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NIVELOIDS

Szymon Dolecki1 — Gabriele H. Greco

Dedicated to Ky Fan

Let X be a nonempty set. A functional T : RX → R is a niveloid if, for each
f, g ∈ RX ,

f ≤g ⇒ T (f) ≤ T (g),(0.1)

∀r∈R T (f + r) = T (f) + r.(0.2)

The functionals satisfying (0.1) are called isotone; those fulfilling (0.2) will be
called vertically invariant.

Niveloids occur among functionals used in convex analysis. For example, for
each fixed element x0 of a vector space X the convex hull on RX evaluated at x0

is a niveloid. If X is a topological vector space, then the lower semicontinuous
convex hull evaluated at x0 is a niveloid. This is also the case of biconjugations.
Actually, the latter exceeds the framework of classical as well as generalized
convexity.

Suppose that 〈 , 〉 : X × Y → R. Then the lower and upper biconjugates at
x0 of a function f : X → R (with respect to 〈 , 〉) are

f∗∗(x0) = sup
y∈Y

[〈x0, y〉+. inf
x∈X

(f(x)−. 〈x, y〉)],(0.3)

f∗∗(x0) = inf
y∈Y

[〈x0, y〉 +̇ sup
x∈X

(f(x)−. 〈x, y〉].(0.4)

These notions are the extensions due to J. J. Moreau [7, 8] for arbitrary “cou-
pling” functions 〈 , 〉 of the biconjugates of Fenchel (and Legendre) introduced
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in the framework of bilinear coupling functions. The symbols +. , +̇ denote the
extensions of addition to R such that (+∞) +. (−∞) = (−∞) +. (+∞) = −∞ and
(+∞) +̇ (−∞) = (+∞) +̇ (−∞) = +∞. The following convention is adopted:
r −. s = r+. (−s) and r −. s = r +̇ (−s).

Sure enough, f 7→ f∗∗(x0) and f 7→ f∗∗(x0) are niveloids. Other examples
of niveloids arise in analysis and topology. For any family A of subsets of X,

liminfA f = sup
A∈A

inf
A
f,(0.5)

limsupA f = inf
A∈A

sup
A
f(0.6)

are niveloids. In the case where A is a semifilter base (i.e. ∅ 6∈ A 6= ∅), these are
precisely limitoids of G. H. Greco [6], i.e., those functionals that fulfil (0.1) and

(0.7) L(ϕ(f)) = ϕ(L(f))

for every homomorphism ϕ of R and each f ∈ RX . Recall that the lattice ho-
momorphisms of R are precisely the continuous nondecreasing functions into R.

In particular, Γ-functionals of E. De Giorgi [2] are limitoids, hence niveloids.
These are functionals on X = X1 × . . . × Xn constructed, by induction, with
the aid of semifilter bases A1,A2, . . . ,An (on X1, X2, . . . , Xn, respectively) and
signs α1, α2, . . . , αn ∈ {−,+} such that

Γ(A−)f = liminfA f, Γ(A+)f = limsupA f

and

(0.8) Γ(Aα1
1 , . . . ,Aαn−1

n−1 ,Aαn
n )f

= ext−αn

An∈An
Γ(Aα1

1 , . . . ,Aαn−1
n−1 ) extαn

xn∈An
f(. . . , xn),

where ext+ = sup, ext− = inf, −− = +, −+ = −.
Even more involved functionals constructed with the aid of successive ex-

tremization (see e.g. [5]) are limitoids and thus representable in the form (0.5)
(and (0.6)). They find applications in the theory of general convergences.

Γ-functionals and their extensions may be described as mixtures of upper and
lower limits. But the sense of this statement is broader, as (0.5) and (0.6) may
well differ from classical topological unilateral limits. For instance, if A denotes
the family of all concave subsets (of a vector space X) that contain a given point
x0, then (0.5) becomes the quasi-convex regularization of f evaluated at x0 and
(0.6) its quasi-concave regularization.

Some mixtures of limitoids and biconjugation-like niveloids may be found in
the calculus of variations (L. Cesari [1]) under the name of Q-limits.

This (not exhaustive) list of examples explains our interest in niveloids. We
shall investigate their representation in terms of some familiar constructions. We
shall study as well the structure of the complete lattice of niveloids on a given
set.
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It turns out that every niveloid T may be represented as a lower (and as an
upper) Γ-fuzzy functional (as introduced by S. Dolecki in [3]), namely there exist
S and R mapping RX to R such that, for each f ∈ RX ,

T (f) = sup
w∈RX

[S(w) +. inf
x∈X

(f(x)−. w(x))],(0.9)

T (f) = inf
w∈RX

[R(w) +̇ sup
x∈X

(f(x)−. w(x))] .(0.10)

Actually, every niveloid satisfies (0.9) and (0.10) itself, that is, we may put
S = R = T .

1. First representation theorem

Let X be a nonempty set. We shall denote by N (X) the set of all the
niveloids on RX . The functional identically equal to +∞ and that identically
equal to −∞ are niveloids. They will be referred to as degenerate.

If a niveloid T is nondegenerate, then, in view of properties (0.1) and (0.2),
T (−∞) = −∞ and T (+∞) = +∞. The niveloids taking only infinite values are
called improper, all the others are proper. In other words, T is proper whenever
there exists f ∈ RX such that T (f) ∈ R.

If S is an arbitrary functional on RX , then its dual functional S∗ is defined
by

S∗(f) = −S(−f).

The dual of a niveloid is a niveloid.
A key property is that the set of niveloids, considered in the complete lattice

of all the functionals F(X) ordered pointwise, is closed under the operations of
least upper bound and of greatest lower bound. Namely, if {Ti}i∈I is a family
of niveloids indexed by a (possibly empty) set I, then

(1.1)
∨
i∈I

Ti and
∧
i∈I

Ti

are niveloids. Indeed, if {Ti}i∈I are vertically invariant (resp. isotone), then (1.1)
are vertically invariant (resp. isotone).

More precisely, for every functional F , there exists the least isotone functional
(resp. vertically invariant functional, niveloid) that is greater than F . We shall
denote them by

I+(F ), V+(F ), N+(F ),

and call them upper projections.
As well, there exists the greatest isotone functional (resp. vertically invariant

functional, niveloid) that is smaller than F :

I−(F ), V−(F ), N−(F ).

They will be called lower projections.
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Theorem 1.1. Let F be an arbitrary functional. Then

N+(F )(f) = sup
w∈RX

[F (w) +. inf (f −. w)],(1.2)

N−(F )(f) = inf
w∈RX

[F (w) +̇ sup(f −. w)].(1.2∗)

Proof. In order to prove (1.2), we first observe that

(1.3) I+(F )(f) = sup
g≤f

F (g) and V+(G)(f) = sup
r∈R

(G(f + r)− r).

One notes that if F is vertically invariant, then I+(F ) is also vertically invariant.
Similarly, if G is isotone, then V+(G) is also isotone. Therefore, N+ = I+V+ =
V+I+. Hence,

N+(F )(f) = sup
r∈R

sup
g≤f

(F (g − r) + r) = sup
r∈R

sup
w+r≤f

(F (w) + r)

where w ∈ RX . In other words, we maximize over the relation {(r, w) : w + r

≤ f}. Consequently,

N+(F )(f) = sup
w∈RX

sup
r≤inf (f−. w)

(F (w) + r) = sup
w∈RX

(F (w) +. sup
r≤inf (f−. w)

r),

proving (1.2). The equality (1.2∗) follows from N−(F ) = [N+(F ∗)]∗. �

Of course, a functional T is a niveloid if and only if it is equal to N+(T )
(resp. N−(T )). Therefore we have

Theorem 1.2 (First Representation Theorem). A functional T is a niveloid
if and only if one of the following formulae hold:

T (f) = sup
w

[T (w) +. inf (f −. w)] and T (f) = inf
w

[T (w) +̇ sup(f −. w)].

Here the extremizations with respect to w are carried over RX . They amount
to sup{w:T (w)>−∞} and inf{w:T (w)<+∞} respectively. The first representation
theorem immediately yields

Corollary 1.3. The following statements are equivalent:

(1.4) T is a niveloid,
(1.5) ∀f,g∈RX T (f)−. T (g) ≥ inf (f −. g),
(1.6) ∀f,g∈RX sup(f −. g) ≥ T (f)−. T (g).

A function f ∈ RX is said to be proper if there exists x for which f(x) ∈ R.
Note that this definition of properness is less restrictive than the usual one, in
that it does not require f(x) > −∞ for every x.

A family of functions is said to be proper whenever its elements are proper
functions. For every niveloid T , the family {f : −∞ < T (f) < +∞} is proper.
In fact, if T (f) ∈ R, then, by (1.5), 0 ≥ inf (f −. f), which amounts to the
properness of f .
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If T is a niveloid, then

(1.7) T (g) ≥ 0 ⇔ ∀f∈RX inf (f −. g) ≤ T (f).

Indeed, if T (g) ≥ 0, then by Corollary 1.3, (1.7) holds. Conversely, (1.7) entails
that T (g) ≥ inf (g −. g) ≥ 0.

Given x ∈ X, Ex(f) = f(x) is a niveloid. The niveloids Ex will be referred
to as evaluations on X. The First Representation Theorem immediately yields

Corollary 1.4. The set N (X) of all niveloids is the smallest collection C
of functionals on RX such that:

(1.8) ∀x∈X Ex ∈ C,
(1.9) r ∈ R and T ∈ C ⇒ T + r ∈ C,
(1.10) (Ti)i∈I ⊂ C ⇒

∨
i∈I Ti and

∧
i∈I Ti ∈ C.

The fact that N (X) is closed both under the least upper and the greatest
lower bounds entails

Theorem 1.5. Let {Si}i∈I be a family of arbitrary functionals. Then

(1.11) N+

( ∨
i∈I

Si

)
=

∨
i∈I

N+(Si) and N−
( ∧

i∈I

Si

)
=

∧
i∈I

N−(Si).

Remark 1.6. The reader can use Theorem 1.5 to obtain several represen-
tations of the lower and upper projections N+ and N−. For example, one can
recover (1.2) and (1.2∗) in this way. Take an arbitrary functional S on RX . For
every p ∈ RX , define the functionals S−p and S+

p by

S−p (f) =

{
S(p) if f = p,

−∞ otherwise,
and S+

p (f) =

{
S(p) if f = p,

+∞ otherwise.

Of course, S =
∨

p∈P S
−
p and S =

∧
p∈P S

+
p . Thus, in view of Theorem 1.5, we

have

(1.12) N+(S)(f) = sup
p∈P

[N+(S+
p )(f)] and N−(S)(f) = inf

p∈P
[N+(S−p )(f)].

An immediate computation yields

(1.13)
N+(S−p )(f) = S(p) +. inf (f −. p) and

N−(S+
p )(f) = S(p) +̇ sup(f −. p);

hence, by (1.12) and (1.13), we have recovered Theorem 1.1. �
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2. The operators ∇ and ∆

Let f, p ∈ RX . We define the inf- and sup-convolutions of f and −p by

(2.1) f ∇(−p) = inf (f −. p) and f ∆(−p) = sup(f −. p).

For a fixed p, (2.1) defines two functionals which are niveloids. They are proper
if and only if p is a proper function.

Let P ⊂ RX . Then the functionals ∇P ,∆P defined by

(2.2) ∇Pf = sup
p∈P

inf (f −. p) and ∆Pf = inf
p∈P

sup(f −. p)

are niveloids. In view of Theorem 1.1 we have

Proposition 2.1. The operator ∇P is the upper projection (on N (X)) of
the functional equal to 0 on P and −∞ elsewhere. Similarly, ∆P is the lower
projection of the functional equal to 0 on P and +∞ elsewhere.

Observe that

(2.3)
∇∗P := (∇P)∗ = ∆(−P), ∆∗

P := (∆P)∗ = ∇(−P),

∇∅ = −∞, ∆∅ = +∞.

Throughout this paper, the usual conventions about extrema are respected:
sup ∅ = −∞ and inf ∅ = +∞.

The functionals ∇∞P , ∆∞
P defined by

(2.4) ∇∞P f = sup
p∈P

[+∞+. inf (f −. p)] and ∆∞
P f = inf

p∈P
[−∞ +̇ sup(f −. p)]

are niveloids. They are always improper: ∇∞P is the smallest niveloid equal to
+∞ on P and ∆∞

P is the greatest niveloid equal to −∞ on P. One has the
following relationships:

(∇∞P )∗ = ∆∞
(−P), (∆∞

P )∗ = ∇∞(−P),(2.5)

∇P is improper ⇔ P ⊂ {∇P = +∞} ⇔ ∇P = ∇∞P ,(2.6)

∆P is improper ⇔ P ⊂ {∆P = −∞} ⇔ ∆P = ∆∞
P .(2.6*)

Proposition 2.2. ∇∞P = ∇P+R and ∆∞
P = ∆P+R. Hence ∇∞P = ∇P and

∆∞
P = ∆P whenever P + R ⊂ P.

Proof. In fact, in this case

∇P+R f = sup
p∈P

sup
r∈R

inf(f −. (p+ r)) = sup
p∈P

[(sup
r∈R

r) +. inf (f −. p)] = ∇∞P f,

proving the first equality. The second one follows by duality. �
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It is clear that every niveloid T is completely determined by the families of
functions {T = 0} and {T = +∞} (or {T = 0} and {T = −∞}). An analytical
version of this elementary fact is given by the following theorem.

Theorem 2.3 (Second Representation Theorem). Let T be a niveloid. Then
∇{T=0} ∨∇{T=+∞} = T = ∆{T=0} ∧∆{T=−∞}.

Proof. By the First Representation Theorem (Theorem 1.2),

T (f) = sup
T (w)>−∞

[T (w) +. inf (f −. w)].

This equality yields

T (f) = (sup
r∈R

sup
T (w)=r

(r + inf (f −. w))) ∨ ( sup
T (w)=+∞

[+∞+. inf (f −. w)])

= (sup
r∈R

sup
T (v)=0

inf (f −. v)) ∨ ∇∞{T=+∞}(f)

= ( sup
T (v)=0

inf (f −. v)) ∨ ∇∞{T=+∞}(f).

Now, T (w) = +∞ and t ∈ R imply that T (w + t) = +∞, so that {T = +∞}+
R ⊂ {T = +∞}. Therefore, by Proposition 2.2, the above equality becomes
T = ∇{T=0} ∨ ∇{T=+∞}. The second equality of the theorem is obtained by
duality. �

3. Uniform and improper topologies

The upper uniform topology τ+ on RX is such that the sets

(3.1) {g : g ≤ f + ε}ε>0

constitute a neighbourhood base of f . A neighbourhood base of f for the lower
uniform topology τ− is

(3.1∗) {h : h ≥ f − ε}ε>0.

Observe that, for every P ⊂ RX ,

(3.2)
clτ+P = {f : ∀ε>0 ∃p∈P p− ε ≤ f},
clτ−P = {f : ∀ε>0 ∃q∈P f ≤ q + ε};

in other words, using the ∇ and ∆ operators

(3.3) clτ+P = {∇P ≥ 0} and clτ−P = {∆P ≤ 0};

hence all the τ+-closed (resp. τ−-closed) sets are of the form {∇P ≥ 0} (resp.
{∆P ≤ 0}), where P ⊂ RX .
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Theorem 3.1. The upper (resp. lower) uniform topology is the coarsest
topology for which every niveloid is upper (resp. lower) semicontinuous.

Proof. Let T be a niveloid and f a function such that T (f) < +∞. Fix
ε > 0. Then, for every g ≤ f + ε, T (g) ≤ T (f + ε) = T (f) + ε, that is, T does
not exceed T (f) + ε on the τ+-neighbourhood {g : g ≤ f + ε} of f ; hence T
is τ+-upper semicontinuous. Consider now a function f and the niveloid ∆{f}.
Then ∆{f}f ≤ 0, so that, for every ε > 0, {∆{f} ≤ ε} = {g : sup(g −. f) ≤ ε} =
{g : g ≤ f +ε} is a neighbourhood of f in each topology for which ∆{f} is upper
semicontinuous. By duality, the second part of the statement is valid. �

The least upper bound τ = τ+ ∨ τ− (in the lattice of all topologies) is strictly
stronger than the uniform topology on RX , induced by the usual uniformity of
R. Indeed, the family F = {fn : n ∈ N} where fn : R → R is defined by
fn(x) = n ∧ x, is τ -closed, but not closed in the uniform topology of RX .

Let clτ± denote clτ+ ∩ clτ− ; that is, by (3.2) and (3.3), for every P ⊂ RX ,

clτ±P = {∇P ≥ 0} ∩ {∆P ≤ 0} = {f : ∀ε>0 ∃p,q∈P p− ε ≤ f ≤ q + ε}.

Observe that clτ ⊂ clτ± , but clτ 6= clτ± . For example, for a family F composed
of two functions f and g such that f 6= g and f ≤ g we have F = clτF 6=
clτ±F = {h : f ≤ h ≤ g}.

The operator clτ± is a closure operator, that is, by definition: isotone (i.e.
clτ±P ⊂ clτ±B for all B ⊂ P ⊂ RX ), expansive (i.e. P ⊂ clτ±P for all P ⊂ RX)
and idempotent (i.e. clτ±clτ± = clτ±). Moreover, it is easy to check that

(3.4) clτ+ = clτ+clτ± = clτ±clτ+ and clτ− = clτ−clτ± = clτ±clτ− .

We shall call P τ±-closed if clτ±P = P; τ±-closed families are called su-
perconvex in [4]. The families that are either τ+-or τ−-closed, are τ±-closed.
Moreover, the intersection of τ±-closed families is τ±-closed. In particular, if T
is a niveloid then {T > −∞}, {T < +∞}, {T = 0} and {f : r ≤ T (f) ≤ s} are
all τ±-closed for each r, s ∈ R.

A family P is said to be order-convex if f, g ∈ P and f ≤ h ≤ g imply
h ∈ P. A τ±-closed family is both order-convex and τ -closed. Observe that an
order-convex τ -closed family is not necessarily τ±-closed. For example, consider
the family {1/n − ψ{n} : 0 6= n ∈ N} ∪ {−1/n + ψ{−n} : 0 6= n ∈ N}, where
ψ{n} : R → R is equal to 0 at n and +∞ elsewhere.

As we know, inf (f −. g) ≥ 0 is tantamount to the usual pointwise order:
f ≥ g. This order is used to define upper and lower uniformities. Now

(3.5) f w g ⇔ inf (f −. g) > −∞

defines a preorder on RX which will be used to define the upper and lower
improper topologies. Of course, “f w g” means that there exists r ∈ R such
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that f ≥ g + r. Two functions f, g are equivalent with respect to this preorder
(i.e., f w g and f v g) if and only if there exists a bounded function b such that
f = g + b.

A subset H of RX is called a (+∞)family whenever h ∈ H and f w h imply
that f ∈ H. Dually, G is called a (−∞)family if h ∈ H and f v h imply f ∈ G.
Note that H is a (+∞)family if and only if Hc is a (−∞)family.

If T is a niveloid, then {T = +∞} is a (+∞)family and {T = −∞} is a
(−∞)family. Conversely, for every (+∞)family H (resp. (−∞)family G), one
has H = {∇H = +∞} (resp. G = {∆G = −∞}).

Since every intersection and every union of (+∞)families is a (+∞)family,
all the (+∞)families are the closed sets of a topology that we shall call the
upper improper topology and denote by ξ+. Dually, the collection of all the
(−∞)families constitutes the collection of closed sets of a topology called the
lower improper topology and denoted by ξ−.

Hence, for every P ⊂ RX , we have

clξ+ P = {f : ∃ h∈P f w h} = {∇P > −∞},(3.6)

clξ− P = {f : ∃ h∈P f v h} = {∆P < +∞}.(3.6∗)

Proposition 3.2. The upper (resp. lower) improper topology is the coarsest
topology for which every improper niveloid is upper (resp. lower) semicontinuous.

Let clξ± denote clξ+ ∩ clξ− . Hence, by (3.6) and (3.6∗), for every P ⊂ RX ,

clξ±P = {∇P > −∞} ∩ {∆P < +∞} = {f : ∃p,q∈P p v f v q}.

The operator clξ± is a closure operator. A family P is said to be ξ±-closed
if clξ±P = P. A family P is ξ±-closed if and only if P is order-convex and
P+R ⊂ P. The families that are either ξ+- or ξ−-closed are ξ±-closed. Moreover,
the intersection of ξ±-closed families is ξ±-closed. In particular, if T is a niveloid
then {T > −∞}, {T < +∞} and {−∞ < T < +∞} are all ξ±-closed.

Of course, ξ+ is coarser than τ+ (and ξ− is coarser than τ−); hence each
ξ±-closed set is τ±-closed.

4. Lattice structure of the set of niveloids

For every P ⊂ RX , ∇P (resp. ∆P) is a niveloid. We shall see that every
niveloid is of this form.

Theorem 4.1. For every niveloid T , T = ∇{T≥0} and T = ∆{T≤0}.

Proof. By Theorem 1.2,

T (f) ≥ sup
T (w)≥0

[T (w) +. inf (f −. w)] ≥ sup
T (w)≥0

inf (f −. w) ≥ ∇{T≥0}.
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On the other hand,

∇{T≥0} ≥ ∇{T=0} ∨∇{T=+∞}.

Hence, by Theorem 2.3, we have T = ∇{T≥0}. The second equality follows by
duality. �

Corollary 4.2. For each P ⊂ RX ,

∇P = ∇clτ+P and ∆P = ∆clτ−P ,(4.1)

∇P = ∇clτ±P and ∆P = ∆clτ±P .(4.2)

Proof. Apply (3.3) and Theorem 4.1 with T = ∇P (resp. T = ∆P) to
obtain (4.3). To prove (4.2), combine (4.1) and the equalities clτ+P = clτ+clτ±P,
clτ−P = clτ−clτ±P. �

We are now in a position to prove that the complete lattice of niveloids is
isomorphic to the complete lattice of closed sets with respect to the upper (resp.
lower) uniform topology.

Theorem 4.3. The mapping T 7→ {T ≥ 0} (resp. T 7→ {T ≤ 0}) is an
isomorphism of the complete lattice of niveloids onto the complete lattice of closed
sets with respect to τ+ (resp. τ−). The inverse isomorphism associates every
closed set P with ∇P (resp. ∆P).

Proof. Clearly S ≤ T implies {S ≥ 0} ⊂ {T ≥ 0} and, by Theorem 3.1,
T 7→ {T ≥ 0} ranges over all the τ+-closed sets. On the other hand, P ⊂ B
entails ∇P ≤ ∇B and, by Theorem 4.1, ∇ is a bijection of the τ+-closed sets
onto the set of niveloids. By duality the second part of the statement is valid.�

5. Niveloidal extensions

Consider a functional F defined on a subset F of RX . We shall say that F
is extensible if there exists a niveloid T (on RX) called an extension of F such
that T|F = F .

Define the following functionals F♦, F♦ on RX :

F♦(f) = sup
p∈F

[F (p) +. inf (f −. p)],(5.1)

F♦(f) = inf
p∈F

[F (p) +̇ sup(f −. p)].(5.1∗)

Proposition 5.1. The functional F♦ (resp. F♦) is the least (resp. greatest)
niveloid that majorizes (minorizes) F on F . If F is extensible, then F♦ (resp.
F♦) is the least (resp. greatest) niveloid that extends F on F .
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Proof. The niveloid F♦ (resp. F♦) is the upper (resp. lower) projection of
the functional F− (resp. F+) defined by

F−(f) =

{
F (f) if f ∈ F ,
−∞ if f 6∈ F ,

and F+(f) =

{
F (f) if f ∈ F ,
+∞ if f 6∈ F .

Every niveloid T which majorizes (resp. minorizes) F on F fulfils T ≥ F− (resp.
T ≤ F+); hence F− ≤ F♦ ≤ T (resp. T ≤ F♦ ≤ F+). �

Theorem 5.2 (Extensibility). Let F be a functional defined on F . The
following statements are equivalent:

F is extensible,(5.2)
F♦ = F♦ on F ,(5.3)
F♦ ≤ F♦,(5.4)
∀f,g∈F inf (f −. g) ≤ F (f)−. F (g),(5.5)
∀f,g∈F F (f)−. F (g) ≤ sup(f −. g).(5.5∗)

Proof. (5.2)⇒(5.3): by the second part of Proposition 5.1. (5.2)⇒(5.3):
for every f ∈ F, F♦(f) ≤ F (f) ≤ F♦(f). (5.2)⇒(5.4): if T is an extension of
F , then, by Proposition 5.1, F♦ ≤ T ≤ F♦. (5.4)⇒(5.5): by Proposition 5.1,
(5.4) implies that F♦, F and F♦ coincide on F . Thus, by replacing F♦(f) by
F (f) in (5.1) when f ∈ F , we get (5.5). (5.5)⇒(5.5∗): by multiplying (5.5) by
−1 and by changing the roles of f and g. (5.5∗)⇒(5.2): actually (5.5∗) amounts
to

∀f∈F F (f) ≤ inf
g∈F

[F (g) +̇ sup(f −. g)];

thus, in view of the definition (5.1∗), (5.5∗) entails F (f) ≤ F♦(f) for each f ∈ F .
By virtue of Proposition 5.1, this means that F = F♦|F . �

Proposition 5.3. Let S be an extensible functional, f ∈ RX and r ∈ R.
There exists an extension of S equal to r at f if and only if

S♦(f) ≤ r ≤ S♦(f),(5.6)

either f is proper or r ∈ {−∞,+∞}.(5.7)

Proof. If f is in the domain F of S, then, by Theorem 5.2 ((5.2)⇒(5.3)),
S is extensible and equal to r at f if and only if S♦(f) = r = S♦(f). In this
case r −. r ≥ inf (f −. f), which amounts to (5.7).

If f 6∈ F , then applying Theorem 5.2 ((5.2)⇔(5.5)) to the functional equal
to S on F and equal to r at f we get (because of the extensibility of S), for
every g ∈ F ,

inf (f −. g) ≤ r −. F (g), inf (g −. f) ≤ F (g)−. r and inf (f −. f) ≤ r −. r.

Now the first inequality amounts to S♦(f) ≤ r, the second to r ≤ S♦(f) and
the last to (5.7). �
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6. Admissibility and maximality

Let B ⊂ RX and A ⊂ R. The family B is called A-admissible if there exists
a niveloid T such that T (B) ⊂ A. We shall say that B is 0-admissible in case it
is {0}-admissible. Of course a 0-admissible family is proper (i.e. each element of
it is a proper function).

Theorem 6.1. The following statements are equivalent:

B is 0-admissible,(6.1)
∇B = ∆B on B,(6.2)
∇B ≤ ∆B,(6.3)
B ⊂ {∇B ≤ 0}(i.e. ∀b,w∈B inf (w −. b) ≤ 0),(6.4)
B ⊂ {∆B ≥ 0}(i.e. ∀b,w∈B sup(w −. b) ≥ 0).(6.4∗)

Proof. One notes that B is 0-admissible if and only if the null functional
(defined on B) is extensible. Therefore (5.5) and (5.5∗) of Theorem 5.2 specialize
to (6.4) and (6.4∗) respectively. In view of (5.1) and (5.1∗), properties (5.3) and
(5.4) of Theorem 5.2 specialize to (6.2) and (6.3) respectively. �

One infers that if B is 0-admissible, then ∇B (resp. ∆B) is the least (resp. the
greatest) niveloid equal to 0 on B. Observe that (6.4) is tantamount to

(6.5) b, w ∈ B and b ≤ w ⇒ inf (w −. b) = 0.

Corollary 6.2. The following statements are equivalent:

(6.6) B is 0-admissible,
(6.7) clτ±B is 0-admissible,
(6.8) clτ±B = {∇B = 0} ∩ {∆B = 0}.
In particular, B is a τ±-closed 0-admissible family if and only if

B = {∇B = 0} ∩ {∆B = 0}.

Proof. Apply (4.2). �

For every family B, define

Bα := {∇B ≤ 0} ∩ {0 ≤ ∆B}.

By (6.4) and (6.4∗) it follows that B ⊂ Bα if and only if B is 0-admissible.
As a direct consequence of Proposition 5.3 we have the following criterion for

the 0-admissibility of B ∪ {f} under the assumption that B is 0-admissible.

Lemma 6.3. Let B be 0-admissible and let f ∈ RX . Then B ∪ {f} is
0-admissible if and only if f is proper and f ∈ Bα.

0-admissibility is an inductive property. Thus every 0-admissible family is
included in a maximal 0-admissible family. Lemma 6.3 entails

(6.9) B = Bα ∩ {f ∈ RX : f proper} ⇔ B is maximal 0-admissible.
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By (6.7) a maximal 0-admissible family is τ±-closed. The maximality may be
characterized by a coincidence condition for the operators ∇ and ∆.

Theorem 6.4. B is a maximal 0-admissible family if and only if B is a
τ±-closed proper family and

(6.10) ∀f proper ∇Bf = ∆Bf.

Proof. Let B be maximal 0-admissible. By Corollary 6.2, the 0-admissi-
bility of B implies that clτ±B is 0-admissible. Hence, since B ⊂ clτ±B, by the
maximality of B, we have B = clτ±B, that is, B is a τ±-closed family of proper
functions. Suppose that there exists a proper function f such that ∇Bf 6= ∆Bf.

It follows that there exists r ∈ R such that ∇Bf < r < ∆Bf , that is,

(6.11) ∇B(f − r) < 0 < ∆B(f − r).

Since the 0-admissibility of B implies that ∇B equals 0 on B, by (6.11) we have
f − r 6∈ B. On the other hand, by Lemma 6.3, (6.11) implies that B ∪ {f − r} is
0-admissible, contradicting the maximality.

Now, suppose that B is a τ±-closed family of proper functions and (6.10)
holds. Since ∇B and ∆B coincide on B, by (6.2), the family B is 0-admissible.
If f is a proper function such that B ∪ {f} is 0-admissible, then (6.9) and (6.10)
imply ∇Bf = ∆Bf = 0. Hence, since B is τ±-closed, it follows from (6.8) that
f ∈ B. Therefore B is maximal 0-admissible. �

A family B is said to be a base of a maximal 0-admissible family if clτ±B is
a maximal 0-admissible family.

Corollary 5.6. Let B be a proper family. The coincidence condition (6.10)
holds if and only if B is a base of a maximal 0-admissible family.

Proof. Apply (4.2) and Theorem 6.4. �

A τ±-closed family B is said to be autodual if ∆B = ∇B.

Corollary 6.6. A family B is autodual if and only if it is a maximal
0-admissible family and RX = clξ+B ∪ clξ−B. Hence B is autodual if and only if
B = Bα.

Proof. Apply Theorem 6.4 and (6.9). �

Corollary 6.7. A family B is autodual if and only if it is a maximal
0-admissible family such that Bα is proper. Hence, if A is a 0-admissible family
such that Aα is proper, then every maximal 0-admissible family including A is
autodual.

Proof. Observe that the properness of Bα amounts to {−∞,+∞}X ⊂
clξ+B ∪ clξ−B. Hence, apply Corollary 6.6 and the fact that Bα ⊂ Aα whenever
A and B are 0-admissible families with A ⊂ B. �
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Examples 6.8. (A) For a fixed point x0 ∈ X, the family of all functions f
with f(x0) = 0 is autodual. (B) Let g be a finite function (i.e. g(X) ⊂ R). Then
B = {f : sup(f−g) = 0} is autodual. (Hint: prove that (a) B is 0-admissible, (b)
for every h 6∈ B, the family B∪{h} is not 0-admissible, (c) RX = clξ+B∪ clξ−B,
and finally apply Corollary 6.6). (C) Let g be a finite function on X and, for
every x ∈ X, let ψ{x} be the indicator function of {x} (i.e. ψ{x} is 0 at x and
+∞ elsewhere). Then the family B = {ψ{x} + g(x) : x ∈ X} is such that Bα is
proper. Actually, Bα = B∪{f ∈ RX : f ≥ g and card({f < +∞}) ≥ 2}. Since B
is 0-admissible, by Corollary 6.7 every maximal 0-admissible family including B
is autodual. Note that if X contains at least two elements, B is not maximal.�

7. Coincidence conditions and maximality

This section is intended to improve the understanding of the role of coinci-
dence conditions (like (6.2), (6.10), definition of autodual families) in the study
of various types of 0-admissible families.

Theorem 7.1 (Coincidence). Let B ⊂ P ⊂ RX be families such that B is
τ±-closed and P + R ⊂ P. The following properties are equivalent:

(7.1) ∇B = ∆B on P,
(7.2) B = Bα ∩ P,
(7.3) B = {∇B = 0} ∩ P = {∆B = 0} ∩ P and P ⊂ clξ+B ∪ clξ−B.

Observe that for P equal to RX or to the family of all proper functions the
equality (7.1) characterizes autodual families and maximal 0-admissible families,
respectively.

Proof. (7.1)⇒(7.2): In virtue of Corollary 6.2, since B is τ±-closed, it is
enough to prove that

(7.2∗) B ⊂ Bα ∩ P ⊂ {∇B = 0} ∩ {∆B = 0}.

As B ⊂ P, by Theorem 6.1 we see that B is 0-admissible, that is, B ⊂ Bα. Hence
the first inclusion of (7.2∗) holds; the second inclusion follows directly from (7.1)
and the definition of Bα.

(7.2)⇒(7.3): Since (7.2) implies B ⊂ Bα, the family B is 0-admissible. Hence
B ⊂ {∇B = 0} ⊂ Bα and B ⊂ {∆B = 0} ⊂ Bα; therefore, since B ⊂ P, (7.2)
shows that B = {∇B = 0}∩P = {∆B = 0}∩P. To prove P ⊂ clξ+B∪ clξ−B, let
f ∈ P. If f ∈ Bα, then, by (7.2), f ∈ B; hence f ∈ clξ+B ∪ clξ−B. Otherwise, if
f 6∈ Bα, then, by definition of Bα, we have either ∇Bf > 0 or ∆Bf < 0; therefore
in either case f ∈ clξ+B ∪ clξ−B.

(7.3)⇒(7.1): Let f ∈ P. By (7.3), B is included in the 0-admissible family
{∇B = 0}, hence B is 0-admissible and, consequently, by Theorem 6.1, ∇B ≤ ∆B.
Therefore, since P ⊂ clξ+B ∪ clξ−B, we have to consider three possibilities:
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(a) ∇Bf = ∆Bf = −∞ or ∇Bf = ∆Bf = +∞, (b) ∇Bf ∈ R and (c) ∆Bf ∈ R.
In case (a) there is nothing to prove. In case (b), f − ∇Bf ∈ {∇B = 0} ∩ P.
On the other hand, by (7.3), {∇B = 0} ∩ P ⊂ {∆B = 0}; hence we obtain
∆B(f −∇Bf) = 0, that is, ∆Bf = ∇Bf . Similarly, in case (c) we can prove that
∆Bf = ∇Bf . �

Theorem 7.2 (Maximality). Under the hypotheses of Theorem 7.1, the fol-
lowing properties are equivalent:

(7.4) B is maximal among the 0-admissible families included in P,
(7.5) ∇B = ∆B on P ∩ {f ∈ RX : f proper} and B is proper.

Proof. Use Lemma 6.3 to prove that (7.4) amounts to B = Bα ∩ P ∩ {f ∈
RX : f proper} and, finally, apply Theorem 7.1. �

The inclusion P ⊂ clξ+B ∪ clξ−B of (7.3) means that P “depends” on B.
A function f is called independent of B if for every niveloid T and for every
r ∈ R such that f is {r}-admissible, there exists a niveloid S such that S = T

on B and S(f) = r. Otherwise f is called dependent on B. A family F is said to
be dependent on B if each f in F is dependent on B. Then we have

Proposition 7.3. Let B and P be arbitrary families of functions. Then the
following properties are equivalent:

(7.6) P ⊂ clξ+B ∪ clξ−B,
(7.7) P is dependent on B.

Proof. Since f 6∈ clξ+B∪ clξ−B if and only if ∇Bf = −∞ and ∆Bf = +∞,
that is,

(7.8) ∀g∈B inf(f −. g) = inf(g −. f) = −∞,

it is enough to prove that the independence of a function f of B amounts to
(7.8). Suppose that f is independent of B. Since every function is both {+∞}-
and {−∞}-admissible, from the definition of independence it follows that there
exists a niveloid T1 (resp. T2) such that T1 = +∞ (resp. T2 = −∞) on B and
T1(f) = −∞ (resp. T1(f) = +∞). Consequently, by Corollary 1.3, we have,
for every g ∈ B, inf(f −. g) ≤ T1(f) −. T1(g) = (−∞) −. (+∞) = −∞ and
sup(f −. g) ≥ T2(f)−. T2(g) = (+∞)−. (−∞) = +∞. Therefore (7.8) holds. Now
suppose (7.8). Let T be a niveloid and let r ∈ R be such that f is {r}-admissible.
Set F = B ∪ {f} and define a functional S : F → R by S(f) = r and S = T

on B. Since the {r}-admissibility amounts to inf (f −. f) ≤ (r −. r), in virtue
of (7.8), the functional S satisfies (5.5). Hence, by Theorem 5.2, there exists a
niveloid which extends S. Therefore f is independent of B. �
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Corollary 7.4. Under the hypotheses of Theorem 7.1, B = Bα ∩ P if and
only if (7.4) holds and one of the following equivalent properties is satisfied:

every improper function in P is dependent on B,(7.7′)

Bα ∩ P is proper.(7.7′′)

To provide an insight into property (7.3) we give the following proposition.

Proposition 7.5. Under the hypotheses of Theorem 7.1, the following prop-
erties are equivalent:

B is 0-admissible and {∇B = 0} ∩ P = {∆B = 0} ∩ P,(7.9)

B = {∇B = 0} ∩ P = {∆B = 0} ∩ P,(7.10)

B = {∇B = 0} ∩ P and {∆B = 0} ∩ P ⊂ clξ+B,(7.11)

B = {∆B = 0} ∩ P and {∇B = 0} ∩ P ⊂ clξ−B.(7.12)

Proof. Property (7.10) implies that the niveloid ∇B is 0 on B; that is, by
definition, B is 0-admissible. Hence (7.10)⇒(7.9). Conversely, suppose (7.9)
holds; we will prove (7.10). Since B is a 0-admissible family, the niveloid ∇B
is 0 on B; hence B ⊂ {∇B = 0} ∩ P. On the other hand, by the equality
{∇B = 0} ∩P = {∆B = 0} ∩P, we have {∇B = 0} ∩P ⊂ {∇B = 0} ∩ {∆B = 0}.
Therefore, B being τ±-closed, Corollary 6.2 shows that B = {∇B = 0}∩P. Hence
(7.9)⇒(7.10).

From the definition clξ+B := {∇B > −∞} it follows that (7.10)⇒(7.11).
Now, assuming that (7.11) holds, we will prove (7.10). By B = {∇B = 0}∩P, the
niveloid ∇B is 0 on B, hence, by definition, B is 0-admissible. The 0-admissibility
of B implies that the niveloid ∆B is 0 on B; hence

(7.13) B = {∇B = 0} ∩ P ⊂ {∆B = 0} ∩ P.

Therefore, since B is τ±-closed, in order to prove (7.10) it is enough to verify
that

(7.14) {∆B = 0} ∩ P ⊂ {∇B = 0} ∩ {∆B = 0}.

Pick f ∈ P such that ∆Bf = 0. Then the set inclusion of (7.11) implies ∇Bf >
−∞. On the other hand, by the 0-admissibility of B, from Theorem 6.1 it follows
that∇Bf ≤ ∆Bf ; hence∇Bf is finite in view of ∆Bf = 0. Therefore, since f ∈ P
and, by hypothesis, P + R ⊂ P, we obtain f − ∇Bf ∈ {∇B = 0} ∩ P. Thus,
by the set equality of (7.11), f −∇Bf ∈ B. Hence, by the 0-admissibility of B,
∆B(f − ∇B(f)) = 0, that is, ∆Bf = ∇Bf . Therefore, since ∆Bf = 0, we have
∇Bf = 0; thus (7.14) holds. The proof of (7.11)⇒(7.10) is complete. Dually,
the equivalence (7.10)⇔(7.12) holds. �

Examples 7.6. Consider the following three properties:

(a) B = {∇B = 0} ∩ P, (b) B = {∆B = 0} ∩ P, (c) P ⊂ clξ+B ∪ clξ−B.
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Anticipating Section 9, we say that a family B is inf-convolutive (resp. sup-
convolutive) if B = {∇B = 0} (resp. B = {∆B = 0}). The three properties (a),
(b) and (c) constitute (7.3). We will show their independence.

(A) Let B = ∅ and P = RX . Then (a) and (b) hold, but not (c), because
∇∅ = −∞, ∆∅ = +∞ and clξ+∅ = clξ−∅ = ∅. Observe that B is both inf- and
sup-convolutive; but it is not a maximal 0-admissible family.

(B) Now let X contain at least two points; denote them by x0 and x1. Set
B := {p ∈ RX : p(x0) +̇ p(x1) = 0}. Since for every function f ,

∇Bf = sup
s∈R

((f(x0)− s) ∧ (f(x1) + s))

and

∆Bf = inf
s∈R

((f(x0)− s) ∨ (f(x1) + s)),

it is easy to verify that B = {∇B = 0} and B = {∆B = 0}.
First case: X contains more than two points. Then clξ+B ∪ clξ−B does

not contain all proper functions (e.g. the function f defined by f(x0) = −∞,
f(x1) = +∞ and f(x) = 0 elsewhere). Hence, for P = {f ∈ RX : f proper}, (a)
and (b) hold, but (c) does not. As in example (A), in this case B is both inf-
and sup-convolutive, but it is not a maximal 0-admissible family.

Second case: X contains exactly two points. Then clξ+B∪ clξ−B contains all
proper functions but not all improper functions (e.g. the function f defined by
f(x0) = −∞ and f(x1) = +∞). Hence, for P = RX , (a) and (b) hold, but not
(c). In this case B is a maximal 0-admissible family, but it is not autodual. The
reader can verify that all other maximal 0-admissible families are autodual.

(C) Let X contain at least two points; denote them by x0 and x1. Set
B := {p ∈ RX : p(x0) = 0 and p(x1) = +∞} and P := clξ+B. As for every
function f ,

∇Bf = f(x0) ∧ (f(x1) +̇ (−∞)) and ∆Bf = f(x0) ∨ (f(x1) +̇ (−∞)),

we have B = {∇B = 0} and {∆B = 0} = {f ∈ RX : f(x0) = 0}. Hence (a)
and (c) hold, but (b) is not valid. The family B is inf-convolutive, but it is not
sup-convolutive.

(D) Let X contain at least two points; denote them by x0 and x1. Set B :=
{p ∈ RX : p(x0) = 0 and p(x1) = −∞} and P := clξ−B. Then B = {∆B = 0}
and {∇B = 0} = {f ∈ RX : f(x0) = 0}. Hence (b) and (c) hold, but (a) does
not. The family B is sup-convolutive, but not inf-convolutive. �

8. 0-families

A subset B of RX is called a 0-family if there exists a niveloid T such that B =
{T = 0}. Every 0-family is 0-admissible and τ±-closed. Maximal 0-admissible
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families are 0-families. Special classes of 0-families (inf- and sup-convolutive
families) will be discussed in the following section.

Lemma 8.1. Let P and B be 0-admissible families such that P ⊃ B. Then
B = P ∩ (B + R).

Proof. Suppose g ∈ P∩ (B+R). In particular, there exists a real number r
such that g + r ∈ B. Since P ⊃ B, we have g + r ∈ P. Hence, by 0-admissibility
of P we obtain ∇Pg = 0 = ∇P(g + r); so r = 0. Thus g = g + r ∈ B.
Hence P ∩ (B+ R) ⊂ B. This completes the proof, because the reverse inclusion
P ∩ (B + R) ⊃ B is trivial. �

Lemma 8.2. Let B be a 0-family. Then

(8.1) clξ±B = B + R.

Moreover,

(8.2) if P is a ξ±-closed family, then B ∩ P is a 0-family;
(8.3) if P is a 0-admissible family such that P ⊃ B, then B = P ∩ clξ±B.

Proof. Let T be a niveloid such that B = {T = 0}. Since clξ±{T = 0} =
{T = 0}+ R, (8.1) holds. Now, observe that

{((T ∨∆clξ−P) ∧∇clξ+P) = 0} = {T = 0} ∩ clξ−P ∩ clξ+P.

Hence, if P is a ξ±-closed family (i.e. P = clξ−P ∩ clξ+P), then B ∩ P is a
0-family, which proves (8.2). Now, to prove (8.3) apply Lemma 8.1 and (8.1).�

Theorem 8.3. A family B is a 0-family if and only if one of the following
equivalent properties is satisfied:

(8.4) B is 0-admissible and clξ±B = B + R,
(8.5) B is the intersection of a ξ±-closed family with a maximal 0-admissible

family.

Proof. In virtue of (8.1), if B is a 0-family, then (8.4) holds. To show that
(8.4) implies that B is a 0-family, observe that, by the 0-admissibility of B, one
has {∇B = 0} ⊃ B; hence from Lemma 8.1 it follows that B = {∇B = 0}∩(B+R).
Since B+ R = clξ±B is ξ±-closed, B is the intersection of the 0-family {∇B = 0}
and of the ξ±-closed family B+R. Thus, from (8.2) it follows that B is a 0-family.
Now, by (8.2), the property (8.5) implies that B is a 0-family. Conversely, if B
is a 0-family, then (8.5) follows from (8.3). �

In terms of coincidence conditions we have

Theorem 8.4. A family B is a 0-family if and only if it is τ±-closed and
∇B = ∆B on clξ±B.
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Proof. Suppose B is a 0-family. In virtue of (6.2), by the 0-admissibility
of B, we have ∇B = ∆B on B + R. Hence, from (8.1), ∇B and ∆B coincide on
clξ±B. Conversely, from Theorem 7.1 we have B = {∇B = 0} ∩ clξ±B, hence by
(8.2), B is a 0-family. �

In the following corollary we collect some characterizations of the 0-families,
implied by the Coincidence Theorem 7.1.

Corollary 8.5. A τ±-closed family B is a 0-family if and only if one of
the following equivalent properties holds:

(8.6) B = {∇B = 0} ∩ clξ−B,
(8.7) B = {∆B = 0} ∩ clξ+B,
(8.8) B is maximal among the 0-families included in clξ±B.

Let T be a niveloid. If S is a niveloid such that {S = 0} = {T = 0}, then
{−∞ < S < +∞} = {−∞ < T < +∞} and S = T on {−∞ < T < +∞};
therefore, among all the niveloids whose 0-family is equal to {T = 0}, there are
both the greatest and the least element. How to use these extrema to describe T?

For every B ⊂ RX , set

(8.9) B+ = B ∪ (clξ+B \ clξ−B) and B− = B ∪ (clξ−B \ clξ+B).

One can prove that, if T is a niveloid, then clξ+{T = 0} \ clξ−{T = 0} ⊂
{T = +∞} and clξ−{T = 0} \ clξ+{T = 0} ⊂ {T = −∞}; consequently, one
checks easily the following inequalities:

(8.10) ∇{T=0}+ ≤ T ≤ ∆{T=0}− .

For a given functional T , define

K+(T ) = {T = +∞} \ clξ+{T = 0}

and
K−(T ) = {T = −∞} \ clξ−{T = 0}.

Theorem 8.6 (Third Representation Theorem). Let T be a niveloid. Then
∇{T=0}+ (resp. ∆{T=0}−) is the least (resp. greatest) niveloid S for which
{S = 0} = {T = 0}. Moreover,

(8.11) ∇{T=0}+ ∨∇K+(T ) = T = ∆{T=0}− ∧∆K−(T ).

Proof. Observe that for every B ⊂ RX , the 0-families of the niveloids ∇B+

and ∆B− are, respectively,

{∇B+ = 0} = {∇B = 0} ∩ clξ−B,(8.12)

{∆B− = 0} = {∆B = 0} ∩ clξ+B.(8.13)

Taking B = {T = 0}, from Corollary 8.5 and properties (8.12), (8.13), we deduce
that the 0-families of ∇{T=0}+ and ∆{T=0}− are equal to {T = 0}. Hence,
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from (8.10) it follows that ∇{T=0}+ (resp. ∆{T=0}−) is the least (resp. greatest)
niveloid S for which {S = 0} = {T = 0}.

Since {T = +∞} = (clξ+{T = 0} \ clξ−{T = 0}) ∪ K+(T ), by (8.9) we have
{T = 0} ∪ {T = +∞} = {T = 0}+ ∪ K+(T ).

Therefore, the first equality of (8.11) follows from the Second Representation
Theorem 2.3. Dually one proves the second equality. �

9. Sup-convolutive and inf-convolutive niveloids

A niveloid T is called inf-convolutive (resp. sup-convolutive) if T = ∇{T=0}

(resp. T = ∆{T=0}). A family B ⊂ RX is said to be inf-convolutive (resp.
sup-convolutive) if it is the 0-family of an inf-convolutive (resp. sup-convolutive)
niveloid. It is clear that inf- and sup-convolutive families are 0-families; hence
they are proper, 0-admissible and τ±-closed.

Lemma 9.1. If B is a 0-admissible family, then ∇B = ∇{∇B=0}, hence ∇B
is inf-convolutive.

Proof. Since B is 0-admissible, B ⊂ {∇B = 0}; hence

clτ+B ⊂ clτ+{∇B = 0}.

On the other hand, by definition,

clτ+B = {∇B ≥ 0}; hence clτ+B ⊃ clτ+{∇B = 0}.

Therefore, as clτ+B = clτ+{∇B = 0}, (4.1) implies ∇B = ∇{∇B=0}. �

We infer that the sets of the form {∇B = 0}, where B is a 0-admissible family,
are all the inf-convolutive families. Moreover, Lemma 9.1 entails

(9.1) B is inf-convolutive ⇔ B = {∇B = 0}.

Inf-convolutive families may be characterized by a coincidence condition for
the operators ∇ and ∆.

Theorem 9.2. A family B is inf-convolutive if and only if it is τ±-closed
and ∇B = ∆B on clξ+B.

Proof. From (9.1) it follows that for P := clξ+B, the family B satisfies
(7.11). Hence the statement follows from the Coincidence Theorem 7.1. �

The Coincidence Theorem 7.1 entails the following characterizations of inf-
convolutive families in terms of either 0-admissible families or 0-families.
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Corollary 9.3. If B is a τ±-closed 0-admissible family, then the following
properties are equivalent:

(9.2) B is inf-convolutive,
(9.3) B is maximal among the 0-admissible families included in clξ+B,
(9.4) {∇B = 0} = {∆B = 0} ∩ clξ+B,
(9.5) B is a 0-family and {∇B = 0} ⊂ clξ−B.

In order to characterize inf-convolutive niveloids we need the following lemma,
stated without proof.

Lemma 9.4. If B is a 0-admissible family and T is a niveloid, then

(9.6) T is inf-convolutive ⇔ ∇{T=0} = ∆{T=0} on {T > −∞},
(9.7) ∇{T=0}(f) = sup{T (g) : g ≤ f, T (g) ∈ R}, for every f ∈ RX ,
(9.8) ∇{T=0} ≥ ∇{T=+∞} ⇔ for each f ∈ {T = +∞}, there exists {hn}n ⊂

{T = 0} such that f ≥ hn + n,
(9.9) ∇{T=0} ≥ ∇K+(T ) ⇔ {T = +∞} ⊂ clξ+{T = 0},
(9.10) ∇B = ∇B+ ⇔ {∇B = 0} ⊂ clξ−B.

Theorem 9.5. Let T be a niveloid. The following properties are equivalent:

(9.11) T is inf-convolutive,
(9.12) there exists a 0-admissible family B such that T = ∇B,
(9.13) T (f) = sup{T (g) : g ≤ f, T (g) ∈ R}, for every f ∈ RX ,
(9.14) for each f ∈ {T = +∞}, there exists {gn}n such that gn ≤ f , T (gn) ∈ R

and supn T (gn) = +∞,
(9.15) {T = 0} is inf-convolutive and, for each f ∈ {T = +∞}, there exists g

such that g ≤ f , T (g) ∈ R,
(9.16) {T = 0} is maximal among the 0-admissible families included in {T >

−∞} and for every improper function f in {T = +∞}, there exists g
such that g ≤ f , T (g) ∈ R.

Proof. From Lemma 9.1 (resp. property (9.7)) it follows that (9.11)⇔(9.12)
(resp. (9.11)⇔(9.13)). To prove (9.11)⇔(9.14), use the Second Representation
Theorem 2.3 and (9.8). To verify (9.11)⇔(9.15), use the Third Representa-
tion Theorem 8.6, the properties (9.9), (9.10) and the characterization (9.5) of
the inf-convolutive families. Finally, combine (9.6) and Corollary 7.4 to obtain
(9.11)⇔(9.16). �

A niveloid which is both inf- and sup-convolutive niveloid is said to be con-
volutive.

Corollary 9.6. A niveloid T is convolutive if and only if {T = 0} is au-
todual.
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Proof. The “only if” part follows from the definition of a convolutive
niveloid. If T is a niveloid, the ∇{T=0} ≤ T ≤ ∆{T=0}; hence, if {T = 0}
is autodual, then ∇{T=0} = T = ∆{T=0}; that is, T is convolutive. �

From (9.15) it follows that a niveloid T is convolutive if and only if {T = 0}
is both inf- and sup-convolutive and for every function f , there exists a func-
tion g such that T (g) ∈ R and either g ≤ f or g ≥ f . Note that a maximal
0-admissible family is both inf- and sup-convolutive, but it is not necessarily
autodual (see Examples 7.6). Hence there are families which are both inf- and
sup-convolutive but not 0-families of convolutive niveloids. Moreover, note that
an inf-convolutive family is not necessarily sup-convolutive (see Examples 7.6).
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