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1. Introduction

In a recent paper [6], the authors presented a new geometric approach in
the theory of minimax inequalities, which has numerous applications in different
areas of mathematics. In this note, we complement and elucidate the above
approach within the context of complete metric spaces.

More precisely, we concentrate on super-reflexive Banach spaces and show
that a large part of the theory of these spaces (and, in particular, Hilbert
spaces) can be obtained in a very elementary way, without using weak topol-
ogy or compactness.

In Section 2, we give an elementary proof of the basic intersection property of
closed convex bounded sets and give applications in Section 3. In Section 4, we
describe the KKM property and in Section 5 we prove the fundamental intersec-
tion property of KKM-maps with closed convex bounded values. The remaining
sections are devoted to applications to variational inequalities, theory of games,
systems of inequalities and maximal monotone operator theory, respectively.
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2. Intersection Principle

We recall that a Banach space (E, ‖ · ‖) is uniformly convex provided its
norm ‖·‖ (also called uniformly convex) has the following property: If (xn), (yn)
are sequences in E such that the three sequences ‖xn‖, ‖yn‖, and 1

2‖xn + yn‖
converge to 1, then ‖xn− yn‖ → 0. From the parallelogram identity in a Hilbert
space it follows at once that any Hilbert space is uniformly convex. A Banach
space (E, | · |) is called super-reflexive provided it admits an equivalent uniformly
convex norm.

In what follows E stands for a super-reflexive Banach space and H denotes
a Hilbert space.

Lemma 2.1. Let (E, ‖ · ‖) be super-reflexive and let (Cn) be a decreasing se-
quence of nonempty closed convex subsets of E. Suppose that d = supn d(0, Cn)
is finite. Then there exists a unique point x in E such that x ∈

⋂
n Cn and

‖x‖ = d.

Proof. For the proof, we may suppose without loss of generality that the
norm ‖·‖ in (E, ‖·‖) is uniformly convex. For each n, let Pn = Cn∩B(0, d+1/n).
Then (Pn) is a decreasing sequence of nonempty closed sets. We claim that
limn→∞ δ(Pn) = 0, where δ(Pn) denotes the diameter of the set Pn. Indeed, for
any n, let xn and yn be arbitrary points in Pn. Since Pn is convex, the point
(xn + yn)/2 lies in Pn, so the values ‖xn‖, ‖yn‖, and 1

2‖xn + yn‖ are between
d+ 1/n and d(0, Cn), and therefore the three sequences converge to d. Because
the norm ‖·‖ is uniformly convex, we infer that ‖xn−yn‖ → 0, and consequently
limn→∞ δ(Pn) = 0. It follows from Cantor’s theorem that the intersection of the
sets Pn contains a unique point x. This point satisfies d(0, Cn) ≤ ‖x‖ ≤ d for
every n, so that ‖x‖ = d. The proof is complete. �

Theorem 2.2 (Intersection Principle). Let (E, ‖ · ‖) be super-reflexive and
let {Ci | i ∈ I} be a family of closed convex sets in E with the finite intersection
property. If Ci0 is bounded for some i0 ∈ I, then the intersection

⋂
{Ci | i ∈ I}

is not empty.

Proof. Let 〈I〉 be the set of all finite subsets of I containing i0. For J ∈ 〈I〉,
let CJ =

⋂
{Cj | j ∈ J}. By hypothesis, the CJ ’s are nonempty closed convex

subsets of H and d = supJ∈〈I〉 d(0, CJ) is finite since the CJ ’s are contained in
the bounded set Ci0 .

Let (Jn) be an increasing sequence in 〈I〉 such that d(0, CJn) ≥ d − 1/n.
Then (CJn

) is a decreasing sequence of nonempty closed convex sets in E such
that d = supn d(0, CJn

). By Lemma 2.1, there is a unique point x in
⋂

n CJn

with ‖x‖ = d.
Now let J ∈ 〈I〉 be arbitrary, and let Cn = CJ∩CJn

. Again, (Cn) is a decreas-
ing sequence of nonempty closed convex sets in E such that d = supn d(0, Cn),
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so by Lemma 2.1, there is a (unique) point x′ in
⋂

n Cn = CJ ∩
⋂

n CJn
with

‖x′‖ = d. We derive that x = x′ belongs to CJ .
Finally, the point x belongs to CJ for any J ∈ 〈I〉, which proves that⋂

{Ci | i ∈ I} =
⋂
{CJ | J ∈ 〈I〉} is not empty. �

3. Minimization of quasiconvex functions

Let X be a nonempty subset of a super-reflexive Banach space E. We recall
that a function ϕ : X → R is said to be quasiconvex (lower semicontinuous,
coercive respectively) if the sections S(ϕ, λ) = {x ∈ X | ϕ(x) ≤ λ}, λ ∈ R, are
convex (closed, bounded respectively) in X. A function ϕ : X → R is upper
semicontinuous (= u.s.c.) provided −ϕ is lower semicontinuous (= l.s.c.).

Theorem 3.1. Let E be super-reflexive, X be a nonempty closed convex
subset of E and ϕ : X → R be a quasiconvex lower semicontinuous coercive
function. Then ϕ attains its minimum on X.

Proof. For each x ∈ X, let C(x) = {y ∈ X | ϕ(y) ≤ ϕ(x)}. We have to
show that the family {C(x) | x ∈ X} has a nonempty intersection. This readily
follows from Theorem 2.2, since the sets C(x) are convex, closed and bounded
in E, and for any {x1, . . . , xn} ⊂ X, the intersection

n⋂
i=1

C(xi) = {y ∈ X | ϕ(y) ≤ min
i=1,... ,n

ϕ(xi)}

is not empty. �

We now give a few immediate consequences of Theorem 3.1 in the theory
of Hilbert spaces. We recall that a bilinear form a : H × H → R is said to be
coercive if the function y 7→ a(y, y)/‖y‖ is coercive on H \{0}. When specialized
to quadratic forms, Theorem 3.1 yields

Theorem 3.2. Let X be a nonempty closed convex subset of a Hilbert space
H, a : H × H → R a continuous coercive bilinear form, and ` : H → R a
continuous linear form. Then there exists a unique point y0 ∈ X having the
following equivalent properties:

(A) 1
2a(y0, y0)− `(y0) = min

{
1
2a(x, x)− `(x) | x ∈ X

}
,

(B) 1
2 (a(y0, y0 − x) + a(y0 − x, y0)) ≤ `(y0 − x) for all x ∈ X.

Proof. The coercivity of a implies a(x, x) > 0 for all x 6= 0. A routine
calculation then shows that the above properties are equivalent and that (B) has
at most one solution. The existence of a solution for (A) follows from Theorem
3.1 applied to the convex continuous coercive function x 7→ 1

2a(x, x)− `(x). �
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Whenever the bilinear form a is symmetric, property (B) in Theorem 3.2
reduces to the variational inequality

a(y0, y0 − x) ≤ `(y0 − x) for all x ∈ X,

whose study in its full generality is the object of Section 6.
Theorem 3.2 includes basic results from Hilbert space theory, let us recall

but a few:

Corollary 3.3 (F. Riesz representation theorem). For any continuous lin-
ear form ` : H → R there exists a unique y0 ∈ H such that 〈y0, x〉 = `(x) for all
x ∈ X.

Proof. Apply Theorem 3.2 (B) to the set X = H, the bilinear form a(·, ·) =
〈·, ·〉 and the given linear form `. �

Corollary 3.4 (Projection on closed convex sets). Let X be a nonempty
closed convex subset of H and x0 ∈ H. Then there is a unique point PXx0 ∈ X
satisfying ‖x0 − PXx0‖ = d(x0, X). Moreover, this point is characterized by the
variational inequality 〈PXx0 − x0, PXx0 − x〉 ≤ 0 for all x ∈ X.

Proof. Apply Theorem 3.2 to the set X−x0, the bilinear form a(·, ·) = 〈·, ·〉
and the linear form ` = 0. �

Corollary 3.5 (Separation of closed convex sets). Let X be a nonempty
closed convex subset of H and x0 6∈ X. Then there exist y0 ∈ H and r ∈ R
such that 〈y0, x0〉 < r < 〈y0, x〉 for all x ∈ X.

Proof. The projection of x0 on X yields a point PXx0 ∈ X satisfying
〈PXx0 − x0, PXx0 − x〉 ≤ 0 for all x ∈ X; put y0 = PXx0 − x0 ∈ H and
r = 1

2‖y0‖
2 + 〈y0, x0〉. �

4. Definition and examples of KKM-maps

In the process of a proof based on the intersection property of convex sets,
the crucial point in general is to verify that the family of sets has the finite in-
tersection property. In this section, we describe a very simple condition that is
frequently met in applications. And in the next section, we show that this condi-
tion is sufficient for a family of closed convex sets to have the finite intersection
property, thus enlarging considerably the domain of applications of Theorem 2.2.

We begin with some notations and terminology. By a space we shall under-
stand a metric space and by a map a set-valued transformation. Given a map
T : X → Y between two sets X and Y , its inverse T−1 : Y → X is given by
T−1y = {x ∈ X | y ∈ Tx} and its dual T ∗ : Y → X is given by T ∗y = X \T−1y.
The sets Tx are the values of T , the sets T−1y are the fibers of T and the sets



Some General Principles in Convex Analysis 27

T ∗y are the cofibers of T . The set ΓT = {(x, y) ∈ X × Y | y ∈ Tx} is the graph
of T .

In what follows, given a vector space E and A ⊂ E, we use the abbreviation
[A] = convA for the convex hull of A. For each positive integer n, we set
[n] = {i ∈ N | 1 ≤ i ≤ n}.

Definition 4.1. Let E be a vector space and X ⊂ E an arbitrary subset.
A map G : X → E is called a Knaster–Kuratowski–Mazurkiewicz map or simply
a KKM-map provided for each finite subset A = {x1, . . . , xn} of X we have

[A] = conv{x1, . . . , xn} ⊂ G(A) =
n⋃

i=1

Gxi.

We say that G is strongly KKM provided (i) x ∈ Gx for each x ∈ X, and (ii)
the cofibers G∗y of G are convex.

Proposition 4.2. If X ⊂ E is convex and G : X → E is strongly KKM,
then G is a KKM-map.

Proof. Let A = {x1, . . . , xn} ⊂ X and let y0 ∈ [A]. We have to show that
y0 ∈

⋃n
i=1Gxi. Since y0 ∈ Gy0, we see that y0 6∈ G∗y0 and therefore [A] is not

contained in G∗y0. Since the set G∗y0 is convex, at least one point xi of A does
not belong to G∗y0, which means that y0 ∈ Gxi. �

We now give a few examples of KKM-maps. Examples 1–2 are special cases
of Example 3. In these examples, the domain of the map is convex, so it is
enough to show that the map is strongly KKM. This will not be the case in
Example 4.

Example 1. Let E be a vector space and C ⊂ E a convex subset of E.
Assume that we are given a bilinear form a : E × E → R and a linear form
` ∈ E′. Then the map G : C → E defined by

Gx = {y ∈ C | a(y, y − x) ≤ `(y − x)}

is strongly KKM: indeed, x ∈ Gx for each x and the cofibers G∗y = {x ∈ C |
a(y, y − x) > `(y − x)} of G are convex.

Example 2. Let E = (H, 〈 〉) be a pre-Hilbert space, C a convex subset of
H and ϕ : C → H any function. Then the map G : C → E defined by

Gx = {y ∈ E | 〈ϕ(y), y − x〉 ≤ 0}

is strongly KKM: indeed, x ∈ Gx for each x and the cofibers G∗y = {x ∈ C |
〈ϕ(y), y − x〉 > 0} of G are convex.

Example 3. Let C be a convex subset of a vector space E and g : C×C → R
be a function such that
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(a) g(x, x) ≤ 0 for each x ∈ C,
(b) x 7→ g(x, y) is quasiconcave on C for each y ∈ C.

Then the map G : C → C given by Gx = {y ∈ C | g(x, y) ≤ 0} is strongly KKM.
Indeed, it follows from (a) that x ∈ Gx for each x ∈ C and it follows from (b)
that the cofibers G∗y = {x ∈ C | g(x, y) > 0} of G are convex.

Example 4. Let C be a convex subset of a vector space E, D ⊂ C be an
arbitrary set, and g : D × C → R be a function such that

(a) g(x, y) + g(y, x) ≤ 0 for each (x, y) ∈ D ×D,
(b) y 7→ g(x, y) is convex on C for each x ∈ D.

Then the map Γ : D → C given by Γx = {y ∈ C | g(x, y) ≤ 0} is KKM. For,
let {x1, . . . , xn} ⊂ D and let y0 =

∑n
i=1 λi xi be a convex combination of the

xi’s. It follows from (a) that

g(xi, xj) + g(xj , xi) ≤ 0 for every i, j ∈ [n],

so, multiplying by λi and summing over i, we find

n∑
i=1

λi g(xi, xj) +
n∑

i=1

λi g(xj , xi) ≤ 0 for every j ∈ [n],

and since by (b) the function y 7→ g(x, y) is convex, we obtain

n∑
i=1

λi g(xi, xj) + g(xj , y0) ≤ 0 for every j ∈ [n].

By applying the same operations on these inequalities (multiplication by λj ,
addition over j, use of the convexity of y 7→ g(x, y)), we finally get

n∑
i=1

λi g(xi, y0) +
n∑

j=1

λj g(xj , y0) ≤ 0.

It follows that g(xi, y0) ≤ 0 for at least one point xi, which means that y0 lies
in

⋃
{Γxi | i ∈ [n]} and proves that Γ is KKM.

5. Elementary KKM Principle

The next theorem gives a sufficient condition for a family of closed convex
sets to have the finite intersection property.

Theorem 5.1. Let E be super-reflexive, X be a nonempty subset of E and
G : X → E be a KKM-map with convex closed values. Then the family {Gx}x∈X

has the finite intersection property.
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Proof. In fact, given a finite subset A = {x1, . . . , xn} of X, we are going
to show that

(1)
⋂
{Gxi | i ∈ [n]} ∩ [A] 6= ∅.

The proof is by induction. For any set consisting of a single element our state-
ment holds, because x ∈ Gx for any x ∈ X. Assuming that the statement is true
for any set containing n − 1 elements, we are going to show that (1) holds. To
this end, we define y1, . . . , yn by picking up, for each j ∈ [n], an element

(2) yj ∈
⋂
{Gxi | i ∈ [n], i 6= j} ∩ [A \ {xj}],

where the set in (2) is nonempty by inductive hypothesis.
Let Y = [y1, . . . , yn]. We now define real-valued functions ϕi : Y → R by

ϕi(y) = d(y,Gxi) for i = 1, . . . , n, and the function ϕ : Y → R by ϕ(y) =
max{ϕ1(y), . . . , ϕn(y)}. Because all the functions ϕi are continuous and convex,
so is ϕ. By Theorem 3.1, ϕ admits a minimum at a point ŷ ∈ Y , i.e.

(3) ϕ(ŷ) ≤ ϕ(y) for all y ∈ Y.

Clearly, because the sets Gx1, . . . , Gxn are closed, it is enough to show that
ϕ(ŷ) = 0. Suppose to the contrary that

(4) 0 < ϕ(ŷ) = ε.

Since Y = [y1, . . . , yn] ⊂ [x1, . . . , xn] and G is KKM, the family {Gxi}n
i=1 covers

Y ; thus ŷ belongs to one of the sets Gxi, say Gxn.
We now evaluate each of the functions ϕi at points of the segment [ŷ, yn] =

{zt ∈ E | zt = tŷ + (1− t)yn}. For i = n, because ϕn(ŷ) = 0, we have

ϕn(zt) ≤ tϕn(ŷ) + (1− t)ϕn(yn) = (1− t)ϕn(yn).

Since (1− t)ϕn(yn) → 0 as t→ 1, it follows that for some t0 ∈ (0, 1) sufficiently
close to 1 we have

(5) ϕn(zt0) ≤ (1− t0)ϕn(yn) < ε = ϕ(ŷ).

On the other hand, for any i ∈ [n− 1], because ϕi(yn) = 0, we have

(6) ϕi(zt0) ≤ t0ϕi(ŷ) + (1− t0)ϕi(yn) < ϕi(ŷ) ≤ ϕ(ŷ).

Thus ϕ(zt0) = max{ϕ1(zt0), . . . , ϕn(zt0)} < ϕ(ŷ), which, in view of (3), gives us
a contradiction. The proof is complete. �

By combining Theorem 2.2 with Theorem 5.1, we immediately get the main
result of this note:
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Theorem 5.2 (Elementary Principle of KKM-maps). Let E be super-reflex-
ive, X be a nonempty subset of E and G : X → E be a KKM-map with convex
closed values. Assume, furthermore, that one of the following conditions is sat-
isfied:

(i) X is bounded,
(ii) all Gx are bounded,
(iii) Gx0 is bounded for some x0 ∈ X.

Then the intersection
⋂
{Gx | x ∈ X} is not empty.

6. Variational inequalities

In this section, as a first application of Theorem 5.2, we establish some basic
results in the theory of variational inequalities. The case of a symmetric bilinear
form was already treated in Section 3. The direct use of Theorem 5.2 enables us
to eliminate this assumption:

Theorem 6.1 (Stampacchia). Let X be a nonempty closed convex subset
of a Hilbert space H, a : H ×H → R a continuous coercive bilinear form, and
` : H → R a continuous linear form. Then there exists a unique point y0 ∈ X

such that a(y0, y0 − x) ≤ `(y0 − x) for all x ∈ X.

Proof. It follows from the coercivity of a that a(x, x) > 0 for all x 6= 0, so
there can be at most one solution. Consider the map G : X → X given by

Gx = {y ∈ X | a(y, y − x) ≤ `(y − x)}.

Its values are closed, convex (because x 7→ a(x, x) is convex) and bounded (be-
cause a is coercive), and we know from Example 1 that it is a KKM-map. There-
fore, by Theorem 5.2, there is a y0 ∈

⋂
x∈X Gx, which was to be proved. �

We recall that the special case X = H in Theorem 6.1 leads to a generaliza-
tion of the Riesz representation theorem:

Corollary 6.2 (Lax–Milgram). Let a : H ×H → R be a continuous coer-
cive bilinear form. Then for any continuous linear form ` : H → R there exists
a unique point y0 ∈ H such that a(y0, x) = `(x) for all x ∈ H.

The theorems of Stampacchia and Lax–Milgram extend to a certain class of
nonlinear operators which we describe now. Let X be a nonempty subset of H.
We recall that an operator ϕ : X → H is said to be monotone if for all x, y ∈ X
one has 〈ϕ(y)−ϕ(x), y− x〉 ≥ 0, hemicontinuous if for all x, y ∈ X the function
t ∈ [0, 1] 7→ 〈ϕ(y + t(x − y)), x − y〉 is continuous at 0, and coercive if for some
x0 ∈ X the function x 7→ 〈ϕ(x), x− x0〉/‖x− x0‖ is coercive on X \ {x0}.
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Theorem 6.3 (Hartman–Stampacchia). Let X be a nonempty closed convex
subset of H, ϕ : X → H a monotone hemicontinuous coercive operator, and
` : H → R a continuous linear form. Then there exists a point y0 ∈ X such that
〈ϕ(y0), y0 − x〉 ≤ `(y0 − x) for all x ∈ X.

Proof. We consider only the case of a bounded X; an easy proof of the
general case is left to the reader. Define two set-valued maps G,F : X → X by

Gx = {y ∈ X | 〈ϕ(y), y − x〉 ≤ `(y − x)},
Fx = {y ∈ X | 〈ϕ(x), y − x〉 ≤ `(y − x)}.

Because ϕ is monotone we have

〈ϕ(y), y − x〉 ≥ 〈ϕ(x), y − x〉 for all x, y ∈ X

and therefore Gx ⊂ Fx for each x ∈ X. In Example 2, we observed that G is
a KKM-map, consequently so is the map F . Since by definition the values of F
are convex and closed, we infer by Theorem 5.2 that for some y0 ∈ X we have
y0 ∈

⋂
x∈X Fx and thus

〈ϕ(z), y0 − z〉 ≤ `(y0 − z) for all z ∈ X.

Fix x ∈ X and consider points zt = y0 + t(x− y0), t ∈ [0, 1]. We have

〈ϕ(y0 + t(x− y0)), y0 − x〉 ≤ `(y0 − x) for t > 0,

and thus, letting t → 0, by hemicontinuity of ϕ we obtain 〈ϕ(y0), y0 − x〉 ≤
`(y0 − x). Since x was arbitrary, the conclusion follows. �

The special case X = H in Theorem 6.3 reads as follows:

Corollary 6.4 (Minty–Browder). Let ϕ : H → H be a monotone hemi-
continuous coercive operator. Then for any continuous linear form ` : H → R
there exists a point y0 ∈ H such that 〈ϕ(y0), x〉 = `(x) for all x ∈ H.

As another consequence of Theorem 6.3, we get the following fixed point
theorem for nonexpansive operators:

Corollary 6.5 (Browder–Goehde–Kirk). Let X be a nonempty closed con-
vex bounded subset of H and let f : X → H be a nonexpansive operator (i.e.,
‖f(x) − f(y)‖ ≤ ‖x − y‖ for all x, y ∈ X). Suppose that for each x ∈ X there
exists t > 0 such that x+ t(f(x)− x) ∈ X. Then f has a fixed point.

Proof. Since f is nonexpansive, the operator ϕ(x) = x − f(x) from X to
H is monotone continuous. Applying Theorem 6.3 we get a point y0 ∈ X such
that 〈y0 − f(y0), y0 − x〉 ≤ 0 for all x ∈ X. Since for some t > 0 the point
y0 + t(f(y0) − y0) lies in X, we can insert that value into the above inequality
to get 〈y0 − f(y0), f(y0)− y0〉 ≥ 0, showing that y0 is a fixed point for f . �
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7. Theorem of von Neumann

We now establish a classical result in the theory of games.

Theorem 7.1 (von Neumann). Let X and Y be two nonempty closed boun-
ded convex subsets of two super-reflexive spaces EX and EY . Let f : X×Y → R
be a real-valued function satisfying

(i) x 7→ f(x, y) is convex and l.s.c. for each y ∈ Y ,
(ii) y 7→ f(x, y) is concave and u.s.c. for each x ∈ X.

Then:

(A) There exists a saddle point for f , i.e. a point (x0, y0) ∈ X × Y such
that

f(x0, y) ≤ f(x, y0) for all (x, y) ∈ X × Y.

(B) miny∈Y maxx∈X f(x, y) = maxx∈X miny∈Y f(x, y).

Proof. Since (B) follows at once from (A), we only need to establish (A).
To this end, define a set-valued map G of X×Y ⊂ EX×EY into itself by putting

G(x, y) = {(x′, y′) ∈ X × Y | f(x′, y)− f(x, y′) ≤ 0}.

We claim that G is strongly KKM. Indeed, we have (x, y) ∈ G(x, y) for each
(x, y) ∈ X ×Y and, since the function (x, y) 7→ f(x′, y)− f(x, y′) is concave, the
cofibers

G∗(x′, y′) = {(x, y) ∈ X × Y | f(x′, y)− f(x, y′) > 0}

of G are convex. From this, because X × Y is convex, we conclude that G is
a KKM-map. On the other hand, because for each (x, y) ∈ X × Y the func-
tion (x′, y′) 7→ f(x′, y) − f(x, y′) is convex and l.s.c., we conclude that all the
sets G(x, y) are convex and closed. Consequently, by Theorem 5.2, there exists
(x0, y0) such that (x0, y0) ∈ G(x, y) for all (x, y) ∈ X × Y ; this means exactly
that (x0, y0) is a saddle point for f . The proof is complete. �

8. Systems of inequalities

Let X be a convex bounded closed subset of a super-reflexive space E, and
let Φ = {ϕ} be a nonempty family of real-valued functions ϕ : X → R which are
convex and lower semicontinuous. To formulate a general result we let [Φ] be
the convex hull of Φ in the vector space RX ; we are concerned with the following
two problems:

(P1) There exists x0 ∈ X such that ϕ(x0) ≤ 0 for all ϕ ∈ Φ.
(P2) For each ψ ∈ [Φ] there exists x̂ ∈ X such that ψ(x̂) ≤ 0.
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Theorem 8.1. Under the above assumptions, the problems (P1) and (P2)
are equivalent. In other words, we have the following alternative: Either (a)
there is x0 ∈ X satisfying ϕ(x0) ≤ 0 for all ϕ ∈ Φ, or (b) there is ψ ∈ [Φ] such
that ψ(x) > 0 for all x ∈ X.

Proof. Clearly, it is enough to show that (P2)⇒(P1). Assume that (P2)
holds and let S(ϕ) = {x ∈ X | ϕ(x) ≤ 0}. To establish our claim, we have to
show that

⋂
ϕ∈Φ S(ϕ) is not empty. Since the sets S(ϕ) are convex and closed,

in view of Theorem 2.2 this reduces to showing that the family {S(ϕ) | ϕ ∈ Φ}
has the finite intersection property. To this end, let ϕ1, . . . , ϕn ∈ Φ. Set

Λ =
{

(λ1, . . . , λn) ∈ Rn

∣∣∣∣ λi ≥ 0 for all i and
n∑

i=1

λi = 1
}

and consider the real-valued function f : X × Λ → R given by

f(x, λ) =
n∑

i=1

λiϕi(x).

Observe that all the conditions of Theorem 7.1 are satisfied. Consequently, there
exists (x0, µ) ∈ X × Λ such that f(x0, λ) ≤ f(x, µ) for all (x, λ) ∈ X × Λ. Said
differently, there exist x0 ∈ X and ψ =

∑n
i=1 µiϕi ∈ [Φ] such that ϕi(x0) ≤ ψ(x)

for all i = 1, . . . , n and x ∈ X. Now, by (P2), there exists x̂ ∈ X such that
ψ(x̂) ≤ 0, so ϕi(x0) ≤ 0 for all i = 1, . . . , n; that gives x0 ∈

⋂n
i=1 S(ϕi) and the

proof is complete. �

Let X be a set and Φ = {ϕ} be a nonempty family of real-valued functions
ϕ : X → R. We say that Φ is concave in the sense of Ky Fan (or simply
F-concave) provided for any convex combination

∑n
i=1 λi ϕi of ϕ1, . . . , ϕn ∈ Φ

there is a ϕ ∈ Φ such that ϕ(x) ≥
∑n

i=1 λiϕi(x) for each x ∈ X.

Theorem 8.2. Let X be a nonempty convex bounded closed subset of a
super-reflexive Banach space E and Φ = {ϕ} an F-concave family of convex
l.s.c. real-valued functions ϕ : X → R. Then the following two conditions are
equivalent:

(A) There exists x0 ∈ X such that ϕ(x0) ≤ 0 for all ϕ ∈ Φ.
(B) For each ϕ ∈ Φ there exists x̂ ∈ X such that ϕ(x̂) ≤ 0.

Proof. Clearly it is enough to show that (B)⇒(A). To the contrary, suppose
that (A) does not hold. Then by Theorem 8.1 there is a convex combination∑n

i=1 λiϕi ∈ [Φ] such that

n∑
i=1

λiϕi(x) > 0 for all x ∈ X
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and hence, by definition of the F-concave family, we have, for some ϕ ∈ Φ,

ϕ(x) ≥
n∑

i=1

λiϕi(x) > 0 for all x ∈ X.

This contradicts (B) and the proof is complete. �

As an immediate consequence we obtain

Theorem 8.3. Under the assumptions of Theorem 8.2 we have

α = min
x∈X

sup
ϕ∈Φ

ϕ(x) = sup
ϕ∈Φ

min
x∈X

ϕ(x) = β.

Proof. Since always β ≤ α we show α ≤ β. Assume α > β and consider
the family Ψ = {ψ} of functions ψ : X → R given by

ψ(x) = φ(x)− λ, x ∈ X,

where β < λ < α. Clearly, Ψ satisfies the conditions of Theorem 8.2, so that
either

(i) ψ(x0) = φ(x0)− λ ≤ 0 for all φ ∈ Φ, or
(ii) ψ0(x) = φ0(x)− λ > 0 for all x ∈ X.

In case (i) we have supϕ∈Φ ϕ(x0) ≤ λ, and therefore

α = min
x∈X

sup
ϕ∈Φ

ϕ(x) ≤ λ,

a contradiction. Similarly, in case (ii) we get

β = sup
ϕ∈Φ

min
x∈X

ϕ(x) ≥ min
x∈X

ϕ0(x) ≥ λ,

a contradiction. The proof is complete. �

Corollary 8.4 (Kneser–Fan). Let X and Y be two convex subsets of super-
reflexive spaces EX and EY and assume that Y is closed and bounded. Let
f : X × Y → R be a real-valued function such that

(i) x 7→ f(x, y) is concave for each y ∈ Y ,
(ii) y 7→ f(x, y) is l.s.c. and convex for each x ∈ X.

Then

min
y∈Y

sup
x∈X

f(x, y) = sup
x∈X

min
y∈Y

f(x, y).
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9. Maximal monotone operators

We now establish some basic results in the theory of maximal monotone
operators in a Hilbert space H. Recall that a set-valued operator T : H → H

is said to be monotone if 〈y∗ − x∗, y − x〉 ≥ 0 whenever x∗ ∈ Tx and y∗ ∈ Ty,
and maximal monotone if it is monotone and maximal in the set of all monotone
operators from H into H. In what follows we denote by D the domain of T , i.e.
D = {y ∈ H | Ty 6= ∅}, and by C the closed convex hull of D. It is clear from
the definitions that

1) if T is monotone, then for all x ∈ D and y ∈ C, supx∗∈Tx〈x∗, y − x〉 is
finite,

2) if T is maximal monotone, then y∗ ∈ Ty whenever 〈x∗ − y∗, x− y〉 ≥ 0
for all x ∈ D and x∗ ∈ Tx.

Theorem 9.1. Let T : H → H be a monotone operator and u : H → H

be a single-valued, linear, monotone, bounded operator. Assume that for some
point x0 ∈ D the set {y ∈ C | supx∗0∈Tx0

〈u(y) + x∗0, y − x0〉 ≤ 0} is bounded.
Then there is a point y0 ∈ C such that

sup
x∗∈Tx

〈u(y0) + x∗, y0 − x〉 ≤ 0 for all x ∈ D.

Proof. We show that the map G : D → C defined by

Gx = {y ∈ C | sup
x∗∈Tx

〈u(y) + x∗, y − x〉 ≤ 0} for x ∈ D

satisfies all the conditions of Theorem 5.2.
First, we are going to show that G is a KKM-map. To this end consider the

function f : C ×D × C → R given by

f(ζ, x, y) = sup
x∗∈Tx

〈u(ζ) + x∗, y − x〉.

Since T is monotone, f is well defined and satisfies the following conditions:

(a) f(ζ, x, y) + f(ζ, y, x) ≤ 0 for each (x, y) ∈ D ×D and each ζ ∈ C,
(b) y 7→ f(ζ, x, y) is convex on C for each x ∈ D and each ζ ∈ C.

Now we observe that, using the function f , the map G : D → C can be equiva-
lently described as

Gx = {y ∈ C | f(y, x, y) ≤ 0}.
To show that G is KKM, let A = {x1, . . . , xn} ⊂ D and let y0 ∈ [A]. Define
g : A × [A] → R by letting g(x, y) = f(y0, x, y). It follows from (a) and (b)
that g satisfies the conditions of Example 4, so the map Γ : A → [A] given by
Γx = {y ∈ [A] | g(x, y) ≤ 0} is KKM. This implies in particular that y0 ∈ Γxi for
some xi ∈ A, which means that f(y0, xi, y0) = g(xi, y0) ≤ 0, that is, y0 ∈ Gxi.
The proof that G is KKM is complete.
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On the other hand, the values of G are closed and convex since the function
y 7→ 〈u(y), y〉 is continuous and convex on C, and the value Gx0 is bounded by as-
sumption. We may therefore invoke Theorem 5.2 to deduce that

⋂
{Gx | x ∈ D}

is not empty, which was to be proved. �

Corollary 9.2 (Minty). If T : H → H is maximal monotone with bounded
domain, then T is onto.

Proof. It is clearly enough to show that 0 ∈ T (H). Since T is maximal, D is
not empty, and therefore C is closed, convex, bounded and nonempty. Applying
Theorem 9.1 with u ≡ 0 we find y0 ∈ C such that

〈x∗, x− y0〉 ≥ 0 for all x ∈ D and x∗ ∈ Tx.

Since T is maximal monotone, this implies that 0 ∈ Ty0. �

Corollary 9.3 (Minty). If T : H → H is maximal monotone, then I + T

is onto (I denotes the identity on H).

Proof. As above, it is enough to show that 0 ∈ (I + T )(H). Invoke Theo-
rem 9.1 with u ≡ I. We find y0 ∈ C such that

〈x∗ − (−y0), x− y0〉 ≥ 0 for all x ∈ D and x∗ ∈ Tx.

Since T is maximal monotone, we derive that −y0 ∈ Ty0, or equivalently that
0 ∈ y0 + Ty0. �

10. Remarks

1. The authors thank Marcin Bownik for useful comments related to the
proof of Lemma 2.1.

2. The reader may observe that Theorem 3.1 can be deduced directly from
Lemma 2.1. Theorem 5.1 was formulated in other terms in [1]; it is equivalent
to the result of V. Klee [7] (see also [2]).

3. The KKM property appears for the first time in the paper of Knaster–
Kuratowski–Mazurkiewicz [8], devoted to the combinatorial proof of the Brouwer
Fixed Point Theorem.

4. Since, in weak topology, closed convex bounded subsets of a super-reflexive
Banach space are compact, the Elementary KKM Principle is contained in the
Geometric KKM Principle, established by the authors in [6]. It follows from the
Geometric KKM Principle that the main results of the present note are valid for
arbitrary reflexive spaces, but their proofs require the theory of weak topology
and compactness. On the other hand, the reader may observe that, using the
elementary tools of this note, the results 6.3, 6.4 and 9.1, 9.2 (formulated for
simplicity of exposition in the context of a Hilbert space) can be established in
arbitrary super-reflexive spaces.
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5. The Elementary and Geometric KKM Principles are special cases of the
Topological Principle of KKM-maps established by Ky Fan [4], [5] (for its nu-
merous applications see also [3] and [9]). The topological principle is, in fact,
equivalent to the Brouwer Fixed Point Theorem.
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c.p. 6128, succ. A
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