and A’ = {K,T'}. Note that there is no equivariant map F, from
(VE)L N\ {0} into (WE)L \{0}, since any such map should map (VE)+ = VH
into W If the conclusion of Corollary 4.1(a) still holded, any equivariant map
F from V'\ {0} into W\ {0} would have a degree which should be a multiple of

12. However, the following map has degree 6:
F = (227573, 25— 75— 75, Re w122 +i Re 2324 +y 3y, T1y3, Tays, Toys +Tays).

The equivariance of F' and the fact that the only zero is at the origin are
clear. In order to compute the degree, subtract € > 0 from the last equation.
The zeros of the perturbed map are at A = (0,0,0,e%7,0,—£*7) and B =
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(0,€%/7,0,0,—2/7,0) (at a zero one needs y1yo = 0; if y; = 0, then z; = £75 = 0;
%y2 = €7).
and to T3. Then x3 can be

yo # 0if € > 0, hence 23 =0, T4y = c and T2 + 75 = 0, i.e. —|yo

Near A one may deform linearly T3y? to Tze*/7
deformed to 0 in the other equations. Then y?ys is deformed to y7 and the term
Zoy? to 0. One obtains a product of three maps: T3 with index —1, (z? — 73 —
¥3, Rex1zo + y2,T1y7) and (—Z5 — U3, Tays — ). In order to compute the index
of the second map at its only zero, the origin, perturb the second equation by
—ie. The zeros of the perturbed map are for x; = 0,3? = ie. One may deform
x1 in the first two equations to 0 and y# to ie in the last. The degree will be
—deg(—72 — ¥3,y? — ¢). Taking ¢ to 0 and 7 to 0, one obtains —(—2)(2) = 4.
For the third map, with a unique zero, one may deform ¢ to 0 and consider the
map (T3 + U3 — &, T4y2) with 3 zeros of the form (x4 = 0, |y2|® = €), each of
index (—1)(—1) = 1, and two zeros of the form (|z2|> = &, y> = 0), each of index
(—=1)(2) = —2. The degree of the third map is —1. Hence, the index of F at A
is 4.

For B, one follows the same steps, except that the term y?y, which was
deformed to y? is now deformed to yz. The index of the second map is now 2,
instead of 4, and the index of F at B is 2. Thus, deg(F; B) = 6.

Note that, as a K-map, any equivariant map may be written as
[Zt - 17F]K = [2t - 1a FKay%7y§7O}K
+d2t +1 =2, 21, 2,23, 57 (y7 — 1), 47 (@ry2 — 1), yiedlk,
which shows that deg(F’; B) = 3d. Viewing F' as an H-map, using Corollary
4.1(a), one has
[2t - 1a F}H
= e[2t + 1= 2x1]* y1, y2, 110 — 1,21 (2F — 1), 21 (2123 — 1), 21 (2124 — V],
which gives deg(F'; B) = 2e. Hence, deg(F'; B) is a multiple of 6. The same result
may be obtained by considering the action of Zg.
On the other hand, if F' and Fy coincide on VE| then [2t — 1; F|r = [2t —
1, F()]F + f[Fe]F7 where
F,= (2t +1 =2z |}, 22(x] — 1), 23 (T 120 — 1), 23(FT123 — 1), Tyt (T3y2 — 1),
Ty} (Gry2 — 1), Tryt (Trzs — 1))
Then deg(F'; B) = deg(Fo; B) + 12f.
By taking for Fy the map of the example, one generates, for maps from R x V

into R x W, all odd multiples of 6 and by taking off [F.]r, all even multiples of

6. Hence, for I'-maps from R x V into R x W, all multiples of 6 are achieved. By

replacing, in the example, the term y3ys by y7"%"ys, where a negative exponent

means conjugation, the index of A is changed to 2(2 + 6n), while that of B is
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unchanged. Hence, any odd multiple of 6 is achieved as the degree of a I'-map
from V into W.

EXAMPLE 4.2. In order to understand better the problems involved in the
construction of equivariant maps with zero degree, let us study the simplest case
where the coordinates of V' have only two isotropy types K and H with KNH =
{e}, dimVE > dimW¥ dimV = dimW. If K =T or H = {e}, then one may
construct a complementing map and [2t — 1, F]r = [2t — 1, FE F|]r + d[F.] and
deg(F'; B) = d|T'| (in this case I' 2 Z,,). Thus, assume that H # {e} and K < T.
Then VE and VH are orthogonal, since V' = {0}. Let VX = {4,...,2,} and
VH =Ly .. ym}. Let {&1,...,&} be the coordinates of WX and {ny,...,ns}
the other coordinates of W.

Now, I'/K = 7, acts freely on VX as e?™™i/t with m; and u relatively
prime, on z; and as e2mki/w on &, with k; and w; relatively prime and wu; a
divisor of u. If one changes z; to X; with action 2™/ and if qik; = 1 (mod u;),
then from an equivariant map F from V to W one constructs a new equivariant
map F' (X{™, ..., X™ . ..) with degree equal to [[m; [ ¢ deg(F; B). Hence,
one may assume that m; = ¢; = 1, without affecting the congruences mod u or
mod |T|. If V'K is a subspace of VX with the dimension of WX one obtains

deg(FX|yx;BNV'E)y=0= H(u/ul) + du,

from [10, Theorem 6.2]. If, for simplicity, we assume u; = p and u = vp, then
d = —v""1/p. Thus, r > 2 and any prime factor of p divides v, while its square

divides w. The simplest case is u = p2.

REMARK 4.3. (a) At this point, there is the question of the existence of
a Zy2-equivariant map from VE into WE (and hence its extension to V, using
Lemma 4.1). The map (x’f(x’l’z —1), 25 ((21T2)P*T1 —1)) has degree 0 (its zeros are
(0,0) with index p?, (x; = p?-root of unity, 0) each of index p, (z; = one of these
roots, |r9|PT! = 1) each of index —1, with total degree p? + p* — p?(p + 1) = 0).
By repeating the map for (z3,24) and using the homotopies to a constant map,
one may obtain an equivariant map from C® into C*, by using the homotopies
on the sector {0 < |z5| < R, 0 < Argzs < 2r/p?}. See [1, Theorem 3.22]. See
also [1, Corollary 5.9] for the conditions on the dimensions of V' and W.

(b) If one is willing to use different w;’s, one may use the construction of [1,
Proposition 3.8], by taking p; and ps relatively prime with 1 = ap; + Bpa. Then
the map

f=(@E 1), 203" - DET 5™ - )
with |e] # 1 is equivariant for the group Z,,,, from C? into itself, with action on
21 given by €2™*/P1 and on zy by e2™**/P2_ The degree of f is 0. If the group acts
on z as e27/(P1P2) then one may define, using the homotopy to a constant, an
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extension for the set Argz = 0,0 < z < R and by equivariance, on the boundary
of the fundamental cell for z. By composing the map with f again, one gets an
extension to the cell itself and an equivariant map F from C? to C2. Then, if
Zyp, p, acts on (x1,z2,23) in the standard way, one may look at F (27, 25", z3).

Now, I'/H = Z, acts freely on V. As before one may assume that the action
is by e2m* /v If WK N WH = {0}, then one is in the situation of Corollary 4.1
and there is a complementing map, given by F¥, which as a map into (W5)+
is non-equivariantly trivial, i.e. the map (F¥, Ff) has degree 0. On the other
hand, if W& N WH = {0}, then since action on all £’s is the same, it follows
that W# contains WX, This implies that v is a multiple of p, say v = gp. If
I & Z,, the condition H N K = {e} implies that n = p?q. For simplicity, we
shall assume that p and ¢ are relatively prime, i.e. there are o and (§ such that
aq + Bp = 1. Then, if the action on 7; is of the form e2miku/(p*a) and 7 is in
WH  one has u = ugp and the map y“° may be used to build a complementing
map. Thus, we shall assume that v =1 and WH = WX, Then n+m =r + s,
n > r and we have the above standard actions of Zy2,. Now, if m > r, then
deg(F%; BE N {y,41 = ... =ym = 0}) = 0 = ¢" + dpq (from [10, Theorem 6.2]),
which is not possible since p and ¢ are relatively prime. Thus, m < r.

Note that the expression x°y? is equivariant into (W)+. In general if I is a
finite group, H = ﬂj;i Hj an isotropy subgroup with H; the isotropy subgroup
of the coordinate z;, and 7 a coordinate in WH then H < I'),. If one considers the
space VHZ @ {n}, Lemma 7.2 of [10] gives the existence of an invariant monomial
2. 200 'y, since ks = |[H/H NT,| = 1. By taking 7 = 1 and changing «; into
—q (i.e. conjugates) one obtains a similar equivariant monomial. In order to
complete the example, one has the following:

PROPOSITION 4.1. For the above situation, one has:

(a) If m < r, then deg(F'; B) = apq.

(b) If m = r, then deg(F; B) = aq + apq, hence not a multiple of pq, in
particular not 0.

(¢) If m <r—2, then for any FX, one has an extension Fy of (2t — 1, FX)
with deg(ﬁog I x B) =0 or equivalently deg(F; B) = ap*q.

(d) If m = r—1, then for any FX, there is an extension Fy with deg(Fy; B) =

n—m

« pq + ap?q, in particular non-zero and not a multiple of p2q.

PROOF. Viewing F' as a K-map, one may use Corollary 4.1(b) to prove that
deg(F'; B) is a multiple of ¢. If we view it as an H-map, the corresponding A’ is
empty and the degree is a multiple of p if m < r, while if m = r, one has

deg(F; B) = deg((F#,z¢,...,2%); B) + dp = o™ deg(F"; BY) + dp.
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But viewing F as a ['-map yields deg(F¥; B?) = deg(2t —1,4{,...,y%,) +epqg =
q™ + epq. Hence, deg(F; B) = (aq)™ + dip = 1 4 dap (by using ag = 1 — Bp).
Since deg(F; B) = ¢q = 1+ dop = aq + (d2 + B)p, it follows that ¢ = a + ap and
one obtains (b).

Note that if m = r, then [2t — 1, F|r = [2t — 1, Fo]r + dg[Fulr + d.[Fe]r,
where

Fy=2t+1-2y: % yi " = 1), yi @y — 1), .. y8 (Trym — 1),

Fo=2t+1=2zn* {4 = 1), ..., 9] @ym — 1),

o9yy (247 — 1), 289 @z — 1), 2589 (Ta 2 — 1)).

It is easy to see that deg(F; B?) = pq, deg(Fu; B) = a™pq, deg(FH; BH) =0
and deg(F.; B) = p?q.

For (c), assume first that m = 1 and let V'* = {zy,...,z,}, which has the
dimension of W¥. Now, from Lemma 4.1, F|,x has an equivariant extension
G(z1,- .., 2r,y1) from V'E x C\ {0} into WX x C\ {0}, with this last C corre-
sponding to 7;. Let é(wl, ..., Tn,y1) be an equivariant extension of FX and G,
which will have zeros. Let Fy = (G, x?+1y167 ...,2%9?), which has no zeros but
the origin. In order to compute the degree of Fy, perturb the last component of
G (on 1) by —e. Since this last component must be 0 for y; = 0, the zeros of the
perturbed map are those of G(z1,...,z.,y1) — (0,...,0,e) = G.. For the com-
putation of the degree of Fp, one may deform z; to 0 in és, forj=r+1,...,n.
Then deg(Fp; B) = deg((G-, 9:?+1y?, 2y, B {|ya| > n}) for some 7 small
enough. One may perturb G, to a regular map on the above set. Near each zero
(x1,...,2r,y1 # 0), one may deform x]ayf to 7 and get an index equal to a” ™"
times the index of the zero of G.. Thus,

deg(Fy; B) = a" " deg(Ge; B'S x {|Jy1] > n}) = a" " deg(G; B'),

where B’ is the ball in V'# x C.

Now [2t — 1,G|r = [2t — 1,G 1 ]r + di [Fi]r + de[F.]r where

G = (a:zf—l—y‘f,xg,...,xf,x?yf),

FI/{ = (2t +1- 2|_(L'1|2,q;11)(;[;11)2 - 1)73711)(51352 - 1)7 DR ,33?(51.’1,} - 1)ax?y1ﬂ)7

2 2 8

Fl =2t +1 =2z %, 2 () —1),...,2) (@2, — 1), 25y (Thy? — 1)).

One has deg(GX; B'®) = p", deg(G1;B') = p"~ !, deg(FiX; B'K) = p?,
deg(Fy,B') = Bp?, deg(FX;B'K) = 0 and deg(F/;B’) = p?*q. Hence,

deg(G*; B'®) = p" + dgp?, deg(G;B') = p"~' + dxfp® + dep*q. Now, G¥
extends to F'&, hence the first degree is 0. Thus,

deg(Fo; B) = ™ "(p" ' = Bp" + dep®q) = @™ "qp?* (ap” P + d).
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If r > 3, choose d, such that this last term is 0. Then [2¢t—1, G |r+dx[Fj ]+
d.[F!] = [Fo] has degree 0 and [ﬁOK] = [2t—1,G%] = [2—1, F|y«]. (Note that F,
is not necessarily of the form [2t —1, G], but, from the Borsuk extension theorem,
one may assume that ﬁOK = (2t—1, F|yx).) Extend Fy and FX | as was done for
G, to a map Fi(t,x1,...,2n,y1) and define Fy = (Fl,as?+1y1ﬂ, .. ,z%y?) Then
FK = (2t —1,FK) and [2t — 1, F]p = [Folp + d[F.)r with deg(Fp; I x B) = 0
and F, = (F/, 2997 (T12,41 — 1), ..., 280" (T12, — 1)) with deg(F,, I x B) = pq.
If r = 2, then deg(Fy; B) = a" 'pq + ap?q.

For m > 1, we shall use the following induction argument:

For all £ with 0 < k < n —r, there is an equivariant map with a unique zero
at the origin and ¢ = 1/2:

~ . o
Fk:,m . {tvxlw"7337‘+k7y1a"'7y’m} = Vk;)m

— R x {51,...,§r,ﬂ1,...,7]k+m}5W,é,m

such that Fv,f(m = (2t — 1’FK‘Vé,m) and deg(ﬁk’m;B,’ﬁ,m) is zero if m < r — 2
and a*pq + dy, ;mp?q if m = r — 1. For m = 1, one may take Fj, = }?0|Vk{,1,
which is an extension of (2t — 1, FK |V,c/70). Furthermore, as we have seen above,
deg(ﬁk,l; By ,) = ok deg(Fy; By,) = a*p?q(ap™=3 +d.), with the required prop-
erties.

If we assume the induction hypothesis for m — 1, take any equivariant exten-
sion of ﬁlam—1|Vo’,m to a map Fy,, : Vo.m \ 10} — Wy ., \ {0}, which exists by
Lemma 4.1. Then [Fy,] = [2t — 1,G™] + dg [F)0™] + de[F/%™] where

0,
GJ_m = (x{’—ky‘f,...,xﬁl—I—y?n,:z:ﬁl_i_l,...,xf,x?yf,...,x%yﬂ),
FO™ = (2t 4+ 1 — 2|z )%, 28 (a8 — 1), 28 @r20 — 1),..., 20 (Tray — 1),

m?y?’ M 7$?y7€1)’
2
FIO™ = (2t +1 = 2|y |?, 28 (2} —1),..., 28 Ty, — 1)7x§“ylﬁ(f€yf - 1),

28y (Gry2 — 1), 289 Grym — 1))

As before, deg(GimK) = p", deg(G(lm) = pimm, deg(F;(O’mK) = p?
deg(F}?’m) = B™p? and deg(F!>™) = p?q. Hence, since Foffm = F{% with ex-
tension FX one has 0 = deg(ﬁ({(m) = p" +dgp?, deg(Fom) = p" ™™ +dg fp* +
dep?q = p"~™(1 = (Bp)™) + dep®q. Thus,

deg(Fom) = agp" ™ (1+ Bp+ ...+ (Bp)™ ") + dep’q.

Then, if r — m > 2, one may choose d. such that this degree is 0, while if
r =m+1, this degree is apq + do mp?q. For any choice of d., the right hand side,
when restricted to VX, is T-homotopic to Fo{(m, ie. to (2t — 1,FK|VD/ ), and

when restricted to V{,,_;, it is I-homotopic to any extension of ﬁolfm, from the
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dimension condition and Lemma 4.1(b). Thus, as above one may still assume
that the right hand side extends Fl’m*1|Vo’,m

Take now any equivariant extension FY, with possibly non-trivial zeros, of
ﬁl’m_l and ﬁO,m; from VY, into Wy ., = W7, ;. Define ﬁl,m = (F{,xﬁ‘+1y7ﬂn).
Now, since deg(ﬁLm_l) = 0 (one has m — 1 < r — 1), one may extend, non-
equivariantly, ﬁl,m—l from the sphere in V1/,m—1 into the ball, without zeros.
Hence, one may assume that ﬁl,m has an extension without zeros for y,, = 0.
By perturbing this map on |y.,| > 7 to a regular map, one shows as before that
deg(ﬁl m) = adeg(ﬁo m)s provmg the induction hypothesis for k = 1.

For a general k, take F;.c m—1 and construct an equivariant extension F;.c 1m
from V}_ 1,m into Wi _4 m =W m—1 by using Lemma 4.1. Then define F| as
any equivariant extension, with pos&bly non-trivial zeros, of B k,m—1 and F k—1,m
from V  into Wj_, . Define Fem = (F},x T+kym) Since deg(Fym-1) = 0,
one may perturb F} as above and prove that deg(Fk,m) = adeg(Fk,l,m) and
one gets the result by induction on k. By taking k = n — r, ﬁo = ﬁn,hm, one
has completed the proof. O

REMARK 4.4. (a) One has [2t — 1, F|p = [Fo]p + d[F.]r, where
I, = (Fe/(],m, x?ylﬂ(flx“‘rl - 1)7 s 7x?y?(f1xn - 1))

(b) In order to avoid the case m = r — 1, one could suspend the map F
by ab ., increasing r to r + 1. Then [2t — 1, F 2} |]r = [Folr + d[F.] with
deg(ﬁo) = 0. Thus, deg(F) = p_IJqu = c?pq7 recovering Proposition 4.1(a).
This suspension argument could be used to study the general case but it is not
clear that it could be useful.

We conclude this section by having a closer look at the case where the stand-
ing hypothesis (H) holds on V7", that is, there are complementing maps of the
form x;j for all isotropy subgroups. Then

deg(F) = Burdeg(F")+ > dxBux|l/K|
Tr<H<K<T
for any H in Iso(VT"), and Brr = [[1; for z; in (VE)- N VH By =1.

By reducing T' to T/T™ and V to V" | we may assume that T is a finite group
(see Theorems 4.1 and 4.2). Define m = g.c.d.(|8rn k|- |T'/K| for K < T'), where
Brnr will be denoted by 8 and Brn i by Bk . Then, from the Darboux theorem,
since the dx are arbitrary, one gets

PROPOSITION 4.2. deg(F) = Bdeg(FY) +dm and any integer d is achieved.
The term deg(FY) is replaced by 1 if V¥ = {0}.

Let mp = g.c.d.(JI'/K| for K < T'). Then clearly mq divides m. Since any
isotropy group H is of the form H = ()| H, where H; is the isotropy of the
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coordinate z; in V, one sees that |I'/H| is a multiple of m? = |I'/H;| for
all such j’s, and of course a multiple of the g.c.d.(m’,Vj) (i.e. including all
the coordinates of (VI)1). Thus, this last greatest common divisor divides
mo. On the other hand, H; € Iso((V')1), hence mg divides this g.c.d. and
mo = g.c.d.(m? = |['/H;|, H; the isotropy group of z; in (VI)1).

Now, the action of I' = Z,, X ... X Z,, on a coordinate is of the form
exp(2mia) with a = > kjr;/m; = Y k;rj/mj, where 0 < r; < m;, and k;
and m; are relatively prime. If m = lcm.(m; : j such that k; # 0) and

R=(r1,...,m), then a = (K, R)/m and, as seen in [10, Lemma 1.1], there is an
Ry such that (K, Rg) = 1 (modm). For any vector R, let k = (K, R) (modm)
with 0 < k < m and Q@ = R — kRy. Then (K,Q) = 0 (modm). The isotropy
subgroup H for the variable corresponds to these Q’s and |I'/H| = m. Now,
if £ is a coordinate of W, with the corresponding action o’ = Y Kjr;/m; =
(K',R)/m’, with m' = Le.m.(m) with k) # 0), kj/m; = Eg/ﬁ’z;, the last pair
relatively prime, then by taking r; a multiple of m;, and the others to be 0, one
concludes that m; divides m; or kj = 0. Hence, m’ divides m since if k; = 0
one needs k; = 0. Of course m divides M = l.c.m.(my, ..., m;), which in turn
divides |T.

Note that the action on ¢ is given by o’ = k(K’, Ry)/m’ = kl/m, where
Il = (K',Rp)ym/m’ is the integer given in Lemma 0 (the term (K’ Q)/m’ is
an integer for @ in H, since ¢ is in W#). For a general R, (K,R) = k + dm
and m(K',R)/m' = kl + d'm. Hence, | = (m(K',R)/m' + dom)/{K, R) for
do = ld — d'. If one has a right hand side with dy replaced by d; and giving an
integer [y, then, if k& and m are relatively prime, one has l; = [ (modm). Note
that (K’, Ry) and m' are relatively prime, since I'/T'¢ = Zz,/. (Again, a negative
power means conjugation.)

Now, let n be the least common multiple of some of the m7’s (say k of them)
and let H = () H;, where j is taken over all indices for which the coordinate z;
has isotropy H; and |I'/H;| = m? divides n. Then H is an isotropy subgroup
and |I'/H| is a multiple of n (equal to n if I' is a cyclic group). Furthermore,
if VH is larger than the space generated by the x;’s, then there is a coordinate
x with |I'/T';| = m which does not divide n and I';, > (| H;. As above, let the
action on x be given by (K, R)/m, with R = kRy + Q. Take R = nRy: since m
does not divide n, R does not belong to I',. However, on z;, (K;, R)/m/ is an
integer, i.e. R is in (| H; and V¥ = {z;’s}.

Conversely, if Hy is an isotropy subgroup, let n = l.c.m.(m?’s : x; coordi-
nate in Vo) and H be constructed as above. Then H < Hy, VHo c VH and
B, |I'/Hol and By |I'/ H| have the common factor ([[; [;)n, where j in I,, corre-
sponds to z; such that m’ does not divide n. Now, this factor would be the factor
one would obtain by considering a cyclic group Zjz; with M = lem.(m?) (or a
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non-effective action of Zys) given by exp(2mi/m?) on x; and exp(2wik;/m") on
&;, with k; and m' relatively prime, m/ = s;m" and l; = kjs;.

PROPOSITION 4.3. Let m = g.c.d.(([1;, {;)n for all l.c.m.’s n of the m?’s).
Then:

(a) mq divides m which divides m.
(b) If s; =1 forall j’s, then mg = m and B and my are relatively prime, in
particular, if mo > 1 then 8% 0 (modmg) and if deg F' =1, then deg F # 0.

PROOF. Since mg = g.c.d.(m?’s), mg divides all n’s and hence m. Further-
more, any term SBg|I'/H|, for m, has a factor ([[; [;)n for some of the n’s, and,
as such, is a multiple of m.

For (b), let m = moA and let p be a prime factor of A. Let I, = {j : mgp
divides m7}. From the definition of mg, the complement of I,, is non-empty. Let
moN = l.cam.(m’: j not in I,). Then p does not divide N (if not, p would divide
at least one m7 /mg). Now, in m, the term ([];)n for n = moN is (I1;, kj)moN.
But, for j in I,,, mop divides m7, hence p cannot divide k;, since k; and mi =mJ
are relatively prime. Thus, the only possibility is p = 1 and my = m. Finally, if
p is a prime factor of mg, then p divides m? for all j’s, and hence does not divide
any k; nor 3. The rest of (b) is clear. O

It is not difficult to construct examples where one has strict inequalities
in (a). We leave to the reader the task of comparing the above results to the
vast literature on the subject (some of which is incorrect).

REMARK 4.5. A curious application of Theorem 4.2 and Corollary 4.2 is the
following classical result of Jane Cronin: let f : C* — C", or R” — R"”, be such
that f(z) = P(x) + g(x), where Pj(x) is a homogeneous polynomial of degree
k;, P(z) has an isolated zero at the origin and g(z) is small with respect to P
near the origin. Then Index(f) = Index(P) = [[k; in the complex case and
modulo 2 in the real case. The first equality is clear. For the second put the
standard S'-action on the first copy of C" and the action given by e*i% on
the second copy (in the real case replace S' by Zs). The map P(z) is clearly
equivariant. In the first case, from Theorem 4.2, Index(P) = (3, independently
of P, and [[k; for }sj(x) = fo In the second case, either all k; are odd and
Index(P) is odd, or otherwise, from Corollary 4.2, this index is a multiple of 2.

5. Index of a loop of stationary points

Let FF : R x U — W be an equivariant map such that F has a simple
loop P of zeros in R x U" on which F is regular, with the usual compactness
if U is infinite-dimensional. Hence DF has a one-dimensional kernel, at each
point of P, generated by the tangent vector to P. This situation forces U and
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W to be equivalent representations (see [6, Chapter IV]). Furthermore, if {2 is
a small invariant neighborhood of P such that F' has only P as zeros in QF
and Dy, F* is invertible, where X is written as X' @ X |, F = (F', F+), then
degp(F; Q) = degp(FY(XT), Dx, FH(X1)X1;Q), as is now standard.

For a general P one follows the steps of [9, Proposition 6.1]. In order to
stress the main point of this index computation, we shall avoid repeating the
arguments of the previous reference and study the case of the Hopf bifurcation
where P = {(j,v) : 112 + 12 = ¢} and FT(XT) = (2 + 12 — 02, Fy(, v, Xo)),
with F'(p,v,0) = 0. Then Dy, Fy has to be invertible on the loop and

degF(F;Q) = degF(:u'2 + V2 - 92,DX0F0(Ma V)XOaDXLFJ_(M7V)XJ_); Q)
= %0 JY(Dx, Fo, Dx, F1),

where Y is the suspension by 2t — 1, which is an isomorphism, and J' is the
JF-homomorphism from the set [S* — GLY (V)] of all T-homotopy classes from
ST into GLF(V), where V' corresponds to (Xg, X 1) (see [6, Chapter 2, Remark
4.2]).

Again, by standard arguments, one may assume that V is finite-dimensional
and DF' has a diagonal structure diag(Dx,Fo, Dy, Fj,..., Dz Fl,..., Dz, Fy),
where Y; are made of real coordinates where I'/T",, | = Zy for all s, Z; are made
of complex coordinates with Weyl group of the form Z,:, and Zj, corresponding
to coordinates where the action of T is that of St (see [6, Chapter VI, Theorem
1.2)).

In [6, Chapter VI, in particular Theorem 6.1], one has a complete study of
JU as a morphism from IT; (GLY (V)) into l'Ingxv(SRXV)7 where IT; (GLL (V)
is the subset of the previous set of I-homotopic maps where det(Dx,Fp) and
det(Dy, F;) are positive. It is clear that one may change the sign of such a
determinant by multiplying one equation by —1, but, in order to be able to
compare the indices, we shall give the full I'-index of the loop.

Let Iy be the linear map which changes the first component of X into its
opposite and I; the similar map for Y;. Since the addition in Hgmzxv(SRXV) is

defined on ¢, the map I; induces two morphisms on this group by [f(Z;X)|r =
I[f(X)]r and [I; f(X)]r = 177 [f(X)]r-

Since IJ2 = I, one has Ij’f‘2 = Ij’f"2 = I and it is easy to see that the [;’s and
I¥’s all commute. It is easy to see (since the addition is defined on the first
variable) that I[f]r = I [fIlr = —[f]r.

Also, if Hj is such that I'/H; = Zs, then I [JYA(p, v)]r = I;*[JFA(N,V)]F
for dim Vi —dim V' # 2: in fact 1%+ 1% — 0%, ALY, |r = [ +v*— 02, [; AY]]r,
since this is clearly true if Y; reduces to one dimension, while if A is an n x n
matrix, then A is homotopic to diag(l, A) with A an (n — 1) x (n — 1) matrix.
If n = 2, then it is easy to see that I¥[JV(A)]r = —[J"(A)r = =1} [J"(A)]r,
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by looking at AY given by Az with A\ = p + iv,z = 21 + iz9, which generates
I1,(SO(2)) and J(A) is the Hopf map. (Note that Theorem 8.5 of [10] asks for
n>3.)

Now for any A = A(u,v) = diag(Ao, A;, B, Ck), where Ay corresponds to
Xo,Aj to Y}, By to Z; and Cy, to Zy, let €; = Signdet A; for j = 0,1,...,r (if
there are r different isotropy subgroups H; with I'/H; = Z). Let A} = AjI;lj
with a; = (1 —¢;)/2 (le. A7 = A; ife; =1 and A} = A;1; if ¢; = —1) and let
A* = diag(Ag, A3, Bi, Ck). Then A*(u,v) belongs to Hl(GLi(V)). Now, A* can
be written as a product of matrices of the form diag(I, A;, I, I) (similarly for B;
and C}) and, since J' is a morphism on the fundamental group of GLQ(V)7

JUAT] = Spd A + Y D Sr A+ ) S B+ S (G,
j l

J k

where Yr is the suspension by the corresponding identity. The above argument
was used in [6, Chapter VI, Proposition 5.3] to study ker J'. Here one has

T = (TT5°) [T sed 1A + 30 1 se " (45)
=0 J

+3 S0 (B + Y e " [Ck]} .
l k
It remains to identify I* on each term and to compute J" [A;], JU[By], J"[Cy]
in terms of the generators of II'', as given in [10], in order to prove the following

THEOREM 5.1. Assume for simplicity dim V', dimVHi — dim V' > 3,
dimcV; > 2, for V; generated by the wvariables zs with Weyl group of the
form Z,. Then

degl"((‘)‘|2 - Q27 F(/.L, v, X07 }/_77 Zla Zk)7 Q))
= (TI5) [dolFole + 3o d ;2 (5l + 3 (S mads ) [Flr + > dilFilr |
j=0 j l s k

where don is the class of Dx,Fy in IIi(GL(VY)) and n is the Hopf map (dy is
an element of Zy), d;n is the class of Dy, F; in I, (GL(VT)s) (dj is in Zy). If
I'/H; acts as Zy, (p not necessarily prime) on Z = (Z,...,Z;) in the following
form: on the coordinate Zs as exp(2mims/p) with ms and p relatively prime,
then ds is the winding number of det(Dz, Fs) as a mapping from St into C\{0}.
The number |ng| is an odd integer such that nyms = 1 (modp). Finally, dy is
the winding number of det(Dz, Fy), where T'/Hy, acts as exp(2mimyp).

The maps [Fylr,u = 0,7,1, k, are independent generators of Hgmzxv(Sva)
of the form Xr(1—|z|%,\z2), where A\ = p+iv and z is a complex coordinate with
isotropy H (equal to T', H;, H;, Hy,) and z is taken as x1 +ixy for H =T and as
Y1 + 1y2 for one of the H;'s.
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Furthermore, I§[Fulr = —[Fu|r and I} [Fy]r = [Fu]r — [Fu]r, where
F.j=1—ly;|-|z],2t = 1, X],Y:, (y]2 =Dy, Az, .y 25,0 ).
If j # k, then I} [Fujlr = [Fuslr — [Fujklr with
Fuje = (1= lyj| - Lyl - 21,2t = 1, X0, Yi, (Y2 = Dy, (7 — Dy A2y 2s,.00),

while I;[Fuj]r‘ = —[Fyuj]r.

If H is not a subgroup of H; (always if T'/H is not finite), then [F;] is
a generator for the part of the degree corresponding to H N H; and one has
p([Fuslr + [Fujlr) = 0 with 2[Fy,]r = 0. If H is not a subgroup of H; and
Hy,, then [Fyji]r is a generator for the part corresponding to H N H; N Hy, with
p([Fujrlr + [Fujelr) = 0 and 2[Fuilr = 0. If T/H = S, then [F,;)r is the
generator corresponding to H N H; and [Fy;i]r the one for H N H; N Hy. If
H = Hj, then [F,;|r is the second generator for H; with 2[F,;|r = 0. Finally, if
H < H; (hence T'/H = Z, with p even), then [Fu;]r = 2[F.)r+d[F,)r withd =1
if p= 2k with k odd and 2[F,)r = 0,F, = (¢ —|2F —1|,2t — 1, X0, 9, A(2P — 1)2)

with 0 < e < 1. We have IJ[F,]r = [Fy]r. The action of I}; follows from the
above.

PROOF. It is known that SrJY [Dy, Fo] = do[1—|2|2, 2t —1, Az, X{, Y5, Zi, Zk]
is the suspension of the Hopf map 7 (the change from |[A|*> — p? to 1 — |2|? is a
linear deformation). Since (Xn)? = 0, the action of Ij on it is the identity. The
same happens for [F}] = [1 — |2[?,2t — 1, X, Az, Y]/, .. ]: since one is in Z,, the
orientations play no role.

For H;, it was proved in [6, Chapter VI, Theorem 6.1 and Remark 6.9] that
each Dy Fs gives ds[F|, where Fy is built on the same model. Furthermore, it
was proved in the above reference, p. 447, that [Fy] = ns[F]+ (ns — 1)[F}], where
[F}] and [F;] generate this part of the group which is, from [10, Theorem 8.3],
Zy, x Lo if p is even and Zy, if p is odd, with the relations p([F;] + [F1]) = 0 and
2[F}] = 0 (the action for F} is taken as exp(2mi/p)). Hence the contribution of
all Zys is (3 dyns)[F] + X ds(n, — 1)[F]. However, if p is even, then m, and
ng are odd and the last term is 0 (in Zs). While, if p is odd and ng is even, then
(ns —p)ms = ngmg = 1 (mod p) with ng — p odd. For Hy, we refer to [8] and [6,
Chapter VI.

It remains to study the effect of the isomorphisms I7 on each of the above
generators. If F,, = (1 — |2],2t — 1, X(,Y:, y;, Az, z) with X = p + iv, on the
ball B = {0 < ¢ < 1,|z] < 2,|Xo| < 2,1V < 2,]y;| < 2} one may use the
deformation y;(1 — 7 + 7'(yj2 — 1)) in the computation of deg(F,; B) = [F.]r,
since the suspension is an isomorphism. But

degr (Fu; B) = degr(Fu; B0 {ly;| < 1/2}) + degr(Fu; BN {[y;| > 1/2}).
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For the first degree, one may deform y]2 to 0 and obtain 7 [F,]. For the second,
one may use the deformation 1 — (1 — 7 + 7|y;|)|2| on the set {|y;| > 1/2},
and then the second degree is [Fy;|r, where Fy,; = (1 — |y;| - |2],2t — 1, X{, Y],
(7 — 1)yj; Az, 2k). Thus, IF[FJr = [F]r — [Fylr.

By using [? = I, it is then easy to see that I}[F,;]r = —[Fy;]r. Furthermore,
by repeating the above argument, one has [Fy,;|r = I}[Fyu;]r + [Fujk]r, as stated
in the theorem. Further applications of I} are built on the same scheme.

Let H=T, and H; =T, withT'/H; = Zy and T'/H = Z, or S'. Now, either
H < Hj or there is h in H such that hy; = —y;, in which case I'/H N H; =
I'/H x Zs, since h? is in H and acts as the identity on y;. If H < H; and
I'/H = S, then the action of T' on z is exp[2mi((N, ®) + (K, L)/m)] (see [10,
Lemma 1.1]). Hence, for any L there is a ®y such that the exponential is 1.
On y;, the action is of the form exp(2mi(Kj;, L)/2). Thus, if H < Hj, this last
expression should be 1 for any L, which is impossible since I'/ H; = Zy. Since H;
is maximal, the only case where H is a subgroup of H; is for I'/H = Z,,, with p
even, with a generator  such that vz = exp(27i/p), vy; = —y;.

Now, if H is not a subgroup of H; and I'/H is finite, then F,; is one of the

generators for H N H; with p([Fy;]r + [F]r) = 0 (see [10, Theorem 8.4; there are
two other generators in this case, [Fj,|r and [F]r, both of order 2). Similarly
if H, and H; do not contain H, then [F,;;|r is a generator for H N H; N Hy,.
The congruences are given in [10, Theorem 8.4]. If ['/H = S! then the usual
degree of F,; on the fundamental cell for H N Hj, i.e. for 0 < y; < 2,z in RT,
is —1 (because the equation for 2¢ — 1 is in the second place). If H = H; then
the fundamental cell reduces to 0 < y; < 2 and it is easy to see that F,;, on
that cell, is the suspension of the Hopf map, hence the second generator for the
group [10, Theorem 8.1].

Finally, if H < Hj, then one may construct a fundamental cell for H in two
ways. The first, as the set characterized by {0 < |z] < 2, 0 < Argz < 27/p}
with the generators [F,|r and [F,|r with p[F,)r = 0, 2[F,)r = 0, from [10,
Theorem 8.4] (here p is even). The second, with p = 2k, a fundamental cell
of the form {0 < y; < 2,0 < |z] < 2,0 < Argz < 2n/k}, with the generators
m = (1-|Y|-|z|,2t=1, X{, Y, (Y28 —|Y|)2) with Y = y; +iye and Ty = Hj, 12 =
[Fujlr and ) = [ﬁu] and the relations 2n; + dano + di = 0, k(na+1m)=0,21=0
(see [10, Theorem 8.2]). Now, since deg(/[F,]; z in RY) = —deg([F,,]; z in RT)
(here these are ordinary degrees) and deg([F,;]; z in RT) = 2deg([F,]; z in RT),
one has I7[F,]r = —[Fyu]r +dn and [Fy;lr = 2[F,]r + d7 (the same d because
of the relations between the three maps). Furthermore, in 7; one may perform
the rotation ((7A — (1 —7)(Y2* — Y)Y, (1 = T)A +7(Y z* —|Y]))2). The term
[Y|Y — |Y|?2* is deformed linearly to |z|Y — 2z, then 1 — |Y| - |z| is deformed
linearly to 1 — |2|* and finally Y|z| — z¥ to Y. Thus, 71 = [F,]r, d2 = —1 and
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d = d. If k is odd, the relation k(n2 + 1) = 0 implies that d = 1. Since 77 has the
class of the Hopf map on the fundamental cell, we have 77 = 7). One may apply
I} to the previous case and study the case where H is a subgroup of H; N Hy, or
not. We leave out the determination of d when k is even. g

REMARK 5.1. One could have proved Theorem 3.2 by using generators as
above. Note also that the easier part of the above theorem, i.e. for I'/H}, = S,
has been proved in various papers, as [6] or [15, Theorem 2.1.1].

ExAMPLE 5.1. Consider the Hopf bifurcation problem for the equation

dX
v+ 1) S = L)X +g(X, pv), X inRY,

where X (t) is 2m-periodic, (u,v) is close to (0,0) and g(X, p,v) = o(]X]), and
L(p) and g(X, p, v) are Tg-equivariant. Then the problem is equivalent to in (v +
10)Xn — L(p) X — g (X) = 0, where (X,,); has isotropy Hjy, as in Example 3.1.
The representations of I' on (X,); and (Xj); are equivalent only if k = n, N; =
N; and K;/M = K; /M, where the action of I is given by exp(2mi((K;/M, L) +
(N;, ®)+nep/(27)). Since we need that in(v+vg)I—L(p) is invertible for p?+1? =
0?, this implies that L(u) is invertible for |u| < p. This fact implies that if I'/H;,,
is finite, then n = 0, N; = 0 and the corresponding djo = 0. If ['/Ho = S', then
again one has djo = 0. Thus, the bifurcation degree degp(v? + p? — 0%, X —
Fvop X)) is THE (501 din Fyulr), where [Fju] = £ — [250[2, Azyn).

Now, L(u) = diag(Lo(u), Lr (), - - ., Li(u)), since it is I'g-equivariant, where
['o acts trivially on Lo, as —Id on Ly and as Z,, or S' on L(u). Since djn is
given by the winding number of in(v +vg)I — L(p)|,, =, , where Hj is the isotropy
of the variables in Vit follows that L(j) is one of the above matrices. It is well
known that the winding number d;, is the net crossing number of eigenvalues,
counted with multiplicity, of L;(u) at invg (see [9] for instance). Note that if
djn # 0, one has a Hopf bifurcation in V7", as defined in Example 3.1, i.e. with
X(t) = %X (t — 2m/(nm?)): see [6] or restrict the bifurcation problem to that
invariant space where the I'-degree keeps all dy; with Hj,, < Hj;. In order to
determine «y, it is enough to see which subgroups H of I" give I'/H 2 Z5: this is
possible only if n = 0, N; = 0 and I'g acts as — Id . Hence o, = (1—Signdet Ly)/2
while ap = (1 — Signdet Lg)/2. Then I}[Fjn]r = [Fjn] — [Fijn), where Fij,
represents the resonance of the stationary part Ly (u), with action of I’y as —Id,
on the nth mode with component z;,. Note that there are at most N/2 d;,’s
which are non-zero. Compare with [4] and [15].

EXAMPLE 5.2 (Hopf bifurcation for time-dependent differential equations).
Consider the problem of Hopf bifurcation for the equation

dX
(v+ VQ)E = L(uw)X + g(X, 1, v) +eh(X, p,v,t), X in RV,
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where X (t) is 2m-periodic, (v,u) is close to (0,0), g(X,u,v) = o(|X]) and
h(0,u,v,t) = 0. If h has a linear part in X, then e is chosen so small that,
assuming L(u) invertible for |u| < ¢ and without pure imaginary eigenvalues
for p # 0 close to a multiple of vy (that is, in(v + vo)I — L(p) is invertible on
pu?+v? = g?) then the Fredholm operator (v+vg)d/dt — L(1) —eDh is invertible,
for p? +1v?% = 02, on the space of 2r-periodic C*-functions into the corresponding
space of CY-functions.

Thus, for € = 0, one has an S'-action, while for ¢ # 0 the action is reduced,
as seen in Example 3.2, to a Zp-action. The hypothesis on ¢ implies that, for
p? + v? = g% one may Z,-deform the equation to (v + 19)dX/dt — L(u)X,
considered, when ¢ # 0, as a Zp-equivariant linear map. While for ¢ = 0,
any non-zero winding number d,, of in(v + v9)I — L(u) will give rise to a Hopf
bifurcation of 2m-periodic solutions (not necessarily least periodic: see [9]), for
€ # 0 we have to study the isotropy subgroups H of Z,, for its action on Fourier
series, that is, on X,,, as exp(2wimk/p),0 < k < p, and H is the isotropy of
X,. Now, two representations of Z, will be equivalent (i.e. on X, and X,,) if
and only if m = n (mod p). Furthermore, if n/p = n'/p’ with n’ and p’ relatively
prime, then H = {k =0,p',2p',...,(p/p' —1)p'},ie. H 2 Z, )y and T'/H = Z,.

In order to apply Theorem 5.1, we need to identify the modes X, for which
the isotropy is exactly H, i.e. the action of T" is of the form exp(2mimsk/p’) for
kE=0,...,p" — 1, with m, and p’ relatively prime. Then m; = m; + ap’ and
m = m;p/p’ +ap where 1 < m; < p’ is relatively prime to p’ (this has to happen
for my = n' and m = n). If p’ is prime, then any integer between 1 and p’ — 1
is allowed. Clearly, if nj, with |n;| odd, is such that mjn; = 1 (modp’), then
msn; =1 (modp’). If H =T, then m = kp and m; = n; = p’ = 1. Finally, since
I" acts only on the non-trivial modes, I}’ is not present, except for I where it is
¢ = Signdet L(0). We have proved the following:

PROPOSITION 5.1. Under the above assumptions, the bifurcation degree has
the following components:

(a) dr = 72 dip (mod?2),

(b) dur =315 32071 dunyp/pr4kp (mOd 2p") if p' is odd and (mod p') if p' is
even, where € = Signdet L(0), d,,, is the winding number of im(v + vo)I — L(u)
for 2 +v% = o* |T/H| =p' and 1 < my; < is relatively prime to p' and |n;|
is odd such that n;m; =1 (modp’).

If dr is odd, then one has Hopf bifurcation of 2w /p-periodic solutions, while
if di is not congruent to 0, one has Hopf bifurcation of 2mwp’ /p-periodic solutions.

REMARK 5.2. Note that a mode m belongs to just one p’, since if mip/p1 +
k1p = maop/pa + kap, then mqps —mop1 = kp1ps, where m; and p; are relatively
prime. But then ps = p;. Thus, it is convenient to list the divisors of p in
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increasing order and begin with the smallest (1 corresponds to dr). Then, for a
given integer j < p/, either j is relatively prime to p’ or the corresponding modes
jp/p’ + kp have already been assigned to a smaller divisor of p. Note also that
if mjn; =1 (modp’), with m; and p’ relatively prime, then this is also true for
my = p' —m; and n; = —n;: that is, there is a natural pairing in the congruence
classes of the modes. Finally, note that if p’ is an odd prime (if p’ = 2 then
m; = 1 =n;), then, due to the pairing, one has to consider all integers between
1and (p' —1)/2, with ny = 1,19 = (14 p’)/2 if this number is odd or (1 —p’)/2
if the first number is even and n, for (p’ — 1)/2, can be taken to be p’ — 2.

For instance, for p = 2, the components of the bifurcation index will be

dr = ngk (mod?2), dy. = Zd%ﬂ (mod 2).

For p = 3, one has

dr‘ = ZdSk (mod 2), d{e} = Z(d3k+1 — d3k+2) (mod 6).

For p = 4, one has

dr = Zd4k (mod2), dy= Zd4k+2 (mod 2),
diey = Z(d4k+1 — dar+3) (mod4).

For p =5, one has
dr =) dsi (mod2),
die}y = Z(dSkH — dsta) +3 Z(d5k+2 — dsk43) (mod 10).
For p = 6, one has
dr = Zdak (mod2), ds= Zd6k+3 (mod2) for p' =2,
dy = Z(d6k+2 — dgir4) (mod6) for p’ = 3,
diey = Y (der+1 — dekys) (mod6).

Finally, for p = 7, one has

dp = Zd7k (mod 2),
diey = Z(d7k+1 — drky6) — 3Z(d7k+2 — drkts)
+5 Z(d7k+3 - d7k+4) (mod 14)

Recall that if the bifurcation index is 0, then, given a linear part, there is
a non-linear part at the level of Fourier series (not necessarily coming from a
differential equation) such that there is no bifurcation (see [6, Chapter VI, The-
orem 6.1]). Here we shall give an example, which generalizes the examples of [9,
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p. 156], showing how one may force a linear system which has a Hopf bifurcation
with a linear time-periodic perturbation which destroys the bifurcation.

Take p any integer larger than 1 and consider the following system for 27-
periodic functions:

2 — Xa' + px +e((p+ 1) cos pty + sinpty’) = 0,
¥ —(p— 1)’ + (p— 1)*uy — (p— 1)e((2p — 1) cos pta: + sin ptz’) = 0.

For e = 0, A close to 0 and p close to 1, one has a vertical Hopf bifurcation
for (z,0) with n =1 and for (0,y) with n = p — 1. The winding numbers are all
0 except dy =dp—1 = 1.

For € # 0, the system is equivalent to

(7712 —ini+ ,u)CEn + (5/2)((” + 1)yn—p - (Tl - ]-)yTH-p) = 07
(—=n® —i(p = 1)*A+ (p — 1)’ 1)yn
—(€/2)p-=D((p+n—-12pn—p—(n—p+1)Tnip) = 0.

Taking the first equation for n = 1 and the second for n = p — 1, one has the
pair ((n—1—iX)21+ey, 1, (p—1)*[(p—1—iX)yp—1 —€T1]) with only zero giving
21 = Yp—1 =0, except if 4 =1,A = 0,e = 0. For € # 0, the remaining equations
form a closed system with invertible diagonal, that is, the only solution for £ # 0
and (A, u) close to (0,1) is = y = 0. For p = 1, one takes out the factors p — 1
in the second equation and one has d; = 2 and the same result holds.

It would be interesting to have similar simple examples for, say, p = 3,d; =
6,d; =0for j >1orp=>5,d =3,do =—1and d; = 0 otherwise. See [6,
Chapter VI, Theorem 6.1 and Remark 6.8]. For obvious reasons of space, we
leave to another paper the study of forcing a loop of non-stationary solutions by
a Zy-action (see [9, p. 122]).

6. Operations

In this last section we study the basic properties of the following operations
for the I'-degree: reduction of the group, or symmetry breaking, products and
composition of maps. We leave applications of these results to subsequent papers.

(A) Symmetry breaking. Let I'y be a subgroup of I'. If a map is I'-
equivariant it is also I'g-equivariant and one has a morphism P, : Hgv (SV) —
Hg?/ (S™). Under hypothesis (H2)" for T and 'y in [10, Theorem 5.3] or under
hypothesis (H) of the present paper, these groups are of the form Hﬁ(H ) for
all isotropy subgroups H and II(H) is the suspension by Fj of the group II(H)
given by the equivariant homotopy classes of maps from SV into " which
have equivariant extensions from BX into WX \ {0} for all K > H. It is thus
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important to determine the relation between the isotropy subgroups for I' and
To, II(H) for T, and TIy(Hy) for T'y.

LEMMA 6.1. (a) Any isotropy subgroup Hy for Ty is of the form H N Ty
with H an isotropy subgroup for I'. For a given Hy, there may be several H's.
Let H be the minimal one. Then VHE = VHo dimTy/Hy < dimT'/H, and if
one has equality of the above dimensions, then |HO/Ho| divides |Hy/H|, where
ﬁo is the mazximal isotropy subgroup with Weyl group of the same dimension as
T'/H, given in Theorem 2.1, i.e. T/Hy = T*. In this case, if hypothesis (Ho)
of Section 4 holds for F in TI(H), then F belongs to Tly(Hy) and degp? (F) =
(|Ho/H|/|HY /Hy|) degh(F) if WE = WHo and 0 otherwise.

(b) If there is a complementing map Fi for all H’s, then this is also true for
all Hy’s. In this case P, maps II(H) into o(Hp).

(¢) If hypothesis (H') holds for T, it will hold for Ty, where (H') is (H) together
with the condition WH = WHo for all Hy’s, which holds if V =RF x W.

ProoF. If Hy = Tox = {7y € Ty : vX = X}, then clearly Hy = I'x N T.
Hence H is the intersection of all such H’s and the isotropy subgroup for Vo,
If z; is a coordinate in this space with the subgroups fNIl 1 =Hin...NH;_4
and H HZ 1N H;, as in Section 0, and the corresponding subgroups HZO 1=
H;_1 N Ty, then either k; = |H, 1/H| is infinite and the corresponding £? is
infinite or not, or k; is finite. In this case, any = in HZ 1 can be written as
v = &vE, with 0 < o < k;, and %kl is in P~IZ as is vg,. For v in T'g, 4% is in
H; N Do, that is, kY is finite and divides k;. If 2; is the last coordinate in V',
then H; = H. Thus, ﬁ? = Hp and kY = 1 for i > [. Since there are at most
k = dimT['/H coordinates with k¥ infinite, dimT'g/Hy < dimT'/H and, in case
of equality, |Ho/Ho| = []+¥ divides |Ho/H| = [] k;. Thus, the fundamental cell
Co for Hy is made of [[k;/ ] kY copies of the fundamental cell C for H. Thus,
if K > H and F¥ # 0, one has F¥o £ 0 for Ky = K NIy > Hy. Conversely,
if Ko > Hy, then as above Ky = K NIy with K minimal, i.e. Ko = H; N Ty,
for H; the isotropy subgroup of the coordinate x; in VKo and K = () H;.
Thus, K > H and F%° # 0. In other words, the extension degree is defined
for H and Hy and the equality of the lemma comes from [10, Theorem 4.1], by
computing deg(FE; By): in fact, since dim VZ = dim W# 4 dimI'/H and, from
Hy=HNTy < H, one has WH c WHo_ it follows that, if WH = WHo one has
the same equality of the dimensions for Hy, while if one has a strict inclusion,
then any map in II(Hp) has a non-trivial extension.

For (b), any complementing map for H will also work for Hy. Thus, if H < H,
the map (F, FI')2  which does not belong to II(H) if H is a strict subgroup
of H, has the following property: if Ky > Hy, hence as above, Ky = KNIy with
K > H, then if (F# FIYEo(X) = 0, then X is in V¥ and FH¥(X) = 0. But
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X € VE thus K and H are subgroups of I'x. Hence, if F is in II(H) and H
is a strict subgroup of I'x, one has FH(X) # 0. That is, 'x = H and K < H.
But the relation H < K would imply Hy = Ky, which is a contradiction. That
is, (F, FI)Ko £ 0 if Ky > Hp and the pair (F#, F) belongs to Iy (Ho).

(c) is clear since VE = VHo and VE = VKo, O

PROPOSITION 6.1. (a) If (H') holds and dimTy/Hy = dimT'/H = k, then

Ho/H
| 0/ |[FH0 FEJ_]F

P.FH FEE = dByn 0%,

|HY/Hol '

for the generators of TI(H) and Tlo(Hy), where By = deg((FH)H).
(b) If furthermore k =0 and T'o/Hy or T'/H is not finite, then P, = 0.

PROOF. From Theorem 2.1, since by construction F# = 0 on the set z; =0
for any j =1,...,k, one has

deg(FHt|Bfi;B;fi)= > Byds|Ho/Hj
H;<H;<Hy

for all H;’s and H;’s with dimI'/H; = k. Hence, if F = (FH, FH), the degree
on the left will be 0, since it is a product and FH\B:Q corresponds to V7 NV Hi
with isotropy larger than H, i.e. there FX # 0, unless H; < H, in which case
the degree for the generator is g, g |Ho/H|. On the right hand side, one has
d; = 0 except for dg = 1. In particular, deg((FH,Ff)ﬂ;Bkﬂ) = BﬂH|ﬁO/H|-
Now, as a g-map, P.[FH, FH] = a[FéqO, Ff]] for some integer a (recall that we
are complementing with the same maps Ff), and deg(F(fIO;B,fIO) = |ﬁ8/H0|.
For (b), it is enough to recall that II(H) = 0 if dimT'/H > 0. O

REMARK 6.1. In [5] the authors consider the case where V = R* x W, |I"/T|
< 0o and there is an open, bounded, I'p-invariant set €2y such that vQy N Qg
= ) for all v in '\ T'y. Then they compute the free part of the I'-degree of a
map with respect to 2 = I'Q)q, i.e. the one corresponding to isotropy subgroups
with Weyl group of dimension k. If I' is abelian and x is in g, then I'; is a
subgroup of I'y, due to the condition 7?20 N Qo = 0. While, if z is in Q, i.e.
T = yoxg with xg in Qq, then if v is in I';, one has v, = x = yy9x = Yo, hence
v is in 'y, < T'g. Thus, all isotropy subgroups for I' are isotropy subgroups
for T'g. Then, since dimI" = dim Ty, one has dimI'/Hy = dimT'y/H( and one
has the same set of variables with k; = oco. From I'/Hy = (I'/To)(T'o/Ho),
one has |ﬁ0/H\/|ﬁ8/Ho| = |I'/T|. Hence, for these subgroups, one sees, from
Lemma 6.1(a) and the previous proposition, that P,[FH|p = |T'/To|[FH]r, and
the assignment [F#]p, — [FH]r is an isomorphism: there are |T'/T'¢| disjoint
copies of g in .
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Let V = R x W. Then II§, (S") is generated, in its free part, by [F*]p as
above for dimT'/H = 1, and for H with I'/H = A = Z,, x ... X Zy, by 7}
and 77,7 = 1,...,m, given in term of an auxiliary space X = (Z1,..., Z,,) with
action of I'/H on Z; given by exp(27i/p;). Then

;= (1 - H | Zi|?, Xo, X3, {(ZP" — Ei)Zi}i;éja)\Zj)a

7= (52 ~ T 1217125 — el Xo, Xi (2P — &) Zi}ips M 2B — sm)Zm),
i<m
with &;,&,, of modulus one, such that Z" —e; = 0 has no real root (see [9,
Theorem 8.4]). One has p;(n; +7') = 0 and 27" = 0. Similar definitions hold for
Po/HO = Ap.

PROPOSITION 6.2. (a) If dimT'/H = dimT/Hy = 1, then
_ 1Hy/H]
|H§ / Ho|

(b) If dimT'/H = dimTy/Hy = 0, then
P[] = (1Al/|Ao])(pos /23) Int;)ro + d; [To)rs

where CTJ is 0 or 1 and JJ = 0 if |Ag| or p; are odd. Moreover, P,[f]r =
(|A[/[Ao])[6]r, for j =1,...,m.
(c) If dimT'/H =1 and dimTy/Hy = 0, then

P.[FH)r = (|Ho/H|/|Ao|)por[nh1]re + d [7h]ro
with d = 0 if | Ag| is odd.

P,[F"] [F7170]

o°

PROOF. (a) was already proved in the previous proposition. For (b), notice
that if I' acts as exp(2mi/p;) on Z;, then I'y has to act as exp(27i/po;), where
po; divides p;. Hence |Ag| divides |A|. As before, for the minimal H, one has
I'/H = (I'/H)(H/H) and Iy acts trivially on the variables in VZ N (V)L Now,
as seen in [10, Theorem 8.4], the components of Pi[n]r on 1, can be computed
via deg(n}; BHon(Arg Z; = 0))/ [ 15 Pok- It is then clear that this number is 0

if 4 #] and Hk;ﬁj pk/Hk,#j Pok ifi= 7 ThuS,

e = (T oe/ TT por ) b hes + il
ki ki
Now, if one computes the ordinary class of both sides in IT,,11(S™), then [Px[n}]]
= [n;] = [1,; pin, where 7 is the Hopf map, while on the right hand side one
has the same quantity plus (@|A0|n. Hence, if |Ag| is odd, one has &; = (. Since
7] is the Hopf map based on the fundamental cell for I'/H and the fundamental
cell for T'g/Hy is generated by |A|/|Ao| copies of the first one, with a suspension
on the variables on X2 N (X)L, one has P.[if']r = (|A|/|Ao|)[7]r,- Then, from
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the relation p;(n; +7') = 0, one has pj(?j = (JA|/|Ao])(pj — poj) (mod2). If p; is
odd, hence pg; which divides p; is also odd, then cT] is even.

For (c), one has I'/H = S' xZ,, x...xZ,, and, using the auxiliary space X,
one may take FH = (1 —T]1Z;|%, Xo, Xi, {(ZV" — ) Zi}izj, AZ1), where T acts
as exp(i¢) on Z; and Ty as exp(27i/po1). Again, the components of P,[FH|p
on 1, are given by deg(FH; Bfo N {Arg Z; = 01)/ [Ty Poks L. 0f j # 1
and [[,~oPr/ [[x>oPok if j = 1. The fact that d is 0 if |Ag| is odd is proved as
above. - O

(B) Products. Consider the classical problem of a product of maps
(f1(X1), f2(X2)) defined on a product Q = Q1 x Qy from V5 x Vo into Wy x Wa,
where f1 and fy are I'-equivariant and §2; are I'-invariant, open and bounded.
The associated maps, which define the T-degree, are F;(t;, X;) = (2t;+20;(X;) —
1, fi(X;)) and one may consider the pair (F(t1, X1), Fa(t2, X2)) from Rx V3 xR x
Vo into R x Wy X R x Wa. Let @(X1, Xo) = ¢1(X1) + ¢2(X2) — 1 (X71)p2(X2) =
w2(l — 1) + 1. Then clearly 0 < ® < 1 and ® =0 on Q; x Qo and & =1
on the complement of (€ U Ny) x (€1 U N3). Furthermore, (Fi,Fs) is lin-
early deformable to (2¢; + 2® — 1, f1, F»), since fi(X;) # 0 on N, and then
to (2t +2® — 1, f1,2ts — 1, o).

LEMMA 6.2. One has [Fy, Fo] = Xo degp((f1, f2); Q1 X Qa), where g is the

suspension by 2ty — 1.

Note that if [Fj] is in TIgy, (S™7), then [Fy, Fo] is in TTgy, xpxv, (S7F*W2),
which defines a morphism of groups, i.e. [F} + Gy, F»] = [F1, F3] + [G1, Fy)
and [Fy, Fy + G2] = [F1, F3] + [F1, G]. (For this last operation, with the sum
defined on t5, one has to translate this sum on ¢;. This is done as in any text on
homotopy.) Hence, if [Fi] and [F3] are expressed as sums, as in several cases in
[10] and above, one may expand [F}, F3] in terms of elementary products. Let
V=VixRxVyand W =W; x R x Ws. We shall incorporate t5 in V5.

LEMMA 6.3. (a) Any isotropy subgroup H for V is of the form H; N Hy
with H; in Iso(V;). There are minimal isotropy subgroups H; with H = Hq N
Ho, VE = VH 4nd dimT/H; < dimT'/H < &imT/H; + dimT/H.

(b) If [F3] is in II(H;), then [Fy, F3] is in II(H). If for any H;, there are
complementing maps, then if [F;, Fi] is in ﬁ(Hi), then [F1, Fl,Fy, F?] is in
IL(H).

(¢) If hypothesis (H) holds for Vi and Va, it also holds for V, where (H) is
(H) together with the condition WZIJ = WH, which is true if V; = Rk x W;.

(3

Proor. If H = I'(x, x,), then H = I'x, NT'x, = Hy N Ha, by recalling
that 'y = () H; over the isotropy subgroups of the non-zero variables z;’s in
X. Then VH = Vi x R x V& 1f H; = ( H; for coordinates z; in V;*, then
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H < H; and Vzﬁl = VH. Since H = H; N Ha, one has dimT'/H; < dimT'/H.
In the decomposition of I'/H over the coordinates of V, one obtains the groups
I;fil_l / I;'il for the first coordinates, corresponding to Vlﬂ ' with order k;, and then
HyNHZ% | /H, N H?, with order k2. We shall denote by k2 the order of H2 , /H?
corresponding to VQHZ. If k? is finite, then any v in I?f_l can be written as v{*vp,
with 0 < a < k? and ~g, in I:TZQ In particular, for v in H; N ﬁfﬁl, A% is in
Hin f[f, that is, 7@? divides k2. Thus, the number of k;’s infinite for VH is the
sum of the number of those for VIH ! and a quantity less than or equal to the
number of those for VQEZ. Note that when H, ﬂﬁf_l = H, then E? =1foryj>i.

For (b), if K = K, N K, > Hy N Hy, then VE = V1 x R x V52 is strictly
contained in VH = Vlﬁ1 x R x VZHZ. Then either K; > H; or K, > Hy and
the corresponding Ffi #0, i.e. [Fy, Fo] is in II(H). Also, if (F1, F}, Fo, F?) has
a zero at (X1, X») in VE for K > H, then since F! is zero only at the origin,
(X1, X>) must be in V" x Vj with Ty, x,) < Hi N Hy = H, leading to a
contradiction. Thus, the above map is in II(H).

Finally, if (H) holds for V; = R¥ x U;, let K = K, N K, and H = H, N H>.
It is then clear that dim U¥ NUE = dim WH WX | since U# = UH* x UZ? and
likewise for K and one has I/VZﬂ = WH . Note that in general WZH cwif. O

PROPOSITION 6.3. (a) If dim V' = dim W' + dimT/H;,i = 1,2, and
dimT/H = dimT'/H; + dimT'/Ha, then, for [F;] in II(H;), one has

deg(F1, Fy) = degg(Fy) degg(F2) | [(k7/R7)

if WH = WH and 0 otherwise.
(b) If (H) holds and d&imT/H; = k;,dimT/H = ky + ko, then, for [F;, Fi]
in II(H;), one has [Fy,F}, Fy, F?] = dg[Fy), where Fy is the generator for

II(H, N Hy) and

di = B, B | HY JHy| - |HY /Ho| /|HY 0 HY JHy O Hs)|.

~

Here ETZO is the maximal isotropy subgroup containing H;, I‘/I?? =~ Tk and
Brr,, = deg(F"). B B

(c) Furthermore, if [Filr = Y. d} [F}{j]p + [Fi]r with dimT'/H; = k; and [F;]
mn ﬁki,h then

[F1, Folr = Z d}didenHk [Fr,nmr + [Flr,
ik
where the sum is over all (j,k)’s such that dimT"/H; N Hy = ky + ko, dp,nm, is
as above and [F]r belongs to Iy, 4y,—1, defined in [10, Theorem 5.2).

PROOF. It is clear that the fundamental cell for Hy N Hy is the product of
the fundamental cell for H; by the fundamental cell for H; N Hs. The dimension
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conditions imply that 7{% = 00 exactly when k% = 00, hence, from [10, Theorem
4.1], one has

degg(F1, Fy) = deg((Fy, F2); By, % BkQ)/(Hk} HE;)

if WH = WH1 x R x WH2 and 0 otherwise. From the degree of the product, one
obtains the result.

For (b), from Lemma 6.3(b), (c), one sees that it is enough to compute dy.
Now, as in Proposition 6.1, the map [F}, F'|, Fy, F'}] is non-zero if z; = 0 for any
7 with kjl or k? (i.e. EJQ) infinite, that is, one may apply Theorem 2.1. Then

B, B, deg(F{™ |5, F3|,,) = Bu, B, deg(F{| g, ) deg(F3™|p,,)
= B, B | HY /Hy | /| H / Ho |
= Budy|HY N HY/H, N Hy|,

since clearly H in fNIS is the maximal isotropy subgroup for H; N Hs. Here
Bu, = deg(Ft) = deg(Ff-|Vgi )Bm,. Since one may complement Fp by
(Fi-, F3")|(vy., with degree ﬁélﬁﬂw one obtains the result. Note that we
have HY N HY/H, N Hy = (HY N HY/H, N HY)(H, N HY/H, N H,). The first
group has order [] kj, since the coordinates coming from HY have k% = oo, and
the second group has order Hi{? Thus, (a) and (b) give the same result.

For (c), it is enough to note that if [ﬁlh“ belongs to ﬁkl,l for instance, i.e. to
subgroups with dim '/ H < ki, then, from Lemma 6.3(a), [F}, Fy] is in Tlg, 4 5, 1.
Then one applies the bilinearity of the product. O

REMARK 6.2. In [5] and [15], the product is defined, also for non-abelian
groups, in the Burnside ring, for the case where V; = RF x W, and ky = 0.

PROPOSITION 6.4. If Vi = R x Wy and Vo = Ws, then the only relevant
subgroups are of the form (Hy, Hs) with dimT'/Hy <1 and dimT'/Hy = 0, with
generators 1y, if dimT'/Hy = 1, or 17]1- and 7y if dimT/Hy = 0,79 for Hy and
if dimT'/H =1 orn; and 7 if dimI'/H = 0.

(a) If dimT'/H; =1, then

_|Hy/Hy| [T/ Hy|

[m, m2]r O/ Hy ) [7]r.
(b) If dimT'/Hy =0, then
RN L ¢ | B S - TS BT __ IU/Hy|
[773‘:772]1“ - Oéj(’l"]/pj) |H1/H1 ﬂHQ‘ [T]J]F +d][’;ﬂ1—" [7)15772]1—‘ - |H1/H1 N H2| [T] T

where p;(n} + 1) = 0,271 = 0,r5(n; +7) = 0,27 = 0, and p;d; — (ajr; —
p;)|T/Hz|/|H1/H| is even. Here o = 1 if r; = p; and if p; divides r;, then
a;ri/p;j + Bjri/q; = 1, where I'/Hy has the cyclic subgroup Zq; and Hy/H the
subgroup Zg, with q; = r;/p;.
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(©) If [Flr = dilmlr + X, dimlle + di[fi]r and [Fa]r = dafio]r, then
[F1, F|r distributes according to (a) and (b).

PRrROOF. From Lemma 6.3(a), one has dimT'/H = dimT'/H, for the relevant
groups, i.e. those for which the dimension of the Weyl group is less than or equal
to the number of parameters, here only one. Since the §’s are all 1 here, (a) is
a reformulation of Proposition 6.3(b).

For (b), i T/Hy = Zy, % ... x Ly, ,T/Hy = Ly % ... x Ly, and T/Hy N Hy =
Zipy X ... X Ly, then the action of I'/H on Wy x Wj is given, on the coordinate
zk, by exp(2mi(Ky /M, L)), as seen previously. Here M = (ry,...,r,)". If a; =
g.c.d.(k]l,...,kj-v) with N = dimW; + dim W5, then a; and r; are relatively
prime since the action of I'/H is effective. If b; and ¢; are defined as a; but on
the coordinates of Wi, respectively those of Wy, then, if b; and r; are relatively
prime, one has p; = r;, otherwise p; divides r; and b;/r; = dja;/p; with d;a;
and p; relatively prime and, likewise, ¢;/r; = eja;/q;. Since g.c.d.(b;,c;) = aj,
one sees that d;r;/p; and e;r;/q; are relatively prime, and so are m; = b;/(d;a;)
and n; = ¢;/(eja;), which are such that m;/r; = 1/p; and n;/r; = 1/g;.

Thus, there are o, 3; such that a;m; + B;n; = 1. For the auxiliary spaces
X1,X92,X of [10, Theorem 8.4], with action of v; on X, as exp(2mi/r;) and on
Xi, i # j, as the identity, and similarly for X; with coordinate Z; and X, with
coordinate Y;, one may choose X; = Z; if p; = r;, while if p; divides strictly r;,
we shall keep (Z;,Y;,X;) (just one Y; from the above discussion and one may
have ¢; = r;). Then one has an equivariant mapping between these variables
given by Z; = X;nj,Yj = X;” and X; = Z;‘j Y]BJ The generators given in [10,
Theorem 8.4 and p. 394] are of the form

nj = (1 —112:P, X5} {20 — ) Zi}in AZj)?

i = (2= T 12125 — eml®, X3 Awib A(Z = £ Zidicm,,
<m
Nl Zh = em)),
with A = 12 + i(2t1 - 1) Also M2 = (2t2 +1-— 2H |Y;;‘2,X37 {yz}, (Y;ql — El)Y;)
and those for X are like 17]1 and 7; but with Z; replaced by X;,p; by r;, and
(Xg, {x:}) by (X%, X8, {z:},{v:}). Here |e;| = 1 and ¢ is small.
We shall make our computations, as in [10, Theorem 8.4], on V; x Vo x (X1 %
Xy x X)?2, where one repeats the variable X; by X ]’ and where one uses the
suspension. Thus,

[77]17772] = (1 - H |Zi|27X0u {xmyi}u {(lez - Ei)Zi}i¢j7 Zzl7 /\ZJ7 Zj/a

200 +1— 21_[ |}/i|27 (Y;ql - 51’)1/1'3 }/;/aXia Xz/)v
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where X; = Z; if p; = r;. In this case, [nj,n2] = d;[n;] + (Z[ﬁ], where d; =
deg((n},m2); Arg X; = 0)/ [1iz; mi- (We shall prove below that the other d;’s are
0). It is easy to see that this degree is ([[,; pi)(ITa:) = p;1|I‘/H1| - |/ Hal,
giving the result (as seen in (A), |Hy/H]| divides |I'/Hy| and |I'/H| = |I'/H;| -
|Hy/H).

Now, on the space X1 x X x X and the ball B = {(Z;,Y;, X;) : |Zi|, |Yil, | Xi]
< 4}, one may take several fundamental cells for the action of I'/H. We shall
choose two of them:

C={Xi:0<ArgX, < 2n/r;},
Cl = {Zivyéayvjazj -0 S ArgZi < 27T/pi7 0 S ArgY; < 27‘—/@7
0<ArgY; <2m/q;, 0<ArgZ; <2mw/p;},

where i #£ j,q; = q; if Z; and Y; are not related through X; and p;/q; = D; /@,
with p; and ¢; relatively prime, otherwise. Note that, in this last case, r; = p;q;,
and from m;a; + n;8; = 1 one obtains o;q; + G;p; = 1, p; = n; and ¢; = m;.

Let (&}, ¢, ¢}, &5, 1') be the generators with respect to C1, given in [10, p. 399].
Then [77;», n2] = Y(di&i + eil]) + e;¢; + d;&; + d'ny’, where (d;, e;) are given by
the degree of the map on the section ArgZ; = 0 or ArgY; = 0, provided the
preceding di, = e, = 0,k < i (see [10, p. 400]). Now, from the choice of ¢; in the
maps njl- and 73, it is easy to take them non-real, that is, d; = e; = e¢; = 0 for all ¢,
and d; [[pi [14¢iq; = [1pi [l aigs, i-e. dj = T1iz;(0i/ @) = [/ Ha|/ (| Hy/Hlq;/q;5)-
Thus, [77]1, na2lr = d;&; +d'ny’, where p; (€5 +1") = 0 [10, Theorem 8.2 and p. 400],
and

&= (1= G 1 ZI T2 [TVl (20 = 2020 (V2 = e)Yau (20 Y] = e)Ys
(quj - gj)YJV >‘Zj7Y;7 Zz(v Xi7Xz{>v

where one has ¢; if Z; and Y; are not related and Di, q; otherwise, noting that
z Yf?"' is invariant.

Now f;» = Y a;n;+ai with respect to the generators given by the fundamental
cell C, where a; [[;; 7 = deg(§); BNArg X; = 0), provided one has deformed &
to a map which is non-zero for X; = 0 [10, Theorem 8.4]. Perform first the linear
deformation (Z]—7 X", Y/ -7 X", (1-7)X;+72Z;" Yi'ﬁi), on the variables which
are related, with only zero at (0,0,0), since m;c;+n;3; = 1. Replace then |Z:l, Vil
by | 2P +(Z[—X[")Pi|, including i = j, [V, + (V) = X]")%|, and 20", Z; Y, Y
by ZP (2= X[ (2] (2= X P ) (VI (V] = X[ E), Y 4 (Y] = X[ )
respectively. Recall that for the remaining variables one has X; = Z; or Y;. Then
one makes rotations of the form (A;((1—7)Z,+7(Z] - X"")), —7Z;+(1—7)(Z] -
X)) with A; = ZV +(Z - X[")Pi —e;. It A; # 0, then Z; = Z]— X" = 0 and
the first equation is 1. If A; =0 and 7 = 0, then |Z;| =1,Z] = X", Z]Y! =0
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on a zero of the map, with ¥/ — X" = 0, that is, the zeros are inside B. If
A; =0and 7 # 0, then |4, +¢;| =1 = |(Z, — X]"")?|(1 + ((1 — 7)/7)P?) with
Y/ = X", ZlY! = 0 and |Z] — X]"| < 1,|Z;| < 1, hence the zero is inside B.
Another rotation will bring the pair to (Z;, A;(Z] — X"*)) and one may deform
Z; to 0 in the remaining equations: one obtains a suspension by Z;, with the

same class, that is, one may replace Z] — X" by Z;, — X™.

One performs the same deformation for Y;, with A; replaced by B; = [Z; —
X[ilpe [Yiq~i + (Y} — X[*)%] — ;2 on a zero of the map, B; =0, |Z; — X]"| =1,
ZY! = 0 with |Y;],Y/ — X[""| < 1, i.e. the zeros are in the ball of radius 2,
inside B. One may replace Y; by ¥; — X". The same steps are applied to Y;
and Y] with A; replaced by Yq] + (Y] — X”])qf —¢j, and to Z; and Z} with A;
replaced by A: on a zero of the map, one has A = 0, |Z]p’ (Z; — Xm”)pﬂ| =1,
lY; — Xn’| =1,2}Y;=0,7Z; = (1 - 7)(Z; - me) with the results as above.
Thus,

& Z[ — Tkl TT (s — X

i#j
(X —er) Xk, (Zi = X —ei)(Zi — X7),
(Zi = X7 )P(Y; = X[ T — ) (Y; — X[,

Zi — X™|)Y; - X2 — X,

(Y = XY = ) (¥ = X} M2, = X7, 20V 20 |

By computing the degree of the above map on the sections Arg X;, = 0 or
Arg X; = 0, with appropriate choices of ey, €;, €}, the map has no zeros and a
zero degree, i.e. a; = 0 for ¢ # j. For Arg X; = 0, choose ¢; and ¢} such that
one cannot have (Z; — X™)Pi = ¢;, (Z; — X" )P (Y; — XM)T = ¢/ at the same
time for Z; = Y; = 0. Thus, with the equation Zio‘iYﬁ'i7 one has, for Z; = 0,
pim;q; zeros of index «;, and for Y; = 0, p;n;q; zeros of index 3;, i.e. these terms
make a contribution of p;g;(c;m; + B;n;) = p;g; = r; to the degree. Choosing Ej
non-real, one sees, for (Z;,Y;, X;), that the zeros are for A =0,Z; =0, X; =
(X, is real and positive) and (Y; — 1)% = ¢;, with a contribution to the degree
of gja;. Hence, a; H#j ri = [[7e [ [ piGigjey, or else, a; = ajg;.

From [10, Theorem 8.4], one may choose

=2 = TTIXl 1 = el (X7 = )Xo MX]? = )X,
i = [~ T12 12 = el (20 = )26 N2 = )23,
i =2 =TL1Zl- Wl Y1 V5 20 = &), (20 = )20, (V" =2,

(ZIYT = eDYa (V) = e Vi AT 20 = 25)75]

J
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As before, [, 2] = >_(di&} + e;C}) + d'if'. Tt is clear that, for Arg Z; = 0 or
ArgY; = 0, including ¢ = j, the map (71, 72) has no zeros, by taking ; non-real

2 is inside the cell for X;. Hence

and € so small that the circle |Z; — ;| = ¢
d; = e; = 0. Hence, on 9Cy, (71, 72) represents [[(¢;/¢;) times the Hopf map, i.e.
(71, me]r = (IU/Ha|/|Hy/H|)1-

Similarly 77/ = 3" a;n; + an. As before,

7= [ =TI TI0Z — X1 Y= P, = X7
X (V5 = X5 + (2= X[V =g, (G = en) X,
((Zi = X[P)P = &) (Zi — XT),
((Zi= XY (Ve = X = ) (Vi = X7), (Y = XG7)% = e5) (¥ = X5),
(V5 = X702y = K]0 — )2y = X]0), Z8Y P 27V .

In the rotations, the only new term is the one of the form A((Y; — X;Lj)gf (ij +
(Z; — X;nj)ﬁf —¢;) = AD;: since € < 1, a zero of the map will imply A = 0,
|D;| = %Y — XV = 1,7Z; + (1 — 7)(Z) — X;") = 0,Y;Z; = 0, which is
handled as before. It is then clear that the new map is non-zero for Arg X; = 0,
including ¢ = j, by choosing ¢; such that the map is non-zero on 9C and one
has to compute how many times one gets the Hopf map. As before, one has
contributions of 7y for X = Z or Yi, (mya; + nyB3:)piqi = piqi = r; for the
couples (Z;,Y;, X;). For (Z;,Y;,X;),if Y; = 0, one obtains n;q,;p,; points of index
B; and, for Z; = 0, one has m;q;p; points of index «;, for a total contribution
of ¢;p; = r;. Since there are [[r; copies of C in the ball, one obtains 77 = 77 and
(71, me]r = (I0/Hz|/|Hy/H ).
Finally,

T/ Hy|

dn
iy /] T

mj.male = [[(a/@)&) + a7 = aja; [ [(ai/@ms + dii =
i#j i#]
From the fact that g; = m; = r;/p; one obtains the result. From the relations

pj(nj +m) =0 and r;(n; +17) = 0, one has

5 |T/Hs ~
N 1 — i1ms =0.
pj |:dJ+ |H1/H|( ajm;) =0

Note that we are not reaching nx for k’s corresponding to Xs.

ExXAMPLE 6.1. Note that we could have proved Theorem 5.1 by using the
product instead of a direct computation for I7: in fact, one had H; an elementary
isotropy subgroup, with I'/Hy = S' or Z,, [ni]r = (1 — |2|?, A2), a suspension,
Hy with T'/Hy = Zo and also

[Fo]r = 2t — 1, =y, Y]p = [2ts — Ly, Y]p — [2t2 + 1 — 2y%, y(y* — 1), Y]r;
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as in Section 5, the map [2t; — 1,y, Y]r is deformed to [2t; — 1,43, Y]r and then
to [2t2 — 1,y(y? — 1), Y]r, whose I'-degree is decomposed on the set |y| < 1/2,
giving [Fy]r, and on the set |y| > 1/2, where it is [2t2 +1 — 2%, y(y® — 1)y, Y]r.
Hence [Falr = [no]r — [n2]r. For ng, one has H; = PNI& and Hy = I'. Then
%, m0]r = [n]r. For 1o, one has |T'/Hsy| = 2, |[H;/H| = 2 if H; is not a subgroup
of Hy (which is always the case if dimT'/H; = 1, by the maximality of Hs)
and Hi/H = {e} if Hy < Hs. In both cases, if |[I'/H;| < oo, one has r; = pj,
hence a; = 1. Thus, [ni,n2]r = [m]r + df’ if Hy is not a subgroup of Hs, and
nt, elr = 2[nlr +(777 if Hy < Hs. It is easy to recognize in the generators n,n1,n
and 77 the maps of Theorem 5.1.

(C) Composition. Consider three representations V, W and U of the group
I" and assume f: V — W and g : W — U are equivariant maps. Then go f is
also equivariant. Assume f : Q — W is non-zero on 052, where Q) is bounded,
open and invariant. Let ; = f(Q). Assume Q is open and that ¢ is non-
zero on J€Q;. It is easy to see that € is invariant and bounded (in infinite-
dimensions this is due to the appropriate compactness) and that f(0Q2) C 9.
Let B be the ball used for the definition of the I'-degree of f, with its associated
extension fof f. Then f(B) C Bj for some ball B; centered at the origin. If
g is the extension of g o f to B, then g o j‘vwill be an equivariant extension of
go f. If Ny is a neighborhood of 9€; where g is non-zero, then one may choose
the neighborhood of 92 contained in f_l(Nl) with its associated ¢. That is,
2t + 2¢(z) — 1, f(z)] = [F]r = degp(f;9) is well defined in I, (), as are
degp(g o ;) in I, (SY) and degp(g; Q1) in Ik, (SY). Recall that one may
normalize F by F/||F|| on SV and, changing ¢ to 2t — 1 = 7, one obtains a map
from the cylinder into another cylinder, with similar characteristics, i.e. one has
a pairing II%, (V) x I, (SY) into IT%, (SY) given by ([F]r, [G]r) — [G o Fr,
which is well defined on homotopy classes. Furthermore, since F' can be taken to
have value (1,0) on 7 = +1 [8, Proposition A.1], one sees from [14, p. 479] that,
if F(r,X) corresponds to [Fi|r + [F2]r, then [G o Flr = [G o Fi]r + [G o Fyr.
Also, if F' = X f, a suspension by t1, then for

G1(2t1 + 17Z) if —1 <t <0,

G168 Gy = .
G2(2t1—17Z) 1f0§t1 Sl,

one has
(2t1 + 1, f(z)) if —1<t <0,

(G1®G2) o (Xof) = { (2t — 1, f(z)) if0<t; <1,

and [(G1 @ Ga) o o f]r = [G1 0 Zof]r + [G2 o Zo f]r (see [14, p. 479]; as usual
one may perform the sum on 7 or on t; and here we may assume that F' is a
suspension). In particular, if [F|r = > d;[F;]r+d[F]r, with F; and F suspensions
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by t1, and [G]r = 3 e;[Gilr + e[G]r then
[G o F]F = Zdiej [éj o ﬁi]f‘ + Zdze[é o ﬁ,]r + Zejd[éj o ﬁ]p + de[é o ﬁ]r,

and it is enough to compute each component. Note that if F is in TI(H), i.e. F¥
has a non-zero extension to (J ; V¥ or else F¥|gx is I-deformable to F*(0)
and to (1,0), then (G o F)# is in II(H). Similarly if GX has a non-zero extension
to WX this will also be true for G o F|y x. Here, we need to compute 6’]- ) ﬁl

LEMMA 6.4. If V = RF*k x V! W = RF2 x W' and (H) holds for (V,W)
and (W,U), and furthermore dim V'# = dim U¥ for all H in Iso(V'), then (H)
holds for (V,U). If {z%} is a complementing map from (V)L onto (WH)* and
{z}”} is a complementing map from (WH)L onto (UH)L, then {249} will be a
complementing map from (VH)L onto (UT)+.

PROOF. Let H and K be in Iso(V). Then dim WH nWX = dim VHr 0V Hz,
where V = RF2 x V'. Let H be the isotropy of W# _ i.e. H= Nzecwn 'z, Then
H < H and WH = WH. One has dim W7 n WK = dimU¥” n UK. Now,
UH c UH. From (H), one has dim V¥ = dimW¥# + k; = dim U + ky + ko,
hence, from the extra hypothesis, one gets dim UH = dimUH and U = UH.
Since the spaces (V)L (WH)L = (Wﬁ)l, (Ut = (Uﬁ)J- have the same
dimension and one has equivariant monomials between them, the composition
will be a complementing map. O

Note that the extra dimension condition will be met if Iso(V) C Iso(WW),
since then UA = UH. 1If H is in Iso(W), then, if H is the isotropy of Vﬁ, one
has H < H, VH = vH and WH ¢ WH. In order to compare the I'-degrees of E
and éj, we shall assume that Iso(V') = Iso(W); this is the case if V = RF x W

and W = RF2 x U,

PROPOSITION 6.5. Assume (H) holds for (V,W) and (W,U), and Iso(V) =
Iso(W). Let FHt be in TI(Hy) and GH2 be in TI(Hy). Define F = (FHl,xii),
G= (GHZ,z?j) and H = Hy N Hy. Then:

(a) dimT'/H; < dimT'/H < dimI'/Hy + dim '/ Hy. The second inequality is
an equality if and only if Vi qVH2 c yT7,

(b) (Go F)H is in TI(H).

(¢) If dimT/H; = k; and dimT/H = ki + ko, let F and G be the gen-
erators of Il(H;). Then [G o Flr = d[Fy|r, where Fy generates II(H) and
d = Bun,Bum,|HY/H:| - |HY/Hs|/|H? N HY/H|, where Bum, = [[li for a; in
VAN (VEYL 0 (VEDL By, = [1a; for 2 in WH 0 (WH2)L (VDL HO
is the mazximal isotropy subgroup containing H; such that diimT'/H? = k;. More
generally, if FH1|3Bk1 # 0 and GH2|aBk2 £ 0, then (G o 1?')H|33k1+k_2 # 0 and

degg (G o F)") = ddegg(F™") degy (G™2).
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PROOF. Since H, is in Iso(V), H is the isotropy subgroup for the space
generated by V1 and V2. In VH1 C VH  there are dimT'/H; coordinates x;
with I'y, = H; and H{ = (| H; maximal such that dimT'/H) = dimT'/H;, and
similarly for Hy and HY. Hence dimT'/H; < dimT'/H and for V# the maximal
number of such variables will be dimI'/H; + dimT'/Hs, and strictly less if and
only if one of them is in VH1 NV Hz2,

Note that G o F = {z/%} on (VH)L and that if H; < H,, then V2 c v
and for any K > Hy, F'¥ is I-deformable to (1,0), in which case (G o F)H1 is in
II(H;) =II(H). A similar result holds if Hy < H;. In general,

V — Rk] % ng % V/H1 N VIH2 X V/Hl N (V/Hz)L X V/Hg N (VIHl)L X (V/H)L

with X = (A1, A2, Xo, X1, X2, Y) and W = RF2 x Wy x W x Wy x W, with its
elements of the form W = (\y, Wy, Wy, Wa, W), where these subspaces have the
same meaning as for X. Hence

F(X) = (Fx(A\1, A2, X0, X1), Fo(A1, Ag, Xo, X1), Fi (A1, Ao, Xo, X1), X4, YY)

with Fy (A1, A2, X0,0) = 0 and (Fy, Fo)(A1, A2, X0,0) # 0 since the isotropy of
Vi NV H2 g strictly larger than Hy and FH1 is in TI(H;). Here (X2, Yl) stands
for {z}'} and one should normalize F as F/||F||. Similarly one has G o F(X) =
(GO(F)\,FO,X2)7F:{7(>\1,AQ,XO,X[),GQ(FA,FO,XQ),YZ:‘Z), where Ga(\g, W, 0)
= 0 and Go(\g, Wo,0) # 0, for G2 in TI(Hy). Thus, (Go F)1 with Xo =Y =0
has Ga(A2, Wy, 0) deformable to (1,0). Similarly (G o F)#2 with X; =Y = 0
has F; = 0 and (Fp, F)) independent of Z5 and I'-deformable to (1,0). Hence
(G o F)H2 is I'-deformable to (Go(1,0, X}),0,G2(1,0, X3%),0) and then to (1,0).
Thus, if H is a strict subgroup of H;,i = 1,2, then Go F is trivial on VA1 UV Hz2,

Let now K < H and decompose VX as above. One has a non-zero I'-extension
of GoF on VEN(VELUVHz) je. for X, =0or Xy = 0. If VE N VH1 is strictly
contained in V1, then X; has components z; = 0 and the remaining variables,
in X1, have lbOtI‘Opy H, containing strictly H; (if not, VE N VH = Vi would
be V1), Hence, on VE N V1 one may extend ri = (F, Fo, F1) to a map
trivial at the origin and of norm 1. Then for X in the unit ball of V¥ one has
either || X2|| =1 and (Go,Gz) #0 or | X2|| < 1, in which case, from ||FH1H =1,
either | Fy|| = 1 and GoF # 0 or | Fy|| < 1 and ||(Fy, Fo)|| = 1 with (G, Ga) # 0.
Hence, in this case one has a non-zero I'-extension to VX. On the other hand, if
VENVH = VHi then VE NVH2 is strictly contained in V2 and (Gp, G2) has
a non-trivial T-extension to W N Wz But (Fy, Fy, F1) has a T-extension to
Vi = VE AV with norm one. If Fy # 0, then (G o F)X # 0, while if F; = 0,
then (Fy, Fp) is in VE N V2 and (Gy, G2) has the non-trivial extension. This
proves (b).
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For (c), let z;:,j =1,...,k;,7 = 1,2, be the variables in ViHO. From the
hypothesis on the dimensions, one sees that z; are in X;. Then, from [10, p. 394],

one has
F= (741 =TI} 0, X8, 0L + (231 = D)D", o, O, +im) (3,1,
{(P} (X0, X1) = )@ bt (Qs(w}) = Dy}, X3, Y")
with 7 =t — 1/2 and a similar expression for G. Then

GoF = (r+2-[]le}P - T2 x¢,

AL+ i(1287 = D) (D)8, (A, + i) (2h, )l
(A3 ()22 - D)2 (D)%l
(

qk
2 +i<7+ 1 —H|x;|2) 2z2%lkz,...).

Thus, if zj = 0, for some j, one has 7+ 1 — []|2}|* = 7+ 1 > 1/2 and, on
a zero, one would need z7 = 0 and []|Z3| = 0. Hence G o F is non-zero. If
27 =0, then []|Z3| = 0 (this is where the compositions of terms in Xy are) and
a zero of the map will give |1']1| = 1 (the terms P; are designed this way), that
is, the first component is non-zero. Thus, ((~? o ﬁ)H is non-zero on 0B, 4k, =
(BT N {Argz} = 0}). In general, if F* is non-zero on 9By, , then (Fy, Fy, F1)
is normalized to 1 on this set and either Fy # 0 or ||(F), Fp)|| = 1 and (Go, G2)
is non-zero on it. If G2 is non-zero on @By, since the 27 are coordinates of Xa,
one has (G, Ga) (A2, Wy, Wa) # 0 for such W5 and in particular for Wy = X1.
Note that F# and GH have zeros on OBy, 11, N VH and 0By, 11, N WH | since
(z?)li and (2})”1’1 appear as suspensions. However, for the ordinary degree, one
may perturb these terms to (2})® —e and have non-zero maps on 9By, +,. From
the composition formula,

deg((G o F)™; By, 11,) = degg (G o F))|HY N Hy /H|
= deg(FM: By, 45, ) deg(GH By, 4, N WH)
for the perturbed map. Now,
deg(F!"; By, 1x,) = deg(F™; By,,) [ [ ;= [HY/H.| degg(F™)Bn,,
deg(G!; By, i, N W) = deg(G™2; By,) [ [ 0 = |1HS/H]| degg(G™2)Bu s,
since the suspension of the form z{ — ¢ for Argz; = 0 has degree 1. Note that
HYNHZ/H = (H} N HZ/Hy, N HZ)(H; N HZ/H). The order of the first term

divides |H}/H;|, from (A), and the order of the second divides |H3/Hs], i.e. d
is an integer. O

In general, if [Flp = Y. di[F]r + [F]r and [G]r = Y ¢;[Gy]r + [G)r with
dim/H; = ky, dimT'/H; = ky and [F]p in Iy, 1, [G]r in [y, 1, then [GoF]p =
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Zdiej[ﬁi o éj]p +~[I?]F with [I?h‘* in g, 4+x,—1 and [ﬁl o éj]r = dij[Kij]F7
provided Iso(V) = Iso(W) and (H) holds for (V,W) and (W, U), for instance if

V =RF x W and W = RF2 x U.

PRrROPOSITION 6.6. Under the above hypotheses one has
(GoFlr =Y fulKilr + [K]r  with fy = die;d,

where the second sum is over all (i,j) such that H; N H; = H,.

REMARK 6.3. One may prove the same result, either for maps which are such
that FH0 is non-zero on 0By, , and G is non-zero on OBy, (hence as above
(G o F)X is non-zero on @By, 1, for K < HY N HY and dimT'/K = k; + kg), or
for the generators F; and G, by using Theorem 2.1: in this case, one has

deg(G o F);By,ir,) = Y. BrufulH N HY/H|,
K<H<H)NHY
where BKH corresponds to []lrxqr for the variables in VX N (V)L and K =
H,NHj is such that dimI'/ K = kq + k3. This degree is Bk, deg(FHi;Bk.l),BKHj
x deg(GHi; By,). From Theorem 2.1 and the fact that Brw,Bu, i, = B, for
K < H; < Hy, this degree is
( > ﬂKH,dHJH?/HH)( > EKerHJHJQ/HkD

H;<H;<H? Hj<Hk<H;]

= ( > > BrwBrudmen, |H /H|- HJQ/Hkl)

K<H<H?nH;J HNH,=H

By varying all possible K’s, this will yield fg = ZHlﬂHk:H dm,em,dm, i, , where

dm, i, is defined in Proposition 6.5, after one recalls that Sxr = BKHBKH and
Brw,/Brxn = PBum, for K < H < Hj.

Our final result will concern the case where k1 = 1, ko =0, V =R x W,
W = U. The case dimI'/H; = dimT'/H = 1, dimT'/H; = 0 was treated in
the preceding proposition. There remains only the case dimI'/H = dimI'/H;
= 0, where II(H;) is generated by 77} and 77 with relations pj(njl- +m) =0,
2 = 0, II(H>) is generated by 0y and II(H) by n; and 7 with relations r;(n; + 1)
=0, 217 = 0. Taking the notations of Proposition 6.4, one has the following:

PRrROPOSITION 6.7. Under the above hypotheses one has

(2 0 il = (15 /p;)(I0/ Ha|/|Hy /Hy 0 Ha|)ny]r + d; [f]r,
[n2 om|r = (|U'/Ha|/|Hy/HI)[7]r,

where o; and d; are as in Proposition 6.4.
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Proor. Take X7, X5 and X as auxiliary spaces, as in Proposition 6.4. Then,
on V x (X1 x Xz x X)?2, one has

ny = (1= T112i1, Xo, i, (20 = 0) 23, 21,025, 25,3, Y, X, X)),
2 = (27— +2 - 2H |}/;|3X05 i, Zia qua (}/iq’i - Ei)}/h}/;/aX%Xz{) .

In order to comply with the normalization of 77]1- on OB, we shall take 7 =t —1/2
in [-1/2,1/2] and | X| < 3/2. Then it is easy to see that

n2on; =
(4=2 1112l =2 TT Vil Xoo i, (20" —e0)Zis 20025, 25, (V5 =20, V], X, X ).

3

On the fundamental cell C;, already used in Proposition 6.4, i.e. with Z; in the
last place, one has 7 o 77]1. = d;&} +d'1y’, where d; is computed from deg(72 o 77]1-;
Arg X; = 0), which can be calculated either directly or by using the formula
for the ordinary composition. That is, d; =[], % j(qi /qi). Since we have already
proved that 53- = wjq;n; + dn, we have proved the first formula. The argument
for ng o 171 follows exactly the same lines and is left to the reader. O
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