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ON POSITIVE SOLUTIONS OF SOME SINGULARLY
PERTURBED PROBLEMS WHERE

THE NONLINEARITY CHANGES SIGN

E. N. Dancer

Dedicated to Ky Fan

In this paper, we continue our work on the problem of positive solutions of

(1)
−ε∆u = g(u) in D,

u = 0 on ∂D.

Here D is a bounded domain in R
n. We are interested in the asymptotic

behaviour of positive solutions and the number of positive solutions for small
positive ε in the case where g(0) ≥ 0 but g changes sign on [0,∞). In many
cases, we find the exact number of positive solutions for small ε. In particular,
we improve considerably the results in [12]. Note that these results are for a
restricted class of rather symmetric domains and that many of our results are
new even for a ball.

In particular, we allow rather more general nonlinearities than those in [12].
(We remove the condition that g′(0) < 0, considerably weaken a technical con-
dition and allow g to change sign several times.) We give a counterexample
showing that the results in [12] are not true for dumbbell shaped domains. This
requires a rather delicate analysis. In addition, we briefly study the case of an-
nuli where there are noticeable differences. Note that the case g′(0) = 0 is much
more difficult because of essential spectrum difficulties on all of R

n.
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The more general nonlinearities we now cover include many of the nonlin-
earities studied by Hess [24] and Clement and Sweers [6]. They occur in many
places. For example, they occur as singular limit problems for diffusion prob-
lems of competing species type as in [13], §2 (and in other population problems).
Other examples appear in [32] (for different boundary conditions).

In §1, we remove the condition that g′(0) < 0, in §2, we allow g to have
several sign changes while in §3 we discuss our counterexample. In §3 we also
very briefly discuss mountain pass methods, point singularities and the case of
the annulus.

1. Removal of the condition that g′(0) < 0

Here in this section, we remove two conditions in [12]. We use in an essential
way a result in [29]. The reader should have a copy of [12] available, since we
refer to it continually.

Assume that g : R → R is C1, g(0) = 0, g(y) < 0 on (0, a), g(y) > 0 on
(a,∞), there is a δ > 0 such that g′(y) < 0 on (0, δ), and g(y) ∼ yp as y → ∞
where 1 < p < (n + 2)(n − 2)−1 if n > 2 and p > 1 if n = 1, 2. Finally, if
n ≥ 4 assume that there exists τ ≤ (n− 1)/(n− 3) and K1 > 0 such that either
g(y) ≥ K1(y − a)τ for y ≥ a and y near a or that both g is increasing on [a,∞)
and that (y − a)−(n+1)/(n−3)g(y) is decreasing on (a,∞).

We consider a domain D ⊆ R
n such that 0 ∈ D, D has C3 boundary, D

is invariant under the n reflections in the coordinate planes and such that in
addition, if 1 ≤ i ≤ n and if 0 < t < s < t̃i, then (I − Pi)Di,t ⊇ (I − Pi)Di,s.
Here Pi is the orthogonal projection onto span ei, Di,s = {x ∈ D : xi = s},
t̃i = sup{xi : x ∈ D}, and {ei} denotes the usual basis for R

n. We say that such
a domain is of type Rn.

We need to discuss the conditions on g. The major improvement is to greatly
weaken the condition in [12] that g′(0) < 0. The last condition on g (that is, the
one with 2 alternatives) is also a considerable weakening of the one in [12] (and
indeed always applies in the “physical” dimensions). We suspect that it can be
completely removed. Note these last conditions on g are only used (by results
in [5], [21] and [36]) to ensure that the equation −∆u = g(u) has no bounded
solution on R

n−1 with u ≥ a on R
n−1). Thus we could replace the last condition

on g by this condition. There are examples showing that it is a true weakening.
Lastly, as we commented in [12], our results below also hold if p = 1 (though the
proofs need some modification). We will consider the case 0 < p < 1 in the next
section.

We establish two main results.

Proposition 1. Assume that the above conditions on g and D hold and ui

are positive solutions of (1) for ε = εi where εi → 0 as i → ∞. By choosing a
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subsequence if necessary there is a positive radial solution v of

(2) −∆u = g(u)

on R
n such that v(x) → 0 as ‖x‖ → ∞ and ui − v(ε−1/2

i x) converges uniformly
to zero on D as i→ ∞.

Theorem 1. Assume that the above conditions on D hold and that g(y) =
−yq + Cyp where 1 ≤ q < p < (n+ 2)/(n− 2) (p < ∞ if n = 1, 2) and C > 0.
Then (1) has a unique positive solution for small positive ε.

Remarks on Theorem 1. In fact, it suffices to assume that g satisfies the
conditions of Kwong and Liqun Zhang [28] if n > 3 or more generally that (2) has
a unique positive radial solution v with the property that v(r) → 0 as r → ∞ and
this solution is weakly non-degenerate in the sense that the linearized equation

−∆h = g′(v)h

has no bounded radial solution R(r) on R
n such that R(r) → 0 as r → ∞ if

n ≥ 3. Analogous results to those in [28] hold for n = 2 by modifying the proofs
in [28] or by using [31]. If n = 1, one can simply obtain uniqueness by using the
first integral without the additional assumption and the weak non-degeneracy
follows easily by an argument below (again without the extra assumption). Note
that we have to be a little careful about the definition of weak non-degeneracy
because, if g′(0) = 0, we are in the essential spectrum. (In fact, as we well see
below in the proof, it suffices to assume that there are no such solutions R with
exactly one positive zero.)

Proof of Proposition 1. Much of this is the same as the proof of Propo-
sition 1 in [12]. Lemma 1 there is unchanged. (Here we obtain upper and
lower bounds independent of εi for ‖ui‖∞.) The statement of Lemma 2 there
is unchanged but the proof needs considerable modification. We commence by
reminding the reader of the statement of Lemma 2 in [12]. We need to prove that
there exist � ∈ (0, a) and k2 > 0 such that ui(x) ≤ � if x ∈ D and |xj | ≥ k2ε

1/2
i

for all j and all large i. To prove this, we suppose the result is false. As in the
proof of Lemma 2 in [12], we can deduce that a subsequence of the ui (rescaled)
converges uniformly on compact sets to w where w(0) > a, w ≥ a on R

n, w is
bounded and −∆w = g(w) on R

n. Moreover, w will inherit the decreasing and
evenness properties of ui. In particular, w is even in xj and is decreasing in xj

for xj ≥ 0. Hence by standard arguments (cp. the argument on pp. 7–8 in [7]) we
see that w̃ = limx1→∞w(x) is a bounded solution of −∆v = g(v) on R

n−1 such
that w̃ ≥ a on R

n−1. By our assumptions and by our remarks at the beginning
of this section on our assumptions on g, we see that w̃ = a. Thus w(x) → a as
x1 → ∞. Similarly, w(x) → a as xi → ±∞. Since w ≥ a, we see by the various
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decreasing properties of w that w → a as ‖x‖ → ∞. This ensures that if �1 > a,
then there exists k2 > 0 such that ui(x) ≤ �1 if x ∈ D and ε

−1/2
i ‖x‖ ≥ k2 and

if i is large. (Because, if a < �2 < �1, we can choose k2 such that w(x) ≤ �2

if ‖x‖ = k2. Since ui(ε
−1/2
i x) converges to w(x) uniformly on compact sets, it

follows that ui(ε
−1/2
i x) ≤ �1 if ‖x‖ = k2. By the decreasing properties of the

ui, it follows that ui(x) ≤ �1 if x ∈ D, ‖x‖ ≥ ε
1/2
i k2). Similarly, since w > a on

R
n, we see that, if k3 > 0, then ui(x) > a when ‖x‖ ≤ ε

1/2
i k3 and i is large.

Now choose αi > 0 such that ui(αie1) = 1
2a. We do a blow up argument again.

We use a change of variable Xj = ε
−1/2
i xj for 2 ≤ j ≤ n, X1 = ε

−1/2
i (x1 − αi).

By a standard argument, a subsequence of ui will converge to a non-negative
solution z of −∆u = g(u) on R

n (or a half space T ) such that z(0) = 1
2a, z is

decreasing in x1, even in xj for 2 ≤ j ≤ n and decreasing in xj for xj ≥ 0, z ≤ a

always and z = 0 on ∂T in the half space case. We need to explain some of
these properties. Firstly, let µ denote the limit of the distances from zero to ∂Ω
in the new variables. Then w is defined on T̃ = R

n−1 × (−∞, µ). Thus we are
in the half or whole space case depending on whether µ = ∞ or µ < ∞. Our
earlier estimates imply that, if k2 > 0, then αi ≥ ε

1/2
i k2 for large i. Hence, if

C is a compact set in the X variables with C ⊆ T̃ , we see that ui(x) ≤ �1 if
i is large and X ∈ C (where x is the point corresponding to X in the original
variables). Thus in the limit z(X) ≤ a on C. Hence z ≤ a. Similarly, the set
of x’s corresponding to X ’s in C lie in x1 ≥ 0 and hence z will be decreasing
in x1 on T̃ (because ui decreases for x1 ≥ 0). This completes the construc-
tion of z. We now show that no such z can exist. We consider z on the line
P = {x1e1 : −∞ < x1 ≤ µ}. By our various decreasing properties, it is easy to
see that

∑n
i=2 ∂

2x/∂x2
i ≤ 0 on P . Thus, since −∆z = g(z) on T , it follows that

−∂2z̃/∂x2
1 ≤ g(z̃) on (−∞, µ) where z̃(xi) = z(x1, 0, 0, . . . , 0). Hence z̃ is convex

(since 0 ≤ z̃ ≤ a and thus g(z̃) ≤ 0 on (−∞, µ)). Moreover, z̃ is strictly convex
near zero since g(z̃(0)) = g

(
1
2a

)
> 0. If µ = ∞, we obtain an immediate contra-

diction since z̃ is bounded. If 0 < µ < ∞, we also obtain an easy contradiction
if we note that z̃(µ) = 0, z̃ ≥ 0 and z̃ is bounded. Thus no such z can occur.
Hence w < a somewhere in R

m. The remainder of the proof of Lemma 2 in [12]
is unchanged.

The proof of Lemma 3 in [12] is unchanged.

Most of the proof of Lemma 4 in [12] is unchanged except for one part. (A
minor but important chance is that we must replace the Gidas–Ni–Nirenberg
Theorem [20] by the result in [29].) We only consider the full space case. (The
other case is similar.) We have to consider the possibility that there is a positive
bounded solution of −∆u = g(u) on R

n and 0 < m < n such that u > a

somewhere, u is increasing in xj for 1 ≤ j ≤ m, u is even in xj for m < j ≤ n,
u is decreasing in xj for xj > 0 and m < j ≤ n, u ≤ � < a when |xj | ≥ τ > 0



Positive Solutions of Singularly Perturbed Problems 145

for m < j ≤ n, u < a somewhere on the spine xj = 0 for j < m and lastly
that u(x) → 0 as |xm+1| + . . . + |xn| → ∞ uniformly in xj for j ≤ m. We
need to prove no such u exists. The argument in [12] is still valid provided
we prove that there exists α < 0 such that the equation −∆h = g′(w)h + αh

on R
n−m has a non-trivial exponentially decaying positive solution φ on R

n−m.
Here w(x) = limxj→∞,1≤j≤m u(x). The argument used in [12] to prove this is
still valid if we prove that ŵ = ∂w/∂x1 ∈ W 1,2(Rn−m) and

W (ŵ) ≡
∫

Rn−m

(
1
2
|∇ŵ|2 − 1

2
g′(w)ŵ2

)
= 0.

Now, by [29], w = w(r) where r is the polar coordinate on R
n−m and

−r1−�n(d/dr)(r�n−1w′(r)) = g(w) on (0,∞). Here n̂ = n − m. Since w → 0
as r → ∞ and w > 0, we see from our assumptions on g that g(w(r)) < 0
for large r and hence, by the differential equation, r�n−1w′(r) is increasing for
large r. Hence this expression has a finite non-positive limit as r → ∞. (Note
that since w ≥ 0 and w → 0 as r → ∞, there exist arbitrarily large r for which
w′(r) < 0.) Hence we see that w′(r) ≤ 0 for large r and −w′(r) ≤ Kr1−�n

for large r. Since w → 0 as r → ∞, it follows easily that w′ ∈ L1[1,∞) and∫ ∞
0
r�n−1(w′(r))2 dr < ∞ if n̂ ≥ 3. This last inequality is also true if n̂ = 1, 2.

If n̂ = 1, this is true because w′ ∈ L1[1,∞) ∩ L∞[1,∞) while if n̂ = 2, it fol-
lows because rw′ is bounded and w′ ∈ L1[1,∞). Now ŵ = w′(r)P (ω) where
ω are the angle variables and P is a spherical harmonic. Hence we see that∫ ∞
0
r�n−1(w′(r))2 dr < ∞ implies that ŵ ∈ L2(Rn−m). Now ŵ is a solution of

−∆ŵ = g′(w)ŵ. Hence by integrating over the ball BR of radius R in R
�n−m

and integrating by parts, we see that∫
BR

(|∇ŵ|2 − g′(w)ŵ2) =
∫

∂BR

ŵ
∂ŵ

∂r
.

If we prove the right hand side tends to zero as R → ∞, then, since g′(w)ŵ2 ∈
L1(R�n−m) (because w is bounded and ŵ ∈ L2(R�n−m), it will follow that ∇w ∈
L2(R�n−m) and E(ŵ) = 0, as required. Now the integral on the right hand side
is a constant times R�n−2w′(R)w′′(R) (using the form of ŵ). Since r�n−1w′(r) is
bounded and w′′(r) → 0 as r → ∞, the required result follows. (That w′′(r) → 0
as r → ∞ follows easily from the equation satisfied by w since w(r) → 0 as
r → ∞). This completes the proof of Lemma 4 and thus of Lemma 3.

The remainder of the proof of Proposition 1 is the same as the proof of
Proposition 1 in [12] except that we replace the Gidas–Ni–Nirenberg theorem in
[20] by the main result of Li and Ni [29].

Remark. Note that Proposition 1 and the mountain pass theorem imply
some results on the existence of solutions of (2) on R

n which appear to be new.



146 E. N. Dancer

(We use the mountain pass theorem to obtain positive solutions of (1) for ε = εi

and then use Proposition 1 to prove the existence of positive solutions of (2).)

Proof of Theorem 1. Once again this follows the corresponding proof in
[12] quite closely. The first change is that the main result in [28] replaces the
result in [27]. (This is to prove the uniqueness of the positive radial solution u0

of −∆u = up−uq with the property that u0(r) → 0 as r → ∞.) The existence of
one solution of (1) follows as in [12]. We need to prove the uniqueness. Suppose
by way of contradiction that ui are vi are distinct positive solutions of (1) for
ε = εi where εi → 0 as i→ ∞. As there, we find that ui(ε

−1/2
i x)− u0 converges

uniformly to zero as i→ ∞. A similar result holds for wi.
As in [12], we rescale by a change of variable X = ε

−1/2
i x and let ũi and ṽi

denote ui and vi in the rescaled variables. Thus ũi and ṽi are both solutions
of −∆u = f(u) on ε

−1/2
i D with Dirichet boundary conditions (where f(y) =

yp − yq). Let zi = (‖ũi − ṽi‖∞)−1(ũi − ṽi). Then zi is a solution of

−∆z =
f(ũi) − f(ṽi)

ũi − ṽi
z

on ε−1/2
i D such that ‖zi‖∞ = 1 and zi is even in xj for 1 ≤ j ≤ n. By Proposition

1, there is a k1 > 0 such that ũi(x) ≤ δ and ṽi(x) ≤ δ if ‖x‖ ≤ k1, x ∈ ε
−1/2
i D

and i is large (since ũi and ṽi are both close to u0.) Thus, by our assumptions
on f , (f(ũi) − f(ṽi))/(ũi − ṽi) < 0 if i is large and ‖x‖ ≥ k1. It follows easily
that |zi| has its maximum in ‖x‖ ≤ k1. At the end of the proof we will show
that, if n ≥ 3,

(3) |zi(x)| ≤ k2‖x‖2−n

where k2 is independent of i for ‖x‖ ≥ k1. Thus, by a standard limiting argument
(similar to that in [12]) a subsequence of zi will converge uniformly on compact
sets to a non-trivial solution z0 of

(4) −∆z = f ′(u0)z

on R
n such that ‖z0‖∞ = 1 and z0 is even in xj for 1 ≤ j ≤ n. Moreover, if

n ≥ 3, then |z0(x)| ≤ k2‖x‖2−n. Thus, if n ≥ 3, then z0(x) → 0 as ‖x‖ → ∞.
We prove that no such solution of (4) exists. As in [12], it follows by using

spherical harmonics that for some integer α̃ (where either α̃ = 0 or α̃ ≥ n − 1)
there is a non-trivial bounded solution h(r) of

−r1−n d

dr
(rn−1h′(r)) + r−2α̃h = f ′(u0)h,

h′(0) = 0 (if α = 0),

h(0) = 0 (if α > 0).

(5)
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Moreover, if n ≥ 3, since z0(x) → 0 as ‖x‖ → ∞, the formula for h in [12] (in
terms of spherical harmonics) implies that h(r) → 0 as r → ∞.

First assume that α̃ > n − 1. As in [12], we see that v = −u′0 is a positive
solution of (5) for α̃ = n− 1 with v(0) = 0. As in our proof there, if h̃ is a non-
trivial solution of (5) for α̃ > n − 1 with h̃(0) = 0, then the Sturm comparison
theorem implies that h̃ has at most one positive zero. Let c be this first zero if
it exists and let c = ∞ otherwise. We can assume h̃(r) > 0 on (0, c). As in [12],
we easily get a contradiction if c < ∞. If c = ∞, then h̃(r) > 0 on (0,∞), and
as in [12] we find that rn−1(v′(r)h̃(r) − v(r)h̃′(r)) has a negative limit (possibly
−∞) as r → ∞. To obtain a contradiction we need to consider a little more
carefully the behaviour of h̃ and v for large r. By Lemma 4 in [28] applied to the
equation satisfied by u0, we see that u0(r) ≤ kr2−n for large r. (Note that this is
trivial if n = 1, 2.) By the equation satisfied by u0, we easily see that rn−1u′0(r)
has a limit (possibly +∞) as r → ∞. A simple integration and the estimate of
the previous sentence implies that rn−1u′0(r) has a finite limit � (necessarily less
than or equal to zero) as r → ∞. Note that this and the result that u0(r) → 0
as r → ∞ implies that u′0(r) → 0 as r → ∞. By integrating, we see that � = 0
if n = 1, 2 (since u0(∞) = 0). Now u′0 satisfies a similar equation and thus by
the same argument rn−1u′′0(r) has a finite limit γ as r → ∞. Integrating, we
see that u′0(r) ∼ γ(2 − n)−1r2−n as r → ∞ if n > 2. This is impossible since
rn−1u′0(r) → � as r → ∞ (where � is finite) unless γ = 0. Since we can use an
easier argument for n = 1 or 2, we see that in all cases rn−1u′′0(r) → 0 as r → ∞.
Moreover, Lemma 4 in [28] (and its analogue for n = 1, 2) imply that h̃(r) has a
finite limit as r tends to infinity. By the equation for h̃ (and since h̃(r) > 0), we
see as above that rn−1h̃′(r) has a limit (possibly +∞) as r tends to infinity. If
the limit is finite one easily sees that h̃′(r) → 0 as r → ∞. (If n = 1, we should
recall that h̃(∞) < ∞.) Now suppose the limit is infinite. If n = 1, 2, we easily
get a contradiction by integration. If n > 3, then h̃(r) > 0 and h̃′(r) > 0 for large
r (since the limit is infinite). This is impossible since h̃(r) → 0 as r → ∞. Thus,
in all cases, h̃′(r) → 0 as r → ∞. We see that rn−1u′0(r) and h̃(r) have finite
limits as r → ∞ and that both rn−1u′′0(r) and h̃′(r) tend to zero as r → ∞. It
follows easily that rn−1(v′(r)h̃(r)−v(r)h̃′(r)) → 0 as r → ∞. This contradicts a
result earlier in the paragraph. Thus, if α̃ > n− 1, (5) has no solution satisfying
the boundary conditions at zero and infinity.

If α̃ = n − 1, we would be looking at solutions h̃(r)s(w) where s is a first
degree harmonic polynomial (and these solutions are odd). Thus this type of
solution cannot be a component of z0 (because z0 is even). Here by a component
we mean a component in the spherical harmonic decomposition of z0.

It remains to consider the case α̃ = 0. If n ≥ 3, Lemma 9 in [28] implies that
the solution h of (5) with h(0) = 1 has a non-zero limit as r → ∞. (We need
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to know that h has at most one positive zero. We will prove this in a moment.)
This is impossible since we have proved that h(r) → 0 as r → ∞ if n ≥ 3. Now
assume that n = 1 or 2. If n = 1, there is nothing to prove since α̃ = 0 and
α̃ = n − 1 are the same. If n = 2, choose r0 > 0 such that f ′(u0(r)) ≤ 0 for
r ≥ r0. If we choose a solution z of (5) for α̃ = 0 with z(r0) = 1, z′(r0) > 0,
it follows easily from the equation that rn−1z′(r) is increasing for r ≥ r0. Thus
rn−1z′(r) has a positive lower bound on [r0,∞). Since n = 2, it is easy to see
by integrating that z(r) → ∞ as r → ∞. Thus only the principal solution of (5)
(in the sense of [23] or [27]) can be bounded as r → ∞. Hence we need to prove
that if w is the solution of (5) satisfying w(0) = 1, then w is not the principal
solution of (5). This is proved by a slight variant of Lemma 9 in [28]. Note
that he uses f where we use g. As there we find that w must have a positive
zero. We modify the alternative proof in [28]. We let v(r) = ru′0(r) + βu0(r)
with β chosen as in [28] and we find as in [28] that Lv(r) ≥ 0 for r ≥ τ̃ where
w(τ̃ ) = 0 and w′(τ̃ ) < 0 (since w(0) > 0 and τ̃ is the first positive zero of w).
Here Lv = r1−n(rn−1v′)′ + f ′(u0)v. Since w(r) < 0 for r > τ̃ (because we are
assuming w has at most one positive zero), it follows by a simple computation
from the equations satisfied by v and w that T (r) = r(v′(r)w(r) − v(r)w′(r)) is
decreasing for r > τ̃ . At τ̃ , v(τ̃ ) < 0 (by the argument in the alternative proof
of Lemma 8 in [28]) and hence T (τ̃) < 0. Thus T has a negative limit as r → ∞.
This gives an obvious contradiction since v(r) → 0 as r → ∞, w(r) < 0 for large
r, w′(r) → 0 as r → ∞ and lim supr→∞ rv′(r) ≥ 0. That rw′(r) → 0 as r → ∞
follows easily from similar argument to those in the case where α > n− 1 since
the differential equation satisfied by w ensures rw′ is decreasing for large r (and
hence rw′(r) has a limit of possibly −∞). To prove that lim supr→∞ rv′(r) ≥ 0,
note that rv′(r) = r2u′′0(r) + (1 + β)ru′0(r). Since ru′0(r) → 0 as r → ∞ (by
earlier) it suffices to find arbitrarily large values of r where u′′0(r) ≥ 0. If not,
u′0(r) is decreasing for large r. It is easy to see this is impossible since u0(r) > 0
and u0(r) → 0 as r → ∞.

We still have to prove that the solution h of (5) for α̃ = 0 with h(0) = 1 has
at most one positive zero. We know that for each small ε > 0, we have at least
one positive solution ũε of (1) for D the unit ball which is a mountain pass point
in the sense of [25]. By [19], ũε is a radial function. It follows (cp. [25]) that the
linearization of the partial differential equation at ũε has at most one negative
eigenvalue. Thus this must be true in the space of radial functions. By a slight
variant of the theory in Dunford and Schwartz [18, Lemma XIII.7.49], it follows
that the solution of

−εr1−n d

dr
(rn−1h′(r)) = f ′(ũε(r))h(r),

h(0) = 1, h′(0) = 0
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has at most 1 zero in (0, 1]. By rescaling, it follows that the solution of

−r1−n d

dr
(rn−1h′(r)) = f ′(uε(r))h(r),

h(0) = 1, h′(0) = 0

has at most one zero in (0, ε−1/2] (where uε is ũε rescaled).
By Proposition 1, the main result in [28], and continuous dependence, it

follows that the solution of

−r1−n d

dr
(rn−1h′(r)) = f ′(u0(r))h(r),

h(0) = 1, h′(0) = 0

has at most 1 positive zero. This ensures that the hypothesis in [28] on h is
satisfied.

This completes the proof except to establish the inequality (3) for n ≥ 3. We
prove this by maximum principle arguments. We consider Ti = {x ∈ ε

−1/2
i D :

‖x‖ ≥ K1}. On ∂Ti, |zi(x)| ≤ Kn−2
1 r2−n (since zi(x) = 0 on ∂(ε−1/2

i D) and
|zi(x)| ≤ 1). On Ti, ∆zi(x) = αi(x)zi(x) where αi(x) > 0. We prove that
zi(x) ≤ Kn−2

1 r2−n in Ti. (Since we could prove a similar argument for −zi,
this will complete the proof.) If not, zi(x) − Kn−2

1 r2−n must have a positive
maximum at x̃ ∈ Ti. Thus zi(x̃) > 0. Since r2−n is harmonic, it follows that
∆(zi(x̃)−Kn−2

1 r2−n) = αi(x̃)zi(x̃) > 0, which is impossible at a maximum. This
completes the proof.

Remarks.

1. One can prove more results on the space of solutions of the linearization
of (2) at u0 with a little more care. One can prove that the space of
solutions in C0(Rn) is (n−1)-dimensional, there is at most one bounded
solution not in C0(Rn) and every bounded solution is in C0(Rn) if n =
1, 2 or if g(y) ∼ −yq as y → 0 where q ≤ n(n− 2)−1.

2. Most of the remarks in [12] have analogues here. There is one major
change when g′(0) = 0 and (2) has more than 1 positive solution. There
is a real difficulty in proving that if u0 is a suitable positive solution of
(2), then for all small ε < 0 there is a positive solution of (1) which is
close to u0 when it is rescaled. The difficulty comes when we are in the
essential spectrum of the linearization. We discuss this in some detail
below.

3. We suspect that weak non-degeneracy holds for “generic” g but this ap-
pears difficult to prove when g′(0) = 0. It can be proved when g′(0) < 0.

4. As we mentioned earlier, the uniqueness and weak non-degeneracy holds
much more generally when n = 1. As in [12], simple examples show that
they do not always hold if n > 1.
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To complete this section, we discuss briefly the case where (2) has more
than one solution. Assume that the basic assumptions of Proposition 1 hold,
and that each positive solution of (2) is weakly non-degenerate. (As we will see
below, this implies that (2) has only finitely many positive solutions.) Then the
number of positive solutions of (1) for small ε is equal to the number of positive
solutions of (2). We sketch the proof of this. We do not give the proof in detail
because it is quite long and tedious, especially the reduction to the ball case.
We first choose a smooth deformation Dt of D into the unit ball B in R

n (where
D0 = D, D1 = B) such that each Dt is of type Rn. It is then not difficult to
check that Proposition 1 holds uniformly in t (because most of our argument
is concerned with behaviour near the centre and because blowing up arguments
will flatten ∂Dt to a half space uniformly in t). Similarly, by examining part of
the proof of Theorem 1, it is not difficult (but rather tedious) to see that there
exists ε0 > 0 independent of t such that every positive solution of (1) on Dt for
0 < ε ≤ ε0 is non-degenerate in the space of even functions and that, if u0 is
a positive solution of (2), then there are ε̃0, α > 0 such that (1) has at most 1
positive solution in Z0,α,t = {u ∈ C(Dt) : |u0(x) − u(ε−1/2x)| ≤ α on ε−1/2Dt}
if 0 < ε ≤ ε̃0 and if 0 ≤ t ≤ 1. (We essentially proved this earlier for each t.
The only question is the uniformity in t but this is easy to check.) Let N(t)
denote the number of positive solutions of (1) in Z0,α,t. By the non-degeneracy
and the implicit function theorem, N(t) is independent of ε. Fix ε ∈ (0, ε̃0). By
our earlier comments, each solution in Z0,α,t is non-degenerate and thus, by the
theory of domain variation (cp. [14]), it continues to a solution in Z0,α,s for s
near t. Thus, if N(t) = 1, N(s) = 1 if s is close to t. Now a simple limit argument
shows that if sn → t and N(sn) = 1 for all n, then N(t) = 1. Hence it follows
that N(t) is independent of t if N(0) = 1. Hence our original claim follows if
we prove the result for D the unit ball. We discuss this part more carefully
because we need it in §2. By our above remarks, it suffices to show that, if u0

is a weakly non-degenerate solution of (2), then there exist arbitrarily small ε’s
for which Z0,α,0 is non-empty. Let β = u0(0). By continuous dependence results
for ordinary differential equations, we easily see that it suffices to prove that
there exist γ’s arbitrarily close to β for which the solution of the initial value
problem

(6)
−r1−n(rn−1u′(r))′ = g(u(r)),

u(0) = γ, u′(0) = 0

has a positive zero τ(γ). (Note that by a simple analysis of the equation or by
the Gidas–Ni–Nirenberg theorem [19] such a solution is decreasing on (0, τ(γ))
and thus is uniformly small for r large and r < τ(γ). Note also that continuous
dependence ensures τ(γ) → ∞ as γ → β.) Let h(r) denote the solution of
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−r1−n(rn−1h′(r))′ = g′(u0(r))h(r),

h(0) = 1, h′(0) = 0.

By our assumption on g′ and since u0(r) → 0 as r → ∞, we see that there exists
µ > 0 such that g′(u0(r)) < 0 if r ≥ µ. Note that it is not difficult to show that h
has a positive zero by comparing it with u′0. It follows easily from the differential
equation that h as at most one zero in (µ,∞). Hence h has a largest zero which
we denote by α̂. We consider ε small and positive if h(r) < 0 on (α̂,∞) while we
consider small negative ε if h(r) > 0 on (α̂,∞). Now by standard results on the
differentiability of the solution with respect to initial conditions we see that the
solution of (6) with initial value β + ε̂ will be u0(r) + ε̂h(r) + o(ε̂) for small ε̂
uniformly on compact sets (of r). Thus, with our above choice of the sign of ε̂ we
see that if K, δ > 0, this solution will be less than u0(r) on [α̂+ δ,K]. We prove
that this solution crosses the axis if |ε̂| is small (and the sign of ε̂ is as above). If
not, this solution v

�ε must cross the solution u0(r) at a point �
�ε where �

�ε → ∞ as
ε̂→ 0. (There is also the possibility that v

�ε(r) → 0 as r → ∞ but this possibility
can also be eliminated by a slight variant of our argument below.) Note that
this argument will also show that positive solutions of (2) are isolated. (One can
easily deduce from this the finiteness of the number of positive solutions of (2).
A more detailed similar argument appears in §2.) Now (‖u0 − v

�ε‖′∞)−1(u0 − v
�ε)

is a solution of

−∆w =
g(u0) − g(v

�ε)
u0 − v

�ε
w, w(�

�ε) = 0.

Here ‖ ‖′∞ denotes the supremum on [0, �
�ε]. We now can obtain a contradiction

by a limit argument very similar to that in the proof of (4). This completes the
proof of our claim. Note that one can give a much easier proof of g′(0) = 0. The
difficulty when g′(0) = 0 is that we are in the essential spectrum of the natural
limit problem and hence cannot easily construct solutions directly.

Let us now assume that n = 2 and the assumptions of the previous paragraph
hold. Let

D = {(u, ε) : ε > 0 and u is a positive solution of (1)}.

A minor variant of the argument in Holzmann and Kielhofer [26] shows that
each component T of D is a non-compact 1-manifold parametrized by u(0) and
thus by an interval (α, β). Moreover, solutions (u, ε) ∈ T with u(0) close to α
must correspond to either ε small or ε large (and only one of these cases can
occur for a particular α). A similar result holds for (u, ε) ∈ T , u(0) near β.
Moreover, as mentioned in [12], (1) has a unique positive solution for large ε.
Thus exactly one component can contain points (u, ε) with ε large. So far,
we have not needed the weak non-degeneracy. Moreover, by the results of the
previous paragraph, exactly one component will contain solutions (u, ε) with ε
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small and u(ε−1/2x) uniformly close to u0(r) (where u0 is a solution of (2)).
In fact, since each component of D is homeomorphic to R (and thus has two
“ends”), we see that one component of D will join solutions with ε large to
solutions with ε small and u (rescaled) close to a solution of (2). Any other
component of D will have “ends” two curves of solutions emanating from different
solutions of (2) (emanating as in Proposition 1). Note that each of these last
components must have at least one turning point and the uniqueness in the
previous paragraph implies that two different components of D cannot have
one end the same. To understand the general structure of solutions, we need
to understand which solution of (2) is the limit of the component containing
solutions with ε large and which solutions of (2) are “joined” by components
of D. To determine this, we argue as follows. (We only sketch the argument.)
Firstly, as we noted in the previous paragraph, the behaviour of our solutions for
small ε holds uniformly in t (where we use the deformation from D to a ball used
earlier). Hence we can argue much as in [11] to prove that the components of D
change continuously in t and in particular we find that which solutions of (2) are
joined by a branch of solutions of (1) (and which one is joined to solutions with
ε large) is independent of t. This is not difficult but rather long and tedious.
Thus we can determine which are joined by studying the case where D is a ball.
In the case where D is a ball, the uniqueness of the initial value problem for (6)
ensures that if (u, ε) ∈ D (for a ball), then u(0) = u0(0) for any solution u0 of (2).
Hence we see that, if T is a component of D, then {u(0) : (u, ε) ∈ D} must be a
component of W = (0,∞)\Z where Z = {u0(0) : u0 is a solution of (2)}. To see
which components of W occur as components of D̂ = {u(0) : (u, ε) ∈ D}, we see
that the unbounded component must correspond to the unbounded component of
W (since the solutions u with ε large must have u(0) large). Thus the component
of D which contains elements with ε large must contain points (ũ, ε) with ε

small and with ũ rescaled close to the solution û of (2) which has û(0) maximal.
Before solving the other “connection” problems, note that the uniqueness of
the positive solutions for ε small close to u0(r) implies that if ã ∈ Z there can
be only one component T of D such that the closure of {u(0) : (u, ε) ∈ T }
contains ã. This implies that alternate components of W (for the natural order)
are the images of components of D and each of these is the image of exactly
one component of D. This provides a complete description since we also know
that the unbounded component of W is in the image. (It is also easy to see
that the component of W with zero in its closure is not.) Note that this result
implies that {u(0) : (u, ε) ∈ D for some ε > 0} is not easy to find explicitly and
that our results and those in [26] imply that (1) has no positive solution with
u(0) ∈ Z for any ε > 0 and any domain D of type Rn. This does not seem at all
immediate whenD is not a ball. We can obtain an alternative way of determining
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whether ã ∈ Z is in the closure of a component W̃ of {u(0) : (u, ε) ∈ D for some
ε > 0} which lies above ã or below ã. By part of the argument in the previous
paragraph, this depends on the solution h of

−r1−n d

dr
(rn−1h′(r)) = g′(u0(r))h(r),

h(0) = 1, h′(0) = 0

(where u0 is the solution of (2) with initial value ã). It is proved there that
h(r) = 0 for large r and that, if h(r) > 0 for large r, then there exist elements
(u, ε) ∈ D with ε small and u(0) close to but less than ã. Hence ã is in the
closure of a component of Ŵ below ã. (As before, it suffices to consider the case
of a ball.) Similarly, if h(r) < 0 for large r, then ã is the closure of a component
of W̃ above ã. This implies that if a1 and a2 are adjacent elements of Z (in
the obvious sense), then the number of positive zeros of their corresponding h’s
must differ by an odd number. This is close to the information one might expect
to obtain from a degree theory (although it is not obvious there is a reasonable
degree theory if g′(0) = 0).

2. Some more general cases

In this section, we consider similar problems with more general g’s which
change sign.

We consider two cases in this section. In the first case, we assume the same
conditions on g as in the previous section except we replace the condition that
g > 0 on (a,∞) and g(y) ∼ yp as y → ∞ by the conditions that there exists
b > a such that g(y) > 0 on (a, b), g(b) = 0 and there exists δ1 > 0 such
that g′(y) ≤ 0 on (b − δ1, b). In addition, we assume that

∫ b

0 g > 0. If this
last condition fails, our problem is trivial because (1) has no non-trivial positive
solution with ‖u‖∞ ≤ b for every smooth domain Ω and for every ε > 0. This
follows from [6] or [17].

Theorem 2. Assume that the above conditions hold and that the domain D

is of type Rn.

(i) There exists a δ2 > 0 such that (1) has a unique positive solution uε

with uε(0) ∈ (b − δ2, b) for each small positive ε. Moreover, uε → b

uniformly on compact subsets of D as ε→ 0.
(ii) If εi → 0 as i→ ∞ and ui are positive solutions of (1) for ε = εi with

‖ui‖∞ ≤ b − δ for all i, then after choosing a subsequence if necessary
we can find a positive radial solution u0 of (2) such that u0(r) → 0 as
r → ∞ and such that ui(x) − u0(ε

−1/2
i x) tends to zero uniformly on

D as i → ∞. Moreover, at least one solution of this type exists for all
small positive ε.
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(iii) Moreover, if (y − a)g′(y) < g(y) on (a, b), and if there is a ρ ≥ 1 such
that limy→0+ y1−ρg′(y) exists and is negative, then (1) has exactly 2
positive solutions u with 0 < ‖u‖∞ < b for all small positive ε.

We prove this in several steps. First note that (i) was proved by Sweers [35]
(in fact for general smooth domains). Thus it suffices to study positive solutions
with ‖u‖∞ ≤ b−δ. In this case, we are back in the situation of §1. We can prove
most of part (ii) by simply repeating the arguments of §1. The last part of (ii)
follows from (i) and a simple degree argument. Thus it remains to prove (iii).
By the arguments in the proof of Theorem 1, it suffices to prove that (2) has a
unique positive radial solution and that this solution is weakly non-degenerate
in the sense of §1 in the space of radial functions. (Thus we really only have to
study an ordinary differential equation.)

Lemma 1. Under the conditions of Theorem 2(iii) on g, there is a unique
positive radial solution u0 of

−r1−n(rn−1u′(r))′ = g(u(r)) on (0,∞)

such that 0 < ‖u0‖∞ < b and u0(r) → 0 as r → ∞. Moreover, this solution is
weakly non-degenerate in the sense of §1 in the space of radial functions.

Proof. Step 1. We prove weak non-degeneracy first. We first note that if
γ is large then

(7) γg(y) − yg′(y) < 0 on (0, a).

Since g(y) < 0 on (0, a), this is obvious except for y near zero or a. Our assump-
tions ensure that (u− a)−1g(u) is strictly decreasing on (a, b) and is positive. It
follows that g′(a) > 0. It is then easy to check that γg(y) − yg′(y) < 0 near a
if γ > 0. By our assumptions, g′(y) ∼ Cyρ−1 for small positive y where C < 0.
Thus, by integrating, g(y) ∼ ρ−1Cyρ for small positive y. Hence our claim is
true for small y (since C < 0). Hence (7) is true. Let w(r) denote the solution
of

−r1−n(rn−1w′(r))′ = g′(u0(r))w(r),

w(0) = 1, w′(0) = 0.

We need to prove that w is not bounded if n = 1, 2 and that w does not tend
to zero as r → ∞ if n ≥ 3. The weak non-degeneracy follows from this. First
assume that n ≥ 2. We will also prove that w has exactly 1 zero in (0,∞). We
first claim that w has no zeros in (0, τ̂ ] where u0(τ̂ ) = a. Note that it is well
known and easy to prove that u′0(r) < 0 on (0,∞) and u0(0) > a. Our claim
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follows from a simple comparison argument since u0(r)− a is a positive solution
of

−Lh(r) = (u0(r) − a)−1g(u0(r))h(r),

h′(0) = 0,

and since (u0(r)− a)−1g(u0(r)) > g′(u0(r)) on (0, τ̂ ). Here Lh = r1−n(rn−1h′)′.
Hence if w has a zero, its first zero τ̃ will satisfy τ̃ > τ̂ . If β > 0, let

γ = 1+2β−1 and v(r) = ru′0(r)+βu0(r). For future reference note that β small
corresponds to γ large. By p. 591 of [28], L1v = β(u0g

′(u0) − γg(u0)) where
L1s = Ls + g′(u0)s. Note that we use g where f is used in [28]. Hence we see
from (7) that

(8) L1v(r) ≥ 0

on [τ̂ ,∞) if β is small. Now L1w(r) = 0 on [τ̃ ,∞) since w is a solution of the
linearized equation. By a simple computation using the equation satisfied by w,
one easily finds that

(9) (rn−1(v(r)w′(r) − w(r)v′(r)))′ = −rn−1(L1v)(r)w(r).

Now suppose that w has 2 (or more) positive zeros. Let τ̃ < µ be the first 2. Since
w(0) > 0, w(r) < 0 on (τ̃ , µ). By what we have already proved, τ̃ > τ̂ . Hence
by (8) and (9), W (r) = rn−1(v(r)w′(r) − w(r)v′(r)) is increasing on [τ̃ , µ] if β
is small. This is impossible since W (τ̃ ) = τ̃n−1v(τ̃ )w′(τ̃ ) > 0 if β is small (since
w′(τ̃ ) < 0 and v(τ̃ ) is close to τ̃u′0(τ̃ ) < 0) while W (µ) = µn−1v(µ)w′(µ) < 0
(since w′(µ) > 0). Thus w has no zero on [τ̃ ,∞) and hence τ̃ is the only zero.
(We will prove in a moment that there must be such a zero.) Similarly, since
w(r) < 0 on (τ̃ ,∞), W (r) is increasing on [τ̃ ,∞), while, as before, W (τ̃ ) > 0 if
β is small. We will prove that lim infr→∞W (r) ≤ 0 if n = 2 and w is bounded
or if n ≥ 3 and w(r) → 0 as r → ∞. This gives a contradiction (and will
complete the proof of weak non-degeneracy where n > 1 apart from proving w
has a zero in [τ̂ ,∞)). First assume that n ≥ 3. As in the proof of Proposition
1 in §1 (where we modified the proof of Lemma 4 in [12]), we easily see that
rn−1w′(r) is bounded and positive and rn−2w is bounded. (Note that since
w(r) → 0, w is the principal solution in the sense of [23].) Similarly rn−2u′0(r)
is bounded and u0(r) → 0 as r → ∞. Hence v(r) → 0 as r → ∞. It follows
easily that rn−1w′(r)v(r) → 0 as r → ∞. Now rv′ = r2u′′0 + (1 + β)ru′0 by the
formula for v. Now r2u′′0(r) ≥ K > 0 for large r is impossible by integrating
twice and using that u0 is bounded. Since ru′0(r) → 0 as r → ∞, it follows that
lim infr→∞ rv′(r) ≤ 0. Since rn−2w(r) is bounded and negative, it follows that
lim supr→∞ rn−1w(r)v′(r) ≤ 0. Since rn−1w′(r)v(r) → 0 as r → ∞, it follows
that lim supr→∞W (r) ≤ 0. This gives an obvious contradiction. If n = 2,



156 E. N. Dancer

the argument is the same except we must be a little more careful to prove that
v(r) → 0 as r → ∞. The difficulty is to check that ru′0(r) → 0 as r → ∞. As
before, since n = 2, we can check that ru′0(r) has a limit as r → ∞ (by the
equation satisfied by u0). Then the boundedness of u0 forces ru′0(r) to tend to
zero as r → ∞.

It remains to prove that w must have a zero in [τ̂ ,∞) if n > 1. There
are several ways to prove this. Suppose not; then w(r) > 0 on [τ̂ ,∞) and
hence on (0,∞). By differentiating the equation for u0, one easily finds that
−L1u

′
0 = −(n−1)r−2u′0 > 0 (since n > 1). In the same way as we derived (9), we

see that (rn−1(u′0(r)w
′(r)−w(r)u′′0 (r)))′ = −rn−1L1(u′0)w(r) > 0 by the formula

for L1u
′
0 and since w(r) > 0. Hence W̃ (r) ≡ rn−1(u′0(r)w

′(r) − w(r)u′′0 (r))
is increasing. Since n > 1 and w and u0 are regular at zero, W̃ (r) → 0 as
r → 0. Hence W̃ (r) > 0 for r > 0 and thus −w−1u′0 is strictly increasing. Since
w(0)−1u′0(0) = 0, it follows that there is a K > 0 such that −w(r)−1u′0(r) ≥
K for r large, that is, w(r) ≤ −K−1u′0(r) for r large. Hence w(r) → 0 as
r → ∞. Much as earlier in this step it follows that lim supr→∞ W̃ (r) ≤ 0. This
is impossible since W̃ (0) = 0 and W̃ is strictly increasing. Hence w has a positive
zero.

If n = 1, then u′0(r) satisfies the same equation as w. Since u′0 can be the
only solution of this equation bounded at infinity (cp. [17], p. 1552) and since
u′0 does not satisfy the boundary condition at zero, the result is also proved if
n = 1. (Here we do not use the assumption that w has a positive zero.) This
completes Step 1.

Step 2. Uniqueness. If n = 1, the uniqueness of u0 follows easily by using
the first integral.

Now suppose n > 1. We will prove uniqueness indirectly by looking at
solutions of

−Lu = g(u), u′(0) = 0, u(R) = 0

for R large (or equivalently the radial solutions of (1) on the unit ball B for ε
small). We will prove that this equation has a unique positive solution of the
type in Theorem 2(ii) for large R and deduce the uniqueness of the positive
solution of (1) with norm not close to b. We will use some of the ideas in the
last two paragraphs of §1 (the easy ones).

To do this, first note that (2) has only a finite number of positive solutions.
To see this note that by part of the second last paragraph of §1, each positive
solution of (2) is isolated and thus Y = {u0(0) : u0(r) is a positive solution of
(2), u0(r) → 0 as r → ∞} consists of isolated points. (Note that each such
u0 is decreasing and hence if two solutions are close on compact sets they are
uniformly close on [0,∞).) Moreover, it is easy to see that Y is closed (since by
[17], u0(0) ≥ c where

∫ c

0
g(y) dy = 0 and c > 0) and since it is easy to show that,
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if ũ is a non-negative solution of (2) with β − δ ≥ ũ(0) ≥ c which is decreasing
for r ≥ 0, then ũ(r) → 0 as r → ∞. Moreover, Y is bounded above by β − δ,
since if there existed an element t of Y larger than b− δ then an easy continuous
dependence argument (cp. below) would imply that there would exist solutions
u of (1) on a ball for all small ε > 0 with u(0) close to t and thus u(0) larger
than b−δ. Moreover, by their construction these solutions are small except close
to zero. This is impossible by part (i) of the theorem. Thus Y is compact and
consists of isolated points and hence is finite. This proves our claim.

Next we note that, if u0 is a positive solution of (2), then, for all small
positive ε, there is a positive solution uε of (1) on B near u0. (Here by near we
mean uε(r) − u0(ε−1/2r) is uniformly small on [0, ε−1/2]). This is proved in the
second last paragraph in §1. Note that we only need the results of the second
last paragraph of §1 in the case of a ball.

Hence our uniqueness claim will follow if we prove that (1) has exactly two
positive solutions forD a ball if ε is small. (Remember that there is a unique large
solution uε.) It suffices to prove that any solution other than the large solution
has degree −1. Here we use that the maximal solution is non-degenerate and
stable and hence has index 1 and that the sum of the indices of the positive
solutions is zero. The last result is proved by continuing to large ε and note
that there is no positive solutions for large ε since |g(y)| ≤ K|y| on [0, b]. More
precisely, here we are choosing C large (depending on ε) and considering the
fixed point indices of the fixed points of the map

u→ (−∆ + CI)−1(ε−1g(u) + Cu)

on the set of non-negative continuous radial functions on the unit ball.

It remains to prove that any positive solution u of (1) onB with ‖u‖∞ ∈ (0, b)
other than the large solution has index −1 if ε is small. Since we know that these
solutions are non-degenerate (by Lemma 1 and by a similar argument to part of
the proof of Theorem 1), we can use the well known result for the degree of a non-
degenerate solution (cp. Lloyd [30], Theorem 8.1.1) and a standard argument to
show that it suffices to prove that the linear eigenvalue problem

−Lh− ε−1g′(uε)h = γh on [0, 1],

h′(0) = 0, h(1) = 0,

has exactly one negative eigenvalue counting multiplicity for small positive ε.
Here uε is the radial solution of (1) which when rescaled (to ũε) is close to u0 for
small ε, where u0 is defined in Lemma 1. Equivalently, by rescaling, we could
consider the problem
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−Lh− g′(ũε) = γh on [0, ε−1/2],

h′(0) = 0, h(ε−1/2) = 0.

By a well known slight strengthening of a result in Dunford and Schwartz
[18, Lemma XIII.7.9], it suffices to prove that the solution hε of

−Lh = g′(ũε)h, h(0) = 1, h′(0) = 1

has exactly one zero in (0, ε−1/2). (Note that, by our earlier comments, hε(ε−1/2)
= 0.) Since ũε is uniformly close to u0 we see from continuous dependence that,
on compact subsets of [0,∞), hε is uniformly close to the solution h0 of

−Lh = g′(u0)h, h(0) = 1, h′(0) = 0

for ε small. We showed in the proof of Step 1 that h0 has exactly one positive
zero. Thus hε will have at least one positive zero tε which is not large and
any other positive zero in (0, ε−1/2) must be large when ε is small. This latter
possibility we can eliminate by a limiting argument almost the same as in the
derivation of (4) in the proof of Theorem 1 (but a little easier).

Hence hε has exactly one zero in (0, ε−1/2) and our claim follows. This
completes the proof of Lemma 1 and hence of Theorem 2.

Remarks.

1. The proof can be greatly simplified when g′(0) = 0. (iii) is a little
surprising since we have very weak conditions on g on (0, a).

2. There are analogous results if we assume that g(y) > 0 for y > a and
either (i) g(y) → M > 0 and yg′(y) → 0 as y → ∞ or (ii) there
exists C > 0 and q ∈ (0, 1) such that y1−qg′(y) → C as y → ∞. One
difference in these cases is that the maximal solution is large on most
of the domain. The results are proved by combining the ideas here
with those in [9] and by using the weak Harnack inequality and the
method of sweeping families of subsolutions (as in Sweers’ paper [35]).
In particular, the last two ideas are used to prove that the set of positive
solutions of (2) which tend to zero at infinity are bounded in the uniform
norm in this case.

3. One can use the remarks in [12] to show that (iii) may fail without the
additional assumption on g. (One modifies the nonlinearity in [12] for
large y.) In the case of non-uniqueness one can prove analogues of the
results of the last two paragraphs of §1. In particular, under a weak
non-degeneracy assumption the number of positive solutions of (1) for
small positive ε is one more than the number of positive radial solutions
of (2). It seems likely that the conditions for uniqueness can be greatly
weakened.
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We now consider another case. These nonlinearities are ones which have 3
positive zeros. We assume that g is C1 and that there exist a1, a2, a3 such that
0 < a1 < a2 < a3, g(y) > 0 on (0, a1), g(y) < 0 on (a1, a2) and g(y) > 0 on
(a2, a3). We are interested in positive solutions with ‖u‖∞ ∈ (a1, a3). Note
that positive solutions with ‖u‖∞ ∈ (0, a1) are quite well understood for small
ε by the results in [9] and that the maximum principle implies that there are
no positive solutions u with ‖u‖∞ = ai for i = 1, 2, 3. Note also that we must
assume that

∫ a3

a1
g(y) dy > 0 since otherwise by the results in [17] there are no

positive solutions of the required type. In addition, we assume that the function
y → g(y − a1) satisfies the same conditions on [0, a3 − a1] as the g in the first
part of this section (with b replaced by a3 − a1 and a by a2 − a1). Moreover,
we assume that, if n ≥ 3, there exist q ∈ (1, n(n − 2)−1] and C̃ > 0 such that
g(y) ≥ C̃yq for small positive y. (In fact, we could replace this assumption by
the condition that, if 3 ≤ m ≤ n, then −∆u = g(u) has no positive solution ũ

on R
m such that ũ → 0 as ‖x‖ → ∞, ũ is even in xi, ∂ũ/∂xi ≤ 0 if xi ≥ 0 (for

1 ≤ i ≤ m) and u(0) ∈ (0, a3).).
We construct approximate solutions of (1) for small positive ε. Let z0 denote

the unique increasing solution of −z′′(t) = g(z(t)), z(0) = 0, z(∞) = a1, let n(x)
denote the inward normal to ∂D at x ∈ ∂Ω and assume u0 is a positive solution
of −∆u = g(u) in R

n such that ‖u0‖∞ ∈ (a2, a3) and u(x) → a1 as ‖x‖ → ∞.
Note that as in [9], points of D near ∂D can be uniquely written in the form
s+ tn(s) were s ∈ ∂Ω, t ≥ 0 and t is small. Define

Sε,u0(x) =

{
u0(ε−1/2x) if x ∈ D and x is not close to ∂D,

z0(ε−1/2t) if x is close to ∂D.

(To be completely precise we should specify exactly what we mean by close but
it turns out that it does not really matter because for ε small the difference
between different choices is uniformly small.)

Theorem 3. Assume that the above conditions on g hold and that D is of
type Rn. Then

(i) There exists δ > 0 such that, if ε is small, there is a unique positive
solution uε with ‖uε‖∞ ∈ (a3−δ, a3). Moreover, uε converges uniformly
to a3 on compact subsets of D as ε→ 0.

(ii) Suppose that εi → 0 as i→ ∞ and that ui are positive solutions of (i)
for ε = εi such that a1 < ‖ui‖∞ ≤ a3 − δ for all i. Then we can choose
a subsequence and a positive radial solution u0 of

−∆u = g(u) in R
n,

u(x) → a1 as ‖x‖ → ∞



160 E. N. Dancer

such that ui−Sεi,u0 tends to zero uniformly on D as i→ ∞. Moreover,
at least one solution of this type exists for all small positive ε.

(iii) If g′(y) < (y − a2)−1g(y) on (a2, a3) and if there exists s ≥ 0 such
that −(y − a1)−sg′(y) → C ∈ (0,∞) as y → a1 (for y > a1), then
(1) has exactly 2 positive solutions v with a1 < ‖v‖ < a3 for all small
positive ε.

Remarks.

1. The proof of (ii) can be simplified a great deal if either g(0) > 0 or
g′(0) > 0 by using the results in [9] and showing that for small ε there
is a minimal positive solution u with ‖u‖∞ ∈ (0, a3).

2. We could prove variants with different behaviour for y > a2 (much as
in Remark 2 after Theorem 2).

3. Note that the solutions in Theorem 2(ii) with norm not close to a3 have
2 sharp layers, a layer near y = 0 and a boundary layer near ∂D.

Proof of Theorem 3. As before, (i) follows from [35].
(ii) The main new ingredient is to prove that if ui is less than a1 (and not

close to a1) at points not too close to ∂D or 0, then ui is uniformly small except
near zero. The rest of the proof is very similar to that of Theorem 2(ii).

By the theory in [9] there exists λ > 0 such that (1) on B1 has a positive
solution φ for ε = λ−1 with ‖φ‖∞ = µ < a1. (In fact, this holds for many λ.)
Now, by [9], the function

w(x) =

{
φ(λ1/2ε−1/2(x− x0)) if ‖x− x0‖ < ε1/2λ−1/2,

0 otherwise,

is a subsolution of (1) on D if x0 ∈ D and d(x0, ∂D) ≥ ε1/2λ−1/2. By using the
method of sweeping families of subsolutions as in [9] or [6], it follows that, if u
is a solution of (i), either

u(x) ≥ µ when x ∈ D, d(x, ∂D) ≥ ε1/2λ−1/2

or

u(x) < µ at some point in the ball with centre zero and radius ε1/2λ−1/2.

We refer to these as the former and latter cases respectively. In the latter
case, the various decreasing properties of u then ensure that u(x) < µ when-
ever x ∈ D, d(x, S) ≥ ε1/2λ−1/2 where S is the spine = {x ∈ D : xi = 0 for
some i}. Thus in the latter case u < µ except near the spine. Moreover,
in this latter case, given δ > 0, there exists τ̃ > 0 such that u(x) ≤ δ if
d(x, S) ≥ ε1/2τ̃ (and thus u is uniformly small except within order ε1/2 of
the spine). To prove this, it suffices to prove that if ε−1/2d(xi, S) → ∞ as
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i → ∞ and if xi is in a small ball in D with centre 0 and radius indepen-
dent of i, then ui(xi) → 0 as i → ∞. (This follows because of the decreasing
properties of ui.) If not, we shift the origin to xi and rescale the variables
by ε

1/2
i to obtain ũi with ũi(0) ≥ K > 0. Much as in [12], a subsequence

of ũi will converge uniformly on compact sets to a non-negative bounded so-
lution û of −∆u = g(u) on R

n with û(0) ≥ K. Moreover, by our choice
of xi, if B is ball, then ũi(x) ≤ µ on B for i large. Thus û(x) ≤ µ on B.
Hence û ≤ µ on R

n. This contradicts Proposition 1 in [9]. This proves our
claim.

We continue to examine this latter case. Let S′ consist of the n axes. Choose
tj > 0 such that u(tjej) = 1

2a1 (tj certainly exists since u(0) > a1). Suppose
ui are positive solutions for ε = εi where εi → 0 as i → ∞ which are each
not the large solution and let tij denote the corresponding tj . If (after choosing

a subsequence if necessary) one finds that |tij | ≤ Kε
1/2
i for all i and j, then

we see by a standard blowing up argument at zero that we have a solution of
−∆u = g(u) in R

n such that u(0) > a1, u is even in each xj , ∂u/∂xj ≤ 0
if xj ≥ 0 and u(Kej) ≤ 1

2a1 for all j. It follows easily that u(x) ≤ 1
2a1 if

‖x‖ is large (by the decreasing properties). By a simple blowing up argument
(applied to u with the origin shifted) rather like, but simpler than the one at
the end of the previous paragraph, one finds that u(x) → 0 as ‖x‖ → ∞. We
will show at the end of the proof of this part (part (ii)) that such a u cannot
exist. Assuming this for the moment, the only possibility is that there exists j
such that ε−1/2

i tij → ∞ as i → ∞. Without loss of generality, we can assume
j = 1. By shifting the origin to ti1e1 and by a standard blowing up argument,
we see that we have a bounded positive solution of −∆u = g(u) in either R

n or
a half space T = {x ∈ R

n : x1 ≥ −K1} such that u is increasing in x1, even in
xj for j ≥ 2, ∂u/∂xj ≤ 0 if xj ≥ 0 and j ≥ 2, u(0) = 1

2a1 and u = 0 on ∂T

in the half space case. (Which case occurs depends on whether ε1/2
i d(ti1e1, ∂D)

is bounded or not.) Moreover, our estimate that solutions of (1) are small away
from the coordinate planes S gives in the blowing up limit that, given ε > 0,
there exists K > 0 such that u(x) ≤ ε if xj ≥ K for 2 ≤ j ≤ n uniformly
in x1. In either case, consider limx1→∞ u(x). As in [12], we easily see that this
is a solution v on R

n−1 of −∆′v = g(v). Here ∆′ is the Laplacian in n − 1
variables and x2, . . . , xn are the coordinates used for R

n−1. Moreover, v is even
in xj , v is decreasing in xj for xj ≥ 0, given ε > 0, there exists K > 0 such
that v(x) ≤ ε if xj ≥ K for 2 ≤ j ≤ n and v(0) ≥ 1

2a1. If limt→∞ v(tej) = 0
for 2 ≤ j ≤ n, the various decreasing properties of v imply that v(x) → 0 as
‖x‖ → ∞ and we again obtain a contradiction by a result below. If there exists
j with 2 ≤ j ≤ n such that limt→∞ v(tej) = 0, then, as before and as in [12], one
finds that w(x) = limxj→∞ v(x) is a solution of a similar equation on R

n−2 and
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w satisfies similar properties. We can repeat the process until we get a solution
on a lower dimensional space which tends to zero as ‖x‖ → ∞. Once again, the
result at the end of the proof of (ii) will imply that this case does not occur.
Thus we have shown that the latter case does not occur.

Hence the former case holds. Since a ball of radius ε1/2λ−1/2 has much
smaller curvature than ∂D, we can move the ball centre x0 right up to the
boundary. More precisely, if x1 ∈ ∂D, we can choose a ball B̃ with centre
x̃1 on the normal to ∂D at x1 of radius ε1/2λ−1/2 with B̃ ⊆ D and x ∈ ∂B̃.
Thus, by our sweeping family of subsolutions, a solution u will satisfy u ≥
φ(ε−1/2λ1/2(x− x̃1)) on B̃. If λ is large, we can use the asymptotics in §2 of [9]
to estimate φ. Using this we find that u ≥ z0(ε−1/2t) − δ close to ∂D (where
x = s + tn(s)). Since our estimates also imply that u ≥ a1 − δ away from ∂D,
we have good lower estimates of solutions u in all of D for small ε.

To obtain estimates for solutions u in the interior of D, we can now repeat
the arguments in [12] as refined in the first part of the proof of Proposition 1
here. The main point is that, whenever we use a blow up argument away from
∂Ω, we will obtain a function ≥ a1 in R

n. We can apply our previous ideas to
u − a1 (a is replaced by a2 − a1). (For example, in Lemmas 2 and 3 in [12],
we consider � or �1 larger than a1.) The two cases we have to treat slightly
differently are the case where ui(tjej) = a2 and ε−1/2

i d(tjej , ∂D) is bounded for
all i (where the blow up gives a half space problem) and in part of the proof of
Proposition 1 here where we sometimes end up after a blow up with a half space
problem. (The half space cases are different because we necessarily have points
near the boundary where ũ < a1. Here ũ is the function after the blowing up.)
We consider these two cases separately.

In the first case, if we use a blow up argument as in the proof of Lemma 3
in [12], we obtain a bounded positive solution ũ of −∆u = g(u) on a half space
T = {x ∈ R

n : x1 ≥ 0} such that ũ = 0 on ∂T , ũ is strictly increasing in
x1, ũ is even in xj for j ≥ 2, ũ is decreasing in xj for j ≥ 2 and xj ≥ 0 and
limx1→∞ ũ(x) ≥ a1 on R

n−1. (The last result comes from the lower estimate for
u above.) We also find ũ > a2 somewhere (since ũ is strictly increasing in x1 and
ũ = a2 somewhere by the blow up construction). Moreover, by the same proof
as in Lemma 4 in [12], given µ > a1, there exists K > 0 such that ũ(x) ≤ µ if
|xj | ≥ K for 2 ≤ j ≤ n. We can then show this is impossible by varying slightly
the proof of Lemma 4(ii) in [12] which is an inductive proof (on n). At any
stage in the proof there where we reduce to a full space problem, we can apply
Lemma 4 in [12] to ũ− a1 and obtain a contradiction. We can use the argument
there to reduce to the case where, given µ > a1, there is a K > 0 such that
ũ(x) ≤ µ if |xj | ≥ K for some j ≥ 2. There is one case where the proof needs
to be changed slightly. If we let ρ(x) = limx2→∞ u(x), then as in [12], ρ satisfies
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a similar equation in one lower dimension and has similar properties. However,
it is possible that ρ(x) ≤ a2 on T while ρ(x) > a1 somewhere. We can show
that this case is impossible by the argument in the next paragraph below. Let
w(x) = limx1→∞ ũ(x1, x

′). By applying the argument in the proof of Lemma 4
in [12] as improved in the proof of Proposition 1 here to ũ−a1, there exist α < 0
and an exponentially decreasing positive function φ̂ on R

n−1 such that

−∆′φ̂− g′(w(x′))φ̂ = αφ̂

on R
n−1 where ∆′ is the Laplacian on R

n−1. As there, the first and second
derivatives of φ̂ also decay exponentially. We can then complete the proof much
as in the corresponding proof in Lemma 4 in [12] (with m = 1). To see that ũ
converges uniformly to w, we use the lower estimates for u near ∂Ω obtained by
the subsolutions to ensure that ũ ≥ a1 − δ if x1 is large uniformly in x′ and the
various increasing and decreasing properties of ũ and w. (We really should, as
in [12], allow the case where ũ is increasing in more than one variable but we
can easily reduce to the present case.) This completes the proof of this case.

The other time when we can end up with a half space problem is in the
argument in the first paragraph of the proof of Proposition 1 here. If we follow
the argument there, we end up with a positive solution z of −∆u = g(u) on the
half space T = {x ∈ R

n : x1 ≥ 0} such that z is increasing in x1, even in xj for
j ≥ 2, decreasing in xj for xj ≥ 0 and j ≥ 2, z(τ̃ , 0) = 1

2 (a1 +a2) for some τ̃ > 0.
Moreover, as there, z ≤ a2 on T . (Note that 1

2 (a1 + a2) is the analogue of 1
2a

and a2 is the analogue of a.) As there, if we define z̃(x1) = z(x1, 0), we find that
−z̃′′ ≤ g(z̃) on x1 ≥ 0. Moreover, z̃(0) = 0 and z̃ is increasing in x1. If x1 ≥ τ ,
then z̃(x1) ≥ z̃(τ̃ ) > a1 and z̃(x1) ≤ a2. Thus g(z̃(x1)) ≤ 0. Hence we see that
z̃ is increasing and convex for x1 ≥ τ̃ . Moreover, z̃′′(x1) ≥ −g( 1

2 (a1 + a2)
)
> 0.

Hence we have a contradiction since z̃ is bounded. This shows that this case
does not occur.

Hence we can repeat the arguments in [12] and deduce that a solution u is
uniformly close to some Sε,u0 uniformly on compact subsets of D. (Remember
that u ≥ a1−δ on such sets.) By what we have already proved and the decreasing
properties of a solution u, to complete the proof of (ii), it suffices to establish
upper estimates for u near ∂D. These estimates follow from a by now standard
blowing up argument since the maximal positive solution of −∆u = g(u) in T ,
u > 0 in T , u = 0 on ∂T , u ≤ a1 in T is z0(x1). There are many ways to see this
(cp. [10] for related results). One way is to use that if u(x1, x

′) is a solution, then
supx′∈Rn−1 u(x1, x

′) is a subsolution and a1 is a supersolution and thus there is
a solution v between them which is a function of x1 only. By analysing the
differential equation by using the first integral, one easily sees that v = z0 and
our claim follows.
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This completes the proof of the first statement of part (ii) except that we have
still to prove that −∆u = g(u) has no positive solutions ũ such that ũ(x) → 0
as ‖x‖ → ∞, ũ is even in xi and ũ is decreasing in xi for xi ≥ 0. This is by an
easy averaging argument. We let

û(r) =
∫

S

ũ(rw) dw

where S is the unit sphere. Thus û is decreasing on [0,∞) and û→ 0 as r → ∞.
By integrating the equation for ũ over the sphere of radius r, we have

−Lû(r) =
∫

S

f(ũ(rw)) dw ≥ c

∫
S

(ũ(rw))q dw for large r

≥ c̃(û(r))q by Jensen’s inequality.

We can obtain a contradiction by integrating this differential inequality for large
r by a simple modification of the arguments in Toland [36] or Gidas [21].

This completes the proof of (ii) except to note that the existence of at least
one solution of this type for small ε follows by a simple degree argument since the
maximal solution has index 1 (since it is non-degenerate and stable) and since
the sum of the indices of the positive solutions u with ‖u‖∞ ∈ (a1, a3) must be
zero (because it is easy to see that there are no such positive solutions if ε is
large).

(iii) By (i) and (ii) and by our earlier results on the uniqueness of u0 it
suffices to prove the uniqueness of the positive solutions near Sε,u0 if ε is small.
Suppose by way of contradiction that ui and vi are positive solutions of (1)
both uniformly close to Sεi,u0 where εi → 0 as i → ∞. As usual, we see that
hi = (‖ui − vi‖∞)−1(ui − vi) is a solution of

(10)
−εi∆h = g′(θ(x))h in D,

h = 0 on ∂D,

where θ(x) is between ui and vi and thus is uniformly close to Sεi,u0 . Let us
consider where h has a positive maximum at xi. (A similar argument would
work for a negative minimum.) By the maximum principle, g′(θ(xi)) ≥ 0. We
prove that xi is very close to either the boundary or the centre. Let us first prove
that θ(xi) cannot be close to a1. By the above and our assumptions on g, this is
obvious unless θ(xi) = a1. Let T = {x : θ(x) = a1 and h(x) = ‖h‖∞}. This lies
in the interior of D (since ui = vi = 0 on ∂D). Choose an open neighborhood W
of T in D with smooth boundary such that θ(x) is close to a1 on W and h(x) > 0
on W . (Note that W need not be connected.) Let W1 be a component of W .
Since g′(y) ≤ 0 close to a1, we see from the equation that −∆h ≥ 0 on W1. Now
the maximum of h on W1 occurs in the interior. Thus by the maximum principle
h is constant on W1 (and hence g′(θ(x)) = a1 on W1). Hence W1 ⊆ T . This
contradicts our choice of W1 and so θ(xi) = a1. Moreover, θ(xi) is not close to
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a1 since g′(θ(xi) ≥ 0.) By Theorem 3(ii), it follows that xi must be at a distance
of at most Kε1/2

i from {0} ∪ ∂D. We handle the two possibilities separately.

If the distance of xi from ∂D is of order Kε1/2
i , a by now standard blowing

up argument ensures that we have a non-trivial bounded solution of

(11)
−∆h = g′(z0(x1))h in T ,

h = 0 in ∂T,

where T = {x ∈ R
n : x1 ≥ 0}. Here we use that ui and vi are uniformly close to

z0(x1) near ∂D (near in the scaled variables). h is bounded because ‖hi‖∞ = 1
and h is non-trivial because in the scaled variables, xi is at a uniformly bounded
distance from the boundary. This is impossible by Proposition 2 in [9] and the
remark after it.

If the distance of xi from zero is of order Kε1/2
i , we can use a similar blowing

up argument to obtain a bounded non-trivial solution of

(12) −∆h = g(u0(r))h in R
n.

Moreover, h is even in each xi because ui and vi are. If n = 1, 2, this is impossible
by the proof of Theorem 2(iii). If n ≥ 3, we can use the same argument provided
we prove that h → 0 as ‖x‖ → ∞. We will prove this, which will complete
the proof. We choose c1 < d1 < a1 < d2 < c2 such that g′(y) ≤ 0 on [c1, c2].
Choose t0 > 0 such that z(t0) = d1. We prove that hi is uniformly small on
Ti = {s+ ε

1/2
i t0n(s) : s ∈ ∂D}. If not, in our earlier blowing up argument near

the boundary we have (after rescaling) ‖h̃i‖∞ = 1 (where h̃i is hi rescaled) and
h̃i is not small at a point at bounded distance from the boundary. When we
blow up we obtain a non-trivial solution of (11), which is impossible. Thus hi is
uniformly small on Ti. Choose µ2 such that u0(µ2) = d2 and let Si = {x ∈ R

n :
‖x‖ = ε

1/2
i µ2}. Note that on Si, θ(x) < c2 (since θ(x) is close to Sεi,u0). We

consider (10) on the set Wi between Si and Ti. Note that g′(θ(x)) ≤ 0 on Wi

and that vi(x) = δi + ci‖x‖2−n is harmonic on Wi. We choose δi small so that
hi(x) ≤ δi on Ti and note that if ci is chosen appropriately of order ε(n−2)/2

i ,
then vi(x) ≥ hi on Si (since ‖hi‖ = 1). Thus vi ≥ hi on ∂Wi. By the maximum
principle, it follows that vi ≥ hi on Wi. (If hi − vi has a positive maximum
in Wi, then hi > 0 there and −∆(hi − vi) = ε−1

i g′(θi)hi ≤ 0 nearby. We then
obtain a contradiction by a similar argument to one at the beginning of this
part.) Similarly, −hi ≤ vi. Hence we find that |hi(x)| ≤ δi + c̃i‖ε−1/2

i x‖2−n on
Wi where c̃i is of order 1 and δi is small. Hence with the usual rescaling, |h̃i(x)|
is small away from the origin if n ≥ 3 (where h̃i is hi in the scaled variables).
By the usual limit argument we find a solution h̃ of (12) on R

n with |h̃(x)| → 0
as ‖x‖ → ∞. As we noted earlier, this suffices to complete the proof.
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Remarks.

1. The remarks after Theorem 2 have analogues here.
2. It seems likely that the weakened assumptions mentioned after the

statement of Theorem 3 can be further improved by replacing 3 ≤ m ≤ n

by m = n and replacing u(0) ∈ (0, a3) by u(0) ∈ (a2, a3). On the other
hand, one can easily construct examples where (2) has positive radial so-
lutions u1 such that u1(0) ∈ (a2, a3) and u1(r) → 0 as r → ∞ and where
g satisfies all the assumptions of Theorem 3(i) except that g(y) ∼ yq

as y → 0. Here q > n(n− 2)−1 (and any such q can occur). It follows
(with care) in this case that (1) has solutions of rather different type to
those in Theorem 3(ii) for all small ε when D is a ball. Thus Theorem
3(ii) is no longer true in this case.

3. We suspect that our methods can be adapted to handle at least partially
cases where g changes sign more times. It seems likely that it is still true
that positive solutions have at most 2 layers (for ε small and domains
of type Rn).

3. Counterexamples for more general domains

In this section,we produce a number of counterexamples showing that our
main results are false for suitable dumbbells. This shows, as we conjectured in
[12], that good results are only true for domains with considerable restrictions
on their geometry. (It would be interesting to understand the case of a general
convex domain.) We construct counterexamples for the simplest problem of this
type, that is,

(13)
−ε∆u = up − u in D,

u = 0 on ∂D,

where 1 < p < (n− 2)−1(n+ 2) and n ≥ 2 . This was the main problem in [12].
One can then deduce counterexamples in other cases from this. We consider Dδ,
a dumbbell with cylindrical joining strip of radius δ and length 2k0. We will
show that if δ is chosen suitably (and the ends and the joining strip are chosen
suitably), then (13) has at least 2 positive solutions (in fact, at least 3 positive
solutions) for all small positive ε. Note that the issue here is the existence for all
small ε. For fixed ε, it is easy to prove the result by domain variation arguments
(as in [14]). The result we want here is much more delicate. (In fact, the gap
in the energy between the solutions we want and others is exponentially small
in ε.)

More precisely, we consider a dumbbell shaped domain Dδ with a long thin
neck. Here the two balls B1, B2 have radius 1 and we have smoothed the corners
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Figure 1

to retain the smoothness. We will prove that for all small positive ε the solution
which minimizes E =

∫
Dδ

(ε|∇u|2 + u2) subject to the constraint

(14)
∫

Dδ

|u|p+1 = 1

(for u ∈ W 1,2(Dδ)) is not symmetric in x1 provided that δ is small and k0 is
fixed. Here x1 is the coordinate along the strip. This proves our claim because it
is easy to see that this solution ũ (when rescaled) gives a positive solution of (13)
and ũ(−x1, x̂1) is also a positive solution. (Here (x1, x̂1) are the coordinates for
R

n with x̂1 ∈ R
n−1.) Let Mδ be the minimum value of this variational principle.

Let M s
δ be the corresponding minimum value in the space of functions even in

x1. We will prove that M s
δ > Mδ (for δ small and 0 ≤ ε < µ̂ for some µ̂). This

suffices to prove our claim. Unfortunately, the proof of this tends to be quite
technical and delicate (because M s

δ −Mδ is exponentially small in ε).
We start by estimating Mδ. (This is the easier part of the argument.) Let u0

be the unique positive radial solution of −∆u+u = up on R
n such that u(x) → 0

as ‖x‖ → ∞. Up to translation, this is the unique positive solution of this
equation such that u(x) → 0 as r = ‖x‖ → ∞. It is well known that u0 decays
exponentially and in fact, by using a change of variable u0(r) = r−(n−1)/2v(r)
and by using standard results for linear ordinary differential equations, we read-
ily find that limr→∞ r(n−1)/2u0(r) exp(r) = µ exists, µ ∈ (0,∞) and the corre-
sponding estimate for u′0 holds. Note that a lower estimate for Mδ is immediate
since Mδ ≥M where M is the minimum value of the corresponding problem on
R

n. By a simple rescaling, we see that M = εβQ where Q is the infimum of∫
Rn(|∇u|2 + u2) over u ∈W 1,2(Rn),

∫
Rn u

p+1 = 1 and β = − 1
2n(p− 1)(p+ 1)−1.

Since this infimum must be achieved by a scalar multiple of u0 (by the unique-
ness), we easily see that Q =

( ∫
Rn u

p+1
0

)(p−1)/(p+1). Note that one calculates∫
Rn(|∇u0|2 + u2

0) by multiplying the equation satisfied by u0 by u0. Choose a
smooth function φ of compact support in the right hand ball and radial about
the centre of this ball so that φ = 1 if ‖x‖ ≤ K. To obtain an upper estimate
for Mδ, we use the test function Cφ(x)u0(ε−1/2(x − x0)) where x0 is the centre
of the right hand ball and C is chosen so that the constraint (14) is satisfied. By
a rather tedious calculation with this test function (and using the estimates for
u0), one finds that

(15) Mδ ≤ εβ(Q+ C1e
−2µε−1/2

)
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where C1 > 0 and is independent of ε. A few points on the calculation. Firstly,
it is easier to do the calculations by rescaling the problem to one on domains
ε−1/2Dδ, and secondly, the higher order corrections in the calculation of C will
not affect the first order term correction term in (15) since 1 + p > 2.

We now obtain an estimate for M s
δ . Firstly, note that by choosing a sym-

metric function with peaks in both balls (suitably normalized), one easily shows
that M s

δ ≤ 2p(p+1)−1
Qεβ (uniformly in δ and k0 for small ε). As remarked in [12]

(cp. Remark 3 after Theorem 1 here) we can find a solution φε of (13) which is
even in xj for all j and has its maximum near the centre by an implicit function
argument. We prove that, if M s

δ < 2(p−1)(p+2)−1
Mδ, then φε (rescaled) mini-

mizes M s
δ (for small ε). Once again it is more convenient to work on the rescaled

domain D̃ε = ε−1/2Dδ. We prove first that the minimizer ψε of M s
δ is uniformly

bounded in ε (in the L∞ norm). This follows by standard blowing up arguments
(cp. Lemma 1 in [12] and the remarks after it) if we note that, by our remarks
above,

(16) M̂ s
ε = M̂ s(D̃ε) = inf

{∫
�Dε

(|∇u|2 + u2) :

u ∈W 1,2
0 (D̃ε),

∫
�Dε

up+1 = 1, u is symmetric in x1

}
is bounded below by Q and above by 2p(p+1)−1

Q where Q > 0 and if we note
that the minimizer ψε satisfies

−∆ψε + ψε = M̂ s
εψ

p
ε

in D̃ε. Hence (M̂ s
ε )1/(p−1)ψε solves −∆u + u = up in D̃ε. For future reference

we note that M̂ε and M̂(D̃ε) are defined analogously except that we drop the
symmetry in x1.

Secondly, note that the Gidas–Ni–Nirenberg theory [19] applied toDε implies
that any point x̂ε where ψε attains its maximum, must satisfy d(x̂ε, ∂D̃ε) → ∞
as ε → 0. Now assume εi → 0 and xi ∈ D̃εi such that ψεi(xi) ≥ τ̃ > 0 for all i
and d(xi, ∂D̃εi) → ∞ as i→ ∞. (For example we could choose xi = x̂εi .) If we
shift the origin to xi, a by now standard argument ensures that a subsequence ψεi

(rescaled) converges uniformly on compact sets to a bounded positive solution
ψ of −∆u = Sup − u in R

n where S ≥ Q. Moreover, ψ ∈ W 1,2(Rn). To see the
latter result, note that, if R > 0 and i is large (depending on R), then∫

BR

(|∇ψεi(x− xi)|2 + (ψεi (x− xi))2) ≤ M̂ s
εi

≤ 2p(p+1)−1
Q.

Hence ∫
BR

(|∇ψ|2 + ψ
2
) ≤ 2p(p+1)−1

Q
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and our claim follows. Since ψ ∈ L2 and since ψ is uniformly continuous (by the
regularity theory for elliptic equations), it follows that ψ(x) → 0 as ‖x‖ → ∞.
Thus, by [29], ψ is a translate of the unique radial solution S−1/(p−1)u0. Hence
we see that if there are two points (±x1, x̂1) in D̃εi both far from ∂D̃εi and both
far apart, where ψεi is not small, then

M̂ s
εi

≥
∫
�Dεi

(|∇ψεi |2 + ψ2
εi

) ≥ S−2/(p−1)(2 − δ̂)
∫

Rn

(|∇u0|2 + u2
0)

≥ (2 − δ̂)S−2/(p−1)Q(p+1)(p−1)

where δ̂ is small. By a simple rescaling and by (15) we see that this contradicts
our assumption that M s

δ < 2(p−1)/(p+2)Mδ (for δ̂ small). (Note that S is the
limit through a subsequence of M̂ s

εi
and hence M̂ s

εi
is close to S and that our

inequality is equivalent to the corresponding one involving M̂ s
εi

and M̂εi .) Since
xj∂u/∂xj < 0 if j ≥ 2 and xj > 0 by Gidas–Ni–Nirenberg and since ψεi are
even in x1, it follows easily that ψεi is uniformly small except near the “centre”
of D̃εi . By near, we mean within a bounded distance. From this and since ψεi

is even in each xj , we see that ψεi must be uniformly close to u0. This and the
local uniqueness in Remark 3 after Theorem 1 in [12] implies our claim on ψεi .
(Note that since every convergent subsequence has the same limit, the whole
sequence must converge.)

We now obtain good estimates for ψεi away from the centre. Assume 0 <
τ < 1 and 0 < k1 < k0. Note that we have already shown that ψεi (rescaled)
is uniformly close to u0 and hence |ψεi | ≤ (1 − τ2

1 )1/p if x ∈ D̃εi and ‖x‖ ≥ K

(for suitable K) (where τ < τ1 < 1). Hence, if K ≤ x1 ≤ ε
−1/2
i k1, ∆u = a(x)u

where τ2 < τ2
1 ≤ a(x) ≤ 1 and where u = ψεi . We now use estimates for linear

equations to estimate u on this part of the strip. In particular, we show that
ψεi is very small near x1 = 1

2ε
−1/2
i k1. As a comparison function, we use z =

φ1(ε
1/2
i δ−1r̂) cosh

(
τ
(
x1− 1

2ε
−1/2
i k1

))
(which solves ∆v ≥ τ2

1 v) for suitable τ close
to 1 and φ1 the first eigenfunction for the ball of radius 2 in R

n−1. Here r̂ = ‖x̂1‖.
Now the maximum of z−1ψεi on {(x1, x̂1) : K ≤ x1 ≤ ε−1/2k1, ‖x̂1‖ ≤ ε

−1/2
i δ}

occurs on the boundary by Theorem 11 in [34] and clearly does not occur when
‖x̂1‖ = ε

−1/2
i δ (where ψεi = 0). Since ψεi is uniformly bounded, it follows that

|ψεi | ≤ K1

(
cosh

(
1
2τε

−1/2
i k1

))−1 if x1 is close to 1
2ε

−1/2
i k1 (to within order 1)

and x ∈ D̃εi . (A similar argument appears on p. 665 of [8].) Now we can use
elliptic regularity theory to obtain the corresponding estimate for ∇ψεi (at the
expense of shrinking the length of the order 1 segment). Since ψεi is small away
from the centre, we see that −∆ψεi = bψεi on Ti =

{
x ∈ D̃εi : x1 ≥ 1

2ε
−1/2
i k1

}
where b < 0. Thus by the maximum principle, ψεi on Ti must have its maximum
on the boundary and hence we see that |ψεi(x)| ≤ K̃1 exp

(−1
2τε

−1/2
i k1

)
on Ti.

As before we can deduce the corresponding estimate for the derivative. Now
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choose φi : R → [0, 1] smooth such that |φ′i| ≤ K on R for all i, φi(t) = 1 if
|t| ≤ 1

2τε
−1/2
i k1, and φi(t) = 0 if |t| ≥ 1

2τε
−1/2
i k1 + 1. Then Yi = ciφi(x1)ψεi ∈

W 1,2
0 (Si) where Si = {(x1, x̂1) : |x1| ≤ τε

−1/2
i k1, ‖x̂1‖ ≤ δε

−1/2
i } and ci is

chosen (very close to 1) such that ciφi(x1)ψεi satisfies our constraint. By our
above decay estimates for ψεi and some elementary but tedious calculations, we
find that ∫

Si

((∇Yi)2 + Y 2
i ) ≤M s

δ +K2 exp(−τε−1/2
i k1)ε

−n/2
i .

(Here we use that ψεi minimizes the variational principle (16) on D̃εi for ε = εi.)
Thus

M̂(Si) ≤ M̂ s(Si) ≤M s
δ +K2ε

−n/2
i exp(−τε−1/2

i k1).

By symmetrization (cp. Bandle [1]), M̂(Bα(i)) ≤ M̂(Si) where Bα(i) has the
same volume as Si, that is, cn(α(i))n = c̃nε

−n/2
i δn−1. Thus α(i) ∼ ε

−1/2
i δ1−1/n.

Note that α(i) also depends on k0 but we have suppressed this dependence.
Hence, if M s

δ = Mδ, and if we use (15) (or more strictly its analogue on D̃ε), we
find that

M̂(Bα(i)) ≤ Q+K3 exp(−2µε−1/2
i K) +K4ε

−n/2
i exp(−τε−1/2

i k1).

We show that this last inequality is impossible if δ is small by showing that
M̂(BR) ≥ Q + C2 exp(−aR) for large R if a > 2 (and thus M̂(Bα(i)) − Q ≥
C2 exp(−aC3ε

−1/2
i δ1−1/n)). This will complete the proof. Note that by sym-

metrization, the minimizer of M̂(BR) must be a radial function and hence a
solution of an ordinary differential equation. Let uR denote the unique (by [27])
positive radial solution of

−∆u = up − u, u(R) = 0, u′(0) = 0.

Then the minimizer of M̂(BR) is αuR where α is chosen to satisfy the constraint.
By an easy computation similar to earlier, one finds that

M̂(BR) =
( ∫

BR

up+1
R

)1−2/(p+1)

.

Since M̂ approaches Q > 0 as R → ∞, it follows that (d/dR)M̂(BR) is of the
form

γR
d

dR

( ∫ R

0

rn−1up+1
R (r) dr

)
where γR → γ̃ > 0 as R→ ∞.

Since uR(R) = 0, it follows that for large R,

(17)
d

dR
M̂(BR) ∼ (p+ 1)γ̂

∫ R

0

rn−1(uR(r))p duR(r)
dR

dr

for large R. Note that to check that uR is a differentiable function of R, one
rescales back to the unit interval and uses the implicit function theorem. Note
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that it is proved in [27] (combined with arguments in [12]) that uR is a non-
degenerate solution of −∆u = up −u in BR, u = 0 on ∂BR in the space of radial
functions. By differentiating the equation for uR in R, we see that duR/dR is a
solution of

(18) −Lw = (pup−1
R − 1)w, w′(0) = 0.

(To see the last condition, recall that u′R(0) = 0 for all R where ′ denotes
derivatives in r.) Thus, by the uniqueness of the initial value problem,

(19)
∂uR

∂R
= µRvR

where vR is the solution of (18) satisfying vR(0) = 1. Moreover, by differentiating
uR(R) = 0 in R, we see that

(20)
∂uR

∂R
(R) +

∂uR

∂r
(R) = 0.

This ensures that
∂uR

∂R
(R) = −∂uR

∂r
(R) = 0

and hence µR = 0. By multiplying the equation for uR by vR and that for vR

by uR and subtracting, we find that

(p− 1)
∫ R

0

up
RvRr

n−1 dr =
∫ R

0

vR
d

dr
(rn−1u′R) − uR

d

dr
(rn−1v′R)dr(21)

= [rn−1(u′RvR − uRv
′
R)]R0 = Rn−1u′R(R)vR(R)

(since uR(R) = 0). By (17), (19), (20) and (21), we see that

dM̂R

dR
(BR) ∼ −Rn−1(u′R(R))2

for large R. Thus we will have completed our proof if we prove that, if ã > 1,

(22) −R(n−1)/2u′R(R) ≥ e−�aR

for large R.
To prove this, we consider uR on [αR,R] where 0 < α < 1. We will prove

that

(23) uR(αR) ∼ R−(n−1)/2 exp(−αR)

for large R. Assuming this, we complete the proof. Note that (23) implies that
uR is uniformly small on [αR,R] since uR is decreasing. Since αR is large, a
simple computation shows that wR = r−(n−1)/2uR(r) satisfies w′′ + g(r)w = 0
on [αR,R] where g(r) ≤ 1 + δ. It follows from Gronwall’s inequality (applied to
(w′)2 + w2 on [αR,R]) that

wR(αR) ≤ −w′
R(R) exp(1 + δ)(R − αR).
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Hence by choosing α small, by noting the change of variable from wR to uR, and
by using the estimate above for uR(αR), we see that (22) follows.

It remains to prove the estimate (23). By our asymptotics for u0, it suffices
to prove that

sup
0≤r≤R

|uR(r) − u0(r)| ≤ Ce−R

for large R. To see this, we examine a little more closely Remark 3 after the
proof of Theorem 1 in [12]. We choose φ : R → [0, 1] smooth such φ(x) = 1 if
x ≤ 0 and φ(x) = 0 if x ≥ 1. We then use ũR(r) = u0(r)φ(r − R + 1) as an
approximate solution of the equation for uR. Using our decay properties of u0

and our choice of φ, it is easy to prove that

‖ −LũR + ũR − (ũR)p‖∞,R ≤ Ce−R

where ‖ ‖∞,R denotes the sup norm on [0, R]. (Here we use that ũR solves the
equation exactly except on [R− 1, R]). Moreover, as in [12] or [8] one can show
that, for large R, −L + (1 − p(ũR)p−1)I with boundary conditions z′(0) = 0,
z(R) = 0 is invertible and the inverse is bounded uniformly in R. Hence as in
[12] or [8] we can use the contraction mapping theorem to construct a solution ûR

of −Lu = up−u, u(R) = 0 such that ‖ûR− ũR‖∞,R ≤ Ce−R. By the uniqueness
of the positive solution, ûR = uR and our claim follows provided we prove that
ûR > 0 on (0, R). By the asymptotics for u0 and by our estimate for ûR − ũR,
ûR > 0 on [0, αR]. On [αR,R], ûR is small and hence −LûR(r) = α̃(r)ûR(r)
where α̃(r) < 0 on [αR,R] (by the equation for ûR). Hence ûR has at most 1
zero in [αR,R]. Since ûR(αR) > 0 and ûR(R) = 0, the positivity follows. This
proves our claim.

This completes the construction of the example.

Remarks.

1. On domains with non-trivial topology one can more easily obtain a
similar result (cp. [1]).

2. These ideas have other uses. For any domain D, some of our ideas can
easily be used to construct a mountain pass positive solution of low
“energy” for every small positive ε. Moreover, some of our ideas imply
that this solution is a “peaked” solution with only one “peak”. It would
be interesting to understand for which domains all positive solutions for
small ε have only a finite number of peaks.

3. These ideas can be used to construct many positive solutions for small
ε in the case of annuli. Given a finite subgroup H of SO(n), one can
easily construct test functions invariant under H (with a finite number
of peaks) where the “energy” is of order εβ . Thus in this symmetric
subspace, the minimizer of our constrained problem will have “energy”
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≤ Kεβ (bounded energy in our usual scaled variables). Hence, if we
prove that the minimizer of the constrained problem for (13) in the
space of radial functions has larger energy, then we will have proved
that for small ε there is a positive H-invariant solution which is not
radially symmetric. Thus there are non-radial solutions. In this way,
we can frequently construct many non-radial solutions (infinitely many
distinct ones if n = 2). (This probably can be refined.) This contrasts
with the case of large ε where the main result in [15] implies there is a
unique positive solution for large ε if the hole in the annulus is small.
It remains to prove our claim on the radial solution above. It is easy to
see that it suffices to prove that, for small ε,

(24)
( ∫ ε−1/2b

ε−1/2a

rn−1(uε(r))p+1 dr

)(p−1)/(p+1)

→ ∞

as ε → 0 where D = {x : a < ‖x‖ < b} and uε is the unique positive
radial solution of −∆u = up − u on ε−1/2D (using [27]). Note that the
left hand side of (21) is essentially the “energy” of uε for the constrained
problem in the scaled variables. If uε achieves its maximum at rε, Gidas,
Ni and Nirenberg [19] implies that |rε − ε−1/2a| and |rε − ε−1/2b| tend
to infinity at ε → 0 and a simple blowing up and limiting argument as
in [16] implies that uε(r − rε) − ũ0(r) → 0 uniformly on compact sets
where ũ0 is the positive solution of −u′′(r) = up−u on (−∞,∞), u→ 0
as → ±∞. Because of the factor rn−1 in (24), (24) now readily follows,
as required.

Finally, note that these ideas could be combined with those in [16] to obtain
information on the Morse index of the radial solutions. If the annulus hole is
small, these ideas and those in [16] imply there is global bifurcation of non-radial
positive solutions off the branch of positive radial solutions.
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