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DOMAIN VARIATION FOR CERTAIN SETS
OF SOLUTIONS AND APPLICATIONS

E. N. Dancer

Dedicated to Louis Nirenberg on the occasion of his 70th birthday

The purpose of this paper is three-fold. We generalize work of our earlier
papers [8]–[10] to show that certain solutions or sets of solutions of

(1) −∆u = f(u) in Ω

(or systems of equations) with either Dirichlet or Neumann boundary conditions
continue if Ω is perturbed in quite a general way. More precisely, in the earlier
work, we showed that if the set of solutions has non-zero Leray–Schauder degree,
then it does continue if Ω is perturbed. Here we prove similar results when we
consider sets of solutions of non-zero homotopy index (or Morse numbers), where
the homotopy index is defined in Rybakowski [22]. The proof of this is much more
delicate than the earlier case since we need to retain the variational structure.

We become interested in this problem for two reasons. Firstly, if Ω is invariant
under the orthogonal action of a compact Lie group G, then the set of solutions
of (1) is invariant ynder the natural action of the symmetry group G. Thus the
solutions of (1) are usually orbits under this group action rather than isolated
points. Then a theorem of Sylvester [25] implies that these orbits frequently
have Leray–Schauder degree zero (for example if G = S1 and the orbit consists
of more than one point). Thus the old arguments do not apply but the new result
does apply. Note that one cannot always avoid the problem by using subspaces
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fixed by a subgroup of G. We will use this result and some additional arguments
to answer a question of Jimbo and Morita [17]. More precisely, we construct a
contractible domain D in R

m where m ≥ 3 such that the equation

−∆u = λu(1 − |u|2) in D,
∂u

∂n
= 0 on ∂D,

has a stable non-constant solution. Here u is complex-valued. Note that, by sta-
bility we mean orbital stability for the natural corresponding parabolic equation.
This equation is known as the Ginzburg–Landau equation and has been studied
under various boundary conditions extensively. See [2], [4] and [17] where many
further references can be found. Note that our example contradicts their original
conjecture. Subsequent to my outlining the construction here, Jimbo and Morita
[18] have found a different example by a different proof. Their method seems
to depend more strongly on λ being large. Our method has the advantage that
it can also be used to construct various types of unstable solutions. We do not
know if there are similar examples with m = 2.

As a second application, we use similar ideas to prove some results on the
existence of positive solutions of the exterior problem

(2) −∆u = up on R
n\D, u = 0 on ∂D,

for p close to but less than the critical exponent p∗. We do not solve the con-
jecture in [11] but give partial results which strongly support the conjecture.
Note that (2) was studied in [11] because it was of importance for problems on
bounded domains with a small hole.

In §1, we prove our main perturbation results while in §2 we construct our
counterexample for the Jimbo–Morita problem. Finally, in §3, we consider the
exterior problem.

1. Perturbation theorems

Assume g : R → R is C1 and Ω is a domain in R
m. We consider the equation

(3) −∆u = g(u) in Ω,
∂u

∂n
= 0 on ∂Ω,

where we consider the equation in the weak (W 1,2) sense. We will prove that,
for suitable sublinear g, if T is a compact connected set of solutions on which
the energy is constant and which has non-trivial homotopy index in the sense of
[22], then some of these solutions persist when we perturb Ω in quite a general
way. We now make this more precise.

We assume g is C1 and bounded and there exist α < β such that g(y) < 0 if
y ≥ β and g(y) > 0 if y < α. By the weak maximum principle (or test function
arguments) we see that any solution of (3) in W 1,2(Ω) satisfies α ≤ u(x) ≤ β

on Ω. (Note that if g were not bounded, we could truncate g to be bounded
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without affecting the bounded solutions). Now choose a small and positive such
that g(y) + ay is negative at β and positive at α. We then define g̃ C1 and
bounded (and g̃′ bounded) so that g̃(y) = g(y)+ay on [α, β], g̃(y) < 0 on [β,∞)
and g̃(y) > 0 on (−∞, α]. By similar arguments to above, we see that (3) is
equivalent to the problem

∆u + au = g̃(u) in Ω,
∂u

∂n
= 0 on ∂Ω.

Now if Ω is a bounded open set in R
m,−∆ + aI is a positive self-adjoint

operator on L2(Ω) and hence it has a positive self-adjoint square root HΩ which
has compact resolvent if −∆ + aI does. We drop the Ω when the meaning is
clear. It is well known (cp. [20]) that HΩ has domain W 1,2(Ω). Let SΩ = H−1

Ω .
Then our problem is equivalent to the problem

(4) v = SΩg̃(SΩv)

where u = SΩv. (Remember that HΩ is a bijection of W 1,2(Ω) onto L2(Ω) and
HΩ is injective because −∆ + aI is.) We work with this equation henceforth.
Note that the solutions of (4) correspond to the critical points of Ê(v) = 1

2‖v‖2−
G̃(SΩv) where G̃ : R → R and G̃′ = g̃.

We now consider domains Ωn approaching Ω. More precisely, as in [10] we
write Ωn →n Ω as n → ∞ if Ω and Ωn are bounded open sets such that the
following properties hold:

(i) Ωn ⊇ Ω for each n and each Ωn has Lipschitz boundary,
(ii) m(Ωn\Ω) → 0 as n → ∞ where m denotes Lebesgue measure,
(iii) the natural inclusion i : W 1,2(Ω) → L2(Ω) is compact and
(iv) {u|Ω : u ∈ C∞

0 (Rm)} is dense in W 1,2(Ω) in the W 1,2(Ω) norm.

As discussed in [10], these are rather weak assumptions that are satisfied very
generally. Note that we do not assume that Ω is connected.

Next we assume that T is a component in W 1,2(Ω) of the weak solutions of (3)
such that any two points of T can be joined by a curve in T which is continuous
and piecewise differentiable (in the W 1,2 norm). Note that this assumption is
satisfied in many cases. For example, it is easy to check that it is satisfied if T

is an orbit under the continuous linear action of a compact connected Lie group
(by [13]) or if g is real analytic (because our solutions are then the zeros of a real
analytic Fredholm map in an appropriate space and T is locally diffeomorphic to
a real analytic variety in finite dimensions). The reason for the interest in this
assumption is that it implies that the energy E(u) =

∫
Ω

1
2 |∇u|2−G̃(u) is constant

on T . This follows simply by differentiating E on such a piecewise differentiable
curve. Note that by a simple calculation E(u) = Ê(v) where u = SΩv. Thus
our comments also apply to (4). We define the homotopy index h(T ) to be
the homotopy index in the sense of [22] of the flow of the differential equation
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u̇ = −u + SΩg̃(SΩu) on L2(Ω) on a suitable small neighbourhood of HΩT . We
will prove a little later that this is well defined provided that there are no other
solutions of (4) close to HΩT .

We now state our main result for Neumann problems.

Theorem 1. Assume that the above conditions on g are satisfied, T is a
component of the set of solutions of (3) satisfying our earlier assumptions, no
other solutions of (3) are close to T in W 1,2(Ω), Ωn →n Ω as n → ∞ and h(T )
is non-trivial. Fix p > 1. For large n, there is a solution un of (3) on Ωn such
that ‖un−w‖p is small for some w ∈ T . (Here we compare solutions on different
sets by extending them to be zero outside their domain.)

Before proving this result, we need a technical lemma on square roots. Let
Pn : L2,loc(Rm) → L2(Ωn) be the natural restriction operator. P is defined
analogously (for Ωn replaced by Ω).

Lemma 1. Assume Ωn →n Ω as n → ∞. Then SΩn are uniformly bounded
as maps on L∞(Ωn) and L2(Ωn). If f ∈ L2(Rm), SΩnPnf → SΩPf in L2(Rm)
as n → ∞. Moreover, SΩn is compact on L2(Ωn). If Ω ∪ ⋃∞

n=1 Ωn ⊆ B and
W is bounded in L∞(B), then

⋃∞
n=1 SΩnPnW lies in a compact subset of L2(B)

(where we extend functions on Ωn to B by defining them to be zero on B\Ωn).

Proof. It is well known and easy to prove that −∆ + aI with Neumann
boundary conditions has inverse with norm bounded by a−1 both on L2(Ω) and
L∞(Ω). (For the case of L∞(Rm), we use the fact that the inverse is positivity
preserving and (−∆ + aI)−1(1) = a−1.) Since (−∆ + aI)−1 is self-adjoint, the
bound for SΩ on L2(Ω) follows by standard results. To obtain the bound on
L∞(Rm), we use the formula for SΩ (cp. Kato [20], p. 282). If f ∈ L2(Ω), then

(5) SΩf =
∫ ∞

0

λ−1/2(−∆ + (a + λ)I)−1f dλ.

Here ∆ means the Laplacian on Ω with Neumann boundary conditions. If f ∈
L∞(Ω), by our estimate above,

‖(−∆ + (a + λ)I)−1f‖∞ ≤ (a + λ)−1‖f‖∞
for λ ≥ 0 and hence, by (5),

‖SΩf‖∞ ≤ ‖f‖∞
∫ ∞

0

λ−1/2(a + λ)−1dλ ≤ K‖f‖∞

where K is independent of Ω. To see that SΩnPnf converges to SΩPf , first
note that the arguments in [9] and [10] imply that (−∆ + (a + λ)I)−1

Ωn
Pnf →

(−∆ + (a + λ)I)−1
Ω Pf in L2(Rm) for each f ∈ L2(Rm) and each λ ≥ 0. Indeed,

since the resolvents are uniformly bounded, it follows easily from the resolvent
equation that the convergence is locally uniform in λ for fixed f . The convergence
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of the square root follows easily from this and the integral formula (5) if we note
that, in the integral, we can uniformly estimate the parts for λ small and λ large.
The compactness statement follows from standard results.

To prove the last statement, we first note that SΩn are uniformly bounded
as maps of L2(Ωn) to W 1,2(Ωn). It is convenient to estimate instead HΩn . The
estimate follows, because if u ∈ D((−∆ + aI)Ωn) then

‖SΩnu‖2
2 = (SΩnu, SΩnu) = ((−∆ + aI)u, u) =

∫
Ωn

(|∇u|2 + au2).

This establishes the bound for u ∈ D((−∆ + aI)Ωn) and it extends to W 1,2(Ωn)
by density.

Hence we see from the compactness of the embedding of W 1,2(Ω) into L2(Ω)
that

⋃∞
n=1 SΩnPnW |Ω lies in a compact subset of L2(Ω). Moreover, by our ear-

lier estimates,
⋃∞

n=1 SΩnPnW is bounded in L∞(B) and hence we easily see that
‖SΩnPnw‖2,Ωn\Ω is small if n is large uniformly for w ∈ W . The required com-
pactness follows easily from this and the precompactness of

⋃∞
n=1 SΩnPnW |Ω.

(The precompactness of SΩnPnW for fixed n is similar but much easier.)

Proof of Theorem 1. Choose a ball B such that Ω ∪ ⋃∞
n=1 Ωn ⊆ B. We

consider the maps
Fn(v) = v − inSΩn g̃(SΩnPnv)

on L2(B). Here in is the natural inclusion of L2(Ωn) into L2(B) and i is defined
analogously (with Ωn replaced by Ω). Note that Fn is the gradient of fn where
fn(v) = 1

2‖v‖2 − G̃(SΩnPnv), and F and f are defined analogously. Note also
that the zeros of Fn are in R(Pn) and hence are solutions of v = SΩn g̃(SΩnv) on
Ωn extended to be zero on B \ Ωn.

Choose a neighbourhood W of HΩT in L2(Ω) such that no other solution of
(4) lies in W . We prove that no solution of the equation

(6) u̇ = −u + SΩg̃(SΩu) on L2(Ω)

can be completely contained in W (except for the constant solutions at points of
HΩT ). Note that the flow π0 for (6) is defined since the right hand side is Lip-
schitz and is strongly admissible in the sense of [22] by Theorem III.4.4 there.
Now by a simple differentiation the energy is strictly decreasing on solutions
except at zeros of I −F in W . It follows easily from this and the strong admissi-
bility that any bounded solution of (6) approaches the set of stationary solutions
as t → ±∞. Thus any solution which lies on W for all t is either constant and
a point of HΩT for all t or approaches two points of HΩT of different energy as
t tends to ±∞. The latter case is impossible since the energy Ê is constant on
HΩT . This proves our claim. Hence the homotopy index h(T ) is defined for the
flow of (6) by using W as an isolating neighbourhood.
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Next we note that we obtain the same homotopy index if we choose the flow
π0 of

u̇ = −u + iSΩg̃(SΩPu)

on L2(B) where i is the natural inclusion of L2(Ω) into L2(B). One easily
sees that this is still a gradient system. The flow is a product flow for the
decomposition L2(B) = L2(Ω) ⊕ L2(B \ Ω). Hence the product theorem for the
homotopy index as in [22], Theorem I.10.6, implies that the homotopy index of
this flow in a small neighbourhood N̂ of HΩT in L2(B) is still h(T ). (Note that,
on L2(B \ Ω), the flow is a simple stable linear flow.)

We now prove that the flow πn for the system

u̇ = −u + inSΩn g̃(SΩnPnu)

on L2(B) has the property that {πn} are strongly admissible and that

(7) πn(un, tn) → π0(u, t)

as un → u in L2(B) and tn → t. The strong admissibility follows from Lemma 1
above and Remark 1 on p. 167 of [22]. (Note that, as before, the flows are globally
defined because the right side of the differential equation is globally Lipschitz.)
Thus it remains to prove the convergence property. By the flow properties, it
suffices to prove (7) for 0 ≤ tn ≤ T̃ where T̃ > 0 is fixed. This follows easily from
Theorem 3.4.8 of Henry [16] once we note that inSΩn g̃(SΩnPnu) → iSΩg̃(SΩPu)
for each u ∈ L2(B). This follows easily from Lemma 1 and standard continuity
properties of the Nemytskĭı operator.

It now follows from (7) and Theorem I.2.3 of [22] that the homotopy index is
defined for the flow πn on N̂ for large n and is the same as h(T ), in particular,
it is non-trivial. Thus πn must have a bounded solution completely contained in
N̂ and, since it is a gradient system, it follows that (4) on Ωn rather than Ω has
a solution in N̂ , that is, a solution close to HΩT in L2(B).

Note that solutions of Fn(u) = 0 are uniformly bounded because g̃ is bounded
and by using Lemma 1. To complete the proof we need to check that if {un}∞n=0

are uniformly bounded and ‖un − u0‖2,Ω is small then ‖SΩnun − SΩnu‖p is
small where we compare functions on different sets by extending them to be zero
outside. Since {SΩnun} are uniformly bounded in L∞ (by Lemma 1), one sees
that it suffices to prove ‖SΩnun − SΩu‖2,Ω is small. This follows easily from
Lemma 1.

Remarks. 1. We do not really need that Ωn ⊇ Ω0. We could allow small
holes much as in [9] or [10].

2. With care we could avoid the assumption that the energy is constant on
T if we assume T has a suitable isolating neighbourhood in the sense of [22].
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3. We could replace the homotopy index condition by the condition that some
cohomology H̃i(Êc ∩ HΩ(T ), Êc ∩ (V \ HΩ(T )), Z) is non-zero where c = Ê(T ),
Êc = {u ∈ L2(Ω) : Ê(u) ≤ c} and V is a small closed neighbourhood of HΩ(T ).
To do this, we need to prove a slight generalization of Theorem III.4.8 of [22].
This is not difficult.

4. The theorem readily generalizes to systems. Assume g : R
2 → R

2 is
a C1 gradient mapping such that g(y) · y < 0 for |y| ≥ r where · denotes
the usual scalar product on R

2. It follows easily from the maximum princi-
ple that any solution of the two-dimensional system −∆u = g(u) on Ω with
Neumann boundary conditions satisfies |u| ≤ r on Ω. We can truncate g for
|y| ≥ r such that g(y) · y < 0 for |y| ≥ r and g is bounded and C1. It is
then easy to find a small positive a and a C1 function g̃ which is bounded and
C1 such that g̃(y) = g(y) + ay for |y| ≤ r and g̃(y) · y < 0 for |y| ≥ r. It
once again is easy to check from the maximum principle that any solution of
the system −∆u + au = g̃(u) in Ω (with Neumann boundary conditions) sat-
isfies |u| ≤ r and hence is a solution of the original equation. It is now easy
to generalize the proof of Theorem 1 to this case. (The square root is taken
componentwise.) This can be easily generalized to systems of more than two
equations.

We now consider the corresponding result for the Dirichlet problem. Here we
can do somewhat better by allowing a slightly more general definition of domain
convergence from [9] and more interestingly we can allow a much more general
growth of g: it only needs to grow subcritically (and indeed we can usually
remove this by a truncation argument). This case is easier than the Neumann
case because we can take a = 0. We do not need to assume any sign condition
on g but do assume g is bounded. Then the analogue of Theorem 1 holds with
essentially the same proof. The only change that needs to be made is that
we obtain the uniform (in the domain) estimates for (−∆ + aI)−1 on L∞(Ωn)
from the Lp-Lq estimates for elliptic equations as in Gilbarg and Trudinger [15].
(These are estimates for Dirichlet boundary conditions.) Note that, for a ≥ 0,
we can always eliminate the a term in the test function estimates in the proofs
in [15]. We obtain the compactness condition on

⋃∞
n=1 SΩnPnW more easily

because this set is bounded in Ẇ 1,2(B).
The other major change is in the proof of the bound for SΩn on L∞(Ωn). We

still use the integral formula for the square root but to estimate (−∆+λI)−1 for
large λ we use the fact that if f ≥ 0, then (−∆ + λI)−1f for Dirichlet boundary
conditions is dominated by the same expression but for Neumann boundary
conditions. Hence ‖(−∆ + λI)−1‖ ≤ λ−1 if λ > 0 and if we use Dirichlet
boundary conditions (where the operator norm is on L2(Ω)). Otherwise the
arguments are as before.
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We now weaken the growth condition on g to requiring that g is C1 and
|g(y)| ≤ K|y|s for |y| large where s < (m + 2)(m − 2)−1 (s < ∞ if m = 1 or
2). To do this, we choose gj C1 and bounded on R such that gj(y) = g(y) if
|y| ≤ j and |gj(y)| ≤ K|y|s + K2 on R where K and K2 do not depend on
j. It suffices to prove that if un are solutions of (4) (with g replaced by gn

and Ω replaced by Ωn) with ‖un − u0‖2,B small for some u0 ∈ HΩ(T ) then
SΩnun are bounded in L∞ (because SΩnun are then solutions of the original
equation). If ‖un − u0‖2,B is small, then ‖un‖2,Ωn are uniformly bounded and
hence it follows easily that SΩnun are uniformly bounded in W 1,2(Ωn). By the
Sobolev embedding theorems for the space Ẇ 1.2(Ω), it follows that vn ≡ SΩnun

are uniformly bounded in Ls(Ωn) where s = (m + 2)(m − 2)−1. By using the
Lp-Lq estimates for the Laplacian (as earlier) and a bootstrapping argument, it
follows that vn are uniformly bounded as required. It remains to prove that vn

is close to v = SΩu0. This follows easily from Lemma 1 since un is close to u0 in
L2(B). (Note that we can use a simple homotopy invariance argument similar
to those in §3 to show that h(T ) is independent of the truncation.)

We have proved the following theorem for the problem

(8) −∆u = g(u) in Ω, u = 0 on ∂Ω.

Theorem 2. Assume that g is C1 and |g(y)| ≤ K|y|s for large |y| where
s < (m + 2)(m − 2)−1 (s < ∞ if m = 2). Assume that T is a component of
the set of solutions of (8) such that T satisfies the regularity condition before
Theorem 1, no other solutions of (8) are close to T in Ẇ 1,2(Ω), Ωn → Ω as
n → ∞ in the sense of §1 of [9] and h(T ) is non-trivial. Fix p > 1. For large n,
there is a solution un of (8) on Ωn such that ‖un−w‖p is small for some w ∈ T .
(Note that in the definition of h(T ), we use SΩ for the Dirichlet problem.)

Remarks. 1. If T is bounded in L∞(Ω), we could use truncation argu-
ments to obtain results in supercritical cases. We could also allow f to depend
continuously on x.

2. We can prove the theorem for the Dirichlet case by working in Ẇ 1,2(B)
rather than L2(B), looking at weak solutions and avoiding square roots. This
works easily in this case because there is a natural inclusion of Ẇ 1,2(Ωn) into
Ẇ 1,2(B).

3. In the Dirichlet case, as in [8], it is much easier to keep control of the
stability properties of solutions.

In many applications, it is important to know if the solutions un on Ωn are
positive for large n. (In many applications, this arises naturally.) We assume Ωn

are connected. It is clearly necessary for u ∈ T to be non-negative on Ω for the
un to be positive. We will use Dirichlet boundary conditions. (Neumann seems
much more technical.) If u(x) > 0 on Ω for u ∈ T and f(0) ≥ 0, it is not difficult
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to apply weak maximum principle type arguments to un to prove that un(x) > 0
on Ωn for large n. We now assume T = {u0}. If f(0) ≥ 0, and u0(x) ≥ 0 on Ω, we
can easily use the maximum principle type arguments to prove that u0(x) > 0 on
some components of Ω0 and vanishes identically on the others. From the results
in [8] and [14], it is clear that the stability of u0 on the components of Ω where
it vanishes identically plays a crucial role. In fact, it can be shown that for un

to be positive it is necessary for u0 to be stable on any component of Ω where it
vanishes. For the remainder of this paragraph, let us assume that f(0) = 0. If
u0 is non-degenerate and stable on the components where u0 vanishes and if u0

has non-trivial homotopy index on the other components (on the space Ẇ 1,2),
then one can prove that un must be positive on Ωn. The proof uses eigenvalue
estimates.

2. The Jimbo–Morita problem

In this section, we use the results of §1 to construct, for each m ≥ 3, a
contractible domain Ω in R

m such that the equation (with u complex-valued)

(9) −∆u = λu(1 − |u|2) in Ω,
∂u

∂n
= 0 on ∂Ω

has a non-constant stable solution ũ. Here by stability we mean stability for the
natural corresponding parabolic equation and more precisely orbital stability of
the orbit through u (under the action of the group S1). Here S1 acts by the
pointwise action on the components of u, that is, (eiθu)(x) = eiθu(x). For future
reference note that this action is easily seen to be a smooth action on any of the
usual function spaces (L2(Ω) etc.). It suffices to obtain an example with m = 3
because if we find an example on Ω ⊆ R

3, it follows that we have an example
on Ω×B, where B is a ball, by making u independent of the other coordinates.
We could then repeat the arguments below to obtain an example on a smooth
domain with u depending on all coordinates.

To construct our counterexample, we choose an annulus D = {x ∈ R
2 : a <

‖x‖ < 1} and a λ > 0 such that for Ω = D, (9) has a non-constant stable solution
ũ (cp. [17]). The construction shows that the linearization about this solution
has a one-dimensional kernel (which is as small as it can be). We can think of
this solution as a solution on Ω̃1 ≡ Ω × [−1, 1] (with ũ1 independent of the last
coordinate). On the other hand, there is a stable constant solution ũ2 on the
domain Ω̃2 = B× [−2,−1− δ] where B is the unit ball and where we will choose
a fixed small δ later. We choose smooth domains Ωn approximating Ω̃1 ∪ Ω̃2 in
a natural way as in Fig. 1. (The diagram shows a cross section.) We will prove
that there is a stable non-constant solution on Ωn for n large if δ is small (and
fixed).
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Figure 1

We first use Theorem 1 to show that there is a solution close in L2 to the set
P which is the product of the orbits of ũ1 and ũ2. Since ũ1 and ũ2 are each non-
degenerate (modulo the symmetry), their orbits are isolated components of their
respective solution sets (cp. [13]). A slightly technical point occurs here. The
theory in [13] works more conveniently in Lp(Ω) for p large but since solutions are
uniformly bounded in L∞(Ω), they are close in Lp(Ω) if they are close in L2(Ω).
Hence we easily see that Theorem 1 applies to the set P where Ωn → Ω̃1 ∪ Ω̃2 as
the thickness of the joining “cylinder” tends to zero as n tends to ∞. The only
point to check is that the homotopy index is non-trivial on Ω0 = Ω̃1 ∪ Ω̃2. Now
on Ω0 = Ω̃1 ∪ Ω̃2 our map is a product of the maps on Ω̃1 and Ω̃2 and hence its
homotopy index is the smash product of the homotopy indices on Ω̃1 and Ω̃2.
Hence if we prove that each of these homotopy indices is S1 ∪ {∗} where ∗ is a
base point, it will follow easily that the homotopy index of P̂ is non-trivial. (In
fact, it is (S1 ∧S1)∪{∗}.) Note that the flow is the analogue of (6) and P̂ is the
product of the orbits of H

�Ω1
ũ1 and H

�Ω2
ũ2.

Now our assumptions imply that the orbit through H
�Ω1

ũ1 is a strict local
minimum of the energy Ê (strict modulo the symmetry). Hence it is easy to
construct a small neighbourhood N of the orbit of the homotopy type of S1

such that the flow is inward on ∂N . One simply uses S, the component of
{u ∈ L2(Ω1) : ÊΩ1(u) ≤ ÊΩ1 (H�Ω1

ũ1) + µ} containing ũ1, where µ is small
and positive and note the flow is inward across the boundary of S. (Note that
one can use the non-degeneracy to check that if µ is small then S is a small
neighbourhood of the orbit through ũ1.) Thus N is an isolating neighbourhood
for the flow on L2(Ω1) with empty exit set and hence by the definition of the
homotopy index h(P1) = S1 ∪ {∗} where (∗) is a base point and P1 is the orbit
of û1 = H

�Ω1
ũ1. In particular, it is not trivial. Since we can use the argument

on Ω̃2, it follows from our earlier remarks that the homotopy index of P̂ must
be non-trivial. Hence all the assumptions of Theorem 1 and a remark after it
are satisfied and hence there is at least one solution un of (9) on Ωn for n large
near the product of the orbits of ũ1 and ũ2.
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We prove that if we choose things carefully, un is (orbitally) stable. To do
this, it is convenient to first obtain a little more information from the homotopy
index. By earlier, h(P̂) is (S1 ∧ S1)∪ {∗} where ∗ is a base point and hence, for
n large, there is a neighbourhood Wn of the set of solutions of the analogue of
(4) on Ωn near P̂ , the product of the orbits of û1 and û2, such that its homotopy
index is (S1∧S1)∪{∗}. This means that there is no exit set for the flow on Wn.
This follows because in the construction of the homotopy index, we can choose
the neighbourhood N of the connected set P̂ to be connected and thus by the
construction in [22], Wn can also be chosen connected. Hence Wn quotient by
its exit set will only have a separate base point if the exit set is empty. This
proves our claim.

Now let Zn be the solution of the analogue of (6) of least energy among the
compact set of solutions in Wn. It follows that Zn must be a local minimum
of Ên. Here Ên is the energy on Ωn. (If not, solutions starting close to Zn

with energy strictly less than Zn would have to leave Wn because in future time
such solutions have energy decreasing and less than Ên(Zn) and thus there is
no point in Wn for these solutions to approach as t → ∞. Thus some solutions
leave Wn, which contradicts our earlier claim.) It follows that SΩnZn is a local
minimum of E on Ωn. If the orbit containing SΩnZn is isolated among the
solutions of (9) (and thus E(w) > E(SΩnZn) at every point close to the orbit
but not on the orbit), a standard Lyapunov functional argument implies that
SΩnZn is stable. (We first prove a stronger coercivity inequality near the orbit.)
If the orbit is not isolated and Ωn is chosen carefully, we will prove that near
SΩnZn the solutions form a stable hyperbolic 2-manifold and the stability follows
from Exercise 6 on p. 108 of Henry [16] (in fact stability rather than orbital
stability). It remains to prove the claim above. It in fact suffices to prove that,
if Ωn is chosen suitably, then the linearization at a solution in Wn has at most
2 non-positive eigenvalues counting multiplicity. Assuming this, we show that,
if the orbit through SΩnZn is not isolated, the solutions nearby form a smooth
2-manifold which is easily seen to be stable and hyperbolic. To prove this, we
use a tubular neighbourhood construction. It is convenient to work with (9)
rather than the analogue of (4). The tubular neighbourhood construction (cp.
[13]) implies that, if the orbit is not isolated, then SΩnZn is not an isolated
solution in T̃ = {w ∈ W 1,2(Ωn) : 〈w − SΩnZn, ASΩnZn〉 = 0} where 〈 , 〉 is the
usual scalar product on W 1,2(Ωn) and A is the infinitesimal generator of the
group action. Let Pn be the orthogonal projection onto the subspace T̃ +SΩnZn

and let our equation (9) written in weak form on W 1,2(Ωn) be L(w) = 0. Note
that L is real analytic (since the nonlinear terms are polynomial). We look at
the equation PnL(w) = 0 as a mapping on T̃ into R(Pn). It is easy to see the
derivative at SΩnZn is Fredholm of index zero and has a one-dimensional kernel.
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(The kernel cannot be trivial because SΩnZn is not isolated in T̃ .) By a standard
Lyapunov–Schmidt argument, it follows that the solutions of PnL(w) = 0 near
SΩnZn in T̃ are determined by a one-dimensional bifurcation equation h(t) = 0
where h : R → R is real analytic (and t = 0 corresponds to w = SΩnZn).
Since SΩnZn is not isolated, 0 is a non-isolated zero of h and hence h vanishes
identically (since h is real analytic). Thus the solutions Z̃ of PnL(w) = 0 in T

near SΩnZn form a real analytic 1-manifold. If w ∈ Z̃, then

(10) L(w) = αASΩnZn

by the definition of Pn. On the other hand, by differentiating the energy along
an orbit,

(11) 〈L(w), Aw〉 = 0

always. Now, by continuity, Aw is close to ASΩnZn �= 0 and hence (10) and
(11) imply that α = 0, i.e. points of Z̃ are solutions of L(w) = 0. Thus the
solutions of L(w) = 0 in T̃ form a smooth 1-manifold and hence by the tubular
neighbourhood and the group action the solutions near the orbit of Zn form a
smooth 2-manifold, as required.

It remains to prove our claim on the eigenvalues of the linearization. To do
this we need to specify the joining “cylinder” Jn more carefully. We assume
that the joining cylinder Jn is {(x, z) ∈ R

2 × R : 1 − n−1 < ‖x‖ < 1, −1 − δ <

z < −1}. We assume that for a sequence of n’s tending to infinity (which we
will relabel to be the whole sequence) the linearization of (9) at a solution un

near P on Ωn has 3 eigenvalues λ1
n, λ2

n, λ3
n with λi

n ≤ 0 (not necessarily distinct)
and orthogonal normalized eigenfunction vi

n (in L2). Without loss of generality,
we may assume un → u0 as n → ∞. It is easy to see that λi

n are bounded
below and vi

n are bounded in W 1,2. Fix i. Let R = Ω̃2 and L = Ω̃1. Now
vi

n|R is bounded in W 1,2(R) and hence by the Sobolev embedding vi
n|R has a

subsequence converging weakly in W 1,2(R) to wi. Choose a further subsequence
so λi

n → α ≤ 0 as n → ∞. We prove that wi is a multiple of Au0|R. It suffices
to prove that wi is a solution of the Neumann problem for

(12) −∆w = λ(1 − h̃′(u0))w + αw on R.

Here h̃ : R2 → R2 is defined by h̃(y) = |y|2y and u0 ∈ P . This follows because
we know from our construction that all eigenvalues α of (12) satisfy α ≥ 0.
Hence α = 0 and our claim follows from our construction. Since Y , the set of
smooth functions vanishing near the corners of R, is dense in W 1,2(R) (by using
capacity ideas as in [9]), it suffices to show that the weak form of (12) holds for
φ ∈ Y . If φ ∈ Y , we can think of φ ∈ W 1,2(Ωn) for large n by defining φ to be
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zero on Ωn \ R. Substituting this in the weak form of the equation we see that∫
R
∇wi

n∇φ +
∫
R

λ(1 − h̃′(un))wi
nφ = λi

n

∫
R

wi
nφ

and we obtain the required inequality by passing to the weak limit. Similarly,
vi

n|L has a subsequence converging weakly in W 1,2(L) to a multiple of Au0|L.
By choosing subsequences, we can arrange that vi

n|R∪L converges weakly in
W 1,2(L∪R) for i = 1, 2, 3. It follows easily that we can choose αi, i = 1, 2, 3, with∑3

i=1 α2
i = 1 such that v̂n =

∑3
i=1 αivi

n converges weakly to zero in W 1,2(R∪L)
(and hence strongly to zero in L2(R ∪ L)). Now EL

n (v̂n) ≤ 0 since v̂n is a
linear combination of orthogonal eigenfunctions corresponding to non-positive
eigenvalues. Here EL

n is the natural energy for the linearization at un. Now EL
n

is an integral over Ωn. We decompose the integrals over Ωn into the integrals
over Ω′

n, ΩR, ΩL where Ω′
n is the enlarged joining cylinder where we allow z to

vary from −1 − 2δ to −1 + δ, ΩR = (Ωn \ Ω′
n) ∩R, and ΩL = (Ωn \ Ω′

n) ∩ L.
Now limn→∞ inf EL

L(v̂n) ≥ 0, where EL
L denotes the contribution to EL

Ωn

from the integral over ΩL. Note that this follows easily because v̂n → 0 in
L2(ΩL) while the term involving the gradient is non-negative. Similarly limn→∞
inf EL

R(v̂n) ≥ 0 (with the obvious notation). Since EL(v̂n) ≤ 0, it follows that

(13) lim
n→∞ sup EL

Ω′
n
(v̂n) ≤ 0

(with the obvious notation). We will prove in a moment that there is a k > 0
independent of n and µn with µn → 0 as n → ∞ such that

(14) EL
Ω′

n
(v̂n) ≥ k‖v̂n‖2,Ω′

n
− µn.

Hence (13) implies that ‖v̂n‖2,Ω′
n

→ 0 as n → ∞. This is impossible since
‖v̂n‖2,Ωn = 1, ‖v̂n‖2,ΩL → 0 and ‖v̂n‖2,ΩR → 0 as n → ∞.

Thus it remains to prove (14) (at least for δ small). First note that

Ω̃ = Ω′
n ∩ {

z ≤ −1 − 3
2δ or z ≥ −1 + 1

2δ
}

is in the interior of R∪L and hence by standard W 2,p interior estimates we can
ensure that vi

n|�Ω converges strongly in C1. Hence v̂n → 0 in C1 on Ω̃. Now if δ

is small, the first eigenvalue of −∆ on Ω′
n with Dirichlet boundary conditions on

z = −1− 2δ or −1+ δ and Neumann on the other parts of the boundary is large
(greater than or equal to k). For example, we can separate variables. Choose
φ(z) smooth and scalar-valued so that φ(z) = 1 if −1 − 3

2δ ≤ z ≤ −1 + 1
2δ and

φ(z) = 0 if z = −1 + δ or −1− 2δ. Then v̂nφ(z) is a suitable test function in the
energy form for −∆ on Ω′

n with the above boundary conditions. Hence∫
Ω′

n

∇(v̂nφ(z))2 ≥ k

∫
Ω′

n

(v̂nφ(z))2.
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Since v̂n is C1 small on Ω̃ and φ(z) = 1 if −1 − 3
2δ ≤ z ≤ −1 + 1

2δ, it follows
easily that ∫

Ω′
n

|∇v̂n|2 ≥ k

∫
Ω′

n

|v̂n|2 − µn

where µn → 0 as n → ∞. (14) follows easily from this if we choose δ small so
that k is large. (The other term in the energy EL

Ω′
n

is easily seen to be dominated
by 4λ

∫
Ω′

n
|v̂n|2. )

This completes the construction of our counterexample.

Remarks. 1. Clearly, we could allow rather more general joining strips but
our arguments need some restriction on the joining strip. We could also round
off the corners to get an example which is a smooth domain.

2. The difficulties in the argument are largely caused by the fact that the
product of the symmetries leave some indeterminacy on where the stable solution
should lie.

3. We suspect that there is an alternative way of overcoming some of the
difficulties. It seems very likely that we can modify the arguments of Saut and
Temam [23] to prove that, for generic smooth Ω, the linearization of (9) at every
solution has at most a one-dimensional kernel. This would enable one to choose
Ωn so that each of the orbits of solutions is isolated. This would greatly simplify
the proof above (by choosing suitable Ωn).

3. Exterior near critical problems

The purpose of this section is to prove some theorems on the existence of
positive solutions of

(15) −∆u = |u|p−1u in R
m \ Ω, u = 0 in ∂Ω,

where Ω is a smooth bounded open set in R
m (not necessarily connected) but with

R
m \Ω connected, m > 2 and p is less than but close to p∗ = (m + 2)(m− 2)−1.

By an inversion about some point in Ω, we see as in [11] that this is equivalent
to finding positive solutions of

(16) −∆u = ‖x‖−q(p)|u|p−1u in Ω∗ \ {0}, u = 0 on ∂Ω∗,

where Ω∗ \ {0} is the image of R
m \Ω under the inversion and q(p) = (m + 2)−

p(m − 2).
We prove results which show that many positive solutions of the problem

(17) −∆u = |u|p∗−1u in Ω∗, u = 0 on ∂Ω∗,

can be continued to give positive solutions of (16) and hence of (15). We use
similar techniques to those of §1 except that it is more convenient to work in the
space Ẇ 1,2(Ω∗) rather than L2(Ω∗).
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We assume that T is a component of the positive solutions of (17) in Ẇ 1,2(Ω∗)
such that T is compact, is isolated and bounded in L∞. We also assume that
the natural energy is constant on T . (If T is reasonably smooth as in §2 or if
m = 3 or 4 or 6 so that our nonlinearity is real analytic on L∞(Ω∗), it is not
difficult to show that this last condition holds automatically).

It is easy to see that non-trivial solutions u of (17) cannot be small in the
W 1,2 norm and we can use similar arguments to those in Theorem 2.3 of [3] to
show that ‖u−‖1,2 cannot be small and non-zero. This shows that components
of positive solutions of (17) are also components of all solutions of (17).

Since our non-linearity is locally Lipschitz on Ẇ 1,2(Ω∗) (in fact C1), it is not
difficult to deduce that there is a neighbourhood W of T in Ẇ 1,2(Ω∗) such that
the flow of

u̇ = −u + S(u)

is globally defined on W . Here S is defined by

〈S(u), v〉 =
∫

Ω∗
|u|p∗−1uv

and we have used the Sobolev embedding theorem. It can be shown (see later)
that this flow satisfies the strong admissibility condition of [22] on W so that
homotopy indices can be defined. In particular, arguing as in §1 we see that there
are suitable neighbourhoods of N of T (with N ⊆ W ) such that the homotopy
index h(T ) is defined and is independent of N .

Theorem 3. Assume there is a component T as above such h(T ) is non-
trivial. Then the exterior problem (1) has positive solutions for all p close to but
less than p∗.

We actually construct solutions of (16) which are in Ẇ 1,2(Ω∗).
Before proving the theorem, we make some remarks on the assumptions.

Firstly, it is well known that all solutions of (17) in Ẇ 1,2(Ω∗) are smooth and
that all solutions W 1,2 close to a fixed solution in the W 1,2 norm are uniformly
bounded in L∞. (To prove the latter, we use the fact that given a compact
subset Y in Ẇ 1,2(Ω∗), and a c > 0, we can choose λ > 0 and a neighbourhood
Z of Y on Ẇ 1,2(Ω∗) such that

∫
|u|>λ

|u|4/(m−2) < c for u ∈ Z. This follows
from the Sobolev embedding theorem. We then use the proof in [3] or Kavian
[21] to bound u in Lq for large q and then use the Gilbarg–Trudinger estimates.)
Hence a compact set in Ẇ 1,2(Ω∗) is automatically uniformly bounded in L∞(Ω∗)
and an isolated compact component in Ẇ 1,2(Ω∗) is also isolated and compact in
L∞(Ω∗) and vice versa.

Proof of Theorem 3. Choose K > sup {‖u‖∞ : u ∈ T }. Let fK,p be
C1 and increasing such that fK,p(y) = |y|p sign y if |y| ≤ K and Kp sign y if
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|y| ≥ K + 1. We will restrict K a little more later. If p is close to p∗, we will
prove that the equation

(18) u − f̃K,p(u) = 0

has a solution u near T in Ẇ 1,2(Ω∗) with ‖u‖∞ < K. This will complete the
proof. Here f̃K,P is the mapping of Ẇ 1,2(Ω∗) into itself defined by

〈f̃K,p(u), v〉 = (‖x‖−q(p)fK,p(u), v).

It follows easily from the Sobolev embedding theorem that f̃K,p is a well defined
continuous map for p close to p∗.

We first consider solutions of u = f̃K,p∗(u) near T . Equivalently, we consider
solutions of ∆u = fK,p∗(u) on Ω∗ with Dirichlet boundary conditions on ∂Ω∗.
Let gK by defined by fK,p∗(y) = ygK(y). It is easy to see from the Sobolev
embedding theorem that given c > 0 we can choose K1 large enough independent
of K so that if u is close to T in W 1,2(Ω∗), then ‖gK(u)χ(|u|>K1)‖t ≤ c where
t = 4/(m − 2). The proof of Theorem 2.3 in Brezis and Kato [3] then implies
a bound for ‖u‖q for each large q. (Remember that, since u is close to T , ‖u‖2

is bounded.) Choosing q > 1
2mp∗ and a simple bootstrapping argument implies

that we have a bound independent of K for ‖u‖∞ when u is close to T . We
now choose K larger than this bound. This means that all solutions of (18) (for
p = p∗) near T in Ẇ 1,2(Ω∗) are bounded above by K and hence are solutions of
(16). Hence T is an isolated (in Ẇ 1,2(Ω∗)) component of solutions of (17). We
can use the same argument for the equations (for 0 ≤ s ≤ 1)

−∆u = s|u|p∗−1u + (1 − s)fK,p∗(u) in Ω∗.

Hence the homotopy index for the flow of

u̇(t) = −u(t) + (1 − s)f̃K,p∗(u(t)) + sS(u(t))

on an isolating neighbourhood of T (but contained in W ) is independent of s.
Here as in §1 we use Theorem I.12.2 of [22]. The only difficulty is to prove that
the flow is strictly admissible on W for each s. To do this it suffices to show our
map satisfies the Palais–Smale condition on W . The easiest way to see this is
to use the fact that the map u → u − (1 − s)f̃K,p∗(u) − sS(u) is locally proper
near T . This follows easily because the map is C1 (cp. [5]), and its derivative is
Fredholm on T (cp. [24]).

Hence we see that I − f̃K,p∗ also has non-trivial homotopy index on some
isolating neighbourhood of T . If we prove that f̃K,p is uniformly close to f̃K,p∗

on W in the Ẇ 1,2 norm if p is near p∗, it will follow that I − f̃K,p has non-trivial
homotopy index on an isolating neighbourhood of T and hence has a zero near
T . Hence we will have completed the proof if we show that f̃K,p is uniformly
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close to f̃K,p∗ on W in the W 1,2 norm and that solutions u of u = f̃K,p(u) near
T satisfy ‖u‖∞ ≤ K.

To prove the first of these statements, note that by the Sobolev embedding
theorem, it suffices to obtain an estimate of ‖f̂K,p(u) − fK,p∗(u)‖s where s =
(m + 2)(m − 2)−1 and f̂K,p(u) = ‖x‖−q(p)fK,p(u). Away from the origin, it
is easy to see that f̂K,p(y) − fK,p∗(y) is uniformly small for y ∈ R. Thus it
suffices to make the estimate near zero. The estimate near zero follows easily
since |f̂K,p(y) − fK,p∗(y)| ≤ ‖x‖−q(p)K2 (where K2 depends on K).

Thus it suffices to prove that solutions u of

−∆u = f̂K,p(u)

near T in the Ẇ 1,2 norm satisfy ‖u‖∞ ≤ K. If q > 1
2m and fixed, a slight variant

of the argument of the previous paragraph shows that ‖f̂K,p(u) − fK,p∗(u)‖q is
uniformly small on W if p is near p∗. On the other hand, since fK,p∗ is continuous
and bounded the map u → fK,p∗(u) is continuous as a mapping of W 1,2(Ω∗) into
Lq(Ω∗). (Remember that the inclusion of W 1,2(Ω∗) into L�q(Ω∗) is continuous if
q̃ = 2m(m − 2)−1.) Hence, since T is compact, if u is close to T in W 1,2(Ω∗),
then fK,p∗(u) is close to fK,p∗(v) in Lq(Ω∗) for some v ∈ T . Thus f̂K,p(u) is
close to fK,p∗(v) in Lq(Ω∗) for some v ∈ T . Hence, by L∞ regularity theory,
(−∆)−1f̂K,p(u) is L∞(Ω∗) close to (−∆)−1fK,p∗(v) = v for some v ∈ T . Hence
we see that any fixed point of f̃K,p near T in Ẇ 1,2(Ω∗) for p close to p∗ is L∞

close to some element of T . By our earlier bounds for T in L∞, it follows that
any fixed point u of fK,p for p near p∗ satisfies ‖u‖∞ < K, as required. There
is one minor point in the above proof. We need to check solutions we obtain are
positive. This follows easily by multiplying by u− since u is uniformly bounded
and ‖u−‖2m/(m−2) is small. This is similar but much easier than arguments in
[3]. This completes the proof.

Remarks. 1. If T is a single point (and with some work for all such T ),
we can apply Theorem III.4.8 of [22] to prove that the cohomology of h(T )
with coefficients in Z is simply Hi(Eµ ∩ V, Eµ ∩ (V \ T ), Z) where µ = E(T ),
Eµ = {u ∈ Ẇ 1,2(Ω∗) : E(u) ≤ µ} and V is some neighbourhood of T in
Ẇ 1,2(Ω∗).

2. Note that the homotopy index of T is unchanged if we replace |u|p∗−1u

by (u+)p∗.
3. The reason for the interest in the above theorem is the following. In

[11], we conjectured that if Ω has non-trivial homology with coefficients in Z2,
then (15) has a positive solution for p close to but less than p∗. The above result
gives strong grounds for believing this conjecture. If we can find a, b positive such
that the cohomology H(Eb

+, Ea
+) is non-trivial, the positive solutions of (17) with

energies in [a, b] are isolated and if the Palais–Smale condition holds for u with
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E+(u) ∈ [a, b], then it follows easily from Theorem 3 and Remark 1 after Theorem
3 that the conjecture is true in this case. Here E+ is the natural energy for the
non-linearity (u+)p∗. Moreover, the proof of the Bahri–Coron theorem [2] seems
to show that, under the above conditions on Ω and if all positive solutions of (17)
are isolated, then there exist a, b positive such that H(Eb

+, Ea
+) is non-trivial, the

Palais–Smale condition holds on [a, b] except possibly at the ends and there is a
positive solution of (17) with non-trivial homotopy index. (If there are positive
solutions with energies at the critical levels where the Palais–Smale condition
fails, we also need to use the removability theorem of [12].) Thus, in a variety of
cases, Theorem 3 implies that our conjecture is true and provides strong support
that it is true in general. In fact it seems that the isolatedness assumptions
can be greatly weakened especially in the cases where m = 3, 4, 6 where the
non-linearity up∗

is real analytic. Indeed, in these cases, the occasion where our
attempted proof of our conjecture seems to have most serious difficulties is when
there is a non-compact component of the set of positive solutions of (17).
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