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Dedicated to Louis Nirenberg on the occasion of his 70th birthday

1. Introduction

Let dϑ ⊂ R2 be the infinite angle of opening ϑ ∈ (0, 2π] with sides γ0 and γ1

given by

γ0 = {0 ≤ x1 <∞, x2 = 0},

γ1 = {x1 = r cosϑ, x2 = r sinϑ, 0 ≤ r =
√
x2

1 + x2
2 <∞}

in a Cartesian coordinate system {x1, x2}. We consider the elliptic boundary
value problem

(1.1)
−∆u+ su = f(x), x ∈ dϑ,(
∂u

∂n
+ hi

∂u

∂r

)∣∣∣∣
γi

= ϕi(r), i = 0, 1,

where n is the exterior normal to γi, h0 and h1 are given real constants, and s

is a complex parameter with <s ≡ a2 ≥ 0.
Problem (1.1) arises from the parabolic initial-boundary value problem

(1.2)
vt −∆v = f(x, t), x ∈ dϑ, t > 0,

v(x, 0) = 0,
(
∂v

∂n
+ hi

∂v

∂r

)∣∣∣∣
γi

= ϕi(r, t), i = 0, 1,
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after taking the Laplace transform with respect to t. We think that problem (1.1)
is of interest in itself and not only in relation to the parabolic case, as studied
in [3]. Here we present a complete discussion of the elliptic problem, which
generalizes the results of [3]. We obtain estimates of the solution of problem
(1.1) which are uniform with respect to s in weighted Sobolev spaces introduced
by V. A. Kondrat’ev for investigation of elliptic boundary value problems in
domains with angular and conical points at the boundary. In these spaces the
distance |x| from the origin, with an appropriate exponent, is the weight.

The spaces in which the solution exists depend on the sign of h0 + h1. We
denote these spaces by Hk

µ(dϑ) (k is a non-negative integer, µ ∈ R) and de-
fine them as completions of the set of complex-valued infinitely differentiable
functions with compact support vanishing near the origin in the norms

‖u‖Hk
µ(dϑ) =

( ∑
|j|≤k

∫
dϑ

|Dju(x)|2|x|2µ−2k+2|j| dx

)1/2

.

We denote the space H0
µ(dϑ) by L2,µ(dϑ) and set

‖u‖2L2,µ(dϑ) =
∫

dϑ

|u|2|x|2µ dx.

It is well known that the space of traces of functions from Hk+1
µ (dϑ) on

γi (and in general on an arbitrary half-line γ = {x1 = r cosω, x2 = r sinω},
ω ∈ [0, ϑ]) is the space Hk+1/2

µ (γ) with the norm

‖u‖
H

k+1/2
µ (γ)

=
( k∑

j=0

∫
γ

|Dju(r)|2r2µ−2k−1+2jdr + ‖u‖2
L

k+1/2
µ (γ)

)1/2

,

where

‖u‖2
L

k+1/2
µ (γ)

=
∫ ∞

0

r2µ dr

∫ r

0

|Dku(r + %)−Dku(r)|2 d%
%2
.

We shall also work in the spaces W k
2,µ(dϑ), k ≥ 1, and in the corresponding

spaces of traces W k−1/2
2,µ (γ) with the norms

‖u‖2W k
2,µ(dϑ) =

∑
0≤|j|≤k

‖Dju‖2L2,µ(dϑ)

and

‖u‖2
W

k−1/2
2,µ (γ)

=
k−1∑
j=0

‖Dju‖2L2,µ(γ) + ‖u‖2
L

k−1/2
µ (γ)

,

respectively.
Our main results are as follows.
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Theorem 1.1. Let <s ≥ 0, µ ≥ 0, βi = arctanhi ∈ (−π/2, π/2), h0 + h1

> 0 and

(1.3) 0 < 1 + k − µ <
β0 + β1

ϑ
.

For every f ∈ Hk
µ(dϑ) ∩W k

2,µ(dϑ) and ϕi ∈ H
k+1/2
µ (γi) ∩W k+1/2

2,µ (γi), i = 0, 1,
problem (1.1) has a unique solution u ∈ Hk+2

µ (dϑ) ∩W k+2
2,µ (dϑ), and

(1.4)
k+2∑
l=0

|s|k+2−l‖u‖2Hl
µ(dϑ)

≤ c1

[ k∑
l=0

|s|k−l‖f‖2Hl
µ(dϑ) +

1∑
i=0

( k∑
l=0

|s|k+1/2−l‖ϕi‖2Hl
µ(γ) + ‖ϕi‖2Hk+1/2

µ (γi)

)]
.

Theorem 1.2. If h0 + h1 ≤ 0 and

(1.5) 0 < 1 + k − µ <
π + β0 + β1

ϑ
,

then for every f ∈W k
2,µ(dϑ) and ϕi ∈W k+1/2

2,µ (γi), i = 0, 1, problem (1.1) has a
unique solution u ∈W k+2

2,µ (dϑ), and

(1.6)
k+2∑
l=0

|s|k+2−l
∑
|j|=l

‖Dju‖2L2,µ(dϑ)

≤ c2

[ k∑
l=0

|s|k−l
∑
|j|=l

‖Djf‖2L2,µ(dϑ)

+
1∑

i=0

( k∑
l=0

|s|k+1/2−l‖Dlϕi‖2L2,µ(γi)
+ ‖ϕi‖2Lk+1/2

µ (γi)

)]
.

Results of this type are proved in [3] only for k = 0 and µ ∈ (0, 1). Here (see
Sections 3–5) a new, complete exposition of existence and uniqueness results and
a priori estimates are given for µ ∈ [0, 1) and k ≥ 0.

In Section 2 we formulate a corollary of Kondrat’ev’s general results which
plays a fundamental role in our arguments. Then we prove auxiliary estimates
in the space W k

2,µ(dϑ) (h0 + h1 ≤ 0) by the construction of special auxiliary
functions.

In Section 6 we prove Theorems 1.1 and 1.2 for every integer k > 0 and µ ≥ 0.
We think that this extension is important since by choosing an appropriate µ
satisfying either (1.3) or (1.5), it is possible, for fixed ϑ, h0 and h1, to obtain a
greater regularity for the solution.

In Section 7 some applications of these results to the parabolic case are given.

Remark. We can also consider problem (1.1) in an n-dimensional dihedral
angle Dϑ = dϑ × Rn−2. After taking the Fourier transform with respect to the
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variables tangential to the edge x1 = x2 = 0 the problem reduces to (1.1) with
the parameter s + |ξ|2 instead of s (here ξ = (ξ3, . . . , ξn) are the dual variables
of the Fourier transform). The above theorems hold true for the transformed
problem (with the parameter |s| in the estimates (1.4) and (1.6) replaced by
|s|+ |ξ|2), and only obvious modifications of the proofs are necessary.

Elliptic boundary value problems in domains with angular and conical points
at the boundary were studied in a pioneering paper of V. A. Kondrat’ev [5] and
in a series of fundamental papers of V. G. Maz’ya and B. A. Plamenevskĭı (see,
for instance, [6] and the bibliography there). Boundary value problems for the
equation −∆u + su = f were considered in [2], [7], [8]. In particular, in [2], [7]
problems with the boundary conditions

∂u

∂n

∣∣∣∣
γ1

= ϕ1,

(
∂u

∂n
+ h0

∂u

∂r
− σu

)∣∣∣∣
γ0

= ϕ0

were studied, and it was made clear that the spaces in which the solution exists
depend on the sign of h0.

2. Auxiliary propositions

In this section we are concerned mainly with the problem

(2.1)
−∆u(x) = f(x) (x ∈ dϑ),(
∂u

∂n
+ h0

∂u

∂r

)∣∣∣∣
γ0

= Φ0,

(
∂u

∂n
+ h1

∂u

∂r

)∣∣∣∣
γ1

= Φ1.

It is well known that the homogeneous problem (f = 0, Φ0 = 0, Φ1 = 0)
has solutions of the form

(2.2) u = rλU(ϕ), r = (x2
1 + x2

2)
1/2, ϕ = arctanx2/x1,

for λ = λm = β0+β1
ϑ + π

ϑm, m = 0,±1,±2, . . . , and for λ = 0. The corresponding
U(ϕ) are defined by

Um(ϕ) = a cos(λmϕ− β0), U(ϕ) = a in the case λ = 0.

They are computed as “eigenvalues” and “eigenfunctions” of the problem

(2.3)
d2U

dϕ2
+ λ2U = 0,

(
dU

dϕ
− h0λU

)∣∣∣∣
ϕ=0

= 0,
(
dU

dϕ
+ h1λU

)∣∣∣∣
ϕ=ϑ

= 0.

Moreover, if h0+h1 = 0, then in the case λ = 0 this problem has an “associated”
function to which there corresponds the solution

u = b(log r + h0ϕ)

of the homogeneous problem (2.1).
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Along with (2.1), we consider the penalized problem

(2.4)
−∆u(x) = f(x) (x ∈ dϑ),(
∂u

∂n
+ h0

∂u

∂r
+ ε

u

r

)∣∣∣∣
γ0

= Φ0,

(
∂u

∂n
+ h1

∂u

∂r

)∣∣∣∣
γ1

= Φ1,

and the corresponding homogeneous problem. The latter has solutions of the
form (2.2) if λ satisfies the equation

(2.5) tan(λϑ− β1)− tanβ0 = ελ−1.

It is easy to show that this equation has only real solutions. Indeed, if
λ = λ′ + iλ′′, then the relation

0 = =[tan(λϑ− β1)− tanβ0 − ελ−1]

=
coshλ′′ϑ sinhλ′′ϑ

cos2(λ′ϑ+ β1) + sinh2 λ′′ϑ
+
λ′′ε

|λ|2

implies λ′′ = 0. We are interested in finding out how the “eigenvalue” λ = 0
is changed when ε becomes positive. If β0 + β1 > 0 (or, what is the same,
h0+h1 > 0), then the left-hand side of (2.5) is negative for 0 < λ < ϑ−1(β0+β1),
so (2.5) has no solutions in the interval [0, ϑ−1(β0+β1)]. However, if β0+β1 ≤ 0,
then the interval (0, λ1) = (0, ϑ−1(π + β0 + β1)) contains one solution of (2.5)
close to zero for small ε.

Now we formulate a corollary of general results of V. A. Kondrat’ev [5] which
will play a fundamental role in our arguments.

Theorem 2.1. 1. For every f ∈ Hk
µ(dϑ) and Φi ∈ H

k+1/2
µ (γi), i = 1, 2,

problem (2.1) (resp. (2.4)) is uniquely solvable in Hk+2
µ (dϑ) and its solution

satisfies the inequality

(2.6) ‖u‖2
Hk+2

µ (dϑ)
≤ c1

(
‖f‖2Hk

µ(dϑ) +
1∑

i=0

‖Φi‖2Hk+1/2
µ (γi)

)
,

provided that 1+k−µ is not an “eigenvalue”, i.e. 1+k−µ 6= 0 and 1+k−µ 6= λm

(resp. 1 + k − µ is not a solution of (2.5)).
2. If f ∈ Hk

µ(dϑ)∩Hk′

µ′ (dϑ) and Φi ∈ Hk+1/2
µ (γi)∩Hk′+1/2

µ′ (γi), i = 0, 1, and
there are no “eigenvalues” between 1 + k− µ and 1 + k′ − µ′, then the solutions
u ∈ Hk+2

µ (dϑ) and u′ ∈ Hk′+2
µ′ (dϑ) of (2.1) resp. (2.4) coincide.

3. If there only is the “eigenvalue” λ = 0 of problem (2.3) between 1 + k− µ
and 1 + k′ − µ′, then

u− u′ = a+ b(log r + h0ϕ), a, b = const,

and b = 0 in the case h0 + h1 6= 0.
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4. If f ∈ L2,µ(dϑ) and Φi ∈ H
1/2
µ (γi), i = 0, 1, then any solution of (2.1)

or (2.4) belonging to H1
µ−1(dϑ) has the second generalized derivatives Dju ∈

L2,µ(dϑ), |j| = 2, and

(2.7) ‖D2u‖2L2,µ(dϑ) ≤ c2

(
‖u‖2H1

µ−1(dϑ) + ‖f‖2L2,µ(dϑ) +
1∑

i=0

‖Φi‖2H1/2
µ (γi)

)
.

Here we have used the notation

‖D2u‖2L2,µ(dϑ) ≡
∑
|j|=2

‖Dju‖2L2,µ(dϑ).

We shall also need estimates of solutions of problem (2.1) in the spaces
W k+2

2,µ (dϑ) similar to those obtained in [8] for the Neumann problem (h0 = h1

= 0).

Theorem 2.2. Let h0 + h1 ≤ 0, µ ∈ [0, 1) and

0 < 1 + k − µ <
π + β0 + β1

ϑ
.

For every f ∈ W k
2,µ(dϑ) and Φi ∈ W

k+1/2
2,µ (γi), i = 0, 1, problem (2.1) has a

solution u(x) with Dju ∈W k
2,µ(dϑ), |j| = 2, satisfying the inequality

(2.8)
∑
|j|=2

‖Dju‖2W k
2,µ(dϑ) ≤ c3

(
‖f‖2W k

2,µ(dϑ) +
1∑

i=0

‖Φi‖2W k+1/2
2,µ (γi)

)
≡ c3Fk.

Any solution u ∈W k+2
2,µ (dϑ) of problem (2.1) satisfies (2.8).

As in [8], this theorem reduces to the preceding one by the construction of a
special auxiliary function.

Proposition 2.1. For all f , Φ0, Φ1 satisfying the hypotheses of Theorem
2.2 there exists a function w ∈ W k+2

2,µ (dϑ), µ ∈ [0, 1), such that g ≡ ∆w + f ∈
Hk

µ(dϑ), ψi ≡ Φi − ∂w
∂n − hi

∂w
∂r ∈ H

k+1/2
µ (γi), and

‖w‖2
W k+2

2,µ (dϑ)
+ ‖g‖2Hk

µ(dϑ) +
1∑

i=0

‖Φi‖2Hk+1/2
µ (γi)

≤ c4Fk.

Now (2.1) reduces to the problem

−∆v = g,

(
∂v

∂n
+ hi

∂v

∂r

)∣∣∣∣
γi

= ψi, i = 0, 1,

for the function v = u − w. Since g ∈ Hk
µ(dϑ) and ψi ∈ H

k+1/2
µ (γi), Theorem

2.1 can be applied.
The construction of w (which is different for µ > 0 and for µ = 0) relies on

the following proposition.
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Proposition 2.2. Let f(x) and Φi(r), i = 0, 1, be homogeneous polynomials
of degrees l − 2 and l − 1 ≥ 0, respectively:

f(x) =
∑

l1+l2=l−2

fl1,l2x
l1
1 x

l2
2 , Φi = Air

l−1, i = 0, 1.

If l 6= λm, then problem (2.1) has a unique solution which is also a homogeneous
polynomial of degree l:

u(x) =
∑

l1+l2=l

ul1,l2x
l1
1 x

l2
2 .

Proof. It is easily seen that under the above hypotheses problem (2.1)
has a unique homogeneous solution of the form (2.2) with λ = l. But it can
only be a polynomial: indeed, v = Dju, |j| = l − 1, is a harmonic function
of the form v = rV (ϕ) with V satisfying the equation V ′′ + V = 0, hence,
V = a cosϕ+ b sinϕ, i.e. v = ax1 + bx2, which proves the proposition.

Further arguments are similar to those in [7]. For µ > 0 the construction of
w is simpler and it reduces to finding a polynomial

P (x) =
∑

1≤|j|≤k

pj1j2

xj1
1

j1!
xj2

2

j2!

such that

−∆P =
∑

|j|≤k−2

xj1
1

j1!
xj2

2

j2!
Djf |x=0,

(
∂P

∂n
+ hi

∂P

∂r

)∣∣∣∣
γi

=
k−1∑
j=0

rj

j!
djΦi

drj

∣∣∣∣
r=0

, i = 0, 1

(the existence of P (x) follows from Proposition 2.2). The auxiliary function
equals w(x) = P (x)ζ(x), where ζ ∈ C∞

0 (R2) is equal to 1 for |x| ≤ 1/2 and to
zero for |x| ≥ 1.

For µ = 0, w has the form

w(x) =
k+1∑
j=1

w(j)(x),

where w(j) ∈W k+2
2 (dϑ) ∩Hj

0(dϑ) satisfy the conditions

f (j) ≡ ∆w(j) + f (j−1) ∈ Hj−1
0 (dϑ), j = 1, . . . , k + 1, f (0) = f,

Φ(j)
i ≡

(
Φj−1

i

∂w(j)

∂n
+ hi

∂w(j)

∂r

)∣∣∣∣
γi

∈ Hj−1/2
0 (γi), i = 0, 1, j = 1, . . . , k + 1,

Φ(0)
i = Φi
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and the inequality

(2.9) ‖w(j)‖2
W k+2

2 (dϑ)
+ ‖f (j)‖2

Hj−1
0 (dϑ)

+
1∑

i=0

‖Φ(j)
i ‖2

H
j−1/2
0 (γi)

≤ c5Fk.

The construction of w(k) is also carried out with the help of Proposition 2.2
(see [8], §3).

Remark. As pointed out in [8] (see the end of §3), it is possible to introduce
a positive parameter into the norms in inequalities (2.8) and (2.9). In particular,
along with (2.8) we have the inequality

(2.10)
∑

2≤|j|≤k+2

bk+2−|j|‖Dju‖2L2,µ(dϑ)

≤ c6

[ ∑
|j|≤k

bk−|j|‖Djf‖2L2,µ(dϑ)

+
1∑

i=0

(
‖Φi‖2Lk+1/2

µ (γi)
+

k∑
j=0

bk+1/2−|j|‖DjΦi‖2L2,µ(γi)

)]
,

where c6 is a constant independent of the parameter b > 0.
To conclude this section, we quote several useful inequalities involving L2,µ-

norms of the functions given in dϑ or on γi (see [2], [7], [8]). We mean, first of
all, well known estimates of traces of functions from H1

µ(dϑ) or W 1
2,µ(dϑ) on γi,

i.e.

‖u‖
H

1/2
µ (γi)

≤ c7‖u‖H1
µ(dϑ),(2.11)

‖u‖
L

1/2
µ (γi)

≤ c8‖∇u‖L2,µ(dϑ),(2.12)

interpolation inequalities

‖u‖L2,µ′ (dϑ) ≤ c9‖∇u‖µ−µ′

L2,µ(dϑ)‖u‖
1−µ+µ′

L2,µ(dϑ),(2.13)

‖u‖L2,ν(γi) ≤ c10‖∇u‖1/2+µ−ν
L2,µ(dϑ) ‖u‖

1/2−µ+ν
L2,µ(dϑ) ,(2.14)

where µ ∈ [0, 1], µ′ ∈ [µ− 1, µ] for µ > 0, µ′ ∈ (−1, 0] for µ = 0, ν ∈ [µ− 1/2, µ]
for µ > 0, ν ∈ (−1/2, 0] for µ = 0, and a variant of the Hardy inequality

(2.15) ‖u‖Lµ−1/2(γi) ≤ c11‖u‖L
1/2
µ (γi)

.

Finally, for all positive a and R > a−1 we have the estimate (see [2])

(2.16) a

∫
γi(a−1,R)

|u(r)|2r2µ dr ≤ c12

∫
dϑ(a−1,R)

(|∇u|2 + a2|u|2)|x|2µ dx,

where γi(a−1, R) and dϑ(a−1, R) are the intersections of γi and dϑ, respectively,
with the domain a−1 < |x| < R, and the constant c12 is independent of a and R.
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3. A priori estimates

In the next two sections we prove the following propositions.

Proposition 3.1. Let h0 + h1 > 0, <s = a2 ≥ 0, µ ∈ [0, 1) and

0 < 1− µ <
β0 + β1

ϑ
, βi = arctanhi ∈ (−π/2, π/2), i = 0, 1.

Any solution u ∈ H2
µ(dϑ) ∩W 2

2,µ(dϑ) of problem (1.1) satisfies the inequality

(3.1) ‖u‖2H2
µ(dϑ) + |s| · ‖u‖2H1

µ(dϑ) + |s|2‖u‖2L2,µ(dϑ) + |s|1−µ‖∇u‖2L2(dϑ)

+ |s|2−µ‖u‖2L2(dϑ)

≤ c1

[
‖f‖2L2,µ(dϑ) +

2∑
i=1

(‖ϕi‖2H1/2
µ (γi)

+ |s|1/2‖ϕi‖2L2,µ(γi)
)
]
.

Proposition 3.2. Let h0 + h1 ≤ 0, <s = a2 ≥ 0, µ ∈ [0, 1) and

0 < 1− µ <
π + β0 + β1

ϑ
.

Any solution u ∈W 2
2,µ(dϑ) of problem (1.1) satisfies the inequality

(3.2) ‖D2u‖2L2,µ(dϑ) + |s| · ‖∇u‖2L2,µ(dϑ) + |s|2‖u‖2L2,µ(dϑ) + |s|1−µ‖∇u‖2L2(dϑ)

+ |s|2−µ‖u‖2L2(dϑ)

≤ c2

[
‖f‖2L2,µ(dϑ) +

2∑
i=1

(‖ϕi‖2L1/2
µ (γi)

+ |s|1/2‖ϕi‖2L2,µ(γi)
)
]
.

These propositions are proved in several steps, made for both cases simulta-
neously.

Step 1: The estimate of ‖∇u‖L2(dϑ). We multiply equation (1.1) by u,
integrate over dϑ and equate the real parts of both sides of the resulting equation.
Taking account of the boundary conditions we obtain after integration by parts

(3.3)
∫

dϑ

(|∇u|2 + a2|u|2) dx+ <
1∑

i=0

hi

∫
γi

∂u

∂r
u dr

= <
( ∫

dϑ

fu dx+
1∑

i=0

∫
γi

ϕiu dr

)
≡ <l(u).

We observe that

<
1∑

i=0

hi

∫
γi

∂u

∂r
u dr =

1
2

1∑
i=0

hi

∫
γi

(
∂u

∂r
u+

∂u

∂r
u

)
dr

= −1
2
(h0 + h1)|u(0)|2 ≥ 0
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(since in the case h0 + h1 > 0 we have u ∈ H2
µ(dϑ) and, as a consequence,

u(0) = 0). The functional l(u) can be estimated by the Hölder inequality and
by (2.13), (2.14):

|l(u)| ≤ ‖f‖L2,µ(dϑ)‖u‖L2,−µ(dϑ) +
1∑

i=0

‖ϕi‖L2,ν(γi)‖u‖L2,−ν(γi)

≤ c3‖f‖L2,µ(dϑ)‖∇u‖µ
L2(dϑ)‖u‖

1−µ
L2(dϑ)

+ c3

1∑
i=0

‖ϕi‖L2,ν(γi)‖∇u‖
β
L2(dϑ)‖u‖

1−β
L2(dϑ),

where ν = max(0, µ− 1/2) and β = 1/2 + ν. Next, we multiply (3.3) by |s|1−µ

and make use of the elementary inequalities

|s|1−µ‖∇u‖µ
L2(dϑ)‖u‖

1−µ
L2(dϑ) ≤ (|s|1−µ‖∇u‖2L2(dϑ) + |s|2−µ‖u‖2L2(dϑ))

1/2,

|s|3/4−µ/2−ν/2‖∇u‖β
L2(dϑ)‖u‖

1−β
L2(dϑ) ≤ (|s|1−µ‖∇u‖2L2(dϑ) + |s|2−µ‖u‖2L2(dϑ))

1/2

and, in the case µ ∈ (0, 1/2), of the estimate

|s|1/4−µ/2‖ϕi‖L2(γi) ≤ |s|1/4−µ/2‖ϕi‖1−2µ
L2,µ(γi)

‖ϕi‖2µ
L2,µ−1/2(γi)

≤ c4(|s|1/2‖ϕi‖2L2,µ(γi)
+ ‖ϕi‖2L2,µ−1/2(γi)

)1/2

(for µ = 0 the final inequality is evident). By (2.15), this leads to

(3.4) |s|1−µ|l(u)| ≤ c5F
1/2

[
|s|1−µ

∫
dϑ

(|∇u|2 + |s| · |u|2) dx
]1/2

and

(3.5) |s|1−µ

∫
dϑ

(|∇u|2 + a2|u|2) dx ≤ c6(F + F 1/2A
1/2
1 ),

where

(3.6)
F = ‖f‖2L2,µ(dϑ) +

1∑
i=0

(‖ϕi‖2L1/2
µ (γi)

+ |s|1/2‖ϕi‖2L2,µ(γi)
),

A1 = |s|2−µ

∫
dϑ

|u|2 dx.

Step 2: The estimate of ‖∇u‖L2,µ(dϑ). Suppose that µ > 0. Multiplying
(1.1) by u|x|2µ and integrating, we obtain from (3.3) the equation

(3.7)
∫

dϑ

(|∇u|2 + a2|u|2)|x|2µ dx+ <
1∑

i=0

hi

∫
γi

∂u

∂r
ur2µ dr

+ <
∫

dϑ

∇u · ∇|x|2µu dx = <l(u|x|2µ).
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It is easily seen that

<
∫

γi

∂u

∂r
ur2µ dr = −µ

∫
γi

|u|2r2µ−1 dr ≤ µ‖u‖2γ
L2,µ(γi)

‖u‖2(1−γ)
L2,−ν(γi)

,

where ν ∈ (max(0, 1/2− µ), 1/2) and γ = 1− 1/[2(ν + µ)].

We estimate the other terms in (3.7) also by the Hölder inequality and arrive
at ∫

dϑ

(|∇u|2 + a2|u|2)|x|2µ dx

≤ 2µ‖∇u‖L2,µ(dϑ)‖u‖L2,µ−1(dϑ)

+ µ
1∑

i=0

|hi| · ‖u‖2γ
L2,µ(γi)

‖u‖2(1−γ)
L2,−ν(γi)

+ ‖f‖L2,µ(dϑ)‖u‖L2,µ(dϑ)

+
1∑

i=0

‖ϕi‖L2,µ(γi)‖u‖L2,µ(γi).

Now, we multiply both sides of this inequality by |s| and make use of the esti-
mates (they follow from (2.13), (2.14) and from the Young inequality)

|s|1/2‖u‖L2,µ−1(dϑ) ≤ c7|s|1/2‖∇u‖1−µ
L2(dϑ)‖u‖

µ
L2(dϑ)

≤ c8(F + F 1/2A
1/2
1 )(1−µ)/2A

µ/2
1 ,

|s|3/4‖u‖L2,µ(γi) ≤ c9|s|3/4‖∇u‖1/2
L2,µ(dϑ)‖u‖

1/2
L2,µ(dϑ) ≤ c9A

1/2,

|s|3/4−µ/2−ν/2‖u‖L2,−ν(γi) ≤ c10(|s|(1−µ)/2‖∇u‖L2(dϑ))β(|s|1−µ/2‖u‖L2(dϑ))1−β

≤ c11(F + F 1/2A
1/2
1 )1/2,

where we have set β = 1/2 + ν and

A = |s|
∫

dϑ

(|∇u|2 + |s| · |u|2)|x|2µ dx+ |s|2−µ

∫
dϑ

|u|2 dx.

This leads to

(3.8) |s|
∫

dϑ

(|∇u|2 + a2|u|2)|x|2µ dx

≤ c12[F 1/2A1/2 + F 1/4A3/4 +Aγ′(F + F 1/2A1/2)1−γ′ ]

≤ c13[F 1/2A1/2 + F 1/4A3/4 + F 1−γ′Aγ′ + F (1−γ′)/2A(1+γ′)/2] ≡ H[F,A],

with γ′ = max(γ, µ/2) ∈ (0, 1).
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Step 3: The estimate of A. After multiplication of (1.1) by u|x|2µ(1 −
i sign=s) and integration we obtain

(3.9) (a2 + |=s|)
∫

dϑ

|u|2|x|2µ dx+
∫

dϑ

|∇u|2|x|2µ dx

+ <(1− i sign=s)
∫

dϑ

∇u · ∇|x|2µu dx

+ <(1− i sign=s)
1∑

i=0

hi

∫
γi

∂u

∂r
ur2µ dr

= <(1− i sign=s)l(u|x|2µ).

The right-hand side and the volume integral on the left-hand side are estimated
as above, but in the integrals over γi we cannot get rid of ∂u/∂r by integration
by parts. We multiply (3.9) by |s| and estimate these integrals by the Hölder
inequality and by (2.14) as follows:

|s|
∣∣∣∣<(1− i sign=s)

1∑
i=0

∫
γi

∂u

∂r
ur2µ dr

∣∣∣∣
≤ c14|s|

∥∥∥∥∂u∂r
∥∥∥∥

L2,µ(γi)

‖u‖L2,µ(γi)

≤ c15|s| · ‖D2u‖1/2
L2,µ(dϑ)‖∇u‖L2,µ(dϑ)‖u‖

1/2
L2,µ(dϑ).

But |s| ·‖∇u‖2L2,µ(dϑ) is already estimated (see (3.7)), so the right-hand side does

not exceed c16‖D2u‖1/2
L2,µ(dϑ)A

1/4H1/2[F,A], and we easily obtain

(3.10) A ≤ c17H[F,A] + c16‖D2u‖1/2
L2,µ(dϑ)A

1/4H1/2[F,A].

Step 4: Estimate of D2u and the end of proof. We consider u as a solution
of the problem

(3.11)
−∆u = −su+ f ≡ f1 (x ∈ dϑ),(
∂u

∂n
+ hi

∂u

∂r

)∣∣∣∣
γi

= ϕi, i = 0, 1,

and apply Theorem 2.1 or Theorem 2.2, for k = 0. This gives

‖u‖2H2
µ(dϑ) ≤ c18

(
‖f1‖2L2,µ(dϑ) +

1∑
i=0

‖ϕi‖2H1/2
µ (γi)

)

≤ 2c18

(
‖f‖2L2,µ(dϑ) +

1∑
i=0

‖ϕi‖2H1/2
µ (γi)

+A

)
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and

(3.12) ‖D2u‖2L2,µ(dϑ) ≤ c19

(
‖f‖2L2,µ(dϑ) +

1∑
i=0

‖ϕi‖2L1/2
µ (γi)

+A

)
in the first and in the second case, respectively.

These inequalities together with (3.10) make it possible to estimate A by the
right-hand side of (3.1) or (3.2). Then by (3.5), (3.10) and (3.12) we prove (3.2).
In order to prove (3.1) it is sufficient to estimate |s| · ‖u‖2H1

µ(dϑ); we have

|s| · ‖u‖2H1
µ(dϑ) ≤ A+ |s| · ‖u‖2L2,µ−1(dϑ) ≤ A+ |s| · ‖u‖L2,µ(dϑ)‖u‖L2,µ−2(dϑ)

≤ A+A1/2‖u‖H2
µ(dϑ) ≤ c20

(
‖f‖2L2,µ(dϑ) +

1∑
i=0

‖ϕi‖2H1/2
µ (γi)

)
,

which completes the proof of (3.1).

4. The solvability of problem (1.1)

In this section we establish the existence of the solutions of problem (1.1)
estimated in §3. It suffices to do this for smooth data f, ϕ0, ϕ1 with compact
supports.

We consider a penalized problem

(4.1)
−∆uε + suε = f,(
∂uε

∂n
+ h0

∂uε

∂r
+
ε

r

)∣∣∣∣
γ0

= ϕ0,

(
∂uε

∂n
+ h1

∂uε

∂r

)∣∣∣∣
γ1

= ϕ1,

for small positive ε under the hypothesis <s = a2 > 0 (once the regularity of the
solution of problem (1.1) is established, we can apply the above a priori estimates
and let a tend to zero if necessary). We define a weak solution of this problem
as a function uε ∈W 1

2 (dϑ) ∩H1
0 (dϑ) satisfying the integral identity

(4.2) Qε[uε, η] = l(η),

where

Qε[uε, η] =
∫

dϑ

(∇uε · ∇η + suεη) dx−
1∑

i=0

hi

∫
γi

uε
∂η

∂r
dr + ε

∫
γ0

uεη
dr

r
,

for every smooth η with compact support vanishing near the origin. Since∫
γi

uε(r)
∂η(r)
∂r

dr =
1
2π

∫ ∞

−∞
%ûε(−%)η̂(%) d%,

where η̂(%) =
∫∞
0
η(r)e−i%rdr is the Fourier transform of the function η extended

by zero into the half-axis r < 0, the form Qε[u, η] can be extended by continuity
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to all u, η ∈W 1
2 (dϑ) ∩H1

0 (dϑ). In addition,

<Qε[u, u] =
∫

dϑ

(|∇u|2+a2|u|2) dx+ε
∫

γ0

|u|2 dr
r
≥ c1(ε)(‖u‖2H1

0 (dϑ)+‖u‖
2
W 1

2 (dϑ))

(the last inequality is due to V. A. Kondrat’ev, see [5]). From the estimates of §3
it is clear that l(η) is a linear continuous functional on W 1

2 (dϑ), so the existence
of a unique generalized solution follows from the Lax–Milgram theorem. From
the regularity theorems for the solutions of elliptic boundary value problems it
follows that uε ∈ W 2

2 (ω) in every bounded subdomain ω of dϑ, maybe adjacent
to the boundary but bounded away from the origin. To clarify the regularity
properties of a generalized solution, we need to estimate it uniformly with respect
to ε.

Setting η = a2−2µuε, µ ∈ [0, 1), in (4.2), taking the real part of both sides,
and then estimating the right-hand side precisely as above (see Step 1) we arrive
at estimate (3.5) with a2 instead of |s|, i.e. at

(4.3) a2−2µ

( ∫
dϑ

(|∇uε|2 + a2|uε|2) dx+ ε

∫ ∞

0

|uε|2
dr

r

)
≤ c2F,

where F is given in (3.6).
Next, we show that uε,∇uε ∈ L2,µ(dϑ).

Proposition 4.1. The function uε belongs to L2,µ(dϑ) together with its
gradient, and

(4.4) a2

∫
dϑ

(|∇uε|2 + a2|uε|2)|x|2µ dx+ εa2

∫
γ0

|uε|2r2µ−1 dr ≤ c3F.

Proof. We set η = a2uε min(|x|2µ, R2µ) in (4.2) with arbitrarily large R > 0
(because of the presence of the integral over the boundary it would be better
to take η = (1− ζ%(x))uε min(|x|2µ, R2µ), where ζ%(x) = ζ(x%−1), ζ ∈ C∞

0 (Rn),
ζ(x) = 1 near 0, and then to pass to the limit as %→ 0; see [3] for details). After
integration by parts we obtain

(4.5) a2

∫
dϑ,R

(|∇uε|2 + a2|uε|2)|x|2µ dx− a2<
1∑

i=0

µhi

∫
γi,R

|uε|2r2µ−1 dr

+ a2ε

∫ ∞

0

|uε|2r2µ−1 dr + a2<
∫

dϑ,R

∇uε · ∇|x|2µuε dx

≤ a2<l(uε min(|x|2µ, R2µ)),

where dϑ,R and γi,R are the intersections of dϑ and γi with the ball |x| < R.
Now we repeat the arguments of Step 2 in §3, but, since the boundedness of

the L2,µ-norm of ∇uε in the whole dϑ is not yet proved, we should not let this
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norm arise in the process of estimates. By (2.13) and the Young inequality, we
have

a2

∣∣∣∣ ∫
dϑ,R

∇uε · ∇|x|2µuε dx

∣∣∣∣
≤ 2µa2

( ∫
dϑ,R

|∇uε|2|x|2µ dx

)1/2

‖uε‖L2,µ−1(dϑ)

≤ 2µ
(
a2

∫
dϑ,R

|uε|2|x|2µ dx

)1/2(
a2−2µ

∫
dϑ

(|∇uε|2 + a2|uε|2) dx
)1/2

;

moreover, using estimate (2.16) in dϑ,R \ dϑ,a−1 , we obtain

a3

∫
γi,R

|uε|2r2µ dr ≤ a3−2µ

∫
γi,a−1

|uε|2dr + a3

∫
γi,R\γi,a−1

|uε|2r2µ dr

≤ a3−2µ‖uε‖L2(dϑ)‖uε‖L2(dϑ)

+ c3a
2

∫
dϑ,R\dϑ,a−1

(|∇uε|2 + a2|uε|2)|x|2µ dx

and

a2

∫
γi,R

|uε|2r2µ−1 dr

≤ a2

( ∫
γi,R

|uε|2r2µ dr

)γ( ∫
γi

|uε|2r−2ν dr

)1−γ

≤ c4

(
a2

∫
dϑ,R

(|∇uε|2 + a2|uε|2)|x|2µ dx+ a2−2µ

∫
dϑ

(|∇uε|2 + a2|uε|2) dx
)
,

where, as above, γ = 1 − 1/[2(µ + ν)]. The right-hand side of (4.5) can be
estimated in the same way, and we arrive at the inequality

a2

∫
dϑ,R

(|∇uε|2 + a2|uε|2)|x|2µ dx+ εa2

∫
γ0,R

|uε|2r2µ−1 dr ≤ c5F,

which implies (4.4).

5. Bounds for second derivatives

Now we show that the solution of problem (2.4) has a bounded norm
‖D2u‖L2,µ(dϑ).

Proposition 5.1. If the hypotheses of Proposition 3.1 or 3.2 are satisfied,
then problem (1.1) has a solution u ∈ H2

µ(dϑ) ∩ W 2
2,µ(dϑ) or u ∈ W 2

2,µ(dϑ),
respectively.

Proof. We consider the cases h0 + h1 > 0 and h0 + h1 ≤ 0 separately.
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Case 1: h0 +h1 > 0. In this case we show that the solution of the penalized
problem (4.1) belongs to H2

µ(dϑ). Clearly, uε,R = uεζR(x), where ζR(x) =
ζ(x/R), belongs to H1

0 (dϑ) and is a solution of the problem (2.4) with the right-
hand sides

(5.1) fR ≡ (f − suε)ζR − 2∇ζR · ∇uε − uε∆ζR

and

(5.2) Φi,R ≡
(
ϕ0ζR + hiuε

∂ζR
∂r

)∣∣∣∣
γ0

, i = 0, 1.

Since the supports of f and Φi are compact, we have fζR = f and ϕiζR = ϕi if
R is large enough, and

‖fR‖L2,µ′ (dϑ) ≤ ‖f‖L2,µ′ (dϑ) + |s| · ‖uε‖L2,µ′ (dϑ)

+ c1

(
1
R
‖uε‖L2,µ′ (dϑ) +

1
R2
‖uε‖L2,µ′ (dϑ)

)
,

‖Φi,R‖H
1/2
µ′ (γi)

≤ ‖ϕi‖H
1/2
µ′ (γi)

+ c2‖uεζ
′
R‖H

1/2
µ′ (γi)

,

for all µ′ ∈ [µ, 1]. Hence, by (4.3), the H1
0 (dϑ)-norm of uε,R is bounded by a

constant independent of R, and by Theorem 2.1, uε,R ∈ H2
1 (dϑ). On the other

hand, the same problem (2.4) has a solution wε,R ∈ H2
µ(dϑ). Since the interval

(0, 1 − µ) contains no solutions of equation (2.5), wε,R = uε,R ∈ H2
µ(dϑ). For

small ε the estimate

‖uε,R‖H2
µ(dϑ) ≤ c3

(
‖fR‖L2,µ(dϑ) +

∥∥∥∥Φ0,R −
ε

r
uε,R

∥∥∥∥
H

1/2
µ (γ0)

+ ‖Φ1,R‖H
1/2
µ (γ1)

)
implies

‖uε,R‖H2
µ(dϑ)

≤ c4

(
‖f‖L2,µ(dϑ) + |s| · ‖uε‖L2,µ(dϑ) +

1∑
i=0

‖ϕ‖
H

1/2
µ (γi)

+ ‖uε∇ζR‖H1
µ(dϑ)

)
.

Taking the limit as R→∞ we conclude that uε ∈ H2
µ(dϑ), and

‖uε‖H2
µ(dϑ) ≤ c4

(
‖f‖L2,µ(dϑ) + |s| · ‖uε‖L2,µ(dϑ) +

1∑
i=0

‖ϕi‖H
1/2
µ (γi)

)
.

But the L2,µ(dϑ)-norm of uε has already been estimated uniformly with respect
to ε, so we see that problem (1.1) also has a solution u ∈ H2

µ(dϑ).

Case 2: h0+h1 ≤ 0. In this case the above arguments fail. We cannot affirm
that wε,R = uε,R, since the interval (0, (π + β0 + β1)ϑ−1) contains a solution of
equation (2.5). Therefore we pass to the limit as ε → 0. The limiting function
u ∈ W 1

2 (dϑ) is a generalized solution of problem (1.1). It satisfies identity (4.2)
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with ε = 0 for every smooth η(x) vanishing near the origin with a compact
support, and inequalities (4.3)–(4.5) (also with ε = 0). Moreover, D2u ∈ L2(ω)
for each bounded ω ⊂ dϑ with dist(ω, 0) > 0. Let us show that D2u ∈ L2,µ(dϑ).
Assume first that µ > 0. The function uR = uζR has the same differentiability
properties as u, and it is a solution of the problem

(5.3)
−∆uR = fR,(
∂uR

∂n
+ hi

∂uR

∂r

)∣∣∣∣
γi

= Φi,R,

where fR and Φi,R are defined in terms of u according to formulas (5.1), (5.2).
Clearly, fR ∈ L2,µ(dϑ) ∪ L2,1+λ(dϑ), Φi,R ∈ H

1/2
µ (γi) ∪ H1/2

1+λ(γi) with a small
λ > 0, and uR ∈ H1

λ(dϑ). Hence, by Theorem 2.1, uR ∈ H2
1+λ(dϑ). On the other

hand, problem (5.3) has a solution wR ∈ H2
µ(dϑ). Since the interval (−λ, 1− µ)

contains the “eigenvalue” λ = 0, we conclude in the case h0 + h1 < 0 that

(5.4) uR − wR = const = uR(0)

and that

‖D2uR‖L2,µ(dϑ) ≤ c5

(
‖fR‖L2,µ(dϑ) +

1∑
i=0

‖Φi,R‖H
1/2
µ (γi)

)
.

The right-hand side is uniformly bounded for large R, so D2u ∈ L2,µ(dϑ).
If h0 + h1 = 0, then

uR − wR = aR + bR(log r + h0ϕ),

but the last term (if it is different from zero) has an unbounded Dirichlet integral
in every neighbourhood of the origin, therefore bR = 0. Hence, (5.4) holds and
the same conclusion as above can be made.

Let us turn to the case µ = 0. Since the supports of f and ϕi are compact, it
follows that f ∈ L2(dϑ) ∩ L2,µ(dϑ), ϕi ∈ W 1/2

2 (γi) ∩W 1/2
2,µ (γi) for all µ ∈ (0, 1),

and, as we have seen, u ∈W 2
2,µ(dϑ). Further, let w ∈W 2

2 (dϑ) be such that

(5.5) ψi ≡
(
ϕi −

∂w

∂n
− hi

∂w

∂r

)∣∣∣∣
γi

∈ H1/2
0 (γi)

and

(5.6) ‖w‖2W 2
2 (dϑ) +

1∑
i=0

‖ψi‖2H1/2
0 (γi)

≤ c6

1∑
i=0

‖ϕi‖2W 1/2
2 (γi)

(see §2). Without restriction of generality we can assume that the support of w
is compact (since multiplication of w by the cut-off function ζR does not destroy
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(5.5), (5.6)), so w ∈W 2
2 (dϑ) ∩W 2

2,µ(dϑ). It is easily seen that u = w + v, where
v is a solution of the problem

−∆v = f − su+ ∆w,
(
∂v

∂n
+ hi

∂v

∂r

)∣∣∣∣
γi

= ψi, i = 0, 1.

As f−su+∆w ∈ L2(dϑ)∩L2,µ(dϑ) and ψi ∈ H1/2
0 (γi)∩H1/2

µ (γi), we can conclude
by Theorem 2.1 that v ∈ H2

0 (dϑ)∩H2
µ(dϑ). Hence, u ∈W 2

2 (dϑ)∩W2,µ(dϑ), and
the proof of Proposition 5.1 is complete.

Remark. In the case h0 + h1 ≤ 0 we have proved that problem (1.1) with
<s = a2 > 0 has a generalized solution u ∈ W 1

2 (dϑ). This solution is unique,
or, what is the same, each generalized solution of the homogeneous problem
vanishes. This can be established by setting η = uζ(x, δ) and letting δ → 0.
Here

ζ(x, δ) = ψ

(
log

log |x|
log δ

)
,

where ψ ∈ C∞
0 (R), ψ(t) = 0 for t ≥ 1, ψ(t) = 1 for t ≤ 0. With this choice of η

we easily arrive at the inequality∫
dϑ∩{|x|>δ}

(|∇u|2 + a2|u|2) dx ≤ z(δ)

with z(δ) → 0 as δ → 0 (see Theorem 3.4 of [3] for details). In the proof of this
inequality the condition h0 + h1 ≤ 0 is used. For h0 + h1 > 0 the proof fails,
and the existence of a unique generalized solution of problem (1.1) in W 1

2 (dϑ)
is problematic. However, the uniqueness of the solution u ∈ H2

µ(dϑ) obtained
above follows from the a priori estimate (3.1).

6. The case k > 0, µ ≥ 0

We proceed to the proof of Theorems 1.1 and 1.2 for all k > 0 and consider
two cases: µ ∈ [0, 1) and µ ≥ 1.

Step 1: µ ∈ [0, 1). Let us start with Theorem 1.1. It is easily seen that
every f ∈ W k

2,µ(dϑ) ∩ Hk
µ(dϑ) belongs to the union of the spaces W l

2,µ(dϑ) ∩
H l

µ(dµ), l = 0, . . . , k; in addition, ϕi ∈ W
k+1/2
2,µ (γi) ∩ Hk+1/2

µ (γi) implies ϕi ∈⋂k
l=0W

l+1/2
2,µ (γi)∩H l+1/2

µ (γi). As shown above, problem (1.1) has a solution u ∈
W 2

2,µ(dϑ)∩H2
µ(dϑ) which we consider as a solution of (3.11). As f1 ∈W 1

2,µ(dϑ)∩
H1

µ(dϑ), according to Theorem 2.1, u ∈ H3
µ(dϑ), hence, u ∈ W 3

2,µ(dϑ) ∩H3
µ(dϑ).

If k > 1, we can repeat this argument and show that u ∈W 4
2,µ(dϑ)∩H4

µ(dϑ) etc.
By (2.6),

(6.1) |s|k−l‖u‖2
Hl+2

µ (dϑ)

≤ c1|s|k−l

(
‖f‖2Hl

µ(dϑ) + |s|2‖u‖2Hl
µ(dϑ) +

1∑
i=0

‖ϕi‖2Hl+1/2
µ (γi)

)
, l = 0, . . . , k.

These inequalities and (3.1) imply (1.2).
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Theorem 1.2 is proved in a similar way. Proposition 3.2 guarantees that
u ∈W 2

2,µ(dϑ), hence, f1 ∈W 1
2,µ(dϑ). By Theorem 2.2 applied to problem (3.11),

u ∈W 3
2,µ(dϑ) etc. Inequality (2.10) with b = |s|1/2 implies

(6.2) |s|k−l
∑

|j|=l+2

‖Dju‖2L2,µ(dϑ)

≤ c2

[ ∑
|j|≤l

|s|k−|j|(‖Djf‖2L2,µ(dϑ) + |s|2‖Dju‖2L2,µ(dϑ))

+
1∑

i=0

( l∑
m=0

|s|l+1/2−m‖Dm
r ϕi‖2L2,µ(γi)

+ ‖ϕi‖2Ll+1/2
µ (γi)

)]
for l = 0, . . . , k. These inequalities and (3.2) yield (1.6).

Step 2: µ ≥ 1, k > 0. We start the consideration of this case with Theorem
1.2. Observe that, by the Hardy inequality

(6.3) ‖f‖2L2,µ−j(dϑ) ≤ c3
∑
|m|=j

‖Dmf‖2L2,µ(dϑ),

f belongs to W k′

2,µ′(dϑ) and the estimate

‖f‖2
W k′

2,µ′ (dϑ)
≤ c3‖f‖2W k

2,µ(dϑ)

holds with µ′ = µ − [µ] ∈ [0, 1) and k′ = k − [µ] (the condition 1 + k − µ > 0
guarantees non-negativity of k′). We also have the inequality

‖ϕi‖2
W

k′+1/2
2,µ′ (γi)

≤ c4‖ϕi‖2W k+1/2
2,µ (γi)

.

Therefore problem (1.1) has a solution u ∈W k′+2
2,µ′ (dϑ), and

(6.4)
r+2∑
l=0

|s|r+2−l
∑
|j|=l

‖Dju‖2L2,µ′ (dϑ)

≤ c5

[ r∑
l=0

|s|r−l
∑
|j|=l

‖Djf‖2L2,µ′ (dϑ)

+
1∑

i=0

( r∑
l=0

|s|r+1/2−l‖Dlϕi‖2L2,µ′ (γi)
+ ‖ϕi‖2Lr+1/2

2,µ′ (γi)

)]
, r = 0, . . . , k′.

Next, we show that this solution belongs to W k+2
2,µ (dϑ) and we estimate its

norm. For this we need the following auxiliary proposition whose proof will be
given in the Appendix.
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Proposition 6.1. The solution of problem (2.1) satisfies the inequality

(6.5)
∑

|j|=l+2

‖Dju‖2L2,µ(dϑ)

≤ c6

[ ∑
|j|=l

‖Djf‖2L2,µ(dϑ) +
∑

|j|=l+1

‖Dju‖2L2,µ−1(dϑ)

+
1∑

i=0

‖Dl
rΦi‖2L1/2

µ (γi)

]
, µ ≥ 1.

First of all, we obtain an a priori estimate for I(µ) ≡ ‖∇u‖2L2,µ(dϑ) +
|s| · ‖u‖2L2,µ(dϑ) using equations (3.7) and (3.9) (our arguments here apply also
to Theorem 1.1). Equation (3.7) implies∫

dϑ

(|∇u|2 + a2|u|2)|x|2µ dx

≤ c7

( ∫
dϑ

|u|2|x|2µ−2 dx+
1∑

i=0

∫
γi

|u|2r2µ−1 dr

+ ‖f‖L2,µ(dϑ)‖u‖L2,µ(dϑ) +
1∑

i=0

‖ϕi‖L2,µ(γi)‖∇u‖
1/2
L2,µ(dϑ)‖u‖

1/2
L2,µ(dϑ)

)
.

Multiplying both sides of this inequality by |s| and making use of the estimate

‖u‖2L2,µ−1/2(γi)
≤ c8‖∇u‖L2,µ−1/2(dϑ)‖u‖L2,µ−1/2(dϑ)

≤ c9‖∇u‖1/2
L2,µ(dϑ)‖u‖

1/2
L2,µ(dϑ)‖∇u‖

1/2
L2,µ−1(dϑ)‖u‖

1/2
L2,µ−1(dϑ),

we obtain

(6.6) |s| · ‖∇u‖2L2,µ(dϑ)

≤ c10|s|1/2I(µ)1/2

(
‖f‖2L2,µ(dϑ) + |s|1/2

1∑
i=0

‖ϕi‖2L2,µ(γi)

)1/2

+ c10[|s|1/2I(µ)1/2I(µ− 1)1/2 + I(µ− 1)].

Equation (3.9) yields

I(µ) ≤ c11

(
‖u‖2L2,µ−1(dϑ) + ‖D2u‖1/2

L2,µ(dϑ)‖∇u‖L2,µ(dϑ)‖u‖
1/2
L2,µ(dϑ)

+ ‖f‖L2,µ(dϑ)‖u‖L2,µ(dϑ) +
1∑

i=0

‖ϕi‖L2,µ(γi)‖∇u‖
1/2
L2,µ(dϑ)‖u‖

1/2
L2,µ(dϑ)

)
.

We multiply this inequality by |s| and estimate the norm of the second derivatives
by Proposition 6.1 applied to problem (3.11). After elementary computations
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we arrive at

|s|I(µ) ≤ c12(F0(µ) + |s| · ‖u‖2L2,µ−1(dϑ) + |s|3/2‖∇u‖L2,µ(dϑ)‖u‖L2,µ(dϑ)),

and, taking account of (6.6), at

(6.7) |s|I(µ) ≤ c13[F0(µ) + I(µ− 1)],

where

F0(µ) ≡ ‖f‖2L2,µ(dϑ) +
1∑

i=0

(‖ϕi‖2L1/2
µ (γi)

+ |s|1/2‖ϕi‖2L2,µ(γi)
).

In the proof of (6.7) we have used the boundedness of the integral I(µ), which
can be justified precisely as in §4 under the assumption <s = a2 > 0 (it does not
restrict generality). Indeed, inequality (4.5) with ε = 0 and µ ≥ 1 yields

a2

∫
dϑ

(|∇u|2 + a2|u|2)V 2
R dx

≤ c14a
2

( ∫
dϑ,R

|u|2|x|2µ−2 dx+
1∑

i=0

∫
γi,R

|u|2r2µ−1 dr

+ ‖f‖L2,µ(dϑ)‖uVR‖L2(dϑ) +
1∑

i=0

‖ϕi‖L2,µ(γi)‖uVR‖1/2
L2(dϑ)‖∇(uVR)‖1/2

L2(dϑ)

)
,

where VR ≡ min(|x|µ, Rµ). Since by (2.16),

a2

∫
γi,R

|u|2r2µ−1 dr

≤ a

∫
γi,a−1

|u|2r2µ−2 dr + c15a

∫
dϑ,R\dϑ,a−1

(|∇u|2 + a2|u|2)|x|2µ−1 dx

≤ c16a‖∇u‖L2,µ−1(dϑ)‖u‖L2,µ−1(dϑ)

+ c16a

[ ∫
dϑ,R

(|∇u|2 + a2|u|2)|x|2µ dx

]1/2

×
[ ∫

dϑ

(|∇u|2 + a2|u|2)|x|2µ−2 dx

]1/2

,

we obtain

a2

∫
dϑ

(|∇u|2 + a2|u|2)V 2
R dx ≤ c17F0(µ) + c17

∫
dϑ

(|∇u|2 + a2|u|2)|x|2µ−2 dx.

Hence, if ∇u, u ∈ L2,µ−1(dϑ), then ∇u, u ∈ L2,µ(dϑ), and (6.7) holds. As
we have already shown, ∇u, u ∈ L2,µ′(dϑ), so we can conclude that ∇u, u ∈
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j=0 L2,µ−j(dϑ); moreover, iterating (6.7) and making use of (6.3) and (6.4) we

obtain

(6.8)
[µ]∑
j=0

(|s|1+k−j‖∇u‖2L2,µ−j(dϑ) + |s|2+k−j‖u‖2L2,µ−j(dϑ))

=
[µ]∑
j=0

|s|1+k−jI(µ− j) ≤ c18

[ [µ]∑
j=0

|s|k−jF0(µ− j) + |s|1+k′I(µ′)
]
≤ c19F,

where F is the sum of the norms on the right-hand side of (1.6).
Let us estimate |s|k−l−j

∑
|m|=l+2 ‖Dmu‖2L2,µ−j(dϑ). If l+j ≤ [µ]−1, then we

can do it with the help of Proposition 6.1 applied to problem (3.11). By (6.5),
the solution of this problem satisfies the inequality

|s|k−l−j
∑

|m|=l+2

‖Dmu‖2L2,µ−j(dϑ)

≤ c20

(
|s|k−l−j

∑
|m|=l+1

‖Dmu‖2L2,µ−j−1(dϑ)+|s|
2+k−l−j

∑
|m|=l

‖Dmu‖2L2,µ−j(dϑ)+F
)
.

To estimate the norms of u on the right-hand side, we apply (6.5) l more times
to obtain

|s|k−l−j
∑

|m|=l+2

‖Dmu‖2L2,µ−j(dϑ) ≤ c21

( [µ]∑
j′=j

|s|1+k−j′I(µ− j′) + F

)
(6.9)

≤ c22F.

If we repeat this procedure in the case l + j ≥ [µ], then additional terms of the
type

|s|k
′−r

∑
|m|=2+r

‖Dmu‖2L2,µ′ (dϑ), r = 0, . . . , l + j − [µ],

appear on the right-hand side of (6.9). Since these terms are already estimated
in Step 1, (6.9) holds for every l such that l + j ≤ k. Theorem 1.2 is proved.

Let us turn to Theorem 1.1. It follows from the above results that problem
(1.1) has a solution u ∈ Hk′+2

µ′ (dϑ) ∩W k′+2
2,µ′ (dϑ) satisfying the inequality

(6.10)
r∑

l=0

|s|r+2−l‖u‖2Hl
µ′ (dϑ)

≤ c23

[ r∑
l=0

|s|r−l‖f‖2Hl
µ′ (dϑ)

+
1∑

i=0

( r∑
l=0

|s|r+1/2−l‖ϕi‖2Hl
µ′ (γi)

+ ‖ϕi‖2Hr+1/2
µ′ (γi)

)]
, r = 0, . . . , k′.
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In addition, inequality (6.8) holds, where F stands for the sum of the norms on
the right-hand side of (1.4). The concluding part of the proof is the same as in
Theorem 1.2. We use Proposition 6.1 applied to problem (3.11), which yields

(6.11) |s|k−l−j‖u‖2
Hl+2

µ−j(dϑ)

≤ c24(|s|k−l−j‖u‖Hl+1
µ−j−1(dϑ) + |s|2+k−l−j‖u‖2Hl

µ−j(dϑ) + F ).

Using only these inequalities and estimate (6.8), we obtain

(6.12)
1+[µ]∑
l=0

|s|k+2−l‖u‖2Hl
µ(dϑ)

≤ c25

( [µ]∑
j=0

|s|1+k−jI(µ− j) + F + |s|1+k′‖u‖2L2,µ′−1(dϑ)

)
≤ c26(F + |s|1+k′‖u‖2L2,µ′−1(dϑ)).

By (6.8) and (6.10),

(6.13) |s|1+k′‖u‖2L2,µ′−1(dϑ)

≤ (|s|2+k′‖u‖2L2,µ′ (dϑ))
(k′+1)/(k′+2)(‖u‖2L2,µ′−k′−2(dϑ))

1/(k′+2)

≤ c27F,

so
1+[µ]∑
l=0

|s|k+2−l‖u‖2Hl
µ(dϑ) ≤ c28F.

When we estimate
∑k+2

l=2+[µ] |s|k+2−l‖u‖2Hl
µ(dϑ) in the same manner, there

appear additional terms of the type |s|k′−r‖u‖2
H2+r

µ′ (dϑ)
on the right-hand side.

But they are already estimated in (6.10), hence, we arrive at (1.4) and complete
the proof.

7. Applications

The results proved in Theorems 1.1 and 1.2 for problem (1.1) allow us to
prove similar results for the parabolic problem (1.2). Actually, (1.1) can be
obtained from (1.2) by means of the Laplace transform with respect to t. Thus,
with the aid of the inverse Laplace transform we obtain the following results:

Theorem 7.1. Let µ ≥ 0, βi = arctanhi ∈ (−π/2, π/2), h0 + h1 > 0 and

(7.1) 0 < 1 + k − µ <
β0 + β1

ϑ
.
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For every f ∈ H
k,k/2
0,µ (dϑ,T ) ∩ W

k,k/2
0,µ (dϑ,T ) and ϕi ∈ H

k+1,(k+1)/2
0,µ (γi,T ) ∩

W
k+1,(k+1)/2
0,µ (γi,T ), i = 0, 1, problem (1.2) has a unique solution v ∈

H
k+2,(k+2)/2
0,µ (dϑ,T ) ∩W k+2,(k+2)/2

0,µ (dϑ,T ) and

(7.2)
k+2∑
l=0

‖v‖2
H

l,l/2
0,µ (dϑ,T )

≤ c1

[ k∑
l=0

‖f‖2
H

l,l/2
0,µ (dϑ,T )

+
1∑

i=0

[ k∑
l=0

‖ϕi‖2Hl,l/2
0,µ (γi,T )

+‖ϕi‖2Hk+1/2,k/2+1/4
0,µ (γi,T )

]]
.

Theorem 7.2. If h0 + h1 ≤ 0 and

(7.3) 0 < 1 + k − µ <
π + β0 + β1

ϑ
,

then for every f ∈ W k,k/2
0,µ (dϑ,T ) and ϕi ∈ W k+1,(k+1)/2

0,µ (γi,T ), i = 0, 1, problem

(1.2) has a unique solution v ∈W k+2,(k+2)/2
0,µ (dϑ,T ) and

(7.4) ‖v‖
W

k+2,(k+2)/2
0,µ (dϑ,T )

≤ c2

[
‖f‖2

W
k,k/2
0,µ (dϑ,T )

+
1∑

i=0

‖ϕi‖2W k+1/2,k/2+1/4
0,µ (γi,T )

]
.

The spaces H
k,k/2
0,µ (dϑ,T ) and W

k,k/2
0,µ (dϑ,T ) are the natural extensions of

Hk
µ(dϑ) and W k

µ (dϑ) respectively (see [3], [7], [8] for definitions).
Notice that estimates (1.4), (1.6), (7.2) and (7.4) are more general than the

corresponding estimates in [3]. Actually, estimates (2.2) and (2.4) in [3] are
stated only for µ ∈ (0, 1), while estimates (7.2) and (7.4) hold for any non-
negative weight µ.

In this section we anticipate an interesting application of the above results:
that is, the construction of the Green function for the heat equation in an angle
with oblique boundary conditions. In [4] we prove that there exists a Green
function for problem (1.2). This function is given in the following form:

(7.5) G(x, y, t) = Γ(x− y, t)ψ(x, y, t) +G′(x, y, t);

here x, y ∈ dϑ, t > 0, Γ(x, t) = (4πt)−1e−|x|
2/(4t) is the fundamental solution

of the heat equation, ψ(x, y, t) is an infinitely differentiable function of its argu-
ments, equal to one for small |x− y| and t, equal to zero when |x− y| and/or t
is large and also y is near the vertex (i.e. for |y| = 0).

The function G′(x, y, t), for any fixed y ∈ dϑ, is defined as the solution in
weighted parabolic spaces of the problem

∂tG
′ −∆xG

′ = 2∇xΓ · ∇xψ + Γ(∆xψ − ∂tψ), x ∈ dϑ, 0 < t ≤ T,

G′|t=0 = 0, x ∈ dϑ,

∂

∂n
G′ + hi

∂

∂r
G′ = −

(
∂(Γψ)
∂n

+ hi
∂(Γψ)
∂r

)
, x ∈ γi, 0 < t ≤ T, i = 0, 1.
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We prove that, for some µ ∈ R+, G′(x, ·, t) belongs (at least) either to H2,1
0,µ(dϑ,T )

∩W 2,1
0,µ(dϑ,T ), for h0 + h1 > 0, or to W 2,1

0,µ(dϑ,T ), for h0 + h1 ≤ 0.
This allows us to prove the fundamental property of G, i.e., that the solution

of (1.2) for φi = 0 and f ∈ L2,µ(dϑ,T ) can be represented in the form

v(x, t) =
∫ t

0

dτ

∫
dϑ

G(x, y, t− τ)f(y, τ) dy.

The following estimates for the derivatives of G(x, y, t) are proved.
For x, y ∈ dϑ, t > 0 and any α ≡ (α1, α2), β ≡ (β1, β2) and a,

|Dα
xD

β
yD

a
tG(x, y, t)|

≤ c(α, β, a, ϑ)
(|x− y|2 + t)(2+|α|+|β|+2a)/2

×
(

|x|
|x|+ |x− y|+ t1/2

)λ1(|α|)−|α|( |y|
|y|+ |x− y|+ t1/2

)λ2(|β|)−|β|

,

where

λ1(|α|) =

{
min(|α|, (β0 + β1)/ϑ− ε) if h0 + h1 > 0,

min(|α|, (π + β0 + β1)/ϑ− ε) if h0 + h1 ≤ 0,

with some ε > 0, and similarly for λ2(|β|).

Appendix: the proof of Proposition 6.1

We split dϑ into the domains ωq ≡ {rq ≤ |x| < 2rq}, rq = 2q, q =
0,±1,±2, . . . , and observe that the solution of problem (2.1) satisfies the es-
timate

(A.1)
∑

|m|=l+2

‖Dmu‖2L2(ωq)

≡ ‖Dl+2u‖2L2(ωq)

≤ c1

(
r−2
q ‖Dl+1u‖2L2(Ωq) + ‖Dlf‖2L2(Ωq) +

1∑
i=0

‖DlΦi‖2L1/2(Σi,q)

)
where Ωq = ωq−1 ∪ ωq ∪ ωq+1, Σi,q = {x ∈ γi : rq/2 ≤ |x| < 4rq} and

‖Φ‖2L1/2(Σi,q) =
∫

Σi,q

∫
Σi,q

|Φ(%)− Φ(r)|2 d% dr

|%− r|2
.

After multiplication of (A.1) by r2µ
q and summation with respect to q from −∞

to ∞ we obtain (6.5).
To prove (A.1), we consider the equation

(A.2) ∆u = f(z), z ∈ B2r ≡ {|z| < 2r},
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and the boundary value problem

∆u = f(z), z ∈ B+
2r ≡ {|z| < 2r, z2 > 0},(A.3) (

∂u

∂z2
− h

∂u

∂z1

)∣∣∣∣
z2=0

= Φ(z1).

We write (A.2) in the form

∆v = f(z), v = u− 1
|B2r|

∫
B2r

u(z) dz,

and use the well known estimate

‖D2v‖2L2(Br) ≤ c2(‖f‖2L2(B2r) + r−2‖∇v‖2L2(B2r) + r−4‖v‖2L2(B2r)),

which implies, by the Poincaré inequality,

‖D2u‖2L2(Br) ≤ c3(‖f‖2L2(B2r) + r−2‖∇u‖2L2(B2r)).

Applying this inequality to the lth derivatives of u we obtain

(A.4) ‖Dl+2u‖2L2(Br) ≤ c3(‖Dlf‖2L2(B2r) + r−2‖Dl+1u‖2L(B2r)).

Similar estimates hold for the solution of (A.3). We have (see, for instance, [1])

‖D2u‖2
L2(B

+
r )
≤ c4(r−2‖∇u‖2

L2(B
+
2r)

+ ‖f‖2
L2(B

+
2r)

+ ‖Φ‖2L1/2(K2r)),

where Kr = {|z1| < r}. We may also differentiate (A.3) with respect to z1 and
obtain the same kind of estimate for Dl

z1
u. The derivative w = ∂lu/∂zl−1

1 ∂z2
satisfies the relations

∆w =
∂lf

∂zl−1
1 ∂z2

,
∂w

∂z2

∣∣∣∣
z2=0

=
(
∂l−1f

∂zl−1
1

− ∂l+1u

∂zl+1
1

)∣∣∣∣
z2=0

,

hence,

‖D2w‖2
L2(B

+
r )
≤ c5

(
r−2‖∇w‖2

L2(B
+
3r/2)

+
∥∥∥∥ ∂lf

∂zl−1
1 ∂z2

∥∥∥∥2

L2(B
+
3r/2)

+
∥∥∥∥∂l−1f

∂zl−1
1

∥∥∥∥2

L1/2(K3r/2)

+ +
∥∥∥∥∂l+1u

∂zl+1
1

∥∥∥∥2

L2(K3r/2)

)

≤ c6

(
r−2‖∇w‖2

L2(B
+
3r/2)

+ ‖Dlf‖2
L2(B

+
3r/2)

+
∥∥∥∥D2 ∂

lu

∂zl
1

∥∥∥∥2

L2(B
+
3r/2)

)
.

The last term has been just estimated, so we obtain an estimate for
∂lu/∂zl−1

1 ∂z2. Other lth derivatives of u are estimated in a similar way, and
as a result we get the inequality

(A.5) ‖Dl+2u‖2
L2(B

+
r )

≤ c7(r−2‖Dl+1u‖2
L2(B

+
2r)

+ ‖Dlf‖2
L2(B

+
2r)

+ ‖DlΦ‖2L1/2(K2r)).
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The domain ωq can be covered by a finite number of balls with radii of order rq
located in the interior of ωq and half-balls adjacent to γ0 or to γ1, and estimate
(6.5) can be obtained by summing (A.4) and (A.5) in these domains. Hence, the
proposition is proved.
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