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AN ANALYTIC COMPUTATION OF ko4ν−1(BQ8)

Boris Botvinnik — Peter Gilkey

Dedicated to Louis Nirenberg

The connective K-theory groups ko∗(Bπ) of a group π appear in many con-
texts; for example, they are the building blocks for equivariant spin bordism at
the prime 2. They also play an important role in the Gromov–Lawson–Rosenberg
conjecture which was the starting point of our original investigation [5].

The second author first studied the eta invariant, which is an analytic in-
variant, whilst a graduate student under the direction of L. Nirenberg so this
is perhaps a fitting subject for this volume. In this paper, we will use the eta
invariant to determine the additive structure of ko4ν−1(BQ8), where

Q8 = {±1,±i,±j,±k}

is the quaternion group of order 8. We refer to D. Bayen and R. Bruner [2] for
an independent topological computation of these groups.

Theorem 1.

(a) ko8µ+3(BQ8) ∼= (Z/23+4µ)⊕ (Z/22µ)⊕ (Z/22µ+2)⊕ (Z/22µ+2).
(b) ko8µ+7(BQ8) ∼= (Z/26+4µ)⊕ (Z/22µ)⊕ (Z/22µ+2)⊕ (Z/22µ+2).

Remark. In fact, we not only determine the additive structure of these
groups, our method can also be used to find explicit geometrical generators.
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Remark. The eta invariant is trivial on kom(BQ8) for m 6≡ 3 (mod 4) and
gives no information in these dimensions. We refer to [2] for the calculation of
kom(BQ8) for these values of m; there are no extension problems to be solved
in these dimensions in contrast to the case m ≡ 3 (mod 4).

We begin by reviewing some of the facts we shall need concerning the eta
invariant and connective K-theory. Let D be an operator of Dirac type on a
compact Riemannian manifold M . Let

η(D)(z) :=
∑
λ6=0

sign(λ) · dim(ker(D − λI)) · |λ|−z

be the eta function of Atiyah, Patodi, and Singer [1]. This converges absolutely
for Re(z) > 0 and has a meromorphic extension to C which is regular at z = 0.
The eta invariant is a measure of the spectral asymmetry of D defined by

η(D) := 1
2{η(D)(z) + dim(ker(D))}|z=0 ∈ R.

We refer to [1, 9] for the proof of the following result.

Lemma 2. Let Dt be a smooth 1-parameter family of operators of Dirac type
on a compact manifold M . The reduction of η(Dt) to R/Z is smooth and the
derivative η̇(Dt) is given by integrating a local formula over M . If ker(Dt) is
trivial, then η(Dt) is smooth as a real-valued invariant.

Remark. In general, η(Dt) is not smooth in t; discontinuities occur when
the eigenvalues cross or touch the origin; reduction mod Z eliminates these dis-
continuities.

Let π be a finite group. Let (M, g, s, σ) denote a closed manifold of dimension
m with a Riemannian metric g, a spin structure s, and a π structure σ. If m

is odd, let D% be the Dirac operator on M with coefficients in the flat bundle
determined by a representation % of π. Define

η(M)(%) = η(M, g, s, σ)(%) := η(D%) ∈ R.

Let R0(π) be the augmentation ideal of all virtual representations of virtual
dimension 0 in the group representation ring R(π). It is clear that η(·)(%) is
additive in % and hence extends to R(π) and R0(π).

Let MSpinm(Bπ) be the set of bordism classes of triples (M, s, σ), where M

is a closed manifold of dimension m, where s is a spin structure on M, and where
σ is a π structure on M.

Theorem 3. Let % ∈ R0(π) and let m be odd. Then the homomorphism

η(%) : MSpinm(Bπ) → R/Z
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which maps a class represented by (M, s, σ) in dimension m to η(M, g, s, σ)(%)
is well defined. Furthermore, if % is of real type and m ≡ 3 (mod 8) or if % is of
quaternion type and m ≡ 7 (mod 8), we can replace the range of η(%) by R/2Z.

Proof. We use the index theorem of Atiyah, Patodi, and Singer [1]. Let M

be the boundary of a spin manifold N and suppose the π structure on M extends
over N . To prove the first assertion, we must show η(%) ∈ Z. We extend the
metric on M to a metric on N which is product near the boundary. Let P% be
the operator of the spin complex over N with coefficients in the flat bundle V%

determined by the virtual representation %. We take suitable non-local boundary
conditions for P% and apply the index theorem to see

index(P%) =
∫

N

Â · ch(V%)− η(%),

where Â is the differential form on N whose representative in de Rham coho-
mology gives the Â-genus. Since V% is a flat bundle of virtual dimension zero,
ch(V%) = 0 and we see η(%) ∈ Z as desired. If m ≡ 3 (mod 8), then the spin
bundle on N admits a natural quaternion structure; if m ≡ 7 (mod 8), then the
spin bundle on N admits a natural real structure. Thus if % is real if m ≡ 3
(mod 8) or quaternion if m ≡ 7 (mod 8), then the spin bundle with coefficients
in % on N has a natural quaternion structure and the eigenspaces of P% admit
natural quaternion structures. Consequently, index(P%) is divisible by 2 in these
cases. �

Remark. Invariants similar to those defined in Theorem 3 completely de-
tect the K-theory of spherical space forms and the reduced equivariant unitary
bordism of spherical space form groups; see [7, 8].

There is a geometric way to think of the connective K-theory groups kon(Bπ)
localized at the prime 2. Let Tm(Bπ) be the subgroup of MSpinm(Bπ) repre-
sented by pairs (E,α), where α : E → B is a fiber bundle with fibre HP2, the
quaternionic projective plane, and structure group the group of isometries of
HP2. Stolz [11] showed the map

MSpinm(Bπ)/Tm(Bπ) → kom(Bπ)

is an isomorphism when localized at the prime 2. We use the following theorem
to extend the eta invariant to a map in K-theory.

Theorem 4. Let π be a finite group, let % ∈ R0(π), and let m be odd. Then
the homomorphism

ηko(%) : (kom(Bπ))(2) → (R/Z)(2)

which maps a class represented by (M, s, σ) in dimension m to η(M, g, s, σ)(%)
is well defined when localized at the prime 2. Furthermore, if % is of real type and
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m ≡ 3 (mod 8) or if % is of quaternion type and m ≡ 7 (mod 8), we can replace
the range of η(%) by (R/2Z)(2).

Proof. Let α : E → B be a geometrical fiber bundle with fiber HP2. We
must show η(E)(%) = 0. Since HP2 is simply connected, the π structure on the
total space E arises from a π structure on the base B. Let gF be the standard
Riemannian metric of positive scalar curvature on the fiber F = HP2 and let
gB be any Riemannian metric on the base B. Let Fx be the fiber of E over a
point x ∈ B. There exists a metric gE on the total space E so that the induced
metric on each Fx is gF , so that each Fx is totally geodesic, and so that the
projection α is a Riemannian submersion [3, 9.59]. Let V and H be the vertical
and horizontal distributions of the submersion. Define the canonical variation
gE

t of the metric by imposing the conditions

gE
t |V = tgF , gE

t |H = α∗(gB), gE
t (V,H) = 0.

Let τF and τE
t be the scalar curvature of the metrics on F and on E. Then

τE
t = t−1τF + O(1);

see [3, 9.70]. In particular, τE
t →∞ as t → 0.

Let % ∈ R0(π). We will show that there exists t0(%) so that if 0 < t < t0(%),

(∗) η(gE
t )(%) = 0 in R.

Let δ be the right regular representation of π and let 1 be the trivial represen-
tation of π. Let χ := |π| · 1− δ. Then

Tr(χ(1)) = 0 and Tr(χ)(λ) = |π| for λ 6= 1.

Thus if % ∈ R0(π), then |π|% = χ%. Since R is without torsion, we may replace
% by χ% in proving equation (∗).

Let % = µ1 − µ2, where the µi are actual representations of π of the same
dimension. Let ζB

i be the corresponding flat bundles over the base B. Since these
bundles admit flat connections and have the same dimension, the rational Chern
classes of the difference ζB

1 − ζB
2 vanish. Thus this virtual bundle is rationally

trivial. Again, by replacing % by a suitable integer multiple, we may assume
ζB
1
∼= ζB

2
∼= ζB .

Let ∇B
i be the flat connections on ζB defined by the flat structures µi. Define

a smooth 1-parameter family of connections with curvatures ΩB
ε by defining

∇B
ε := ε∇B

1 + (1− ε)∇B
2 .

Pull back these structures to define the corresponding structures over E. Since
α is a Riemannian submersion for any t, the norm of the curvature tensor ΩE

ε

can be uniformly bounded with respect to the metric gE
t for all (ε, t) ∈ [0, 1]×R.
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Let Dε,t be the Dirac operator with coefficients in E defined by the metric
gE

t and connection ∇E
ε . We use the generalized Lichnerowicz formula to express

the square of Dε,t in the form

(Dε,t)2 = ∇∗ε,t∇ε,t + τE
t /4 + Ψ(ΩE

ε );

the error term Ψ(·) depends only on the Clifford module structure of the base B.
Thus the pointwise operator norm of Ψ(·) is uniformly bounded in (ε, t). Since
τE
t →∞ as t → 0, τE

t /4 + Ψ(ΩE
ε ) is positive for t sufficiently small. Thus there

are no twisted harmonic spinors.
Let Dε,t,χ denote Dε,t with coefficients in the flat virtual bundle defined by

χ. The same argument as that given above shows ker(Dε,t,χ) is trivial for all
(ε, t). Thus by Theorem 2, η(Dε,t,χ) is a smooth real-valued function of (ε, t).
Furthermore, the derivative with respect to ε or t of the eta invariant is given
by a local formula. Since χ has virtual dimension 0, the local formula vanishes
and η(Dε,t,χ) is independent of (ε, t). This shows that

|π|η(gt)(%) = η(Dε,t,χ)− η(Dε,t,χ) = 0. �

Remark. The adiabatic limit theorem of Bismut and Cheeger [4, (0.5)] can
also be used to establish this result. However, the proof we have just given
of Theorem 4 generalizes to the case of spinc and pinc structures, where the
associated complex line bundle is flat.

Remark. We will show in Lemma 6 that ko4ν−1(BQ8) is a finite 2-group.
Thus it is not necessary to localize at the prime 2 and η(%) defines a homomor-
phism from ko4ν−1(BQ8) to R/Z or to R/2Z.

Spherical space forms play a crucial role in our analysis. Let τ : π → SU(2ν)
be a fixed point free representation of π to the special unitary group. Let M

be the quotient manifold S4ν−1/τ(π); M inherits a natural metric of constant
sectional curvature +1 and is called a spherical space form. The isomorphism
π1(M) ∼= π defines a natural π structure on M. Let T (M) ⊕ 1 be the stable
tangent bundle of M. We identify T (M)⊕ 1 with the flat bundle over M defined
by τ to define a natural SU(2ν) structure on T (M) ⊕ 1. We use the lift of
the special unitary group to the spinor group discussed by Hitchin [10] to give
T (M) ⊕ 1 and T (M) natural spin structures. Donnelly [6] has generalized the
Atiyah–Patodi–Singer theorem to the equivariant setting; the following theorem
follows from his results.

Theorem 5. Let % ∈ R0(π) and let τ : π → SU(2ν) be a fixed point free
representation. Let M = S4ν−1/τ(π) with the structures defined above. Then

η(M)(%) = |π|−1
∑

λ∈π,λ6=1

Tr(%(λ)) det(I − τ(λ))−1.
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We specialize henceforth to the group π = Q8 = {±1,±i,±j,±k}. Let

Hi := 〈i〉, Hj := 〈j〉, and Hk := 〈k〉

be the 3 cyclic subgroups of Q8 which have order 4. The group Q8 has 4 in-
equivalent real linear representations defined by

%0(±1) = 1, %0(±i) = 1, %0(±j) = 1, %0(±k) = 1,

%i(±1) = 1, %i(±i) = 1, %i(±j) = −1, %i(±k) = −1,

%j(±1) = 1, %j(±i) = −1, %j(±j) = 1, %j(±k) = −1,

%k(±1) = 1, %k(±i) = −1, %k(±j) = −1, %k(±k) = 1.

Let τ be the inclusion of Q8 into SU(2) which we identify with the set of unit
quaternions; τ is of quaternion type. The representations %0, %i, %j , %k, and τ

are the irreducible representations of Q8 up to unitary equivalence. Let

τν := τ ⊕ . . .⊕ τ

be the diagonal embedding of Q8 into SU(2ν); τν is fixed point free. Let

M4ν−1
Q := S4ν−1/τν(Q8), M4ν−1

i := S4ν−1/τν(Hi),

M4ν−1
j := S4ν−1/τν(Hj), M4ν−1

k := S4ν−1/τ(Hk),

~η(·) := (η(·)(2− τ), η(·)(%0 − %i), η(·)(%0 − %j), η(·)(%0 − %k)),

A4ν−1 := spanZ{~η(M4ν−1
Q ), ~η(M4ν−1

i ), ~η(M4ν−1
j ), ~η(M4ν−1

k )},
A8µ+3 ⊂ (R/Z)⊕ (R/2Z)3, and A8µ+7 ⊂ (R/2Z)⊕ (R/Z)3.

Lemma 6.

(a) ~η(M4ν−1
Q ) = (2−1−2ν(1 + 3 · 2ν), 2−ν , 2−ν , 2−ν).

(b) ~η(M4ν−1
i ) = (2−2ν(1 + 2ν), 0, 2−ν , 2−ν).

(c) ~η(M4ν−1
j ) = (2−2ν(1 + 2ν), 2−ν , 0, 2−ν).

(d) ~η(M4ν−1
k ) = (2−2ν(1 + 2ν), 2−ν , 2−ν , 0).

(e) A8µ+3
∼= (Z/23+4µ)⊕ (Z/22µ)⊕ (Z/22µ+2)⊕ (Z/22µ+2).

(f) A8µ+7
∼= (Z/26+4µ)⊕ (Z/22µ)⊕ (Z/22µ+2)⊕ (Z/22µ+2).

(g) ko4ν−1(BQ8) is a finite 2-group and |ko4ν−1(BQ8)| ≤ |A4ν−1| .

Proof. Let a, b ∈ {±i,±j,±k}. Set εa,b = 0 if a = b and εa,b = 1 if a 6= b.

We prove the first 4 assertions of the lemma by computing:
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det((I2ν − τν)(−1)) = 22ν , det((I2ν − τν)(±a)) = 2ν ,

Tr((2− τ)(−1)) = 4, Tr((2− τ)(±a)) = 2,

Tr((%0 − %a)(−1)) = 0, Tr((%0 − %a)(±b)) = 2εa,b,

~η(M4ν−1
Q )(2− τ) = 2−3{Tr((2− τ)(−1)) · 2−2ν + 6Tr((2− τ)(j)) · 2−ν},

~η(M4ν−1
Q )(%0 − %a) = 2−3{4Tr((%0 − %j)(i)) · 2−ν},

~η(M4ν−1
a )(2− τ) = 2−2{Tr((2− τ)(−1)) · 2−2ν + 2Tr((2− τ)(j)) · 2−ν},

~η(M4ν−1
a )(%0 − %b) = 2−2{2Tr((%0 − %b)(a))2−ν} = 2−νεa,b.

We use Gaussian elimination on the eta matrix to prove the next 2 assertions
of the lemma. Let Ai denote suitably chosen integers. We subtract the second
row from the third and fourth rows to obtain the matrix

2−1−2ν(1 + 3 · 2ν) 2−ν 2−ν 2−ν

2−2ν(1 + 2ν) 0 2−ν 2−ν

0 2−ν −2−ν 0
0 2−ν 0 −2−ν

 .

We add the third and fourth rows to the first and second rows to obtain the
matrix 

2−1−2ν(1 + 3 · 2ν) 3 · 2−ν 0 0
2−2ν(1 + 2ν) 21−ν 0 0

0 2−ν −2−ν 0
0 2−ν 0 −2−ν

 .

We add the third and fourth columns to the second column to obtain the matrix
2−1−2ν(1 + 3 · 2ν) 3 · 2−ν 0 0

2−2ν(1 + 2ν) 21−ν 0 0
0 0 −2−ν 0
0 0 0 −2−ν

 .

We multiply the first column by −3(1 − 3 · 2ν)2ν+1 and add it to the second
column; since 2 divides 2ν+1, this is permissible even if the first column is defined
mod Z and the second column is defined mod 2Z. This yields the matrix

2−1−2ν(1 + 3 · 2ν) 2A1 0 0
2−2ν(1 + 2ν) (1− 3)21−ν + 2B1 0 0

0 0 −2−ν 0
0 0 0 −2−ν

 .

We subtract an appropriate multiple of the first row from the second row to put
the eta matrix in the form diag(A32−1−2ν , A422−ν ,−2−ν ,−2−ν) for A3 and A4

odd. If m = 8µ + 3, then ν = 2µ + 1. The first column is defined mod Z, the
remaining columns are defined mod 2Z, and assertion (e) follows. If m = 8µ+7,

then ν = 2µ+2. The first column is defined mod 2Z, the remaining columns are
defined mod Z, and assertion (f) follows.
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We use the Atiyah–Hirzebruch spectral sequence to obtain an upper bound
for the order of the groups ko4ν−1(BZn) in order to prove the final assertion of
the lemma. The E2 term in the spectral sequence for kom(BQ8) is given by

E2
p,q :=

⊕
p+q=m

Hp(BQ8; koq).

Consequently, we may estimate

|ko4ν−1(BZn)| ≤
∣∣∣∣ ⊕

p+q=4ν−1
Hp(BQ8; koq)

∣∣∣∣.
We recall Hν(BQ8; Z) is periodic with period 4 for ν > 0 and koν is periodic
with period 8 for all ν. Let 2Z2 = Z2 ⊕ Z2. Recall that

ν 0 1 2 3 4 5 6 7 8
Hν(BQ8; Z) Z 2Z2 0 Z8 0 2Z2 0 Z8 0
boν Z Z2 Z2 0 Z 0 0 0 Z

We complete the proof of the lemma by checking that∣∣∣∣ ⊕
p+q=4ν−1

Hp(BQ8; koq)
∣∣∣∣ = |A4ν−1|. �

Proof of Theorem 1. Since ~η extends to ko4ν−1(BQ8), since range(~η)
contains A4ν−1 and since |ko4ν−1(BQ8)| ≤ |A4ν−1|, ~η ko is an isomorphism in
these dimensions. �

Remark. We have shown as a byproduct that the eta invariant completely
detects ko4ν−1(BQ8). The corresponding assertion holds true for the higher
quaternion spherical space form groups despite the fact that we do not know
the explicit additive structure; we refer to [5, Corollary 2.13 for details].
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