NONLINEAR STURM-LIOUVILLE PROBLEMS FOR SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

Huo-yan Chern

Dedicated to Ky Fan

1. Introduction

In this paper we study a two-point boundary value problem for the nonlinear system

$$
\begin{equation*}
-\left(A(t) x^{\prime}(t)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right), \quad t \in I \tag{1.1}
\end{equation*}
$$

where $A: I=[0,1] \rightarrow M_{n}(\mathbb{R})$ is a continuous matrix-valued function from $[0,1]$ to the space of all $n \times n$ matrices over $\mathbb{R}, f: I \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a mapping satisfying the Carathéodory conditions (C1)-(C3):
(C1) for a.e. $t \in I$, the mapping $(x, y) \mapsto f(t, x, y)$ is continuous;
(C2) for every $(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$, the mapping $t \mapsto f(t, x, y)$ is measurable;
(C3) for every $r>0$, there exists $g_{r} \in L^{1}\left(I, \mathbb{R}_{+}\right)$such that, for every x, y with $|x| \leq r,|y| \leq r$ and a.e. $t \in I$,

$$
|f(t, x, y)| \leq g_{r}(t)
$$

and $x(t)$ satisfies the following boundary conditions:

$$
\begin{equation*}
x(0)-A_{0} x^{\prime}(0)=0, \quad x(1)+A_{1} x^{\prime}(1)=0, \tag{BC}
\end{equation*}
$$

where A_{0} and A_{1} are $n \times n$ matrices.

[^0]By a solution to the above problem we mean a function $x(t) \in C^{1}\left(I, \mathbb{R}^{n}\right)$ for which $A x^{\prime}$ is absolutely continuous and which satisfies (1.1) for almost every $t \in I$ and satisfies the boundary conditions (BC). Let (\cdot, \cdot) denote the inner product in $\mathbb{R}^{n},\|\cdot\|_{p}$ denote the L^{p} norm in $L^{p}\left(I, \mathbb{R}^{n}\right)$, and

$$
\|x\|_{C^{k}}=\max _{\alpha \leq k} \sup _{t \in I}\left|x^{(\alpha)}(t)\right|
$$

for $x \in C^{k}\left(I, \mathbb{R}^{n}\right)$. We shall refer to $\|\cdot\|_{C^{k}}$ as the C^{k}-norm. For a matrix B, we write $B>0$ if B is positive definite, and $B \geq 0$ if $B>0$ or $B=0$.

In the next section, we find the Green matrix for our problem subject to suitable conditions on A, A_{0} and A_{1}. Some technicalities will be necessary because the function f need not be continuous. Moreover, f may not be Lebesgue integrable and the matrix-valued function $A(t)$ is not necessarily symmetric, hence the existence of the Green matrix is not trivial. We present the existence and uniqueness theorems for our problem under suitable conditions in Sections 3 and 4.

2. Green matrix

We first define the Green matrix for our problem. We assume that $A(t)$ is a continuous $n \times n$ matrix-valued function on I with $A(t)$ invertible for all $t \in I$ and that A_{0}, A_{1} are $n \times n$ matrices. We denote by T the matrix $\int_{0}^{1} A^{-1}(s) d s+$ $A_{0} A^{-1}(0)+A_{1} A^{-1}(1)$ and assume that T is invertible. We call the following matrix $G(t, s)$ the Green matrix for our problem:

$$
G(t, s)=-H(t-s) \int_{s}^{t} A^{-1}(u) d u+\left(\int_{0}^{t} A^{-1}(u) d u\right) B(s)+C(s)
$$

where

$$
\begin{gathered}
H(t-s)= \begin{cases}1 & \text { if } t \geq s, \\
0 & \text { if } t<s,\end{cases} \\
B(s)=I_{n \times n}-T^{-1}\left[A_{0} A^{-1}(0)+\int_{0}^{s} A^{-1}(u) d u\right], \quad C(s)=A_{0} A^{-1}(0) B(s) .
\end{gathered}
$$

Here $I_{n \times n}$ denotes the $n \times n$ identity matrix.
Lemma 2.1. The Green matrix $G(t, s)$ has the following properties:
(a) for any fixed $s \in I, G(t, s)$ is a continuous function of t;
(b) $\frac{\partial}{\partial t} G(t, s)$ is a continuous function of t except at the point $t=s$, and

$$
\frac{\partial}{\partial t} G(t, s)=-H(t-s) A^{-1}(t)+A^{-1}(t) B(s) \quad \text { for } t \neq s
$$

(c) there exists a positive number k such that

$$
\sup _{s, t \in I}\left|G_{i, j}(t, s)\right| \leq k, \quad \sup _{s \neq t \in I}\left|\frac{\partial}{\partial t} G_{i, j}(t, s)\right| \leq k
$$

for all i, j, where $G_{i, j}(t, s), 1 \leq i, j \leq n$, are the entries of $G(t, s)$;
(d) if $0<s<1$, then

$$
G(0, s)-A_{0} \frac{\partial}{\partial t} G(0, s)=0 \quad \text { and } \quad G(1, s)+A_{1} \frac{\partial}{\partial t} G(1, s)=0
$$

(e) $\frac{\partial}{\partial t}\left(A(t) \frac{\partial}{\partial t} G(t, s)\right)=0$ for all $t \neq s$.

Proof. The conclusions (a), (b), (c) are immediate consequences of our assumptions, so we only need to prove (d) and (e).
(d) If $0<s<1$, then

$$
G(0, s)-A_{0} \frac{\partial}{\partial t} G(0, s)=C(s)-A_{0} A^{-1}(0) B(s)=0
$$

and

$$
\begin{aligned}
G(1, s)+A_{1} \frac{\partial}{\partial t} G(1, s)= & -\int_{s}^{1} A^{-1}(u) d u+\left(\int_{0}^{1} A^{-1}(u) d u\right) B(s) \\
& +A_{0} A^{-1}(0) B(s)+A_{1}\left(-A^{-1}(1)+A^{-1}(1) B(s)\right) \\
= & T B(s)-A_{1} A^{-1}(1)-\int_{s}^{1} A^{-1}(u) d u \\
= & T-A_{0} A^{-1}(0)-\int_{0}^{s} A^{-1}(u) d u-A_{1} A^{-1}(1) \\
& -\int_{s}^{1} A^{-1}(u) d u \\
= & 0 .
\end{aligned}
$$

(e) Since

$$
A(t) \frac{\partial}{\partial t} G(t, s)=-H(t-s) I_{n \times n}+B(s)= \begin{cases}-I_{n \times n}+B(s) & \text { if } t>s \\ B(s) & \text { if } t<s\end{cases}
$$

we have

$$
\frac{\partial}{\partial t}\left(A(t) \frac{\partial}{\partial t} G(t, s)\right)=0
$$

for all $t \neq s$.
The proof of the following lemma is based on the Leibniz rule for differentiation of integrals.

Lemma 2.2. Let $y \in C\left(I, \mathbb{R}^{n}\right)$ and $x(t)=\int_{0}^{1} G(t, s) y(s) d s$. Then
(a) $x, A x^{\prime} \in C^{1}\left(I, \mathbb{R}^{n}\right)$;
(b) $-\left(A(t) x^{\prime}(t)\right)^{\prime}=y(t)$ for all $t \in I$;
(c) $x(0)-A_{0} x^{\prime}(0)=0$ and $x(1)+A_{1} x^{\prime}(1)=0$.

Proof. For each $t \in I$, we have

$$
\begin{aligned}
x^{\prime}(t)= & \frac{d}{d t} \int_{0}^{1} G(t, s) y(s) d s \\
= & \frac{d}{d t}\left(\int_{0}^{t} G(t, s) y(s) d s+\int_{t}^{1} G(t, s) y(s) d s\right) \\
= & \int_{0}^{t} \frac{\partial}{\partial t} G(t, s) y(s) d s+G(t, t-) y(t) \\
& +\int_{t}^{1} \frac{\partial}{\partial t} G(t, s) y(s) d s-G(t, t+) y(t) \\
= & \int_{0}^{t} \frac{\partial}{\partial t} G(t, s) y(s) d s+\int_{t}^{1} \frac{\partial}{\partial t} G(t, s) y(s) d s \\
= & \int_{0}^{1} \frac{\partial}{\partial t} G(t, s) y(s) d s,
\end{aligned}
$$

and so

$$
A(t) x^{\prime}(t)=\int_{0}^{1}\left(A(t) \frac{\partial}{\partial t} G(t, s)\right) y(s) d s
$$

Thus, we have

$$
\begin{aligned}
\left(A(t) x^{\prime}(t)\right)^{\prime}= & \frac{d}{d t} \int_{0}^{1}\left(A(t) \frac{\partial}{\partial t} G(t, s)\right) y(s) d s \\
= & \frac{d}{d t}\left[\int_{0}^{t}+\int_{t}^{1}\right]\left(A(t) \frac{\partial}{\partial t} G(t, s)\right) y(s) d s \\
= & \int_{0}^{t} \frac{\partial}{\partial t}\left(A(t) \frac{\partial}{\partial t} G(t, s)\right) y(s) d s+\left(A(t) \frac{\partial}{\partial t} G(t, t-)\right) y(t) \\
& +\int_{t}^{1} \frac{\partial}{\partial t}\left(A(t) \frac{\partial}{\partial t} G(t, s)\right) y(s) d s-\left(A(t) \frac{\partial}{\partial t} G(t, t+)\right) y(t) \\
= & A(t)\left(\frac{\partial}{\partial t} G(t, t-)-\frac{\partial}{\partial t} G(t, t+)\right) y(t) \\
= & A(t)\left(-A^{-1}(t)\right) y(t)=-y(t)
\end{aligned}
$$

which proves (b).
Since $\left(A(t) x^{\prime}(t)\right)^{\prime}=-y(t)$, we have $A x^{\prime} \in C^{1}\left(I, \mathbb{R}^{n}\right)$. Since $A^{-1} \in$ $C\left(I, M_{n}(\mathbb{R})\right)$, it follows that $x^{\prime} \in C\left(I, \mathbb{R}^{n}\right)$, which proves (a).

Finally, we have

$$
\begin{aligned}
x(0)-A_{0} x^{\prime}(0) & =\int_{0}^{1} G(0, s) y(s) d s-A_{0} \int_{0}^{1} \frac{\partial}{\partial t} G(0, s) y(s) d s \\
& =\int_{0}^{1}\left[G(0, s)-A_{0} \frac{\partial}{\partial t} G(0, s)\right] y(s) d s=0
\end{aligned}
$$

by Lemma 2.1(d), (c). Similarly,

$$
\begin{aligned}
x(1)+A_{1} x^{\prime}(1) & =\int_{0}^{1} G(1, s) y(s) d s+A_{1} \int_{0}^{1} \frac{\partial}{\partial t} G(1, s) y(s) d s \\
& =\int_{0}^{1}\left[G(1, s)+A_{1} \frac{\partial}{\partial t} G(1, s)\right] y(s) d s=0
\end{aligned}
$$

which proves (c).
Lemma 2.3. Let $y \in L^{1}\left(I, \mathbb{R}^{n}\right)$ and $x(t)=\int_{0}^{1} G(t, s) y(s) d s$. Then
(a) $x \in C^{1}\left(I, \mathbb{R}^{n}\right)$ and $A x^{\prime}$ is absolutely continuous;
(b) $-\left(A(t) x^{\prime}(t)\right)^{\prime}=y(t)$ a.e. on I;
(c) $x(0)-A_{0} x^{\prime}(0)=0$ and $x(1)+A_{1} x^{\prime}(1)=0$.

Proof. Since $y \in L^{1}\left(I, \mathbb{R}^{n}\right)$, there exists a sequence of $C\left(I, \mathbb{R}^{n}\right)$ functions $\left\{y_{m}\right\}_{m=1}^{\infty}$ such that $y_{m} \rightarrow y$ in $L^{1}\left(I, \mathbb{R}^{n}\right)$. For each $m \in \mathbb{N}$, let $x_{m}(t)=$ $\int_{0}^{1} G(t, s) y_{m}(s) d s$. Then, by Lemma $2.2, x_{m} \in C^{1}\left(I, \mathbb{R}^{n}\right), A x_{m}^{\prime}$ is continuously differentiable and $x_{m}(0)-A_{0} x_{m}^{\prime}(0)=0, x_{m}(1)+A_{1} x_{m}^{\prime}(1)=0$.

Now, for each $t \in I$,
$\left|x_{m}(t)-x(t)\right|=\left|\int_{0}^{1} G(t, s)\left(y_{m}(s)-y(s)\right) d s\right| \leq n k\left\|y_{m}-y\right\|_{1} \rightarrow 0 \quad$ as $m \rightarrow \infty$.
That is, $x_{m} \rightarrow x$ uniformly, where k is the constant in Lemma 2.1(c).
If we let $z(t)=\int_{0}^{1} \frac{\partial}{\partial t} G(t, s) y(s) d s$, then for each $t \in I$, we have

$$
\begin{aligned}
\left|x_{m}^{\prime}(t)-z(t)\right| & =\left|\int_{0}^{1} \frac{\partial}{\partial t} G(t, s)\left(y_{m}-y\right)(s) d s\right| \\
& =\left|\left(\int_{0}^{t}+\int_{t}^{1}\right) \frac{\partial}{\partial t} G(t, s)\left(y_{m}-y\right)(s) d s\right| \\
& \leq n k\left(\int_{0}^{t}+\int_{t}^{1}\right)\left|y_{m}-y\right|(s) d s \\
& =n k\left\|y_{m}-y\right\|_{1} \rightarrow 0 \quad \text { as } m \rightarrow \infty .
\end{aligned}
$$

Thus, $x_{m}^{\prime} \rightarrow z$ uniformly.
Since $x_{m} \in C^{1}\left(I, \mathbb{R}^{n}\right)$ for all $m \in \mathbb{N}$ and $x_{m}^{\prime} \rightarrow z$ uniformly and $x_{m}(t) \rightarrow x(t)$ for all $t \in I$, it follows that $x^{\prime}(t)=z(t)$ and $x \in C^{1}\left(I, \mathbb{R}^{n}\right)$. Moreover, $x^{\prime}(t)=$ $\int_{0}^{1} \frac{\partial}{\partial t} G(t, s) y(s) d s$. Since $x_{m}(0)-A_{0} x_{m}^{\prime}(0)=0$ and $x_{m}(1)+A_{1} x_{m}^{\prime}(1)=0$, letting $m \rightarrow \infty$, we get (c).

Finally, since $A x_{m}^{\prime}$ is continuously differentiable for all $m \in \mathbb{N}$,

$$
-A(t) x_{m}^{\prime}(t)+A(0) x_{m}^{\prime}(0)=-\int_{0}^{t}\left(A(s) x_{m}^{\prime}(s)\right)^{\prime} d s=\int_{0}^{t} y_{m}(s) d s
$$

for all $t \in I$. Then, since $y_{m} \rightarrow y$ in $L^{1}\left(I, \mathbb{R}^{n}\right)$, we obtain

$$
-A(t) x^{\prime}(t)+A(0) x^{\prime}(0)=\int_{0}^{t} y(s) d s
$$

for all $t \in I$. Consequently, $A x^{\prime}$ is absolutely continuous and

$$
-\left(A(t) x^{\prime}(t)\right)^{\prime}=y(t) \quad \text { a.e. on } I .
$$

The proof is complete.

3. Existence theorems

The existence theorems in this paper are based on the following nonlinear alternative theorem of A. Granas [2].

Lemma 3.1. Assume that U is a relatively open subset of a convex set K in a Banach space E. Let $N: \bar{U} \rightarrow K$ be a compact map, and assume that $0 \in U$. Then either
(1) N has a fixed point in \bar{U},
or
(2) there is a point $u \in \partial U$ and a number $\lambda \in(0,1)$ such that $u=\lambda N u$.

We shall apply Lemma 3.1 with $E=C^{1}\left(I, \mathbb{R}^{n}\right)$ equipped with the C^{1}-norm, $K=C_{\mathrm{B}}^{1}\left(I, R^{n}\right)=\left\{x \in E: x(0)-A_{0} x^{\prime}(0)=0, x(1)+A_{1} x^{\prime}(1)=0\right\}$, and with $N: K \rightarrow K$ being the mapping defined by

$$
(N x)(t)=\int_{0}^{1} G(t, s) f\left(s, x(s), x^{\prime}(s)\right) d s
$$

for all $t \in I$ and $x \in K$. That N is completely continuous is known when f is continuous [7]; we shall establish this fact for f satisfying the Carathéodory conditions.

Lemma 3.2. N is completely continuous.
Proof. Let Z be any bounded set in K. Then there is a constant $r>0$ such that $\|x\|_{C^{1}} \leq r$ for all $x \in Z$. Since f satisfies the Carathéodory conditions, there is a Lebesgue integrable function g_{r} such that

$$
\left|f\left(s, x(s), x^{\prime}(s)\right)\right| \leq g_{r}(s)
$$

for almost every $s \in I$ and for all $x \in Z$. Hence

$$
|(N x)(t)|=\left|\int_{0}^{1} G(t, s) f\left(s, x(s), x^{\prime}(s)\right) d s\right| \leq n k\left\|g_{r}\right\|_{1}
$$

and

$$
\left|(N x)^{\prime}(t)\right|=\left|\int_{0}^{1} \frac{\partial}{\partial t} G(t, s) f\left(s, x(s), x^{\prime}(s)\right) d s\right| \leq n k\left\|g_{r}\right\|_{1}
$$

for all $t \in I$ and $x \in Z$, where k is the constant in Lemma 2.1(c). Therefore $N(Z)$ is uniformly bounded in K.

Since $G(t, s)$ is continuous on $[0,1]^{2}$, it is also uniformly continuous. Therefore, for any $\epsilon>0$ there is $\delta=\delta(\epsilon)>0$ such that, for $t_{1}, t_{2}, s_{1}, s_{2} \in[0,1]$,

$$
\left|G\left(t_{1}, s_{1}\right)-G\left(t_{2}, s_{2}\right)\right|<\frac{\epsilon}{n\left(\left\|g_{r}\right\|_{1}+1\right)}
$$

whenever $\left|t_{1}-t_{2}\right|,\left|s_{1}-s_{2}\right|<\delta$. Hence, if $\left|t_{1}-t_{2}\right|<\delta$ and $t_{1}, t_{2} \in[0,1]$, we have

$$
\begin{aligned}
\left|(N x)\left(t_{1}\right)-(N x)\left(t_{2}\right)\right| & \leq n \int_{0}^{1}\left|G\left(t_{1}, s\right)-G\left(t_{2}, s\right)\right| \cdot\left|f\left(s, x(s), x^{\prime}(s)\right)\right| d s \\
& \leq \frac{\epsilon}{\left\|g_{r}\right\|_{1}+1} \int_{0}^{1}\left|f\left(s, x(s), x^{\prime}(s)\right)\right| d s \\
& \leq \frac{\epsilon}{\left\|g_{r}\right\|_{1}+1}\left\|g_{r}\right\|_{1}<\epsilon
\end{aligned}
$$

for all $x \in Z$. Therefore $\{N x: x \in Z\}$ is equicontinuous.
Finally, for any $\epsilon>0$, since $g_{r} \in L^{1}\left(I, \mathbb{R}_{+}\right)$, there is $\delta_{1}=\delta_{1}(\epsilon)>0$ such that, for any set $\Omega \subset[0,1]$ with $|\Omega|<3 \delta_{1}$,

$$
\int_{\Omega} g_{r}(s) d s<\frac{\epsilon}{6 k n^{2}},
$$

where k is the constant in Lemma 2.1(c). Since $\frac{\partial}{\partial t} G(t, s)$ is uniformly continuous on $S_{1}=\left\{(t, s) \in[0,1]^{2}: s \leq t-\delta_{1}\right\}$, there is $\delta_{2}=\delta_{2}(\epsilon)>0$ such that for $\left(t_{1}, s_{1}\right),\left(t_{2}, s_{2}\right) \in S_{1}$,

$$
\left|\frac{\partial}{\partial t} G\left(t_{1}, s_{1}\right)-\frac{\partial}{\partial t} G\left(t_{2}, s_{2}\right)\right|<\frac{\epsilon}{3 n\left(\left\|g_{r}\right\|_{1}+1\right)}
$$

whenever $\left|t_{1}-t_{2}\right|,\left|s_{1}-s_{2}\right|<\delta_{2}$. Similarly, there is $\delta_{3}=\delta_{3}(\epsilon)>0$ such that for $\left(t_{1}, s_{1}\right),\left(t_{2}, s_{2}\right) \in\left\{(t, s) \in[0,1]^{2}: s \geq t+\delta_{1}\right\}$,

$$
\left|\frac{\partial}{\partial t} G\left(t_{1}, s_{1}\right)-\frac{\partial}{\partial t} G\left(t_{2}, s_{2}\right)\right|<\frac{\epsilon}{3 n\left(\left\|g_{r}\right\|_{1}+1\right)}
$$

whenever $\left|t_{1}-t_{2}\right|,\left|s_{1}-s_{2}\right|<\delta_{3}$. Letting $\delta=\min \left\{\delta_{1}, \delta_{2}, \delta_{3}\right\}$, for $0 \leq t_{2}-t_{1}<\delta$ and $t_{1}, t_{2} \in[0,1]$ we have

$$
\begin{aligned}
I & =\left|(N x)^{\prime}\left(t_{1}\right)-(N x)^{\prime}\left(t_{2}\right)\right| \\
& \leq n \int_{0}^{1}\left|\frac{\partial}{\partial t} G\left(t_{1}, s\right)-\frac{\partial}{\partial t} G\left(t_{2}, s\right)\right|\left|f\left(s, x(s), x^{\prime}(s)\right)\right| d s=I_{1}+I_{2}+I_{3}
\end{aligned}
$$

where

$$
\begin{aligned}
& I_{1}=n \int_{0}^{\max \left\{t_{1}-\delta_{1}, 0\right\}}\left|\frac{\partial}{\partial t} G\left(t_{1}, s\right)-\frac{\partial}{\partial t} G\left(t_{2}, s\right)\right|\left|f\left(s, x(s), x^{\prime}(s)\right)\right| d s \\
& I_{2}=n \int_{\max \left\{t_{1}-\delta_{1}, 0\right\}}^{\min \left\{t_{2}+\delta_{1}, 1\right\}}\left|\frac{\partial}{\partial t} G\left(t_{1}, s\right)-\frac{\partial}{\partial t} G\left(t_{2}, s\right)\right|\left|f\left(s, x(s), x^{\prime}(s)\right)\right| d s \\
& I_{3}=n \int_{\min \left\{t_{2}+\delta_{1}, 1\right\}}^{1}\left|\frac{\partial}{\partial t} G\left(t_{1}, s\right)-\frac{\partial}{\partial t} G\left(t_{2}, s\right)\right|\left|f\left(s, x(s), x^{\prime}(s)\right)\right| d s
\end{aligned}
$$

Without loss of generality we may assume that $\delta_{1} \leq t_{1} \leq t_{2} \leq 1-\delta_{1}$. We have

$$
\begin{aligned}
I_{1} & =n \int_{0}^{t_{1}-\delta_{1}}\left|\frac{\partial}{\partial t} G\left(t_{1}, s\right)-\frac{\partial}{\partial t} G\left(t_{2}, s\right)\right|\left|f\left(s, x(s), x^{\prime}(s)\right)\right| d s \\
& \leq \frac{\epsilon}{3\left(\left\|g_{r}\right\|_{1}+1\right)} \int_{0}^{1}\left|f\left(s, x(s), x^{\prime}(s)\right)\right| d s \\
& \leq \frac{\epsilon}{3\left(\left\|g_{r}\right\|_{1}+1\right)}\left\|g_{r}\right\|_{1} \leq \frac{\epsilon}{3} ; \\
I_{3} & =n \int_{t_{2}+\delta_{1}}^{1}\left|\frac{\partial}{\partial t} G\left(t_{1}, s\right)-\frac{\partial}{\partial t} G\left(t_{2}, s\right)\right|\left|f\left(s, x(s), x^{\prime}(s)\right)\right| d s \\
& \leq \frac{\epsilon}{3\left(\left\|g_{r}\right\|_{1}+1\right)} \int_{0}^{1}\left|f\left(s, x(s), x^{\prime}(s)\right)\right| d s \\
& \leq \frac{\epsilon}{3\left(\left\|g_{r}\right\|_{1}+1\right)}\left\|g_{r}\right\|_{1} \leq \frac{\epsilon}{3} ;
\end{aligned}
$$

and

$$
\begin{aligned}
I_{2} & =n \int_{t_{1}-\delta_{1}}^{t_{2}+\delta_{1}}\left|\frac{\partial}{\partial t} G\left(t_{1}, s\right)-\frac{\partial}{\partial t} G\left(t_{2}, s\right)\right|\left|f\left(s, x(s), x^{\prime}(s)\right)\right| d s \\
& \leq 2 n^{2} k \int_{t_{1}-\delta_{1}}^{t_{2}+\delta_{1}}\left|f\left(s, x(s), x^{\prime}(s)\right)\right| d s \\
& \leq 2 n^{2} k \int_{t_{1}-\delta_{1}}^{t_{2}+\delta_{1}} g_{r}(s) d s<\frac{2 n^{2} k \epsilon}{6 n^{2} k}=\frac{\epsilon}{3} .
\end{aligned}
$$

It follows that $I<\epsilon$ and $\left\{(N x)^{\prime}: x \in Z\right\}$ is equicontinuous. Therefore, by the Ascoli theorem, $N(Z)$ is relatively compact in K, which establishes the lemma. \square

Now, let λ be in $[0,1]$ and $S(\lambda)$ be the set of C^{1} functions $x: I \rightarrow \mathbb{R}^{n}$ which satisfy

$$
\left\{\begin{array}{l}
-\left(A(t) x^{\prime}(t)\right)^{\prime}=\lambda f\left(t, x(t), x^{\prime}(t)\right) \\
x(0)-A_{0} x^{\prime}(0)=0 \\
x(1)+A_{1} x^{\prime}(1)=0
\end{array}\right.
$$

Then we have the following lemma.

Lemma 3.3. If there is $r>0$ such that for each $\lambda \in(0,1)$, we have

$$
\|x\| \leq r, \quad\left\|x^{\prime}\right\| \leq r
$$

for all $x \in S(\lambda)$, then $S(1)$ is not empty.
Proof. Let $U=\left\{x \in K:\|x\|_{C^{1}}<r+1\right\}$. Then $N: \bar{U} \rightarrow K$ is a compact map by Lemma 3.2. Suppose that there is a point $u \in \partial U$ and a number $\lambda \in(0,1)$ such that $u=\lambda N u$. Then $u(t)=\lambda \int_{0}^{1} G(t, s) f\left(s, u(s), u^{\prime}(s)\right) d s$, $\|u\|_{C^{1}}=r+1$. Now $f\left(s, u(s), u^{\prime}(s)\right)$ is a Lebesgue integrable function by (C3) and therefore, by Lemma 2.3, $u(t)=\lambda \int_{0}^{1} G(t, s) f\left(s, u(s), u^{\prime}(s)\right) d s \in S(\lambda)$. This implies $\|u\|_{C^{1}} \leq r$, which is a contradiction. Therefore, it follows from Lemma 3.1 that N has a fixed point in \bar{U}. Repeating the argument with λ replaced by 1 we infer that $S(1)$ is not empty.

We now establish our main results as follows:
Theorem 3.1. Assume that $f: I \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a mapping satisfying the Carathéodory conditions, $A: I \rightarrow M_{n}(\mathbb{R})$ a continuous matrix-valued function, and $A_{0}, A_{1} n \times n$ matrices satisfying the following conditions (1)-(3):
(1) there exists a positive number μ such that $(\xi, A(t) \xi) \geq \mu|\xi|^{2}$ for all $\xi \in \mathbb{R}^{n}$ and $t \in I ;$
(2) $\int_{0}^{1} A^{-1}(s) d s+A_{0} A^{-1}(0)+A_{1} A^{-1}(1)$ is invertible;
(3) one of the following conditions holds:
(i) $A_{0}=A_{1}=0$;
(ii) $A_{0}=0$ and $A^{\top}(1) A_{1}>0$;
(iii) $A_{1}=0$ and $A^{\top}(0) A_{0}>0$, where A^{\top} is the transpose of A.
Suppose, moreover, that
(4) there exist nonnegative numbers a, b such that $a+b<\mu$ and $g \in$ $L^{1}\left(I, \mathbb{R}_{+}\right)$such that for every $(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$, we have

$$
(x, f(t, x, y)) \leq a|x|^{2}+b|x||y|+g(t)|x| \quad \text { for a.e. } t \in I
$$

(5) there exist $c \geq 0$ and $h \in L^{1}\left(I, \mathbb{R}_{+}\right)$such that for every $x \in \mathbb{R}^{n}$ with $|x| \leq(\mu-a-b)^{-1}\|g\|_{1}$ and every $y \in \mathbb{R}^{n}$, we have

$$
|f(t, x, y)| \leq c|y|^{2}+h(t) \quad \text { for a.e. } t \in I
$$

Then the problem

$$
\left\{\begin{array}{l}
-\left(A(t) x^{\prime}(t)\right)^{\prime}=f\left(t, x(t), x^{\prime}(t)\right) \tag{3.2}\\
x(0)-A_{0} x^{\prime}(0)=0 \\
x(1)+A_{1} x^{\prime}(1)=0
\end{array}\right.
$$

has a solution.

Proof. Consider the family of problems

$$
\left\{\begin{array}{l}
-\left(A(t) x^{\prime}(t)\right)^{\prime}=\lambda f\left(t, x(t), x^{\prime}(t)\right) \\
x(0)-A_{0} x^{\prime}(0)=0 \\
x(1)+A_{1} x^{\prime}(1)=0
\end{array}\right.
$$

Let x be a solution of $\left(3.2_{\lambda}\right)$ for some $\lambda \in(0,1)$. Then for a.e. $t \in I$, we have

$$
\begin{aligned}
-\left(x(t),\left(A(t) x^{\prime}(t)\right)^{\prime}\right) & =\lambda\left(x(t), f\left(t, x(t), x^{\prime}(t)\right)\right) \\
& \leq a|x(t)|^{2}+b|x(t)|\left|x^{\prime}(t)\right|+g(t)|x(t)|
\end{aligned}
$$

Since

$$
\left(A(t) x^{\prime}(t), x(t)\right)^{\prime}=\left(\left(A(t) x^{\prime}(t)\right)^{\prime}, x(t)\right)+\left(A(t) x^{\prime}(t), x^{\prime}(t)\right) \quad \text { a.e. on } I
$$

by integrating over I, we obtain

$$
\begin{aligned}
\mu\left\|x^{\prime}\right\|_{2}^{2} & \leq\left.\left(A(t) x^{\prime}(t), x(t)\right)\right|_{0} ^{1}-\int_{0}^{1}\left(x(t),\left(A(t) x^{\prime}(t)\right)^{\prime}\right) d t \\
& \leq\left.\left(A(t) x^{\prime}(t), x(t)\right)\right|_{0} ^{1}+a\|x\|_{2}^{2}+b\|x\|_{2}\left\|x^{\prime}\right\|_{2}+\|g\|_{1}\|x\|_{C^{0}} \\
& =I_{1}+I_{2}
\end{aligned}
$$

where $I_{1}=\left.\left(A(t) x^{\prime}(t), x(t)\right)\right|_{0} ^{1}=\left(A(1) x^{\prime}(1), x(1)\right)-\left(A(0) x^{\prime}(0), x(0)\right)$ and $I_{2}=$ $a\|x\|_{2}^{2}+b\|x\|_{2}\left\|x^{\prime}\right\|_{2}+\|g\|_{1}\|x\|_{C^{0}}$.

Now, we claim that $I_{1} \leq 0$. If $A_{0}=A_{1}=0$, then $x(0)=x(1)=0$, which implies $I_{1}=0$. If $A_{0}=0$ and $A^{\top}(1) A_{1}>0$, then $x(0)=0$ and $x(1)=-A_{1} x^{\prime}(1)$, which implies $I_{1}=-\left(A(1) x^{\prime}(1), A_{1} x^{\prime}(1)\right)=-\left(x^{\prime}(1), A^{\top}(1) A_{1} x^{\prime}(1)\right) \leq 0$. If $A_{1}=0$ and $A^{\top}(0) A_{0}>0$, then $x(1)=0$ and $x(0)=A_{0} x^{\prime}(0)$, which implies $I_{1}=-\left(A(0) x^{\prime}(0), A_{0} x^{\prime}(0)\right)=-\left(x^{\prime}(0), A^{\top}(0) A_{0} x^{\prime}(0)\right) \leq 0$.

Since $x(t)=x(0)+\int_{0}^{t} x^{\prime}(s) d s=x(1)-\int_{t}^{1} x^{\prime}(s) d s$ for all $t \in I$, we have

$$
|x(t)| \leq|x(0)|+\int_{0}^{1}\left|x^{\prime}(s)\right| d s \quad \text { and } \quad|x(t)| \leq|x(1)|+\int_{0}^{1}\left|x^{\prime}(s)\right| d s
$$

for all $t \in I$. Hence

$$
\|x\|_{2} \leq\|x\|_{C^{0}} \leq\left\|x^{\prime}\right\|_{2}
$$

so

$$
\mu\left\|x^{\prime}\right\|_{2}^{2} \leq I_{2} \leq a\left\|x^{\prime}\right\|_{2}^{2}+b\left\|x^{\prime}\right\|_{2}^{2}+\|g\|_{1}\left\|x^{\prime}\right\|_{2}
$$

and consequently

$$
\|x\|_{C^{0}} \leq\left\|x^{\prime}\right\|_{2} \leq(\mu-a-b)^{-1}\|g\|_{1} \equiv r_{1}
$$

where r_{1} is independent of x. Thus, by assumption, there exist $c \geq 0$ and $h \in L^{1}\left(I, \mathbb{R}_{+}\right)$such that

$$
\left|f\left(t, x(t), x^{\prime}(t)\right)\right| \leq c\left|x^{\prime}(t)\right|^{2}+h(t)
$$

for a.e. $t \in I$. Hence

$$
\begin{aligned}
\int_{0}^{1}\left|f\left(t, x(t), x^{\prime}(t)\right)\right| d t & \leq c \int_{0}^{1}\left|x^{\prime}(t)\right|^{2} d t+\int_{0}^{1} h(t) d t \\
& \leq c\left\|x^{\prime}\right\|_{2}^{2}+\|h\|_{1} \leq c r_{1}^{2}+\|h\|_{1} \equiv r_{2}
\end{aligned}
$$

where r_{2} is also independent of x.
Finally, let us estimate $\left\|x^{\prime}\right\|_{C^{0}}$. If $A_{0}=A_{1}=0$, then $x(0)=x(1)=0$, and

$$
x(t)=-\lambda \int_{0}^{t} A^{-1}(s) \int_{0}^{s} f\left(u, x(u), x^{\prime}(u)\right) d u d s+\left(\int_{0}^{t} A^{-1}(s) d s\right) Q
$$

where $Q=\lambda\left(\int_{0}^{1} A^{-1}(s) d s\right)^{-1}\left(\int_{0}^{1} A^{-1}(s) \int_{0}^{s} f\left(u, x(u), x^{\prime}(u)\right) d u d s\right)$. Hence

$$
x^{\prime}(t)=-\lambda A^{-1}(t) \int_{0}^{t} f\left(u, x(u), x^{\prime}(u)\right) d u+A^{-1}(t) Q
$$

and

$$
\begin{aligned}
\left|x^{\prime}(t)\right| & \leq n M\left\|f\left(\cdot, x(\cdot), x^{\prime}(\cdot)\right)\right\|_{1}+n^{3} M^{2} P\left\|f\left(\cdot, x(\cdot), x^{\prime}(\cdot)\right)\right\|_{1} \\
& \leq c\left(A, I, A_{0}, A_{1}, n\right)\left\|f\left(\cdot, x(\cdot), x^{\prime}(\cdot)\right)\right\|_{1} \leq c r_{2} \equiv r_{3}
\end{aligned}
$$

for all $t \in I$, where

$$
P=\sup _{1 \leq i, j \leq n}\left|\left(\left(\int_{0}^{1} A^{-1}(s) d s\right)^{-1}\right)_{i, j}\right|, \quad M=\sup _{\substack{1 \leq i, j \leq n \\ t \in I}}\left|\left(A^{-1}\right)_{i, j}(t)\right| .
$$

Thus $\left\|x^{\prime}\right\|_{C^{0}} \leq r_{3}$ (independent of x).
From

$$
\begin{aligned}
A(t) x^{\prime}(t) & =A(0) x^{\prime}(0)+\int_{0}^{t}\left(A(s) x^{\prime}(s)\right)^{\prime} d s \\
& =A(0) x^{\prime}(0)-\lambda \int_{0}^{t} f\left(s, x(s), x^{\prime}(s)\right) d s
\end{aligned}
$$

if $A_{1}=0$ and $A^{\top}(0) A_{0}>0$, we have

$$
x^{\prime}(t)=A^{-1}(t) A(0) A_{0}^{-1} x(0)-\lambda A^{-1}(t) \int_{0}^{t} f\left(s, x(s), x^{\prime}(s)\right) d s
$$

Therefore

$$
\left|x^{\prime}(t)\right| \leq n M_{1}|x(0)|+n M\left\|f\left(\cdot, x(\cdot), x^{\prime}(\cdot)\right)\right\|_{1} \leq n M_{1} r_{1}+n M r_{2} \equiv r_{3}
$$

where

$$
M_{1}=\sup _{\substack{1 \leq i, j \leq n \\ t \in I}}\left|\left(A^{-1}(t) A(0) A_{0}^{-1}\right)_{i, j}\right|<\infty,
$$

and r_{3} depends only on $n, A_{0}, A_{1}, A(t)$ and I. We can conclude that $\left\|x^{\prime}\right\|_{C^{0}} \leq r_{3}$. The same result can be obtained if $A_{0}=0$ and $A^{\top}(1) A_{1}>0$. Hence $\|x\|_{C^{1}}<r$ if we set $r=1+r_{1}+r_{3}$. This completes the proof.

Theorem 3.2. Assume that $f: I \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a mapping satisfying the Carathéodory conditions, $A: I \rightarrow M_{n}(\mathbb{R})$ a continuous matrix-valued function, and $A_{0}, A_{1} n \times n$ matrices satisfying the following conditions (1)-(3):
(1) there exists a positive number μ such that $(\xi, A(t) \xi) \geq \mu|\xi|^{2}$ for all $\xi \in \mathbb{R}^{n}$ and $t \in I$;
(2) $\int_{0}^{1} A^{-1}(s) d s+A_{0} A^{-1}(0)+A_{1} A^{-1}(1)$ is invertible;
(3) $A^{\top}(1) A_{1}>0$ and there is a positive number ν such that

$$
\left(\xi, A^{\top}(0) A_{0} \xi\right) \geq \nu|\xi|^{2} \quad \text { for all } \xi \in \mathbb{R}^{n}
$$

Suppose, moreover, that
(4) there exist nonnegative numbers a, b such that $2 a+\frac{3}{2} b<\mu, 2 a+\frac{1}{2} b+\mu \leq$ $\nu /\left(n^{2} M^{2}\right)$ and there exists $g \in L^{1}\left(I, \mathbb{R}_{+}\right)$such that for every $(x, y) \in$ $\mathbb{R}^{n} \times \mathbb{R}^{n}$, we have

$$
(x, f(t, x, y)) \leq a|x|^{2}+b|x||y|+g(t)|x| \quad \text { for a.e. } t \in I
$$

where $M=\sup _{1 \leq i, j \leq n}\left|\left(A_{0}\right)_{i, j}\right|$;
(5) there exist $c \geq 0$ and $h \in L^{1}\left(I, \mathbb{R}_{+}\right)$such that for every $x \in \mathbb{R}^{n}$ with

$$
|x| \leq \mu^{-1}\left[(4 a+3 b)\left(\mu-2 a-\frac{3}{2} b\right)^{-1}+2\right]\|g\|_{1}
$$

and for every $y \in \mathbb{R}^{n}$, we have

$$
|f(t, x, y)| \leq c|y|^{2}+h(t) \quad \text { for a.e. } t \in I
$$

Then problem (3.2) has a solution.
Proof. Consider the family of problems (3.2 ${ }_{\lambda}$) and let x be a solution of $\left(3.2_{\lambda}\right)$ for some $\lambda \in(0,1)$. From the proof of the previous theorem, we know that

$$
\mu\left\|x^{\prime}\right\|_{2}^{2} \leq I_{1}+I_{2}
$$

where $I_{1}=\left.\left(A(t) x^{\prime}(t), x(t)\right)\right|_{0} ^{1}$ and $I_{2}=a\|x\|_{2}^{2}+b\|x\|_{2}\left\|x^{\prime}\right\|_{2}+\|g\|_{1}\|x\|_{C^{0}}$. From assumption (3), we have

$$
I_{1}=-\left(x^{\prime}(1), A^{\top}(1) A_{1} x^{\prime}(1)\right)-\left(x^{\prime}(0), A^{\top}(0) A_{0} x^{\prime}(0)\right) \leq-\nu\left|x^{\prime}(0)\right|^{2}
$$

Since $x \in C^{1}\left(I, \mathbb{R}^{n}\right)$, we may write $x(t)=x(0)+\int_{0}^{t} x^{\prime}(s) d s$ for all $t \in I$, so $|x(t)| \leq|x(0)|+\int_{0}^{t}\left|x^{\prime}(s)\right| d s$ for all $t \in I$, and $\|x\|_{2} \leq\|x\|_{C^{0}} \leq|x(0)|+\left\|x^{\prime}\right\|_{2}$. Consequently,

$$
\begin{aligned}
\mu\left\|x^{\prime}\right\|_{2}^{2} \leq & I_{1}+I_{2} \\
\leq & -\nu\left|x^{\prime}(0)\right|^{2}+a\|x\|_{2}^{2}+b\|x\|_{2}\left\|x^{\prime}\right\|_{2}+\|g\|_{1}\|x\|_{C^{0}} \\
\leq & -\nu\left|x^{\prime}(0)\right|^{2}+a\left(|x(0)|+\left\|x^{\prime}\right\|_{2}\right)^{2}+b\left(|x(0)|+\left\|x^{\prime}\right\|_{2}\right)\left\|x^{\prime}\right\|_{2} \\
& +\|g\|_{1}\|x\|_{C^{0}} \\
\leq & -\nu\left|x^{\prime}(0)\right|^{2}+2 a\left(|x(0)|^{2}+\left\|x^{\prime}\right\|_{2}^{2}\right)+\frac{1}{2} b\left(|x(0)|^{2}+\left\|x^{\prime}\right\|_{2}^{2}\right) \\
& +b\left\|x^{\prime}\right\|_{2}^{2}+\|g\|_{1}\|x\|_{C^{0}} \\
\leq & \left(2 a n^{2} M^{2}+\frac{1}{2} b n^{2} M^{2}-\nu\right)\left|x^{\prime}(0)\right|^{2}+\left(2 a+\frac{3}{2} b\right)\left\|x^{\prime}\right\|_{2}^{2}+\|g\|_{1}\|x\|_{C^{0}} .
\end{aligned}
$$

Since $2 a+\frac{1}{2} b+\mu \leq \nu /\left(n^{2} M^{2}\right)$ and $2 a+\frac{3}{2} b<\mu$, we have

$$
\left(\mu-2 a-\frac{3}{2} b\right)\left\|x^{\prime}\right\|_{2}^{2} \leq\|g\|_{1}\|x\|_{C^{0}}
$$

and so

$$
\left\|x^{\prime}\right\|_{2}^{2} \leq\left(\mu-2 a-\frac{3}{2} b\right)^{-1}\|g\|_{1}\|x\|_{C^{0}}
$$

Consequently,

$$
\begin{aligned}
\mu\|x\|_{C^{0}}^{2} \leq & 2\left[\mu|x(0)|^{2}+\mu\left\|x^{\prime}\right\|_{2}^{2}\right] \\
\leq & 2\left[\mu n^{2} M^{2}\left|x^{\prime}(0)\right|^{2}+\left(2 a n^{2} M^{2}+\frac{1}{2} b n^{2} M^{2}-\nu\right)\left|x^{\prime}(0)\right|^{2}\right. \\
& \left.+\left(2 a+\frac{3}{2} b\right)\left\|x^{\prime}\right\|_{2}^{2}+\|g\|_{1}\|x\|_{C^{0}}\right] \\
\leq & (4 a+3 b)\left\|x^{\prime}\right\|_{2}^{2}+2\|g\|_{1}\|x\|_{C^{0}} \\
\leq & {\left[(4 a+3 b)\left(\mu-2 a-\frac{3}{2} b\right)^{-1}+2\right]\|g\|_{1}\|x\|_{C^{0}} . }
\end{aligned}
$$

Thus $\|x\|_{C^{0}} \leq \mu^{-1}\left[(4 a+3 b)\left(\mu-2 a-\frac{3}{2} b\right)^{-1}+2\right]\|g\|_{1} \equiv r_{1}$ (independent of x).
Then, by assumption, we have $c \geq 0$ and $h \in L^{1}\left(I, \mathbb{R}_{+}\right)$such that

$$
\left|f\left(t, x(t), x^{\prime}(t)\right)\right| \leq c\left|x^{\prime}(t)\right|^{2}+h(t)
$$

for a.e. $t \in I$, which implies

$$
\begin{aligned}
\int_{0}^{1}\left|f\left(t, x(t), x^{\prime}(t)\right)\right| d t & \leq c \int_{0}^{1}\left|x^{\prime}(t)\right|^{2} d t+\int_{0}^{1} h(t) d t \\
& \leq c\left(\mu-2 a-\frac{3}{2} b\right)^{-1}\|g\|_{1}\|x\|_{C^{0}}+\|h\|_{1} \\
& \leq c\left(\mu-2 a-\frac{3}{2} b\right)^{-1}\|g\|_{1} r_{1}+\|h\|_{1} \equiv r_{2}
\end{aligned}
$$

where r_{2} is also independent of x.
From

$$
\begin{aligned}
A(t) x^{\prime}(t) & =A(0) x^{\prime}(0)+\int_{0}^{t}\left(A(s) x^{\prime}(s)\right)^{\prime} d s \\
& =A(0) x^{\prime}(0)-\lambda \int_{0}^{t} f\left(s, x(s), x^{\prime}(s)\right) d s
\end{aligned}
$$

we have

$$
x^{\prime}(t)=A^{-1}(t) A(0) A_{0}^{-1} x(0)-\lambda A^{-1}(t) \int_{0}^{t} f\left(s, x(s), x^{\prime}(s)\right) d s
$$

Therefore

$$
\left|x^{\prime}(t)\right| \leq n M_{1}|x(0)|+n M\left\|f\left(\cdot, x(\cdot), x^{\prime}(\cdot)\right)\right\|_{1} \leq n M_{1} r_{1}+n M r_{2} \equiv r_{3}
$$

where

$$
M_{1}=\sup _{\substack{1 \leq i, j \leq n \\ t \in I}}\left|\left(A^{-1}(t) A(0) A_{0}^{-1}\right)_{i, j}\right|<\infty, \quad M=\sup _{\substack{1 \leq i, j \leq n \\ t \in I}}\left|\left(A^{-1}\right)_{i, j}(t)\right|
$$

and r_{3} depends only on $n, A_{0}, A_{1}, A(t)$, and I.

Thus, $\left\|x^{\prime}\right\|_{C^{0}} \leq r_{3}$ and eventually we get $\|x\|_{C^{1}}<r$ if we set $r=1+r_{1}+r_{3}$, which completes the proof.

Remark. If condition (3) of Theorem 3.2 is replaced by
(3') $A^{\top}(0) A_{0}>0$ and there is a positive number ν such that $\left(\xi, A^{\top}(1) A_{1} \xi\right)$ $\geq \nu|\xi|^{2}$ for all $\xi \in \mathbb{R}^{n}$,
and M (in condition (4)) is redefined as $M=\sup _{1 \leq i, j \leq n}\left|\left(A_{1}\right)_{i, j}\right|$, then the same conclusion holds.

4. Uniqueness theorems

Theorem 4.1. Assume that $f: I \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a mapping satisfying the Carathéodory conditions, $A: I \rightarrow M_{n}(\mathbb{R})$ a continuous matrix-valued function, and $A_{0}, A_{1} n \times n$ matrices satisfying the following conditions (1)-(3):
(1) there exists a positive number μ such that $(\xi, A(t) \xi) \geq \mu|\xi|^{2}$ for all $\xi \in \mathbb{R}^{n}$ and $t \in I ;$
(2) $\int_{0}^{1} A^{-1}(s) d s+A_{0} A^{-1}(0)+A_{1} A^{-1}(1)$ is invertible;
(3) one of the following conditions holds:
(i) $A_{0}=A_{1}=0$;
(ii) $A_{0}=0$ and $A^{\top}(1) A_{1}>0$;
(iii) $A_{1}=0$ and $A^{\top}(0) A_{0}>0$, where A^{\top} is the transpose of A.
Suppose, moreover, that
(4) there exist nonnegative numbers a, b such that $a+b<\mu$ and

$$
(x-u, f(t, x, y)-f(t, u, v)) \leq a|x-u|^{2}+b|x-u||y-v|
$$

for every $x, y, u, v \in \mathbb{R}^{n}$ and a.e. $t \in I$;
(5) there exist $c \geq 0$ and $h \in L^{1}\left(I, \mathbb{R}_{+}\right)$such that for every $x \in \mathbb{R}^{n}$ with $|x| \leq(\mu-a-b)^{-1}\|f(t, 0,0)\|_{1}$ and every $y \in \mathbb{R}^{n}$, we have

$$
|f(t, x, y)| \leq c|y|^{2}+h(t) \quad \text { for a.e. } t \in I
$$

Then problem (3.2) has a unique solution.
Proof. By (4) with $u=v=0$, we have

$$
(x, f(t, x, y)) \leq a|x|^{2}+b|x||y|+|f(t, 0,0)||x|
$$

for every $x, y \in \mathbb{R}^{n}$ and a.e. $t \in I$, which together with Theorem 3.1 implies the existence. Now, if x and u are two solutions of (3.2), we have

$$
\begin{aligned}
& -\left((x-u)(t), A(t) x^{\prime}(t)-A(t) u^{\prime}(t)\right) \\
& =\left((x-u)(t), f\left(t, x(t), x^{\prime}(t)\right)-f\left(t, u(t), u^{\prime}(t)\right)\right)
\end{aligned}
$$

for a.e. $t \in I$.

Since $A(x-u)^{\prime}$ is absolutely continuous and $x-u \in C^{1}\left(I, \mathbb{R}^{n}\right)$, we have

$$
\begin{aligned}
& \left(A(t)(x-u)^{\prime}(t),(x-u)(t)\right)^{\prime} \\
& \quad=\left(\left(A(t)(x-u)^{\prime}(t)\right)^{\prime},(x-u)(t)\right)+\left(A(t)(x-u)^{\prime}(t),(x-u)^{\prime}(t)\right)
\end{aligned}
$$

for a.e. $t \in I$. Thus, by condition (1) and by integrating over I, we have

$$
\begin{aligned}
\mu\left\|x^{\prime}-u^{\prime}\right\|_{2}^{2} \leq & \left.\left(A(t)(x-u)^{\prime}(t),(x-u)(t)\right)\right|_{0} ^{1} \\
& +\int_{0}^{1}\left|\left(f\left(t, x(t), x^{\prime}(t)\right)-f\left(t, u(t), u^{\prime}(t)\right),(x-u)(t)\right)\right| d t \\
\leq & \left.\left(A(t)(x-u)^{\prime}(t),(x-u)(t)\right)\right|_{0} ^{1}+a\|x-u\|_{2}^{2}+b\|x-u\|_{2}\left\|x^{\prime}-u^{\prime}\right\|_{2} \\
= & I_{1}+I_{2}
\end{aligned}
$$

where

$$
I_{1}=\left.\left(A(t)(x-u)^{\prime}(t),(x-u)(t)\right)\right|_{0} ^{1}, \quad I_{2}=a\|x-u\|_{2}^{2}+b\|x-u\|_{2}\left\|x^{\prime}-u^{\prime}\right\|_{2}
$$

Now, we claim $I_{1} \leq 0$. If $A_{0}=A_{1}=0$, then $x(0)=x(1)=u(0)=u(1)$, thus $I_{1}=0$. If $A_{0}=0$ and $A^{\top}(1) A_{1}>0$, then $x(0)=u(0)$ and so

$$
I_{1}=\left(A(1)(x-u)^{\prime}(1),(x-u)(1)\right)=-\left((x-u)^{\prime}(1), A^{\top}(1) A_{1}(x-u)^{\prime}(1)\right) \leq 0 .
$$

If $A_{1}=0$ and $A^{\top}(0) A_{0}>0$, then $x(1)=u(1)$ and so

$$
I_{1}=-\left(A(0)(x-u)^{\prime}(0),(x-u)(0)\right)=-\left((x-u)^{\prime}(0), A^{\top}(0) A_{0}(x-u)^{\prime}(0)\right) \leq 0 .
$$

Finally, since $x-u \in C^{1}\left(I, \mathbb{R}^{n}\right)$, we have

$$
|x(t)-u(t)| \leq|x(0)-u(0)|+\int_{0}^{1}\left|\left(x^{\prime}-u^{\prime}\right)(s)\right| d s
$$

and

$$
|x(t)-u(t)| \leq|x(1)-u(1)|+\int_{0}^{1}\left|\left(x^{\prime}-u^{\prime}\right)(s)\right| d s
$$

for all $t \in I$. If $A_{0}=0$ or $A_{1}=0$, then $x(0)=u(0)=0$ or $x(1)=u(1)=0$, thus we always have $\|x-u\|_{2} \leq\left\|x^{\prime}-u^{\prime}\right\|_{2}$ and this implies $I_{2} \leq(a+b)\left\|x^{\prime}-u^{\prime}\right\|_{2}^{2}$. Hence $\mu\left\|x^{\prime}-u^{\prime}\right\|_{2}^{2} \leq(a+b)\left\|x^{\prime}-u^{\prime}\right\|_{2}^{2}$. Thus, if $a+b<\mu$, we have $x^{\prime}=u^{\prime}$ and so $x=u$ for $x(0)=u(0)$ or $x(1)=u(1)$.

Similarly, corresponding to Theorem 3.2, we have the following uniqueness theorem.

Theorem 4.2. Assume that $f: I \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a mapping satisfying the Carathéodory conditions, $A: I \rightarrow M_{n}(\mathbb{R})$ a continuous matrix-valued function, and $A_{0}, A_{1} n \times n$ matrices satisfying the following conditions (1)-(3):
(1) there exists a positive number μ such that $(\xi, A(t) \xi) \geq \mu|\xi|^{2}$ for all $\xi \in \mathbb{R}^{n}$ and $t \in I ;$
(2) $\int_{0}^{1} A^{-1}(s) d s+A_{0} A^{-1}(0)+A_{1} A^{-1}(1)$ is invertible;
(3) $A^{\top}(1) A_{1}>0$ and there is a positive number ν such that

$$
\left(\xi, A^{\top}(0) A_{0} \xi\right) \geq \nu|\xi|^{2} \quad \text { for all } \xi \in \mathbb{R}^{n}
$$

Suppose, moreover, that
(4) there exist nonnegative numbers a, b such that $2 a+\frac{3}{2} b<\mu, 2 a+\frac{1}{2} b+\mu \leq$ $\nu /\left(n^{2} M^{2}\right)$, and

$$
(x-u, f(t, x, y)-f(t, u, v)) \leq a|x-u|+b|y-v|
$$

for every $x, y, u, v \in \mathbb{R}^{n}$ and a.e. $t \in I$, where $M=\sup _{1 \leq i, j \leq n}\left|\left(A_{0}\right)_{i, j}\right|$;
(5) there exist $c \geq 0$ and $h \in L^{1}\left(I, \mathbb{R}_{+}\right)$such that for every $x \in \mathbb{R}^{n}$ with

$$
|x| \leq \mu^{-1}\left[(4 a+3 b)\left(\mu-2 a-\frac{3}{2} b\right)^{-1}+2\right]\|f(t, 0,0)\|_{1}
$$

and for every $y \in \mathbb{R}^{n}$, we have

$$
|f(t, x, y)| \leq c|y|^{2}+h(t) \quad \text { for a.e. } t \in I
$$

Then problem (3.2) has a unique solution.

5. Remarks

(1) If $A=I_{n \times n}, A_{0}, A_{1} \geq 0$, then conditions (1), (2) of Lemma 2.1 hold.
(2) If $A=I_{n \times n}, A_{0}=A_{1}=0$, Theorem 3.1 reduces to a result of J. Mawhin [8]. For related work with $A=I_{n \times n}$, we refer to [3] and [5]-[8].
(3) Suppose we have more general (nonhomogeneous) boundary conditions

$$
y(0)-A_{0} y^{\prime}(0)=r_{0}, \quad y(1)+A_{1} y^{\prime}(1)=r_{1}
$$

for given vectors r_{0}, r_{1} in \mathbb{R}^{n} and the equation

$$
-\left(A y^{\prime}\right)^{\prime}=g\left(t, y, y^{\prime}\right)
$$

where $\int_{0}^{1} A^{-1}(s) d s+A_{0} A^{-1}(0)+A_{1} A^{-1}(1)$ is invertible together with $A(t)$ for all $t \in I$. This problem reduces to the homogeneous problem

$$
\left\{\begin{array}{l}
-\left(A x^{\prime}\right)^{\prime}=f\left(t, x, x^{\prime}\right) \\
x(0)-A_{0} x^{\prime}(0)=0 \\
x(1)+A_{1} x^{\prime}(1)=0
\end{array}\right.
$$

by a transformation $x(t)=y(t)+v_{1}+\left(\int_{0}^{t} A^{-1}(s) d s\right) v_{2}$, where v_{1} and v_{2} are suitably chosen in \mathbb{R}^{n}.

References

[1] S. N. Bernstein, Sur les équations du calcul des variations, Ann. Sci. Ecole Norm. Sup. 29 (1912), 431-485.
[2] J. Dugundji and A. Granas, Fixed Point Theory, vol. 1, Monografie Mat., vol. 61, PWN, Warszawa, 1982.
[3] M. Frigon and J. W. Lee, Existence principles for Carathéodory differential equations in Banach spaces, Topol. Methods Nonlinear Anal. 1 (1993), 95-111.
[4] A. Granas, R. B. Guenther and J. W. Lee, On a theorem of S. Bernstein, Pacific J. Math. 2 (1977), 1-16.
[5] , Some general existence principles in the Carathéodory theory of nonlinear differential systems, J. Math. Pures Appl. 70 (1991), 153-196.
[6] P. Hartman, On boundary value problems for systems of ordinary, nonlinear, second order differential equations, Trans. Amer. Math. Soc. 96 (1960), 493-509.
[7] A. Lasota and J. A. Yorke, Existence of solutions of two-point boundary value problems for nonlinear systems, J. Differential Equations 11 (1972), 509-518.
[8] J. Mawhin, Topological Degree Methods in Nonlinear Boundary Value Problems, CBMS Regional Conf. Ser. in Math., vol. 40, Amer. Math. Soc., 1977.
[9] A. G. O'Farrell and D. O'Regan, Existence results for some initial- and boundaryvalue problems, Proc. Amer. Math. Soc. 110 (1990), 661-673.
[10] G. Scorza Dragoni, Sul problema dei valori ai limiti per i systemi di equazioni differenziali del secondo ordine, Boll. Un. Mat. Ital. 14 (1935), 225-230.
[11] A. Tineo, Two point boundary value problems for the equation $\left(\psi\left(t, x^{\prime}\right)\right)^{\prime}=f\left(t, x, x^{\prime}\right)$, J. Math. Anal. Appl. 166 (1992), 12-23.

Huo-yan Chern

Institute of Mathematics
National Taiwan Normal University
Taipei, REPUBLIC OF CHINA
E-mail address: hychern@itc0026.ttit.edu.tw

[^0]: 1991 Mathematics Subject Classification. Primary 34K10.

