Topological Methods in Nonlinear Analysis
Journal of the Juliusz Schauder Center
Volume 4, 1994, 227-236

NEW DEVELOPMENTS ON THE
GINZBURG-LANDAU MODEL

HAiM BRrezis

Dedicated to Jean Leray with admiration

The starting point of the new developments around the Ginzburg-Landau
equation is a “frustrating” lemma. Suppose Q C R? is a smooth bounded simply
connected domain. Fix a smooth boundary condition g : 3Q — S! (S! = the
unit circle in R? = C) and consider the class of functions

Hy=H}(,5")={u: Q-8 :VueL?and u=gon a0}

LEMMA 1. The class H] is not empty if and only if
deg(g, 802) = 0.

Here deg refers to the usual (Brouwer) degree, also called the winding num-
ber, of g, considered as a map from 8Q(~ S!) into S'. It is a pleasure to
acknowledge the pioneering role played by J. Leray in the development of degree
theory and its use in analysis (see J. Leray and J. Schauder [14]).

The proof of Lemma 1 is not straightforward, especially the implication =.
One method consists in taking some u € H; and using it to homotopy g to a
constant, for example via its restriction to circles when Q is a disc. Of course
u need not be continuous and thus one cannot use the standard degree theory.
Instead one relies on the H'/2? degree theory—a notion introduced by L. Boutet
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de Monvel and O. Gabber (see A. Boutet de Monvel-Berthier, V. Georgescu and
R. Purice [4] for maps of S! into S'; see also H. Brezis and L. Nirenberg (7] for
the higher dimensional case and general manifolds). Another method consists in

using the formula
|
(1) deg(g, 0Q) = —/ Ty Ay,
T Ja

which holds for any smooth @ : @ — R? such that &« = g on 9Q. A density
argument shows that (1) still holds for any @ € H}(Q,R?). In particular, if
H} # 0, one may use (1) with some v € H, and since u; A uy = 0, it follows
that deg(g, 82) = 0.

We are now led to a dichotomy:
Case 1: d = deg(g,39) = 0.
Case 2: d = deg(g,90) # 0.
In Case 1, H} # 0 and then one may prove

LEMMA 2. H} = {u=¢"¥:p € H(Q,R) and ¢ = po on 0N}, where pg is
a smooth lifting of g, i.e., @o : I — R is a smooth function such that g = e*#o
on O51.

Lemma 2 is somewhat subtle. For example, it fails if H! is replaced by the
Sobolev space WP, p < 2. However, Lemma 2 holds for any smooth domain
Q C R", n > 2; see F. Bethuel and X. Zheng [3] and the elegant presentation

due to P. Mironescu in H. Brezis [5].

THEOREM 1. If d =0, then the minimization problem

(2) Min / [Vul?

ue H;

has a unique solution u, = e'?, where @ is the harmonic extension of pg to (1.

In Case 2 the analogue of problem (2) is meaningless since H; = (). In other
words, any extension u of g in § with values in S' must have infinite energy.
Recently, we have discovered with F. Bethuel and F. Hélein an approach showing
that problem (2) makes sense even when d # 0. In a sense we establish that
some extensions have “less infinite energy” than others. We summarize here the
main ideas developed in F. Bethuel, H. Brezis and F. Hélein {1], as well as other

developments.
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The first natural approach is to relax the constraint that u takes its values
in S"; instead one considers the class of all testing functions in H}(Q,C). This
is never empty, even if d # 0. The S? constraint reappears in the energy in the
forin of a “penalty”. Namely, one works with the Ginzburg-Landau functional

1 2 1 2 2
B = [ 1vu + [ (=172
As € — 0 the second term “forces” u to take its values into S!.
It is easy to see that

(3) v Il)gl(g’ C)Ee('“-)

is always achieved. Let u. be a minimizer. Incidentally, the uniqueness of U is
a delicate matter; in general uniqueness does not hold (see F. Bethuel, H. Brezis
and F. Hélein [1]), however, uniqueness is conjectured in some special situations,
for instance where 2 = B; and g(f) = €*°.
Clearly, u,. satisfies an Euler equation, namely the Ginzburg-Landau equa-
tion,
~ B, = (1~ fuef?).

Using the maximum principle one shows easily that
[ue| <1 in Q.
This suggests that u. converges in some appropriate sense to a limit as e — 0.
This is indeed true:

THEOREM 2. Assume d > 0, for simplicity. Then there is q subsequence
en — 0 and d distinct points a1,as,... ,ag in Q such that

e, (2) — u.(2) n Ck(Q\{(l].(lz, e g
Moreover,

(4) uy(z) =

z—~ay Z—0d i,

. e
|z — a;| |z —aq] '

where ¢ is a smooth harmonic functions in Q and its boundary value is deter-
mined via (4) using the fact that u, = g on 9.

Theorem 2 was initially proved by F. Bethuel, H. Brezis and F. Hélein (1], [2]
for starshaped domains. This assumption is used to show, via the Pokhozhaev

2 l/(
== T
2 Jan

identity,

1 2 g 1 / Bue g |*
el -1 i )| —£ =
ez (el <1745 [ (20)| 2

or

Ju. Og
on'” o ar
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(where v and T denote the normal and tangential directions on 92), that

1 2 2
) -1)“<C
) 5 [ (el =177 <
with C independent of . Using a local form of the Pokhozhaev identity, M. Struwe

[19], [20] was later able to remove the starshapedness assumption.

Estimate (5) plays a crucial role in the proof of Theorem 2. It allows us to
isolate a finite number of “bad” discs in 2, B(x;, Ae), i € J;, with the property
that

(6) cardJ, < C, with C' and A independent of ¢,
(N lz; — ;| 2 8Xe Vi, j € Je,
(8) |ue] > 1/2  outside the bad discs.

Another basic ingredient in the proof of Theorem 2 consists in finding a lower
bound for the energy of a map on a domain 2 with holes, in terms of the degree
of u on the boundaries of the holes. This study has been initiated in F. Bethuel,
H. Brezis and F. Hélein [1] and pursued by H. Brezis, F. Merle and T. Riviere [6].
The best estimate so far is due to Z. C. Han and 1. Shafrir [10]. We describe their
result, because it is of interest independently of the Ginzburg-Landau problem.

Let Q C R? be any domain and set

G =\ Blzj.p),
7=1

where 2, 2a,... ,Z, are n distinct points in G and p > 0. Assume further that,

for some p > 0,

9) dist(z;, 0Q) > max{p, 2u} Yj
and
(10) |z; — x| > 4p  Vi#j.
Consider the class C of maps u satisfying
(11) v € C'(G,R?) n CYG,R?),
(12) O0<a<ul<1 inG
1

13 —/ u2-1)2< K
(13) 7 G(| |°~-1)
and

(14) deg(u, 0B(z:,p)) = d; Vi,

where a, K are constants and d; € Z.
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THEOREM 3. Assume (9)-(14). Then

(15) / IV'U,Iz > 27[‘F(d1,d2, e ,d,;)]Og (l_l') - C)
G P
where
N 2
F(dy,dy,-.. ,dy) =min{ SN 4 }
m=1"'j€J,
this minimum being taken over all possible partitions of the set {1,2,... ,n}

into disjoint subsets Jy,Ja,... ,Jy. The constant C in (15) depends only on
a, K,dy,...,d,.

Theorem 3 is used in the proof of Theorem 2 with p = Xe, the constant K
being related to C in (5).

The location of the singular points aj,...,aq in Theorem 2 is determined
via a rather simple and explicit procedure, involving a “renormalized energy”
discovered by F. Bethuel, H. Brezis and F. Hélein [1], [2]. We describe it using
a simplified presentation communicated to us by C. G. Ragazzo.

Given a point y € Q consider the Green function G(z,y) relative to a Neu-
mann boundary condition:

AG = 2néb, in Q,

0G 1
= E(g A gr) on 0RQ,

/ G(4y)(gAhg:)=0.
an

Note that G is uniquely defined because of the third (normalization) condition.
It is not difficult to check that G(z,y) = G(y, z), for all z,y.

Consider the regular part of G,
R(z,y) = G(z,y) — log |z ~ yl,

so that R(z,z) makes sense (and is smooth).

Given a configuration b = (b, by, . .. , bs) of d distinct points in Q, set

(16) W(b)=-mY loglb; —bj| — = >_ R(b;,b;).

i#j i
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THEOREM 4. The configuration a = (e1,as,...,aq) given by Theorem 2
satisfies
(1n W(a) < W(b) vb.

The proof is somewhat technical (see F. Bethuel, H. Brezis and F. Hélein [1],
Chapter VIII). But here is one illuminating observation. Let us return to the

Min / |Vul?,
Ml

and let us recall that it made no sense hecause of the topological obstruction

“meaningless” problem

stated in Lemma 1. The first approach consisted in removing the topological
obstruction by changing the target space: instead of S! we used C (= R?). A
totally different approach consists in breaking the topological ohstruction in the
domain space, i.e., (2, by making holes. Of course, for topological purposes it
suffices to make just one hole. It is however convenient, to minimize energy, to
make several holes. Set .
2, = O\ ) B(bi.p),

i=1
where b = (by, bo,... ,bx) is a given configuration of k distinct points in Q and
p is a small parameter. Consider the class £, of maps u € H'(£,, S!) such that
u = g on 0N and deg(u,dB(b;,p)) = d; for i = 1,... ,k, where dy,... ,d; are
given in Z. The analogue of Lemma 1 here says that £, is not empty iff

k
(18) D di=d.
i=1
Assuming (18) one then considers the problem

(19) Min / Va2,
£ Ja,

ucé,

It has a unique solution %, which can be expressed explicitly in terms of harmonic
functions as in Theorem 1. It is not difficult to see that, as p — 0,

k
(20) % /n |Vu,|? = W(de) log% + 0(1).
e i=1

Of course, the right hand side in (20) tends to infinity as p — 0. However, in
order to make it a “small infinity” it pays to minimize Zle d?, subject to the

constraint (18). Recall that the number of holes, k, is also at our disposal. Since

k k
S>3 jdl 2 |d =4,
i=1 i=1
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it follows that the best one can do is to take k = d and choose d; = +1 for all i.
In what follows we make this choice.

Returning to (20) we then have
1

(21) ~/ IVu,|? = 7d log ~ + O(1),
2 Ja, P

Pushing further the expansion one finds, as p — 0,
1 1
(22) ; / Vol = md log = + W(5) + O(p).
2,

In order to minimize the “infinite energy” (as p — 0) it is then natural to make
the holes centered at a configuration a = (a1,a2,...,a4) which minimizes the
renormalized energy W. Then one proves that up, — u, given by (4).

We find it very surprising that these two approaches (via Ginzburg-Landau
or via holes), which are quite different in nature, turn out to be consistent. This
means that, in some sense, u, given by (4), together with (17), provides an
intrinsic solution to the original meaningless problem.

This assertion is reinforced by the following recent result of R. Hardt and
F. H. Lin [11], showing that a third natural approximation method yields the

same ..

Given any p < 2 it is easy to see that
W;vP = ng"’(ﬂ, Sh) # 9,

even when d # 0; for example, if @ = B, then g(z/|z|) belongs to W1 for
every p < 2. For any p < 2, let u, be a minimizer for
Min /IVulp.
ueW,*

THEOREM 5. A subsequence (u,,) converges, as p, — 2, to u, given by
Theorem 2 with a = (ay, as, ... ,a4) satisfying (17).

At this stage the reader may think that any “reasonable” approximation pro-
cedure will lead to the same answer. In fact, the situation is more complicated.
Roughly speaking, the above u, corresponds to a “homogeneous” material. Sup-
pose we introduce a weight function w in the Ginzburg-Landau functional and

set

~ 1 1
B =j [ IvuP+ 5 /n (Juf? = 1)%w,

where w € C*(Q2) and w > a > 0 on Q.
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THEOREM 6. Let i, be a minimizer of Fj‘s. Then there is a subsequence
€n — 0 such that u,, — . given by (4). In addition, the configuration a =
(a1,a2,-.. ,a4) minimizes another renormalized energy; more precisely,

W(a) < W(b) Vb,

where W(b) = W(b) + %w Z;-':l logw(h;), and W is given by (16).

For the proof of Theorem 6, see C. Lefter and V. Radulescu [13] and also
M. C. Hong [12]. As a consequence one sees that the configuration of singularities
a = (a1,...,aq) may be driven to any desired location by choosing a weight w
which is almost zero near certain points (this may be related to the “pinning of
vortices” observed in the physics of super-conductors). It would be interesting
to determine whether other natural approximation techniques could yield some

limits which are not of the form (4).

An interesting line of current research consists in describing the behavior of
u, near its singularities. For example, one knows that [, [Vuc|?> — oo as e — 0.

However, certain related quantities remain bounded, for example

/ |V|ue||2 < C;
Ja

this was proved in F. Bethuel, H. Brezis and F. Hélein [1]. We had made some

conjectures which have been solved by P. Mironescu and M. Comte:

THEOREM 7. Let ue be a minimizer of E.. Then

(23) J -l IVul <Co foramya>o,
Q
we \|?
(24) /(1 — Jue ) |ue | V( < ) <C, for any o >0
0 I'“'El
and
(25) |det Vu.| < C.
0

For the proofs we refer to P. Mironescu [16], M. Comte and P. Mironescu [8]
[9]. On a related mattet, one knows that for € sufficiently small, u. has precisely
d zeroes. Far away from these zeroes formula (4) provides a good approximation

for u., but how about near these zeroes?

Here is an interesting result of T. Shafrir [18]. For simplicity, we state it when
d=1



NEw DEVELOPMENTS ON THE GINZBURG-LANDAU MODEL 235

THEOREM 8. Let ¢ be as in Theorem 2. There is a smooth complez-valued
Junction F defined on R? such that

(26) lim] U, (2) - F (Z__af-_) eivl(z)
S‘Il

Ep—+

=0,
L=(82)

where a; is the zero of u.. The function F satisfies F(0) = 0,
(27) —AF=F(1—|F?>) onR?

and F is energy minimizing (for the natural energy associated with (27)).

Further properties of 7' have been obtained by I. Shafrir [17]; for example, 0
is the only point where F' vanishes and it is a zero of index +1. In addition,

lim
Jz|—o0

F(z)—é‘ =0.

A very interesting open problem. is to determine whether F has the precise form

k4

(28) F(z) = f(e)

where f is a real-valued function satisfying
7" 1 ! 1 2
=2+ 5T =[1= %) on (0,00)

with
f(0)=0 and f(o0)=1.

We call attention to a nice result of P. Mironescu [15] on a related subject.
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