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1. Introduction

In this paper, we address the question of finding a suitable analogue of Weyl’s
asymptotic formula for the eigenvalue distribution of Laplacians on (certain
classes of self-similar) fractals. We propose, in particular, an analogue of the
notion of Riemannian volume on fractals and establish, in the process, some con-
nections between analysis on fractals, spectral geometry, and aspects of Connes’
noncommutative geometry.

1.1. Weyl’s asymptotic formula and drums with fractal bound-
ary. Before stating our main problem more precisely, we briefly recall Wey!’s for-
mula for the spectral distribution of Laplacians on (possibly irregular) bounded
open sets of Euclidean space and on (smooth, compact) Riemannian manifolds.

Let €} be a bounded open set in R®, with boundary I' = 8. We consider
the following variational eigenvalue problem (P):

(1.1) Au=l inQ,
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with Dirichlet (resp., Neumann) boundary conditions
(1.2) u=0onT (resp., dufOn =0onT).

Here, A = — 3_7_, 8?/8z% denotes the (negative) Laplacian in R™. [For no-
tational simplicity, we use throughout this paper the geometer’s convention for
the Laplacian (denoted by A here but by —A in most analysis papers and in
[Lal, KiLal], in particular), so that the spectrum of A is contained in [0, +c0).]
We stress that for rough boundaries, the problem (P) must be interpreted in the
variational sense; namely, X is an eigenvalue of (P) (with associated eigenfunc-
tion u) if u # 0 is a weak (distributional) solution of (1.1): u € F and

(1.3) E(u,v) 1= / VuVvdz = /\/ wv dz, for all v € F,
Q Q

where dzx denotes n-dimensional Lebesgue measure on  and F := Hj () (resp.,
HY(Q)) for the Dirichlet (resp., Neumann) problem. [We use here the French
notation for the Sobolev spaces H'(Q) and H3(02). Hence H (1) is the Hilbert
space of all functions u in L?() with distributional gradient Vu in (L?(Q))¥,
equipped with the norm [|ull 1) = (||u/Z2q) + ||Vu||%L,(n))N)1/2, while H} ()
denotes the closure in H(Q2) of C§°(£2), the space of smooth functions with
compact support contained in Q.]

The spectrum of (P) is discrete and consists of an infinite sequence of eigen-
values, written in increasing order according to multiplicity:

(1.4) 0<A<A<...<A <= +oo, as j — o0o.

(This is always true for the Dirichlet problem and is also true for the Neumann
problem under suitable hypotheses; for example, either (i) if  has a (locally)
Lipschitz boundary or (ii) if 2 has the “extension property”, eg,ifQCR2isa
quasidisk; see [Lal, §4.2.B, pp. 509-511] and references therein. In the sequel,
for the Neumann problem, we shall assume that either (i) or (ii) holds.)

Define the eigenvalue counting function

(1.5) NO)=#{=1: \ <)},

the number of (positive) eigenvalues (counted according to multiplicity) not ex-
ceeding A > 0.
Then Weyl’s classical asymptotic formula [We] states that

(1.6) N(}) ~ e, Vol (2) A2, as A — +o0,

where Vol,,(Q2) denotes the n-dimensional volume (i.e., Lebesgue measure) of
Q and ¢, is an explicit positive constant depending only on n; namely, ¢, =
. (2m)~"B,, where B, is the volume of the unit ball in R™. (Here and thereafter,
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the symbol ~ means that the ratio of the left and right sides of (1.6) tends to 1
as A — +o00.)

REMARK 1.7. Formula (1.6) was first established by Weyl [We] for piece-
wise smooth boundaries. For the Dirichlet Laplacian, it was then extended by
Birman and Solomyak [BiSol]-[BiSo2] for arbitrary bounded open sets, and by
Rozenblyum [Rol-2] for open sets with finite volume. For further extensions,
see, e.g., [BiSo2, Ro2, Me, FlLal-2, Lal] and the references therein.

Now, let d = dys € [n — 1, 7] be the Minkowski dimension of the boundary T’
and assume that the d-dimensional upper Minkowski content of T is finite. (See,
e.g., [Lal, Definition 2.1 and §3].) Then the author [Lal-2] has shown that if
I is fractal (i.e., d # n — 1), the following Weyl formula with sharp remainder
estimate holds:

(1.8) N(Q\) = cn Vol (A2 + 0(A¥2) a5 A — +o0.

(See [Lal, Theorems 2.1-2.3, Corollaries 2.1 and 2.2, pp. 479-483, and Theorem
4.1, pp. 510-511], specialized to the Dirichlet or Neumann Laplacian.)

REMARK 1.9. (a) Formula (1.8) yields a partial resolution of the Weyl-Berry
conjecture ([We|, [Bel-2]). We refer to [Lal, §1] (as well as [La3,5]) and the
references therein (including [BrCal]) for a detailed account of problems and
results related to the conjectures of H. Weyl ([We], case of a smooth boundary)
and M. V. Berry ([Bel-2], case of a fractal boundary).

(b) The Minkowski (-Bouligand) dimension d = djs (also called box dimen-
sion in the literature on fractal geometry) provides a measure of the roughness
of the boundary T'; in particular, the larger d, the more irregular I'. Of course,
if ' is smooth (say, of class Cl), then dpr = n — 1, the topological dimension
of I'. Further, for a nice self-similar boundary (such as the snowflake curve), we
have dyr = dy, the Hausdorff ‘dimension of T However, in general, one cannot
substitute dp for das in (1.8), as was first pointed out in [BrCa)]. (See also [Lal,
Examples 5.1 and 5.1', pp. 512-515].) Actually, it is shown in [Lal] that one
cennot replace the Minkowski dimension djs (in (1.8)) by any notion of dimen-
sion that is associated with a (countably additive) measure rather than a (finitely
subadditive) content. (See, in particular, [Lal, Remark 5.2(b), p. 514].)

(c) The results of [Lal] are also valid for (suitable) positive elliptic operators
of order 2m; in this case, the error term in (1.8) is O(A%?™) and the leading term
is expressed by means of an integral (in “phase space”) involving the principal
symbol of the operator. One should keep this fact in mind when trying to exploit
the analogy (drawn in [La5]) between “drums with fractal boundary” and “drums
with fractal membrane”.

The case of Riemannian manifolds. We have discussed so far Weyl’s formula
(1.6) in the context of open subsets 2 of Euclidean space R". However, the
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counterpart of (1.6) also holds for the (Dirichlet or Neumann) Laplacian on
a (smooth compact, n-dimensional) Riemannian manifold M (with boundary).
In this case, the analogue of Vol,(f2} in (1.6} is Vol, (M), the (n-dimensional)
volume of M, and the exponent of A1/2 in (1.6) is simply n, the dimension of
the manifold. (See, e.g., [Ho] and the references therein.)

1.2. Laplacians on fractals and drums with fractal membrane. The
question (& la Mark Kac [Kc]) Can one hear the shape of a fractal drum? has
been the object of intense investigation by the author and his collaborators [Lal—
6, LaFl, LaPol1-3, LaMal-2, KilLa2, LaPa, LNRG]. In particular, in the case of
fractal strings (i.e., n = 1 and thus @ C R!), it was shown to be intimately
connected with the Riemann hypothesis. [See ([LaMal-2], joint with Helmut
Maier), which builds upon ([LaPol-2], joint with Carl Pomerance).] (We refer
to [Lab] for a recent survey of the main results and problems in this area, as
well as for many other papers on this and related subjects. See also [La3] for
an earlier expository article.) In this paper, however, we shall primarily be
interested in the vibrations of drums with fractal membrane rather than “drums
with fractal boundary” (in the terminology of [La5]). More precisely, we will
look for an analogue of Weyl’s asymptotic formula (1.6) for Laplacians on a
(suitable, self-similar) fractal F', rather than on an open set Q2 with “fractal”
boundary T' = 951.

Several questions arise naturally in this context:

Qo. What is a (self-similar) fractal?

Q1. What is a Laplacian on a fractal?

Q2. Is there an analogue of Weyl’s formula for Laplacians on a fractal F?

If so, what is its form?

With some optimism and with the obvious notation, we may expect that for

some exponent dg > (0, we have

(1.10) N(\) =< 2%/2 as XA - 40
(ie., 0 < limA~9s/2N(}) < Tim A~9/2N(}) < +00), or even
(1.11) N(A\) ~CA%/2  as X — 400

(ie., lim A~9s/2N()) = C, for some positive constant C = C(F)).
Q3. What is the value of the “spectral exponent” dg? Further, what is the
geometrical {or analytical) interpretation of dg?
Moreover, it is natural to ask whether dg is equal to the Hausdorff (or Min-
kowski) dimension of F. (Note that this question may not make sense since,

a priori, F' need not be equipped with any metric.) Even if F C R" for some
integer n, examples from the physics [Dh, AO, RT, HHW, ...] and mathematics
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(esp., probabilistic) [Kul, BP, Li, Fu2, FuSh, ...] literature show that the answer
to this question is no in general. However, a general theorem established in our
joint work [KiLal] (and discussed later on in this paper) will provide a (reason-
ably) satisfactory answer to questions Qg2 and Qg for Laplacians on a certain
class of fractals; namely, “finitely ramified” (i.e., p.c.f.) self-similar sets [Ki2).
We shall see that there are many- possible Laplacians on F', each giving rise to
a “spectral exponent” dg. The largest value of these exponents—denoted by d¥
and called the “spectral dimension” in [KiLal]—can in fact be related (thanks
to the results of [KiLal] and then [Kid4]) to the Hausdorff (= Minkowski, in this
case) dimension of F, equipped with a suitable (“intrinsic”) metric.
Comparing (1.10) and (1.6), we are also led to ask the following question:

Q4. Is there an analogue of the notion of “Riemannian volume” on a “frac-

tal”?

Finally, we mention a question that motivates many of the results and con-
jectures in [La5] and in the present work (see esp. [La5, §6]), although we will
not attempt to answer it here.

Qs. What is a suitable analogue of the notion of “geodesic flow” on a “frac-

tal”?

In this paper, we shall address or revisit several of these questions and propose
possible answers and/or conjectures. In §2, we shall provide a formal definition
of an (analytical) self-similar fractal F, thereby addressing questions Qg and Q.
It will depend, in particular, on the geometrical, dynamical, measure-theoretic
and analytical structures of F. (Our point of view will be slightly different from
that adopted in [Ki2] and [KiLal], for example.) Then, in §3, we shall recall,
in particular, recent (joint) work [KiLal] in which we partly answer questions
Q2 and Qg for a certain class of “fractals”; namely, the “finitely ramified” (i.e.,
p.c.f.) self-similar sets (formally) introduced in [Ki2]. We shall also suggest
some possible extensions of these results to more general self-similar fractals.
Moreover, in §4, using the main results of [KiLal] and the notion of Dixmier
trace—which is a basic tool in aspects of noncommutative geometry [Cod—5]—
we shall construct a positive measure which we propose to be a suitable substitute
on p.c.f. fractals for the notion of Riemannian volume. (In fact, according to
a result of Connes [Co3; Co5, §VIL.1], an analogous construction applied to the
Dirac operator on a (spin) Riemannian manifold M yields the usual Riemannian
volume on M.) This will enable us to complete the results of [KiLal] and obtain
a more precise counterpart of Weyl’s asymptotic formula in this context, by
reinterpreting them in terms of the total mass of this “wolume measure”. In
§5, we shall propose a specific conjecture regarding the nature of the positive
measure constructed in §4 (for the case of the “spectral dimension”, that is, of
the maximum “spectral exponent”). In the process, we shall establish contact
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with recent work of Connes and Sullivan ([CoSu], [Co5, §IV.3]) on “quantized
calculus” and limit sets of quasi-Fuchsian groups. Two questions then arise
naturally: Can the above “volume measure” be related to Hausdorff measure
with respect to some suitable (“intrinsic”) metric on F? Is there a suitable
notion of “guantized calculus” on (analytical) self-similar fractals, arising from
an appropriate analogue of the Dirac operator?

In closing, we mention that the above quest for a suitable notion of “volume”
for “drums with fractal membrane” may shed some light on the corresponding
(but even more delicate) problem for “drums with fractal boundary”, studied in
particular in [Lal-3,5] and [LaPol-3].

For the simplicity of exposition, we will mostly work within the framework
of [KiLal], with only a few excursions in more complicated settings. It is clear,
however, that more general results can be obtained by using similar methods,
once certain difficulties (that we shall try to point out) have been circumvented.

Qur goal is to help develop further (geometric) analysis on “fractals”, as
well as to establish further connections between this exciting new subject and
aspects of Connes’ noncommutative geometry. The results obtained in this paper
constitute a modest step towards this latter goal but will hopefully raise enough
questions to stimulate further research in this direction.

2. Self-similar fractals and energy functionals

In this section, we address Questions Qg and Q; regarding the definition of
a self-similar (s.s., for short) fractal F', as well as of Laplacians on F, both from
a topological, dynamical and analytical points of view. For more details, we
refer to ([Ki2], [KiLal, §1], [La5, Part II]), and the relevant references therein.
Our treatment will differ somewhat from those references in that it is a bit
more systematic and stresses the crucial role played by suitable “self-similar
energy functionals”; namely, s.s. Dirichlet forms. In fact, by contrast to some
other approaches, the existence of a (suitable) self-similar “energy functional”
on F is an integral part (rather than a consequence) of the definitions. (See, in
particular, Definition 2.24 in §2.4 below.)

2.1. Topological self-similar fractals. Let F' be a compact topological
space. Given an integer N > 2, we consider the alphabet in N letters, A =
{1,...,N}, and & = AV, the (one-sided) sequence space (or set of “words” over
A). A wordw in ¥ is denoted by w = wjws .. . wg ..., with w, € {1,... ,N}.
Further, a finite word of length m, w = w1 ...wy,, is one for which the above
sequence terminates. We let X,, = A™ denote the set of words of length m.

The following definition provides a convenient “symbolic dynamical” descrip-
tion of a s.s. fractal.
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DEFINITION 2.1 (Topological s.s. fractal). Assume that F is compact and
metrizable. Further, for each : = 1,...,N, let W; : I — F be a continuous
cne-to-one map. Then & = (4, {W;}Y,) is a self-similar structure on F if there
exists a continuous, onto map II : £ — F such that for each i = 1,... , N, the
following diagram is commutative (i.e., W; oI = I 0 ;):

x 5 F
1o 1 W;
r L F
where the i-th shift oy is defined by o;(wiw;...) = iwwsy.... Moreover, F,

equipped with S, is called a topological self-similar set (or fractal).

REMARK 2.2. (a) The space F' can be viewed as a purely topological object,
without any a priori choice of metric. In fact, F' is the quotient space of ¥ by
the equivalence relation induced by the “projection” II; see [Ka, Ku2]| for related
(and more general) definitions. For example, in [Ka, Ku2], the maps W; need
not be injective and the topological space F' need not be Hausdorff (and hence
i= not assumed to be metrizable).

(b) It can be checked [Ki2] that II is uniquely determined by S; indeed, given
w € X, we have {II(w)} = Noo_; W, 0...0W,, (F), the intersection of a nested
sequence of compact subsets of F'.

(¢) It follows from Definition 2.1 that

N
(2.3) F=JwiF);

i=1

ie., F is “invariant under the transformations W;”. (For convenience, a proof
of (2.3) is provided at the end of this remark.) Note, however, that contrary
to the standard definitions of “self-similar fractals” ([Mo], [Hu], [Fc, §9]), F is
not assumed to be embedded in some Euclidean space R” and the mappings W;
are not assumed to be similarity transformations (with respect to the Euclidean
metric) or even contractions (with respect to some metric on F). Actually, even
if—as is the case of most of the standard “fractals” [Ma]— F is embedded in some
linear space R", it will be quite important in the following to “forget” this fact
and to view F (and the associated mathematical structures on F) intrinsically.
In this sense, analysis on “fractals” is essentially “nonlinear”.

(Here is a proof of (2.3): Let z € F. Since 1T is onto, we have z = II(w),
for some w = wywsy... in ¥; write wy; = 4, say. Thus z = (iwows...) =
Mooj(waws ... ) = W;oll(wows ... ), and so z € W;(F). Hence F C U;V=1 W;(F),
which is all that needs to be proved.)
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(d) To avoid extreme situations, we will assume in the following that F' is
connected. (Otherwise, F' would have to be totally disconnected, such as a Cantor

set, for example.)

NOTATION 2.4. Given a finite word w = wi...wm in £, we let W, =
Wy, 0...0W,_ and write F,, = W,,(F); in particular, we write F; = W;(F) for
i=1,...,N.

REMARK 2.5. (a) Intuitively, each F,, can be thought of as a “scaled copy”
of F. Moreover, by (2.3), the subsets F; (¢ = 1,...,N) constitute the basic
“building blocks” of F'. Note that there may be some overlap between the F;’s.
Roughly speaking, F is said to satisfy the “open set condition” ([Mo], [Hu], [Fc,
§9]) if this overlap is “small”, and to be “finitely ramified” if it is finite; namely,
U;2;(F; N F;) is finite. For example, the Sierpiriski gasket is “finitely ramified”
whereas the Sierpiniski carpet is not.

(b) We shall assume, most often implicitly, that F' satisfies the “topological
open set condition” (in the sense of [Ki3]), an abstract version of the standard
open set condition used in textbooks on fractal geometry (e.g., [Fc]). This con-
dition is always satisfied if F is a p.c.f. self-similar set, a mathematical version
of the notion of “finitely ramified” fractal.

DEFINITION 2.6 (p.c.f. self-similar set; [Ki2]). Given a self-similar structure
S = (A, {Wi}}L,) on F, we let C, := 1" (U;,;(Fi N Fj)) (the “critical set”)
and P := |Joo_, o™(C,) (the “post-critical set”), where o : ¥ — X is the shift
map defined by o(wiwows...) = wows ... and o™ is the m-th iterate of o (so
that c™(w1ws...) = Wm41Wm+2--.). Then S is said to be post-critically finite
(in short, p.c.f.) if P is a finite set. Further, F' equipped with this structure is
called a p.c.f. self-similar set (or fractal).

REMARK 2.7. The above terminology and definition is inspired, in particu-
lar, by the work of Sullivan, Thurston (and many other researchers) related to
hyperbolic dynamical systems. Note, however, that we are dealing here with a
one-sided (rather than two-sided) shift space, and that the dynamics is deter-
mined by a semigroup (spanned by {o;}#,) rather than a group. We shall return
to this point later on when we discuss possible connections with the theory of
operator algebras. (See esp. §5.2.)

For various examples of p.c.f. self-similar sets, we refer to [Ki2, §8] and
[KiLal, §3]. These include, in particular, the “nested fractals” (roughly, highly
symmetric s.s. sets) introduced by Lindstrgm in [Li]; for instance, the Sierpiriski
gasket and its generalizations to higher dimensional spaces, as well as the mod-
ified Koch curve. Another example is Hata’s fractal tree, a kind of self-similar
tree introduced in [Ha).
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(2.8) In the following, it will be useful to keep in mind that a p.c.f. self-similar
set can be viewed in a netural way as the limit of an increasing sequence of finite
graphs. Namely, if we set Vo = II(P) and for m 2 0, Vin = U,z Wo(IL(P)),
then each V,, is finite,

(2.9) VocVicVc... and de(UVm).

m=0
(See, e.g., [KiLal, Fig. 1, p. 95] for an illustration of this fact in the simple case
of the Sierpinski gasket.) Hence various analytical objects on F, such as Green’s
function, Laplacians, Dirichlet forms, can be defined (when possible) as suitably
renormalized limits of their discrete counterpart on the finite graphs V;,.

REMARK 2.10. In certain special cases, this idea was already exploited in the
physics literature (e.g., [AO, RT]) as well as in the probabilistic literature (e.g.,
[Kul, Go, BP, Li|), where for the Sierpifiski gasket, say, “Brownian motion” on
F is defined as a limit of rescaled random walks on the approximating sets.

2.2. Self-similar Dirichlet forms. In order to work with suitable “energy
functionals” on F', we need to choose an appropriate measure on F.

Let u be a Borel probability measure on F such that

(2.11a) support(p) = F (ie., p(U) > 0 for all nonempty open subsets U of
F),

(2.11b) u is diffuse (i.e., u(A) = 0 for all finite subsets A of F).

REMARK 2.12. As is observed in [Co4, p. 31], a remarkable (but insuffi-
ciently well-known) theorem of Oxtoby and Ulam [OxUl] implies that (2.11a)
and (2.11b) are the only compatibility conditions between Lebesgue measure
and the topology of Euclidean space (or, more generally, between the volume
measure and the topology of a differentiable (oriented) manifold). Indeed, by
[OxUl], given two Borel probability measures p;, 42 satisfying (2.11) on a topo-
logical manifold X, there exists a homeomorphism of X that maps u; onto ps.
Note, of course, that a (topological) s.s. fractal—such as the Sierpifiski gasket,
for example—is in general far from being a topological manifold (i.e., locally
homemorphic to an open set of Euclidean space). It would be natural, however,
to wonder what form the Oxtoby-Ulam theorem might take in this context.

Let £ be a Dirichlet form on L?(u) = L2(F, i), with domain F. (See, e.g.,
[KiLal, Definition 4.1, p. 115].) Essentially, £ is a closed, nonnegative un-
bounded quadratic form on L?(u) which satisfies the “Markov property” ; namely,
for all u € F, £(u,u) < £(u,u), where %(z) := 0 (resp., 1) if u(z) < 0 (resp.,
> 1), and @(z) := u(z) otherwise. In the sequel, we will not distinguish between
the quadratic form £(-) and the associated bilinear form £(-,-). For the general
theory of Dirichlet forms, we refer to Fukushima’s book [Ful].
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The following definition is inspired by results in [Fu2] extended in [KiLal].
(We adopt the terminology of [La5].)

DEFINITION 2.13 (Self-similar Dirichlet form). Let (F,S) be a (topological)
s.s. fractal. Let ¢; ( = 1,...,NN) be positive constants < 1. We say that the
Dirichlet form £ is self-similar (with respect to &) with “harmonic constants”
{e},if €= Eil c; '€ oWl ie., for all w € F, we have uo W; € F for
i=1,...,N and

N
(2.14) E(u,v) =Y ¢ E(uo Wy, v o W),

i=1
for all u,v € F.

REMARK 2.15. (a) In general, it is not clear whether there always exists a s.s.
Dirichlet form on F'; this is so even if F' is assumed to be p.c.f. In that situation,
by [Ki2, KiLal], the answer is affirmative provided that a certain nonlinear
operator, called the “renormalization operator” admits a positive eigenvalue «
(called the “renormalization constant” in [Lab)); i.e., provided that there exists
a (regular) “harmonic structure” on F. The standard fixed point theorems from
topology or nonlinear analysis do not seem to guarantee the existence of such an
eigenvalue. It would be interesting to address this problem.

In the special case of “nested fractals”, however, the renormalization proce-
dure always works—as was shown in [Li] by means of the Lipschitz fixed point
theorem—and so (by [Fu2]) a s.s. Dirichlet form can be constructed on F (with
equal “harmonic constants” ¢; = ... = ¢y = 1/, due to the high symmetry of
F).

(b) For a p.c.f. self-similar fractal F' (equipped with a regular “harmonic
structure”), the Dirithlet form £ constructed in [Ki2]—as a renormalized limit
of discrete Dirichlet forms on the approximating graphs—is shown in [KiLal,
Lemma 6.1, p. 119] to be self-similar (in the sense of Definition 2.13). Moreover,
the domain F of £ (and also & itself) is independent of the measure u and
F C C(F), where C(F) denotes the space of all real-valued continuous functions
on F'. Heuristically, we propose here to interpret the inclusion 7 C C(F) as
a counterpart of the standard one-dimensional Sobolev embedding theorem in
Euclidean space. (This fact will explain several special features of the present
situation.)

In this paper, we will mostly be interested in Dirichlet forms obtained in
this manner and we will call them regular (s.s. Dirichlet forms). In particular,
a regular p.c.f. self-similar set (F,S,€£) will be one that is equipped with such
a regular s.s. form £ (With our present convention, this last definition is
equivalent to that used in [Ki2, KiLal].)
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2.3. Self-similar measures. Let (F,8) be a topological s.s. fractal. For
our present purpose, we shall first work with special types of measures compatible
with the topology of F, in the sense of (2.11); namely, the “Bernoulli measures”.
Recall that the Bernoulli measure with weights {u;}Y ,(u; > 0, Z,fil Hi=1)1is

the unique Borel probability measure p on F such that (with the notation of
(2.4))

W(Fo) = thoy - - - o,
for all w = w1 ...wm € By and all m € N; so that, in particular, u(F;) = y;, for
i=1,...,N.

In [Lab, §5], we have used the terms “Bernoulli measure” and “self-similar
measure” interchangeably. When F' is p.c.f., this will be justified by Theorem
2.18 below. First, however, we recall the definition of a s.s. measure that was
introduced by Hutchinson [Hu] for s.s. fractals in Euclidean (or metric) spaces
and further studied, in particular, by Strichartz [St1-2] from the point of view
of harmonic analysis.

DEFINITION 2.16 (Self-similar measure). Let (F,S) be a topological self-
similar fractal and let u be a Borel probability measure on F. Then u is said to
be self-similar (with respect to S) with “weights” {b;}; (b; > 0, 3%, b, =1)
fu=3N buoW i,

N
(2.17) /Ffdu=zbifpf°W¢dﬂ,
i=1

for all continuous (and hence, for all bounded measurable) functions f on F.

The following simple result—which adapts [Hu, Theorems 4.4.1 and 4.4.4,
p. 733] to the present setting—appears to be new in this context and clarifies
the relationships between some of the concepts involved. It will also motivate
and help us to formulate some of our conjectures later on in the paper (see §5.1).

THEOREM 2.18. Let (F,S) be a regular p.c.f. self-similar set, equipped with
a (regular) s.s. Dirichlet form £. Then, given b; (i = 1,... ,N } with b; > 0
and E;’il bi = 1, there ezists a unique s.s. measure p with weights {b;}Y, (i.e.,
satisfying (2.17)). Moreover, u coincides with the Bernoulli measure with weights
{s = bi}L,.

REMARK 2.19. (a) In other words, if 4 is the pull-back measure of y on
3~ = AN by the continuous map II : ¥ — F (given in Definition 2.1), then py is
just the infinite product measure of the same copy of the standard probability
measure on A = {1,... , N} with weights {u;} ;.

(b) Using analytical results in [KuZh, Ki5)], one could extend Theorem 2.18
to more general s.s. fractals, such as the (two-dimensional) Sierpifiski carpet, for
example, first studied probabilistically in [BB1].
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(c) We do not know whether one can obtain an analogous theorem concern-
ing the existence and uniqueness of a (regular) s.s. Dirichlet form with given
“harmonic constants” ¢; € (0,1), i =1,...,N. However, we would expect this
to be true under suitable hypotheses. (See also Remark 2.15(a) above.)

PROOF OF THEOREM 2.18. Let P(F) denote the set of probability measures
on F. Consider (as in [Hu]) the map T : P(F) — P(F) defined by

N .
(220) T(u) = bawo W,
i=1

Then we claim that T is a contraction with respect to the complete metric § on
P(F) given by

(2:21) 8.(p1, p2) = sup{|a (u) — pa(u)] : w € F, VE(u) < 1},

where p; € P(F) and pj(u) := [pudp; (j =1,2). (This metric differs from that
used in the setting of [Hu].) Hence, by the Banach fixed point theorem, T has a
unique fixed point g, which (by Definition 2.16) is the desired s.s. measure with
weights {b;} ;. (Further, p is obtained by the method of successive approx-
imations.) The rest of the proof follows easily from the uniqueness statement
because, by Definition 2.1, a Bernoulli measure is clearly self-similar (with the
same weights).

To see that T is a contraction (with Lipschitz constant x = max;<i<n /G <
1), observe that by (2.14) (and with the notation £(u) = £(u,u), for u € F =
Dom(£)),

E(uoW;) £ ci€(u)

and hence \/E(uo W;) < ky/E(u), for i =1,...,N and uw € F. Thus by (2.21),
we have for u € F,

1w o W) = paa(uw 0 W) < 6.1, 12 E)
and so, by (2.20),

N
T () () ~ Tua) ()| < S biljaa (w0 Wa) ~ pua(w 0 W)

i=1
N

< Z (bird (1, p2) v/ E(u) ) = 6. (p1, pa) v/ E(u);
i=1

from which we deduce that
6. (T(I'l’l)) T(;U'Z)) < ’96. (/1‘17“2)’ with & < 1.

The fact that & is a metric on P(F) and that it is complete follows (using
results in [KiLal, §5] and [Ki4]) because F is regular and p.c.f.
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Note that (formally) 6, is the restriction to the compact space P(F) of the
“dual metric” on C(F)’ to 6, where

(2.22) 8(z,y) = sup{|u(z) —u(y)| : v € F,/E(u) < 1}

for z,y € F. (Recall from Remark 2.15(b) that F C C(F) in the present
situation.) Further, according to [Ki4], 6 is a complete metric on F, with finite
diameter. O

REMARK 2.23. (a) One could also use the same metric on P(F) as in [Hul,
defined as in (2.21) except that the supremum is now taken over all continuous
functions on F' with Lipschitz constant < 1, with respect to the metric 6 in
(2.22). However, the above metric is better suited for our later purposes.

(b) The fact that & is well-defined (and finite) is closely related to the “one-
dimensional” nature of p.c.f. fractals, as suggested in Remark 2.15(b). However,
in more general situations (such as the three-dimensional Sierpifiski carpet, for
example), one should use a Connes-type metric. We will return to this point
later on. (See esp. §5.)

2.4. Analytical self-similar fractals. We are now ready to provide a
formal definition of an analytical s.s. fractal. At this point, the reader may wish
to review Definitions 2.13 and 2.16 of a s.s. Dirichlet form and a s.s. measure,
respectively.

DEFINITION 2.24. An analytical self-similar set (or fractal) is a quadruple
(F,8, 1, E), where F is a compact metrizable topological space, S a s.s. structure
on F, y is a s.s. measure (with respect to §) on F, and € is a s.s. Dirichlet form
(with respect to S) on L?(F, 1). [When no confusion may arise, we shall refer to
it as F' or as (F,u) (if S and £ are fixed as will always be the case later on), as
the need may be.]

Further, F is p.c.f. if (F,S) is p.c.f. (in the sense of Definition 2.6) and it is
regular if the energy functional £ is regular (in the sense of Remark 2.15(b)).

REMARK 2.25. (a) Obviously, if the s.s. set (F,S, u,£) is an analytical s.s.
set, in the above sense, then (F,S) is a topological s.s. set (in the sense of
Definition 2.1).

(b) Several variants of Definition 2.24 are possible. For instance, F' could be
allowed to be non-Hausdorff, as in [Ka, Ku2| (see Remark 2.2(a)). Further, the
measure 4 could be allowed to be Bernoulli instead of self-similar. (See, however,
Theorem 2.18 and Remark 2.19(b) above.)

The framework studied in [Ki5]—where s.s. fractals are viewed as (renormal-
ized) limits of electrical networks—should be useful in providing various examples
of analytical s.s. fractals. In particular, the two-dimensional Sierpinski carpet,
equipped with the s.s. Dirichlet form constructed in [KuZh], is such an example.
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(Note that it is clearly not p.c.f.) This is of interest given the “universality” of
the Sierpiniski carpet among all one-dimensional continua in the plane. Indeed,
the carpet contains a homeomorphic image of any given (Jordan) planar curve,
according to a beautiful (but not so well-known) topological theorem discovered
by Sierpinski in [S] (and recalled in [PJS, §2.7]).

3. Laplacians on fractals, Weyl’s formula and spectral dimensions

In this section, we recall our recent joint work with Jun Kigami [KiLal]
in which we obtain a partial analogue of Weyl’s asymptotic formula (1.6) for
the spectral distribution of (Dirichlet or Neumann) Laplacians on a p.c.f. self-
similar fractal F'. (See Theorem 3.13 below, which partly addresses Question Q2
from the end of §1.) Further, we discuss the notion of “spectral dimension”—
defined as in [KiLal] as the largest possible “spectral ezponent’ occurring in our
counterpart of (1.6)—and express it in terms of geometric and analytic data
(thereby addressing Question Qg from §1). In the process, we identify a specific
self-similar measure y* on F'; namely, the s.s. measure with “maximal spectral
exponent”, which we will also call here the “natural s.s. measure” on F. (See
Theorem 3.22 below, from [KiLal], and its corollaries.) Thesé results will be key
to our later work in this paper. (See esp. §4.2 and §5.1.)

We will also propose a conjecture that would extend these results to a broader
setting. (See Conjecture 3.37 below.) We note that our results in [KiLal] are
stated somewhat differently. However, they will be rephrased here in terms of
the terminology introduced in §2 above. This will enable us, in particular, to
state the aforementioned conjecture in a concise manner. '

3.1. Dirichlet and Neumann Laplacians. We first briefly explain how
to define the Dirichlet and Neumann Laplacians on F', as well as the associated
(variational) eigenvalue problems.

DerFINITION 3.1. Given a Borel measure g on F' and £ a Dirichlet form on
L?(F,p) = L*(u), with domain F, we say that A is an eigenvalue of £ (with
agsociated eigenfiiction u) if there exists a nonzero u € F such that

(3.2) E(u,v) = A(u, v)12(uy, for all v € F,
where (-,-)r2(,) denotes the inner product of L?(u).

Let (F,S,p, &) be a regular, analytical p.c.f. self-similar fractal, as in Def-
inition 2.24, and let 7 denote the domain of £. Let A = A, be the associated
Laplacian on F, with domain D, C L?(u). Recall that D, C F C C(F) and
that A, can be defined as a renormalized limit of discrete Laplacians (i.e., finite
difference operators) on the finite graphs V,, approximating F' (see (2.9) above).
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In the following, the finite set Vo = II(P) defined in (2.8) will play the role of a
(Poisson-type) “boundary”.

REMARK 3.3. (a) The operator A, is “local”, in the sense that if v € D,
vanishes identically in a neighborhood of zg € F, then so does A, u.

(b) For the standard Sierpiniski gasket F', for example, Vp consists of three
points; namely, the vertices of the initial triangle in the construction of the
gasket. (See, e.g., [KiLal, Fig. 1, p. 95].) Moreover, for the standard Hausdorff
measure g (by = by = bs = 1/3) and Dirichlet form £ (¢; = ¢c2 = ¢ = 3/5), A u
is defined by

(3.4) (Ayu)(z) = lim 5™ > [uz) —uly)l, forz € Vi,

where the sum is extended over all neighbors y of z in the finite graph V,,. (See
[Kil], [KiLal, pp. 94-95].)

The following two propositions ({KiLal, Propositions 5.1 and 5.2, p. 117])
justify the definition of the Neumann and Dirichlet Laplacians on F.

PROPOSITION 3.5 (Neumann Laplacian). The (nonnegative) self-adjoint op-
erator associated with the Dirichlet form (€, F) on L*(F,p) is called the Neu-
mann Laplacian on F and denoted by Ay = A, ,. In particular, (3.2) holds if
and only if u € D, and

Ayu = Au,
6’U,IVD = 0,

where (Ou)(z) is a (suitably defined) “Neumann derivative” of u at x € Vp, and
Buly, denotes the restriction of Ou to Vy.

Next, let Fo = {u € F : u|y, = 0} and let & be the restriction of £ to Fo.

ProprosITION 3.6 (Dirichlet Laplacian). (€g, Fo) is a (local) Dirichlet form
on L*(F,u). Moreover, the (nonnegative) self-adjoint operator associated with
(&0, Fo) on L2(F, p) is called the Dirichlet Laplacian on F and denoted by Ag =
Ay,.. In particular,

(3.7) Eo(u,v) = A(w, v)12(w), for all v € Fy,
if and only if u € Dy :=D, NFp and
Ayu = du.
{ uly, = 0.

Of course, A = A, and A; = A; , depend not only on y, but also on § and
& (which will be assumed to be fixed).

The proof of Propositions 3.5 and 3.6 above (given in [KiLal, p. 117]) makes
use of a suitable form of Green’s formula in this context, as well as of the fact
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that F = Fo + 9, where ) is the space of “harmonic functions” on (F,£) (i.e.,
£ is the kernel of A, which is finite-dimensional and independent of u, because
Fisp.ct).

Since F is compactly embedded in L?(p) [KiLal, Lemma 5.4, p. 118], the
spectrum of the Dirichlet or Neumann Laplacian is discrete and consists of a
sequence of (positive) eigenvalues, as in (1.4). (We ignore the zero eigenvalue for
Aj, which has finite multiplicity.)

3.2. Spectral exponents and Weyl’s formula on fractals. Denote, as
before, by {b;}, the weights of the s.s. measure p and by {¢;}; the “harmonic
constants” of the s.s. Dirichlet form £. Recall that N > 2, Zi\;l b; =1, >0
and 0 < ¢; <1, for all i = 1,... ,N. Further, recall that an additive subgroup
of R is either discrete or dense in R.

DEFINITION 3.8. Let
(3.9) v =be, fori=1,...,N.
Consider the additive subgroup of R defined by

N
(3.10) G=) (ny)z
i=1
the set of all integral linear combinations of the logarithms of vy,... ,vn. Then

the nonlattice case is that when G is dense in R, whereas the lottice case is that
when G is discrete.
Moreover, let dg be the unique positive number such that

N
(3.11) > s =1
=1

Then dg = dg(S, 1, E) is called the spectral exponent of the analytical fractal
(F7 87 Hy 8)

REMARK 3.12. (a) When N = 2, for example, we are in the lattice case if
and only if there exist positive integers p;,p; such that 47* = 432,

(b) The lattice case is also referred to as the “arithmetic case” in (probabilis-
tic) renewal theory [Fel].

(c) The number dg is well-defined since by definition, v; (= v/b;ic; < Ve) <1
foralli =1,...,N, and thus the function () := Zf\;l % is (strictly) decreasing
for ¢ > 0 (since ¢(0) = N > 2). Further, since ¢(2) < Zf;l b; = 1, we must
have dg < 2.

(d) With the notation of [KiLal] and [La5], we have for s =1,... ,N,b; = u;
and ¢; = r;/a, where (r1,. .. ,,) are defined by the “harmonic structure” giving
rise to £, and a (denoted by A in [KiLal]) is the “renormalization constant”, a
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positive eigenvalue of the nonlinear “renormalization operator”. (See Remark
2.15(a) above.)

We are now ready to restate the main results of [KiLal]. [Note that in
rephrasing these results, we use the terminology of §2, as well as Theorem 2.18
above (which enables us to replace the expression “Bernoulli measure” by “s.s.
measure”).]

THEOREM 3.13 (A partial analogue of Weyl’s formula on fractals; [KiLal,
Theorem 2.4 and Corollary 2.5, pp. 104-105]). Let (F,S, i, E) be a regular p.c.f.
analytical self-similar fractal (as in Definition 2.24). In particular, p is a s.s.
measure with weights {b;}, and € is a s.s. Dirichlet form with harmonic con-
stants {c;},, relative to the s.s. structure S. Let A; = A;, be the associated
Dirichlet (i = 0) or Neumann (i = 1) Laplacian on F (as defined in Proposi-
tions 3.5 and 3.6), and let N()) denote the corresponding eigenvalue counting
function. Then

(3.14) N(Q) =< X/ g5 X - +oo

(i.e., there exist positive constants c1, cz such that c;)%5/2 < N()\) < ¢o)\%/2, for
all suﬁ‘icz’ently large )\) Here, ds = dg(S, 1, E) is the speciral exponent defined
by (311): Y, 425

More precisely, we have the following dichotomy (as in Definition 3.8 above):

(i) (Nonlattice case: G := Y (In~,)Z is dense in R). Then
(3.15) N(A) ~CA¥5/2 4 X — 400

(i.e., N(X) = X8/2(C + o(1)), where o(1) vanishes as A — +o0), for
some positive constant C = C(S, i, E).

(ii) (Lattice case: G = Y1 (Inv;)Z is discrete; say, of the form G = hZ,
with h > 0). Then

(3.16) N()) = Ads/2 (g (h"\) + 0(1)) as A — ~+0o,

for some bounded positive periodic function g of period T, the “positive
generator” of G (i.e., T is the smallest h > 0 such that G = hZ).
Further, g is right-continuous, measurable, and bounded away from zero
on [0, +00).
Moreover, the constant C in (i) and the periodic function g in (ii) are in-
dependent of the boundary conditions. Hence, in particular, the Dirichlet and
Neumann Laplacians have the same leading spectral asymptotics.

Theorem 3.13 proves, specifies and corrects, for p.c.f. self-similar fractals, an
earlier conjecture of the author for Laplacians on s.s. fractals. (See esp. [Lab,
Conjecture 5, p. 190 and Remark 5.16(b), p. 197].) This conjecture is a natural
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counterpart in this setting of the author’s conjecture for Laplacians on open sets
with self-similar fractal boundary [Lab, Conjectures 2 and 3, p. 159 and pp. 163
164]—motivated in part by his earlier work on the Weyl-Berry conjecture (esp.
[Lal-3, LaPol-3]), as well as by [L]. The proof of Theorem 3.13—provided in
[KiLal, §§2,4-6]—combines, in particular, techniques from symbolic dynamics,
variational methods from [Me, Lal] used in [Lal] to deal with “drums with
fractal boundaries”, results in [Ki2], and an application of a suitable form of the
Renewal Theorem [Fel] (given in [KiLal, p. 108]). (An additional step [KilLal,
Lemma 6.1, p. 119] consists in showing that natural energy functionals on F' give
rise to self-similar Dirichlet forms, in the sense of Definition 2.13 above, which
satisfy the hypotheses of Theorem 3.13.) .

We refer to §3 (and the appendix) of [KiLal] for many examples illustrating
Theorem 3.13. See, in particular, [KiLal, -Exa.mples 3 and 4, pp. 111-113]—
discussing the “modified Sierpinski gasket” ([KiLal, Fig. 2, p. 112]) and “Hata’s
self-similar fractal tree” ([KiLal, Fig. 3, p. 113])—for natural examples of
“nonlattice case”.

COROLLARY 3.17. For fized S and &, the following limit

: —d5/2N
(3.18) ,\BToo A »)
exists (and is nontrivial) for a “generic” choice of p (i.e., for Lebesgue-almost
all (b;)N., in the standard (N — 1)-simplez of RY).

Proor. The nonlattice case is clearly generic in the above sense. O

REMARK 3.19. (a) In the next sections, we will address the problem—
directly connected with Question Q2 from §1—of finding a more complete ana-
logue of Weyl’s formula (1.6). We will obtain, for example, in the nonlattice
case, a geometric interpretation of the proportionality constant C in (3.15) in
terms of a suitably defined “volume measure” on F. (See esp. Theorem 4.41 and
Corollary 4.45.)

(b) We conjecture in [KiLal, Remark 2, p. 105] that in the lattice case
and when dg is not an integer (i.e., dg # 1), the periodic function g in (3.16)
is nonconstant; that is, the limit in (3.18) does not exist. (Heuristically, these
oscillations in the leading asymptotics should be due to the large symmetry group
of the analytical fractal that gives rise to eigenvalues with large multiplicity.) In
view of the results of Fukushima and Shima [FuSh], this is true for the standard
N-Sierpiriski gasket (with by = ... =by =1/N and ¢; = ...cy = N/(N + 2)).
More generally, it has recently been established for the “nested fractals” of [Li]
by Barlow and Kigami (personal communication). (Note that we are clearly in
the lattice case since now, by = ... = by = 1/Nand ¢; = ... = ey = 1/q,
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where « is the “renormalization constant”.) Furthermore, a preprint of Shima—
received after the completion of the present work—shows that this is also the
case for a certain class of “symmetric” p.c.f. fractals (for the same choice of
b;’s and ¢;’s). (Note that the standard Koch curve, equipped with its natural
Hausdorff measure, is isomorphic to [0, 1], equipped with Lebesgue measure; and
so dg = 1 but g is constant in this situation.)

(c) In the special case of the “modified Koch curve” (which is “nested” and
hence p.c.f.), it would be interesting to express the (nonconstant, by [M1-2]) pe-
riodic function g in (3.16) in terms of the dynamical functions studied rigorously
by Malozemov in [M1-2] (and inspired in part by the physical work of Rammal
and Toulouse ([RT, R] and references therein) on the Sierpiriski gasket).

(d) As was observed by Professors Alain Connes and Dennis Sullivan when
they were presented by the author with these results (as well as with the results
of §4-5 below), the dichotomy between the nonlattice case and lattice case in
Theorem 3.13 above is very reminiscent of that between von Neumann algebras
of type III; (the “generic” case) and type III\ (with 0 < A < 1). (See, e.g., [Co5,
Chap. 5].)

3.3. Spectral and fractal dimensions.

DEFINITION 3.20. Let £ be a s.s. Dirichlet form with “harmonic constants”

{c:}L, (c; < 1,i=1,...,N) as above. Let S be the unique positive number
such that

N
(3.21) Yo =1

i=1

Then § is called the similarity dimension of £ (or of the Dirichlet space (F, £)).

In the following simple theorem, we single out, in particular, a distinguished
s.8. measure 4* on F'; namely, the s.5. measure with mazimal spectral ezponent,
the “spectral dimension” of (F,&). It will play an important role in the rest of
this paper. We will fix (S and) £, and let the s.s. measure g vary, so that we
simply write dg = dg(u).

THEOREM 3.22 (Spectral dimension; [KiLal, Theorem A.2, p. 121]). Assume
the same hypotheses as in Theorem 3.13. Then the following marimum ezists
and is given by

25
S+1
where S is the “similarity dimension” of (F,£), defined by (3.21). Purther, this
mazimum, is achieved by a unique s.s. measure, denoted by u*, and characterized

(3.23) 5 = max{ds(u) : p s a s.5. measure on F} =

by the weights
(3.24) b; :=c?, i=1,...,N.



156 M. L. LAPIDUS

The positive number

28
. dt =ds(u*) = ——
is called the spectral dimension of the s.s. Dirichlet form € (or of the Dirichlet

space (F,E)).

ProOF. We can calculate the maximum of the function
ds(u) = dg(b1,... ,bn),

subject to the constraints Zil b;=1,b>0 (i=1,...,N), by applying the
method of Lagrange multipliers. (Note that we must use Theorem 2.18 above
in order to identify the s.s. measure p with the N-tuple (b1,...,by) in the
standard (N — 1)-simplex of RV.) O

REMARK 3.26. (a) We propose to call the unique s.s. measure u* of maxi-
mal spectral exponent d¥, obtained in Theorem 3.22, the “natural s.s. measure”
(relative to §) on (F,E).

(b) It would be interesting to establish connections between our present work
and Strichartz’s work [St1-2] on self-similar measures in Euclidean spaces (or
Riemannian manifolds, say).

The value of the “spectral dimension”—defined as above—coincides with that
calculated earlier in special cases by physicists (e.g., [Dh, AO, RT, HHW, ...])
and, rigorously but from a different point of view, by probabilists (e.g., [Kul, BP,
Li, Fu2, ...]). (In physics, following Alexander and Orbach [AO], the “spectral
dimension” is also called “fracton dimension”.)

For examples of calculations of S and dj%, we refer to [KiLal, Appendix,
pp. 121-122]. For instance, for the standard N-Sierpinski gasket in RN-1 [KiLal,
Example 2, p. 122] (also studied analytically in [FuSh]), we have

_ InN and  dt — 2In N
T In(N+2)-InN 5T In(N+2)

(3.27) s

[Note that for N > 2,d% is not equal to the Hausdorff dimension of F' (with
respect to the Euclidean metric), In N/In2, and that dg — 27, as N — oo.
Further, for the usual Sierpiriski gasket in R?, we have N = 3 and so d§ =
In9/In 5, whereas for the unit interval in R*, we have N = 2 and so d% = 1]

More generally, for “nested fractals” [KiLal, Example 5, p. 122], the natural
s.5. measure u* is determined by by = ... = by = 1/N and the “natural” s.s.
Dirichlet form is given by ¢; = ... = exy = 1/a, where a is the renormalization
constant. Consequently, by (3.21), the similarity dimension of (F,£) is given by
g2y

(3.28) ==
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while by Theorem 3.22, the spectral dimension of (F, ) is given by

. 2InN
(3.29) ds = m,

in agreement with [Li] and [Fu2]. (Note that in this case, u* is nothing but
the (normalized) Hausdorff measure on F' C R™, with respect to the Euclidean
metric.)

In particular, for the “modified Koch curve” [M1-2], we may choose N = 5
and o = 8/3, so that

Inb * 2In5 2In5

(3.30) S=ms—ms 2 &= In(40/3) ~ n40 —In3

The next corollary, an immediate consequence of Remarks 3.12(c), has phys-
ical and probabilistic significance.

COROLLARY 3.31. Let dg be the spectral dimension defined in Theorem 3.22.
Then d% < 2.

As was pointed out in the appendix of [KiLal], the definition of the similarity
dimension of (F,£) is very analogous to that of standard (nonoverlapping) self-
similar fractals [Ma; Fc, §9.2] embedded in Euclidean spaces. (See also [KiLal,
Remark 3, pp. 105-106].) We shall now specify this analogy. Indeed, in a
subsequent work [Ki4], Kigami uses in particular some of the results in [KiLal]
to interpret S in Theorem 3.22 as the actual “similarity dimension” (as well as the
Hausdorff dimension dy = d(81)) of the p.c.f. self-similar set F, with respect
to a suitably chosen (bounded, complete) “intrinsic metric”, § = 81.¢, called
the “effective resistance metric” and depending only on the energy functional &:

(3.32) 61 = b1,¢ := sup{lu(z) —u(y)* 1 v € F,E(u) <1}
= max {|u(z) — uw(y)*/E@) :u € F, u nonconstant } ,

for z,y € F. (Note that §; = 6%, where § = 6¢ is the metric defined by (2.22).
Further, in (3.32) or (2.22), it is implicitly understood that u(z) # u(y).)

Moreover, it is not difficult to check—by using the self-similarity of £ much as
in the proof of Theorem 2.18 above—that for each s = 1,... , N, the map W; is a
contraction on (F,é1) with Lipschitz constant ¢; (= r;/a). (We stress, however,
that the W;’s, are in general genuinely nonlinear even when F is embedded in
some Euclidean space R™. This is the case, for example, for the Sierpiniski gasket
even though the W;’s are (restrictions to F' of) similarities of R? with respect to
the Euclidean metric. We will return to this point in §5.1 below.) It then follows
from an extension to the present abstract setting [Ki3,4] of the corresponding
results in [Mo, Hu] that

(3.33) 8 =du(61) = du(61),
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where dg = dg(61) (resp., dy = da(61)) denotes the Hausdorff (resp., Min-
kowski or “box”) dimension of (F, §1). (The second equality in (3.33), although
not explicitly stated, can easily be deduced from the above references. Further-
more, the reader may wish to compare (3.21) and (3.33) with, e.g., [Fc, §9.2,
esp. Theorem 9.3, p. 118].)

We can now state the following corollary of Theorem 3.22 [KiLal, Theorem
A.2] and of [Kid].

COROLLARY 3.34 (Spectral and fractal dimensions). The spectral dimension
% = dg(u*) defined (and calculated) in Theorem 3.22 is also given by
.25 _ 2dg _ 2dum
(3.35) =511 1+ds  1+du’
where dpyy = dp(81) (vesp., du = dar(61)) denotes the Hausdorff (resp., Minkow-
ski) dimension of (F,61). Here, 81 = b1¢ is the (complete and bounded) metric
defined by (3.32).

PROOF. This follows by combining (3.25) and (3.33). O

REMARK 3.36. (a) We could work instead with the metric § = V61, given
by (2.22). However, we would then have to replace (3.33) by,

(3.33) S= %dy(&) - %dM(é)

and hence (3.35) would have to be changed accordingly. For some other purposes,
§ is more convenient to use, as it is akin to a Connes metric (see (b) and §5.2
below). Hence, depending on the situation, we will work wi’ - either §; or é in
the rest of this paper (see §5). '

(b) The “intrinsic metric” §; = 61(€) can be thought of ([La5]) as the “ca-
pacitary metric” associated with the energy functional £. Here, it is well-defined
due to the “one-dimensional” nature of p.c.f. self-similar fractals. (See Remarks
2.15(b) and 2.23(b) above.) In more general situations, however, definition (3.32)
will be meaningless and we will propose instead to work with Connes-type met-
rics [Co3-5] (see §5). An example when this may be appropriate is the three-
dimensional Sierpiriski carpet, studied from a very different (probabilistic) point
of view in [BB2].

3.4. Conjecture. We close this section by stating a conjecture that would
enable us, in particular, to extend the above results (in §3.2 and §3.3) from
“finitely ramified” (i.e., p.c.f.) to certain “infinitely ramified” s.s. fractals, such
as the two-dimensional Sierpiniski carpet first studied probabilistically by Barlow
and Bass in [BB1] and later analytically by Kusuoka and Zhou in [KuZh]. If
proved, it would also enable us to extend to a broader class of self-similar fractals
the main results of the present paper given in §4.2 below. (See §5.3.)
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CONJECTURE 3.37 (Spectral distribution of Laplacians on analytical s.s.
fractals). Let (F,S, u,E) be a regular (but not necessarily p.c.f.) analytical self-
similar fractal, in the sense of Definition 2.24, satisfying the “topological open
set condition” (see Remark 2.5(b)). Then the analogue of Theorems 3.13 and
3.22, as well as their corollaries (Corollaries 3.17, 3.31 and 3.34) hold in this
situation.

Moreover, in the lattice case (part (ii) of the analogue of Theorem 3.13), the
periodic function g occurring in the counterpart of (3.16) is nonconstant when
dg = dg(p) is nonintegral.

REMARK 3.38. (a) A more detailed statement of Conjecture 3.37—but using
somewhat different teminology—is provided in [La5, Conjecture 5, pp. 195-197].

(b) Implicit in the statement of Conjecture 3.37 (regarding the analogue of
Corollary 3.36 from §3.3) is that the “intrinsic” (or “capacitary”) metric §; =
b1, given by (3.32) can still be well-defined and that (3.33) continues to hold.
(Compare with Remark 3.36(b) above.) The results of [Ki5] should be useful
to establish this. Furthermore, for the important case of the (two-dimensional)
Sierpinski carpet, we may use to tackle Conjecture 3.37 the s.s. Dirichlet form
constructed in [KuZh].

(c) As discussed in [Lab5, Remarks 5.16(a), (b), p. 197], when the Dirichlet
space (F, £) is endowed with the natural (intrinsic) metric §; and s.s. measure u*,
it is easy to deduce from Conjecture 3.37 that the dichotomy “lattice/nonlattice
case” corresponds to (the additive subgroup) G' := Ef;l(ln ¢;)Z being discrete
or dense in R, where the “harmonic constants” ¢; are the Lipschitz constants (or
“scaling ratios”) of the maps W; (¢ = 1,...,N) on the metric space (F,é;), in
exact analogy with the author’s original conjecture for “drums with self-similar
fractal membrane” [Lab, Conjecture 5, p. 190]. (Note, however, that we have
now replaced the Euclidean metric on F' (C R™) by the intrinsic metric 4;.)

[Here is a proof of the above statement: By (3.9) and (3.24), we have v; =
vbic; with b; = cf; so that v; = c§s+1)/2 and hence Invy; = ((S + 1)/2) In¢;, for
i=1,...,N. It obviously follows that the groups Zf;l(ln % )Z and Zfil (ln¢)Z
are discrete (or dense in R) at the same time.]

(d) Of course, in the light of the results recalled in §3, Conjecture 3.37 is
true for (analytical) p.c.f. (i.e., “finitely ramified”) self-similar fractals. In view
of (c) above, this provides, a posteriori, a formal justification (and extension) of
our original conjecture for the spectral distribution of Laplacians on (suitable)
s.s. fractals [La5, Conjecture 5, p. 190].

4. Dixmier trace and volume measures on fractals

We recall in §4.1 the notion of “Dixmier trace” [Di, Co4-5] from the theory
of operator algebras and then use it in §4.2 in order to construct an analogue
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of “yolume measures” for certain classes of fractals. This will enable us, in
particular, to obtain a more precise counterpart than in [KiLal] of Weyl’s formula
for the spectral distribution of (Dirichlet or Neumann) Laplacians on p.c.f. self-
similar fractals. (See Theorems 4.27, 4.41, 4.49, and esp. Corollary 4.45.) In
the process, we use and complete our earlier joint results in [KiLal] recalled in
§3 above, as well as further address Question Q2 and partially answer Question
Qg4 of §1.

It will be clear that these methods can be applied in many related settings
where results analogous to [KiLal] can be obtained. We will discuss in §5 possible
extensions of this work as well as the (conjectured) properties of a distinguished
“volume measure” which we propose to be the analogue of Riemannian volume
in this context.

A construction similar to that used in §4.2—but applied to the Dirac opera-
tor on a (spin) Riemannian manifold (instead of the square-root of the Laplacian
on a s.s. fractal)—had enabled A. Connes [Co3; Co5, §VI.1] to recover the usual
“Riemannian volume measure” from purely operator-theoretic data, within the
framework of noncommutative geometry. We postpone to §5 further discussion
of the possible connections between our present work and aspects of noncommu-

tative geometry.
4.1. Dixmier trace and Macaev ideal.

4.1.1. Operator ideals. In order to define the Dixmier trace, we first need to
recall some facts about certain ideals of operators, notably the Magaev ideals.
For more details, we refer to ([Co2,4-5), [Si], [Vo]). In the following, all ideals
considered will be two-sided. '

Let H be a Hilbert space and let X be the ideal of compact linear operators
onH. Given R € K, let p; = p;(R) denote the characteristic values of R (i.e., the
eigenvalues of |R| = vR*R, the absolute value of R), written in nonincreasing
order and according to multiplicity. (Recall that p;(R) — 0 as j — co. Of
course, if R is of finite rank, we set p;(R) = 0 for all j sufficiently large.) Then
we set for J=1,2,...,

J
(41) 45(R) =Y p;(R).
=1
For p € [1,00), we consider the Schatten ideal of order p

(42) LP = LP(H) = {R ck: f:pj(R)” < oo},

=1
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as well as the possibly less familiar Magaev ideal of order p
J
(4.3) LPF = LPH(H) = {R €eK:A4;(R)= O(Zj—l/p) }
i=1

(The “O” in (4.3), or in (4.4) below, is as J — oo, while in (4.5) below, it is as
j — 00.) For p = oo, we simply set L®F = L(H), the set of all bounded linear
operators on M. (L£P* is also denoted by £(P>) in the literature.)

A simple argument shows that

(4.4) LY = {ReK: As(R) = O(lnJ)}
with Aj(R) defined by (4.1), whereas for p € (1, 00),
(45) L7 —{Re K ps(R) = O~ V7)}.

We have LP C LPT C L for p < ¢. In addition, there is a well-developed
duality and interpolation theory for these (and related) ideals, but we will not
need to go into that here. (See, e.g., [Co2] or [Co5, §IV.2], as well as [Vo].)

REMARK 4.6. (a) Note that £! is just the ideal of trace class operators
while by (4.4), £1* is the ideal of bounded operators whose “race diverges
logarithmically”.

(b) Intuitively, L7 can be thought of as a noncommutative analogue of the
usual Lebesgue LP-space of p-summable functions, and £P* as an analogue of the
“weak LP-space”, of frequent use in harmonic analysis and (real) interpolation
theory.

4.1.2. Dizmier trace. The “Dixmier trace”, Tr,,, was introduced in 1966 by
Jean Dixmier [Di] as the first example of a trace on the C*-algebra £(H) which is
“non-normal” (i.e., which is not proportional to the usual trace of operators, on
the ideal where it is finite). Since the mid-eighties, it has been further studied and
used extensively by Alain Connes (and his collaborators) in developing several
aspects of noncommutative differential geometry and topology. (See, e.g., [Col-
3], [Co4, Chap. 5], [Cob, Chaps. IV and VI], as well as [CoSu].)

Roughly speaking, for R € £1*, the “Dixmier trace” of R is well-defined and
is given by

J
(47) Try(R) = Limy = 3 py(R),
j=1

where “Lim,,” is a suitable notion of limit (of arbitrary bounded sequences of
real numbers) with nice scaling properties.

More precisely, let w be an invariant mean on R%, the multiplicative group of
positive real numbers (i.e., w is a positive linear functional on L°°(R? ), invariant
by homothety and such that w(1) = 1).
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Let £ be the linear space of bounded real sequences. Given s = (s;)%2; in
£, let

(4.8) Lim,,s := ’LU((,DS),

where ¢, € L®(R}) is defined by ¢,(t) = s; fort € (j —1,5], j > 1.
Then “Lim,,” is a linear functional on £*° such that

(4.92) Lim,1 =1,
(4.9b) Lim,s >0if s> 0,
(4.9¢) Lim,s = L if s = (s;)32, converges to L

(actually, lim s < Lim,s < lim s, from which (4.9) follows): and the following
key scale-invariance property holds:

(4.10) Limg, (81, 82, - - . ) = Limy,(s1, 81, 82, 82, ... ).

REMARK 4.11. It is stressed in ([Co4, §5.2, pp. 189-194], [Co5, §IV.2]) that
Lim,, is a more “concrete” and usable notion of limit than it appears to be
at first sight. For example, according to a result of Gabriel Mokobodski, it is
compatible (and so can be interchanged) with very general barycentric means of

sequences.

DEFINITION 4.12 (Dixmier trace). Let H be a Hilbert space and let L1t =
L (H) be the Magaev ideal defined by (4.4). For R > 0, R € L1*(H), we set

1
(4.13) Try,(R) = Limy— ]; p;i(R).

The (nonnegative) number Tr,,(R) is called the Dizmier trace of R (associated
with the mean w).

(Note that by (4.1) and (4.4), the sequence {5 Z;']=1 p;(R)}52, is bounded
since R € L'F; so that Tr,(R) is well-defined and finite. Further, since (R
is self-adjoint and) R > 0, p;(R) is just the jth eigenvalue of R, written in
nonincreasing order.)

. Tt can be shown [Di, Co4-5] (by using in particular the variational character-
ization of p;(R), and its consequences, esp. the Rayleigh-Ritz inequalities) that
Tr,, is additive:

wa(Rl + Rz) = Tr'w(Rl) + TIW(R2),
for R; >0, R; € LY (j = 1,2). Hence Tr,, extends (uniquely) by linearity to
all of £1*, Tt then suffices to let Tr,,(R) = +oco for R > 0, R ¢ L'F(R € L(H)),
to obtain a (non-normal) trace, Try, on the C*-algebra L(H).

The following proposition ([Di], extended in [Co5, §IV.2 and §VI.1]) summa-
rizes some of the basic properties of the Dixmier trace.
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PROPOSITION 4.14.
(i) (Positivity). Tr,(R) >0 for R > 0.
(ii) (Finiteness). | Try,(R)| < 0o for R € L£L1T.
(iii) (Covariance). Try(RV) = Try,(VR) for R € L1 and V € L(H).
In particular, Tr,(URU™') = Try(R) for all R € L' and U unitary (or
more generally, for U bounded and invertible); so that Tr,, is independent of the
choice of the inner product compatible with the topology of H.

(iv) (“Locality”). Tr,(R) = 0 for all R € L3* (and in particular, for all

trace class operators).

Here, the Magaev ideal L3t = LIT(H) is the closure in L1* of the ideal
of finite rank operators with respect to the natural norm on L'*, ||R||14 :=
sup; 25 A7 (R). For M infinite-dimensional, we have L* ¢ L3t ¢ L1+, Further,
Lyt is characterized just as L1t in (4.4), except with “O” replaced by “0”.

REMARK 4.15. (a) Property (iii) implies that Tr,, is a unitary trace on the
two-sided ideal £ of £(H).

(b) As is explained in detail in [Co5], it is the vanishing property (iv) which
enables one to use the Dixmier trace to capture only the “leading (spectral)
asymptotics” and neglect all trace class perturbations of R € £*, in other
words, to retain the “semiclassical information” contained in R.

In general, Tr,, may depend on the choice of the limiting procedure w. The
following proposition (a simple extension of [Co2, §IL.6, p. 67] or [Co5, §IV.2))
provides a useful example when this is not the case. (Actually, much weaker
conditions than (1)—(3) below are sufficient.)

Let R € L(H),R > 0, be such that R € £? for all p > 1. (This is the
case, in particular, if R € £+, R > 0.) Then, clearly, the associated “spectral
zeta-function”

(416) Cals) = Trace( ) = 3 s (R)’
i=1
is well-defined for s € C, Re s > 1.
PROPOSITION 4.17. Let R€ LY, R > 0 and let L € R. Then:

(i) Conditions (1) and (2) below are equivalent:

1) (s—1)r(s)— L as s = 1+ (de., s> 1, s€eR, s> 1).

J
1
(2) m;pj(R) — L as J — oo.
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(ii) Purther, if in addition, p;(R) < 1/j as j — oo, then condition (3) below
18 equivalent to (2) (and hence also to (1)):

3) ﬁ /;A /\_ln()\)% — L as A — +oo,
where
(4.18) n(A) i=n(R) =#{j 2 1:p;(R) 2 A7'}.

(iii) Moreover, if any of the above conditions (1), (2) and (under the as-
sumptions of (ii)) (3) is satisfied, then Tr,(R) = L, and in particular,
Tr (R) is independent of the limiting procedure w used in defining it.

PROOF. (i) (and thus (iii), by (4.13) and (4.9c)) follows from the afore-
mentioned result in [C02,5] (and from (ii)). It is a consequence of the Hardy-
Littlewood Tauberian Theorem.

(ii) For the reader’s convenience, we provide a proof of (ii). We write p; =
pi(R) for simplicity. Since {p;} | 0, we may assume without loss of generality
that py < 1. Given A > 0, let J = J(A) be the largest positive integer such that
p7 > A71, so that 1 < pl—1 <...< p}l <AL p}_}_l. Then, breaking up the
integral and calculating the resulting cancellating sum, we obtain for A > 1:

1 A dx 1 J
m/l AT ()5 1A(101+ +PJ—K)

mA(mJE:”) AmA

The equivalence of conditions (2) and (3) (under the assumptions of (ii)) is now
apparent since J(A) < A (and hence also InJ/InA) — 1) as A — +o0. O

REMARK 4.19. (a) Condition (3) is not explicitly stated in [Co2,5]. It will
be useful, however, to deal with the lattice case in §4.2 below. -

(b) The hypothesis made in (ii) will fit exactly our situation when we apply
Proposition 4.17 in §4.2. (See esp. the proof of Theorem 4.27.) However, weaker
assumptions are clearly possible.

(c) I am grateful to Ms. Christina He for a comment about Proposition
4.17(ii).

(d) It is shown in [Col,5] that this generalized notion of residue coincides—
in the case of pseudodifferential operators on a compact manifold—with the
“noncommautative residue” of Adler, Manin, Wodzicki, and Guillemin [Ad, Man,
Wo, Gu].
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(e) Proposition 4.17 and the results of §4.2 below suggest how to reinterpret
some of the formulas in [La3-5, LaPol-3, LaMal-2] involving certain “gener-
alized residues” of spectral zeta-functions in the case of “drums with fractal
boundaries”. We intend to develop this remark in a later work.

4.2. Construction of volume measures via the Dixmier trace. We
now return to the setting of §3. Hence F' = (F, S, u,£) is a (regular, analytical)
p.cf. self-similar fractal. In particular, in the terminology of §2, £ is a (regu-
lar) s.s. energy functional on F' (with harmonic constants {c;},) and u is an
arbitrary, but fized, s.s. measure on F' (with weights denoted by {b;},).

It will be clear that the construction below—which is inspired by [Co1,3; Co5,
§VI.1] and relies on the results of [KiLal] recalled in §3 above-—can be adapted
to a variety of situations involving “elliptic differential operators on fractals”.

For the sake of simplicity, we will first deal with the Dirichlet Laplacian
and then indicate how to extend our results to Neumann boundary conditions.
In fact, it will turn out that the “volume measure” v = ®(u) constructed in
Theorem 4.41 below is independent of the choice of boundary conditions. (See
Theorem 4.49.)

Let Ap = Ag,, be the Dirichlet Laplacian on F, defined as in §3.1. Let 0 <
A1 € Az £ ... denote its eigenvalues, written in nondecreasing order according
to multiplicity as in (1.4), and let

(4.20) N = N do) = #{j 2 1: ), <A},

as in (1.5). Set H = L?(u) = L%(F, ). Recall from §3.1 that Ag is a positive,
unbounded self-adjoint operator on H. Let

(4.21) B=A}?

denote the (positive) square-root of Ay, defined via the spectral theorem for
unbounded self-adjoint operators. (See, e.g., [ReSi, Chap. VII].)

PROPOSITION 4.22. (a) The positive, unbounded self-adjoint operator B =
Aé/ ? is invertible, with compact inverse

(4.23) Q:=B1=n;"
(b) Moreover,

inf{p: Q € LP} =sup{p: Q ¢ L} = ds,

where dg = dg(u) 1s the spectral ezponent given by (3.11) (i.e., Zfi i =1,
with v; := vV/bic; for 1 <i < N).

PRrOOF. (a) This follows from [KiLal, esp. §5].
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(b) Since @ > 0, we have (with the notation of §4.1.1), p;(Q) = /\;1/2.
Further, by (3.14) (which follows from [KiLal, Theorem 2.4]), we have N()) x
A4s/2 a3 X\ — 400, and so

4.24 A; x §2/ds as j — oo.
( i =7 J

Thus p;(Q) x j~/4s. Hence p;(Q)? < j7#/%5 and so 332, p;(Q)? < oo if and
only if p > dg. |
REMARK 4.25. Note that Q € £ but Q ¢ £%5. (We allow p > 0 in the
definition of £? or £P*. Actually, it can be shown that, at least for the spectral
dimension dg = d%, we have dg > 1.)
Next, let

(4.26) R:=Qds = AJ%/?,

defined via the spectral theorem.

At this point, the reader may wish to review the statement of Theorem 3.13
above [KiLal, Theorem 2.4, pp. 104-105], as well as the definition of the Dixmier
trace recalled in §4.1.2.

THEOREM 4.27. Let R be the nonnegative, compact self-adjoint operator de-
fined by (4.26). Then R € L1* (but R is not of trace class), so that its Dizmier
trace Try (R) is well-defined and finite. Moreover, Try,(R) > 0 and Try,(R) is
independent of the choice of the limiting procedure w. More precisely, with the
terminology and notation of Theorem 3.13, we have:

(i) (Nonlattice case: G := Zf;l(ln v)Z is dense in R). Then
(4.28) Tr,(R) =C,

where C is the positive constant defined by (3.15).
(i) (Lattice case: G = Y0 (Iny;)Z is discrete, say G = TZ, with T > 0,
the positive generator of G). Then

T
(4.29) ndm=%lgwa

the mécm-’ualue of g, where g is the positive T-periodic function given
by (3.16). (Recall that g is locally integrable on R and 0 < ¢; < g(t) <
c2 < oo on [0, +00), for some constants ¢, c2.)

PROOF. (1) We first show that R € £!*. Since R > 0, we have in view of
(4.26),

(4.30) pi(R) = A; %72,

J
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so that by (4.24),
(4.31) pi(R) = % as j — oo.

Hence the sequence 5 ZJJ.;I pi(R) (x< 1) is bounded. Thus R € £t (but
R ¢ L', since }_; p;(R) diverges). It follows from the definition of the Dixmier
trace that Tr,, (R) is well-defined and 0 < Tr,,(R) < co.

(2) We will now use (part (iii) of) Proposition 4.17 above to calculate Tr,, (R)
and to show that it does not vanish and is independent of w.

(i) In the nonlattice case, we have (by (3.15)) N(A) ~ CA9s/2 ag A — o0,
and so (by (4.20) and a standard Tauberian argument) A; ~ C~2/4s;2/ds_ Thus,
in view of (4.30),

(4.32) pj(R)N% as j— oo,
Hence

1

m;pj(R)—)C as J — o0.

Therefore condition (2) of Proposition 4.17 is satisfied and so Tr,(R) = C (and
is independent of w), as desired. This yields (4.28) and shows that Tr,,(R) > 0.

(ii) In the lattice case, we will find it convenient to verify condition (3) of
Proposition 4.17. By (3.16), we have

(4.33) A"42N(N) =g (%) +e()),

where ¢ is a bounded (measurable) real-valued function on [0, +o0) such that
e(A) — 0 as A = +oo. Set, as in (4.18),

n(A) =n(AR)=#{j >1: p;(R) 2217},
Then, by (4.20) and (4.30), we have

(4.34) n(A) = N(A%¥4s),  forall A> 0.
Now, set for A > 1,
1 A d

(4.35a) o(A) = /1 A ()2
and

IR Y AN )\
(4.35b) O(A) = /1 AN S
Then, in view of (4.34), the simple change of variables u = A\%/ds du — %%

yields
(4.36) 8(A) = ©(AY9s),
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Next we claim that
1 T
(4.37) o) — / g6)dt s A — +oo.
0

Indeed, by (4.35b) and (4.33),

(4.38) O(A) = mA/ (h"\> A/

= 91(A) + 92(A), say.

Since ¢ is bounded and tends to 0 at 400, we clearly have ©3(A) — 0as A — +oo0.
Further, the change of variables u = M ydu = Q yields

In(AY/2)
61( ) A1/2)_/ (u) du

—>—/ g(t)dt as A — +o0,
T Jo

since g being T-periodic (and locally integrable),

1 (7 1 [T
— | glu)du— = [ g(t)dt asT— +o0.
T Jo T Jo

Thus (4.37) follows from (4.38).
We can now conclude the proof of Theorem 4.27 as follows. In light of (4.35a),

(4.36) and (4.37),
6(A) = / Aln (,\) 1 (t) dt  as A — +oo.

Thus condition (3) of Proposition 4.17 is satisfied and we deduce that Tr,,(R) =
+ foT g(t) dt (and is independent of w), as desired. This yields (4.29). Finally,
we note that Tr,, (R) > 0 since the (positive) function g is bounded away from
zero. m|

REMARK 4.39. (a) It follows from the above proof and Proposition 4.17
that, under the hypotheses of Theorem 4.27,

(4.40) Try (R) = Res;—1(r(8) := sEr{1+(s — 1)¢r(s),

where the spectral zeta-function (g is defined by (4.16).

(b) Intuitively, the operator R = R, defined by (4.26) can be thought of as
an analogue of an “elliptic pseudodifferential operator” on F, of negative order
—dg. (Compare with [Col].)

We now proceed—by analogy with [Co3; Cob, §VI.1]—with the construction
of a suitable “volume measure”, v = ®(u), on the fractal F = (F, S, , £).

First, recall that (in Bourbaki’s terminology [Ch, Chap. 3]) a positive Radon
measure on the compact (Hausdorff) space F is a positive linear functional v
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on C(F), the space of continuous real-valued functions on F. (Here, positivity
of v simply means that v(f) > 0 for all f > 0,f € C(F).) Of course, v is
then automatically continuous on C(F'), equipped with the topology of uniform
convergence on F' associated with the norm || f|lco := maxz¢p |f(z)|. Further,
by the Riesz Representation Theorem, it induces a unique regular, positive Borel
measure (still denoted by v) on F, such that v(f) = [ fdv for all f € C(F),
and with (nonnegative and finite) total mass v(F) = v(1) = |, pldv. (See, eg.,
[Ch] or [Ru, Theorem 2.14, pp. 40-41].)

We can now state one of our main results (see also Theorem 4.27 above and
Corollary 4.45 below):

THEOREM 4.41 (“Volume measures” on fractals). Let F = (F,8,pu,&) be
a (regular, analytical) p.c.f. self-similar fractal. Let R = R, = A, day %, as
in (4.26), where Ag = A, denotes the Dirichlet Laplacian on F (acting on
L?*(F,p)), and ds = dg(u) is the associated spectral ezponent, given by (3.11).
Let v = ®(u) be defined by

(442) - U = [ Favi=Toal7R) = Tru(785%72),

for all f € C(F).

Then v is a well-defined, positive Radon measure on the compact (metrizable)
space F'. Moreover, v is nonzero and its total mass v(F) = v(1) (or that of the
associated Borel measure) is given by

(4.43) v(F) = fF 1dv = Tr,(R),

the Dizmier trace of R. Hence, by Theorem 4.27, v(F) is independent of the
limiting procedure w and is given by (4.28) or (4.29), in the nonlattice case or
in the lattice case, respectively.

PROOF. As we will see, this follows from our previous results and from the
basic properties of the Dixmier trace Try,(-).

(a) We first clarify the notation used in (4.42). Let f € C(F). Since f
is bounded (and real-valued), it is well-known that it induces a bounded (self-
adjoint) multiplication operator My on H = L%(F, u), as follows:

(4.44) (Myp)(2) == f(z)p(z), for p € H and p-a.e. z € F.

Further, Mj has operator norm ||My|| = ||f|lcc. Hence, strictly speaking, we
should really write, instead of (4.42),

(4.42") v(f) = /F fdv :=Tr,(MsR), for all f € C(F).

However, following common practice, we identify the function f € C(F) and the
(multiplication) operator M; € L(H), in (4.42).
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(b) Next, fix f € C(F). Since by Theorem 4.27, R € £L!*, we deduce that
RM; € L' (because My € L(H) and L1t is a two-sided ideal in £(H)). Thus
Try,(RMjy) is well-defined and is a real number. Hence the map v : C(F) —» R
is well-defined.

(c) Further, v is clearly linear because Try(-) is linear on L.

(d) Moreover, if f € C(F), f > 0, we claim that v(f) > 0.

In fact, we clearly have M 7RM /7 > 0 (as a bounded self-adjoint operator
on H) because for all g € H,

(M 7RM s79,9) = (R(M /79), M /79) 2 0

since (M, /7 is self-adjoint and) R > 0. (We denote here by (-, -) the inner product
in H = L%(u).)
Therefore, by the positivity of the Dixmier trace (Proposition 4.14(i))

I/(f) = Trw(M_fR) = rI‘I'w(M\/TAI\/?R) = Tl‘w(M\/JT-RM‘/f) 2 0,

as desired. Note that we have used Proposition 4.14(iii) in the last equality
above.

(e) We conclude from (b)—(d) that v is a positive Radon measure on F. Let
v also denote the associated positive Borel measure. Then, by letting f =1 in
(4.42), we have

V(F) = / 1dy = v(1) = Try(R),
F

and thus the remaining assertions in Theorem 4.41 follow from Theorem 4.27.00

The following corollary (of Theorems 3.13, 4.27 and 4.41) provides a more
precise analogue than in [KiLal]—in the present context of Laplacians on p.c.f.
self-similar fractals—of Weyl’s original formula (1.6) for Laplacians on bounded
domains in Euclidean space. We thereby complete our earlier (joint) results

obtained in [KiLal], as well as further address Question Q2 and answer in part
Question Q4 of §1. (Compare with Theorem 3.13 above [KiLal, Theorem 2.4].)

COROLLARY 4.45 (Weyl’s formula on fractals, revisited). Let v = &(u) be
the “volume measure” constructed in Theorem 4.41. Let dg = dg(u) be the spec-
tral ezponent given by (3.11), and let N()\) be the eigenvalue counting function
of the Dirichlet Laplacian Ag = Ag ,, as in (4.20).

Then the following limit ezists and the total mass v(F) of v, or “volume” of
(F, S, 1, &), is the finite and positive number given by:

(i) In the nonlattice case,
(4.46) v(F) = | lim AN =C,

where C is the positive constant defined by (3.15).
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(ii) In the lattice case,

4.47 (F)= 1l ! /A)\—dsﬂN()\)@_l/T (t)dt
(4ar)  vE)= I wR ), X T J, I

the mean-value of g, where g is the bounded, positive T-periodic function
occurring in (3.16).

PrOOF. This follows by combining Theorems 3.13, 4.41, and the proof of
Theorem 4.27. Note that by (4.35b) and (4.37), the limit in (4.47) exists and
equals the mean-value of g. O

REMARK 4.48. (a) Of course, the operators B, @ and R in (4.21), (4.23)
and (4.26), respectively, and the measure v = ®(u) defined in (4.42), not only
depend on the s.s. measure u, but also on the energy functional £ (and the s.s.
structure S).

(b) We do not know whether the “volume measure” v = ®(u) constructed in
Theorem 4.41 (see (4.42)) is independent of the choice of the limiting procedure
w. [A similar difficulty occurs in the recent work of Connes and Sullivan ([CoSu],
[Co5, §IV.3]).] However, we do know from Theorem 4.27 that its total mass is.
We conjecture that this is also the case of ¥ = ®(u) itself, for an arbitrary s.s.
measure y. If this is correct, then we propose to call v = ®(u) (resp., its total
mass v(F)) the “volume measure” (resp., the “volume”) of (the p.c.f., analytical
s.s. fractal) (F,S, u, ). Actually, when p = p*, the self-similar measure of max-
imal spectral exponent ds = dg(u*) = d% defined in Theorem 3.22, we will make
a more precise conjecture in §5.1; namely, that v* = ®(u*) is “approzimately
self-similar”, with “weight functions” ¥; (i = 1,..., N) depending only on the
energy functional £, and hence that v* is independent of w. (See esp. Conjecture
5.10.) If that is the case, we propose to call v* = ®(u*) (resp., its total mass
v*(F)) the “natural volume measure” (resp., the “natural volume”) of F. Thus
v* could then be viewed as an analogue of Riemannian volume (measure) on F.
(See (c) below.)

(c) Let N = N™ be a smooth n-dimensional (spin) Riemannian manifold.
Then a counterpart of formula (4.42)—with ds replaced by » and B = A(l,/ 2
replaced by the Dirac operator on N (or equivalently, as can be checked, by its
absolute value)—was used in [Co3; Co5, §VL1] to reinterpret Weyl’s classical
formula and recover the usual n-dimensional Riemannian volume (measure) on
N = N7, from purely operator-theoretic data. In §5, we shall further discuss the
possible connections between our work and aspects of noncommutative geometry.

(d) The reader may ponder the following wrong claim and proof.

False claim: The measure v = ®(u) is absolutely continuous with respect to
u. Hence, by the Radon-Nikodym Theorem, there exists a function ¢ > 0 and
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p-integrable such that
/ fdv= / wf du, for all f bounded and measurable.

(Wrong proof: Let A be a Borel subset of F such that u(A4) = 0. Let f = 1,4 be
the characteristic function of A; then f =0 p-a.e. and so My =0 (in £(H)). It
thus follows from (4.42') (or (4.42)) and Proposition 4.14(iii) that

v(A) = v(f) = / fdv = Try,(MyR) = Try, (RM;) = Try,(0) = 0.

Hence v is absolutely continuous with respect to u, as claimed.)
[Hint: The use of (4.42') is not legitimate here since f = 14 need not be in
We close this section by considering the case of Neumann boundary condi-
tions. We show, in particular, that the “volume measure” v'= ®(u) (and hence
also Try(R) = v(F))—constructed via the Neumann instead of the Dirichlet
Laplacian—is independent of the boundary conditions.

THEOREM 4.49 (Neumann boundary conditions). Let A; = Ay, be the
Neumann Laplacian on F = (F, S, u, ), defined as in Proposition 3.5. We define
the operators B,Q and R exactly as in (4.21), (4.23) and (4.26), respectively,
except that we replace Ag by Ay + B, where B is a fized but arbitmry positive
constant. So that, for ezample,

(4.50) R= (A +p)7%/"2,

Then:

(a) The analogues of Proposition 4.22, Theorems 4.27 and 4.41, as well as of
Corollary 4.45, holds without change in this situation.

(b) Moreover, the “volume measure” v = ®(u) is the same as for the Dirichlet
problem (and is independent of 8 > 0). Hence the same is true of the Dizmier
trace of R, Try,(R) = v(F) (which is therefore independent of both the limiting
procedure w and the boundary conditions).

PROOF. (a) In view of the results of [KiLal] recalled in §3 above, the proof
of (a) parallels that of the cdrresponding statement for Dirichlet boundary con-
ditions. (See esp. Proposition 3.5 and Theorem 3.13.)

(b) Fix 8 > 0. Let Ry := (Ag)™%/2 and Ry := (A; + 8)~95/2, Then it
follows from [KiLal] that

(4.51) Ry — Ry € £},

where £ denotes the Magaev ideal defined in Proposition 4.14(iv). (We will
comment on (4.51) below.)
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Now, for a given f € C(F) and with the bounded niultiplica.tion operator
My defined by (4.44), we also have

(4.52) M_fRO - Mle = Mf(Ro - Rl) S £é+,

since L1t is a two-sided ideal in L(H), where H = L*(F, u). Hence Proposition
4.14 (iv) and the linearity of the Dixmier trace imply that

Trw(MfRo) = TIw(Mle), for all f € C(F),

from which (b) follows since by (4.42'), the associated “volume measures” are
therefore the same for Dirichlet or Neumann boundary conditions.

Finally, we briefly explain how to derive (4.51). Write Ry — R; = A, + As,
where

Ay = (AO)—ds/Z ~ (A +ﬂ)—ds/2 and Az = (AO +[3)—ds/2 — (A +ﬂ)—ds/2.

We claim that both As and A3 are in the ideal [,(1)"', and hence their sum Ry— R;
is also in L}*.
In fact, if A; denotes the jth eigenvalue of Ay, we have

pi(A2) = A7 %% (1 — (14 B/A))~%/?
— ﬁd_;/\j—(1+ds/2)(1 4 0(1)) = j—(1+2/ds)’

by (4.24). Thus 3777, p;(A2) < oo; so Aj is of trace class and is a fortiori in
Vi S

To see that Az € L3T, we use the results of [KiLal] recalled in §3.1. They
imply, for example, that the resolvents of Ap and A; (are compact and) differ by
a finite rank operator. (Indeed, given v € H, let u; := (A;+8)"1v, for s = 0 or 1;
so that (A; 4+ 8)u; = v. Then, by Propositions 3.5 and 3.6, u; € D,,, the domain
of the Laplacian A = A,, and A(up — u1) = 0; hence uy — u; is a harmonic
function on (F,£). The result follows because the space of harmonic functions
on a p.c.f. (analytical) fractal is finite-dimensional.) O

5. Discussion: Conjectures, open problems and extensions

We conclude this paper by discussing possible extensions of this work, as well
as proposing conjectures and open problems that may help point to the direction
of future research in this area. In the process, we suggest further connections with
aspects of Connes’ noncommutative geometry as well as with the recent work of
Connes and Sullivan ([CoSu], [Co5, §IV.3]) on “quantized calculus” and “Dirac
operators” on limit sets of certain Fuchsian groups. (See esp. the comments in
(5.23) below as well as in §5.2.)

As will be clear to the reader, much of the present section is of a rather
speculative nature.
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For clarity, we mostly work in §5.1 and §5.2 within the framework of “finitely
ramified” (i.e., p.c.f.) self-similar fractals, for which we now have the most precise
information. We then briefly discuss in §5.3 possible extensions to other classes
of s.5. fractals. (We postpone to a later work the consideration of more general
“fractals” not necessarily assumed to be self-similar.)

We begin in §5.1 by discussing the possible properties of the “natural vol-
ume measure” or analogue of “Riemannian volume measure”, v* = ®(u*), con-
structed in §4.2 above. (See Remark 4.48(b), (c).)

5.1. An analogue of Riemannian volume on fractals. We return to
the setting of §4.2 and more precisely, of §3.3. Let F' = (F,S) be a (topological)
p.c.f. self-similar set, as in Definition 2.6. Recall from Definition 2.6 that S is
denoted by S = (4, {W;}¥,), with A := {1,..., N}. Further, let £ be a regular
s.s. Dirichlet form on F, with “harmonic constants” {¢;}.,(0 < ¢; < 1), as in
Definition 2.13 and Remark 2.15(b). In the following, the self-similar structure
S and the energy functional £ will be fixed and we will often simply write F' or
(F, ) to refer to the regular p.c.f. self-similar set (F,S,£).

At this point, some readers may wish to briefly review §2.3 and §3.3, and in
particular, Definitions 2.16, 3.20 and Theorem 3.22.

Let 4 = p* be the “natural self-similar measure” (with respect to S) on
(F,£); that is, the unique s.s. measure on F' with mazimal spectral exponent
ds = dg(p*) = d%, the spectral dimension of the Dirichlet. space (F,£). (See
Remark 3.26(a) above.) Recall from Theorem 3.22 that p* is the self-similar
measure (with respect to §) with weights {b; := c¢j'}}L,, where S is the “simi-
larity dimension” of (F,£&); namely, S is the unique positive number such that

Ef;l ¢? = 1. Hence, by Definition 2.16, * is the probability measure such that

N
(5.1) [a=3 [towoan,
=1

for all f € C(F).

Note that (for fixed &) the weights of u* depend only on the energy func-
tional £.

Clearly, (5.1) implies by induction that for all integers m > 1,

(52) [rae =3 [ eoma,

wED

for all f € C(F).
Here, as before, ©,, = A™ denotes the set of words of length m, with letters
in the alphabet A= {1,...,N}. Furthermore, for w = wy ...wm € p,

(5.3) Cw = Cyy +++ Caop,
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and (as in (2.4))
(5.4) W, =W, 0---0W,,_.

We will next mimic this situation (first in Definition 5.5, and then more
closely in Conjectures 5.10 and 5.14), except that we will allow variable—rather
than constant—weight functions. (Compare with Definition 2.16 for a self-similar
measure. )

DEFINITION 5.5 (Approximately self-similar measure). Let (F,S) be a topo-
logical self-similar fractal and let x be a Borel probability measure on F. Then
k is said to be “approzimately self-similar” (with respect to S) with “weight
functions” {¥;}¥, if there exist nonnegative and measurable functions ¥; (i =
1,...,N) on F such that

(5.6) /F fdm:i /F U,(f o W) dr,

i=1

for all f € C(F') (and hence for all f bounded and measurable on F).

REMARK 5.7. (a) Of course, the functions ¥; must be x-integrable and
satisfy the following compatibility condition:

N
(5.8) ;/F\Ilidn =1.

(b) Clearly, an approximately self-similar (in short, a.s.s.) measure is s.s. if
and only if each of its weight functions is constant.

(c) It is easy to find suitable sufficient conditions on the functions ¥; (i =
1,...,N) (for example, continuity) that guarantee the existence of an a.s.s.
measure k with weight functions {¥;}¥ ;. (This follows, for example, from the
Schauder fixed-point theorem or else from a direct functional-analytic argument.)
In general, however, such a measure need not be unique.

We now return to the main object of §5.1. Let u* be as above the “natural
5.5. measure” on F. Let v* = ®(p*) be the nonzero positive measure constructed
in Theorem 4.4.1, and associated with the (regular) analytical p.c.f. self-similar
fractal F = (F,S,u* E). (See esp. (4.42) or (4.42).) As was mentioned in
Remark 4.48(b), we propose to view v* as the “natural volume measure” or
“Riemannian volume (measure)” in this context. Let vy be the probability mea-
sure associated to v*; namely,

vt _ ()

(59) n = I/*(F) = I/*(F),

where v*(F'), the total mass of v* or “natural volume” of (F,£), is given by
Theorem 4.41 and Corollary 4.45. (See esp. (4.46) or (4.47) in the “nonlattice”
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or “lattice” case, respectively.) Then v is called the normalized “natural volume
measure” on (F,£).

We are now ready to discuss the conjectured properties of v* or, equivalently,
v1. (It should be clear from the context whether #* and 14 are viewed as Radon
or Borel measures on the compact metrizable space F.)

CONJECTURE 5.10. Let v; be the probability measure on F' given by (5.9).
Then vy is “approxzimately self-similar” (with respect to 8) with “weight func-
tions” {U;}V | depending only on the energy functional £ (and hence, in par-
ticular, independent of the limiting procedure w used in defining v* = &(u*) in
(4.42)).

Thus by (5.6), the measure vy itself (and hence v* by Remark 5.11 below) is
also independent of w and depends only on £.

REMARK 5.11. If v is independent of w, as stated in Conjecture 5.10, then
so is v* = v*(F)u1, in agreement with the conjecture made earlier in Remark
4.48(b). This is so because by Theorems 4.27 and 4.41, v*(F) = Try(Ry-) is
independent of w.

We will next specify Conjecture 5.10 in several different ways. First recall
from [Ki4] and §3.3 that “the” “natural (or intrinsic) metric” §; on the Dirichlet
space (F,£) is given (as in (3.32)) by

(5.12) 61 (z,y) = max{|u(z) — u(¥)|? : u € F, E(u) < 1}, for z,y € F.

(Here, as before, F denotes the domain of the Dirichlet form £.) Further, recall
that for every ¢ = 1,..., N, the mapping W; : F — F is a contraction with
respect to &1, with (global) Lipschitz constant ¢; € (0,1). Moreover, it follows
from [KiLal] and [Ki4] that (as in (3.33) of §3.3) the similarity dimension S of
the Dirichlet space (F,E) and the Hausdorff dimension dg = dg(61) {as well as
the Minkowski or “boz” dimension dy = da(81)) of the (bounded, complete)
metric space (F,6;) coincide:

(5.13) S =dg = du,

so that by (3.25), d5 = 25/(S + 1) = 2dg/(dxr + 1) = 2dar/(dsr + 1). (See
Corollary 3.34.) (The minor reason why we choose 61, given by (5.12), rather
than the metric § = /81, given by (2.22), is that di(6) = 2dg(61) = 25.)

We next propose to relate the values ¥;(z) of the weight function ¥; (i =
1,...,N) of v to the “local Lipschitz constant”, denoted by |W/(z)| in (5.15)
below, of the contraction map W;, with respect to the metric §;.

The following conjecture is motivated, in particular, by work in ([Pa], [Sul-
3], [CoSu] and [Co5, §IV.3]), as will be further commented upon in (5.23) below.
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CONJECTURE 5.14. Assume that Conjecture 5.10 is true. Fiz an arbitrary
i €{1,...,N}. Then the following limit

. 6(Wi(z), Wi(y))
5.15 W!(z)|:= lim !
(5.15) (Wi ()| T 61(z.7)
erists for vi-a.e. x in F'. Moreover, the “weight function” U; of the “approxi-
mately self-similar” measure v, is given by

(5.16) U= (W/° (= W% = |W]|*, by (5.13)).

More generally, we have for allm > 1,

(5.17) /fdyl - / WIS (F 0 W) do,
F wemy, VF
for all f € C(F) (and hence for all f bounded and measurable on F).
Here, for w = w1 ...wm € X, W, is defined as in (5.4) and |W.| as in
(5.15).

REMARK 5.18. (a) Note that, in view of (5.12) and (5.15), the “weight
functions” ¥; given by (5.16) depend only on £&—and hence do not depend on
the limiting procedure w used in defining »; or v*, in agreement with Conjecture
5.10 above.

(b) Clearly, the measure v* = v*(F)v, also satisfies (5.17), except with v*
instead of 4.

(c) Equation (5.17) obviously implies (but is not in general equivalent to) the
simpler equation

N
(5.19) /Ffdul = Z/F [W!)5(f o W) don,
i=1

for all f € C(F).

(d) Since each map W; is a contraction with Lipschitz constant ¢; on (F, §;),
we deduce from Conjecture 5.14 that v;-almost everywhere, ¥; = |W/|S < cf
(< 1),fori=1,...,N; so that (given that 3"~  ¢f = 1), Zfil [W/|S < 1. By
letting f =1 in (5.19), we thus deduce that

N
(5.20) M IWj|=1, ur-ae onF.
i=1

More generally, since _ 5, ¢S = 1, with ¢,, defined as in (5.3), we deduce from
(5.17) that for all m > 1,

(5.21) Z (W% =1, vi-a.e. on F.
WEX,
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(e) It foliows by induction from (2.14) that for each m > 1, the s.s. Dirichlet
form £ satisfies

(5.22) E(u,v) = Z ctE(uo Wy,vo W,).

WEX

for all u,v € F. (This fact was essentially noted in [Ki4] by using [KiLal, Lemma
6.1] which establishes that natural Dirichlet forms on F' are self-similar, in the
sense of our Definition 2.13.) Equation (5.22) should be helpful in attempting
to prove Conjectures 5.10 and 5.14.

(5.23a) The significance of Conjecture 5.14 above (as well as of Conjectures
5.27 and 5.29 below) is that 11 is (at least in part) the analogue—in the present
setting of p.c.f. self-similar fractals F—of the “Patterson-Sullivan measure” [Pa,
Sul-3] for limit sets L of suitable (e.g., geometrically finite) Kleinian groups.
(See the collective work [Bd]—and in particular the article [Ni]—for an excellent
introduction to this beautiful subject; see also [Ba].) Originally, this measure
was defined by Patterson in [Pa] for limit sets of Fuchsian groups and later con-
structed in the general case by Sullivan [Sul-3] for limit sets of arbitrary Kleinian
groups. [Very roughly, a Fuchsian (resp., Kleinian) group is a suitable discrete
group of isometries of the Poincaré hyperbolic plane (resp., of its higher dimen-
sional analogue, a hyperbolic space of any dimension); see, e.g., [Ba; 7, Chap.
1]. Further, typically, the limit sets of such discrete groups have nonintegral
“fractal” (Hausdorff, Minkowski, or packing) dimension and loosely speaking,
exhibit some kind of “approximate self-similarity”; See, e.g., [La5, Part I, esp.
§4.5] and the relevant references therein.]

(5.23b) In ([CoSu], reported on in [Cob, §IV.3]), Connes and Sullivan recon-
struct by means of noncommutative geometry the Patterson-Sullivan measure
for the case of limit sets L of quasi-Fuchsian groups. More specifically, their
construction is based on the new notion of “guantized (differential) calculus”.
Very briefly, their argument goes as follows:

(i) They first define a positive (Radon) measure 7 on L by means of “inte-
grals” involving the Dixmier trace of certain operators. (These “integrals” are of
a somewhat different form than in [Co3], say, or in §4.2 above, due to the special
nature of “quantized differentials” and/or to the existence of (an analogue of)
the “Dirac operator”. See, however, §5.2 below for further discussion of this
point.)

(ii) Using the properties of “quantized differentials” (esp., the “chain rule”
and the “change of variables formula”), as well as the unitarity of the Dixmier
trace, they then show that the measure 7 is “g-conformal”, in the sense of Sullivan
[Su3], for some positive real number g. (Namely, that for all transformations g8
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in the group, 70 871 = |#'|97 or equivalently,

(5.24)  [Genar= [ip1san

for all f € C(L).) They thus deduce from the uniqueness result in [Su3] that
T coincides with the (normalized) Patterson-Sullivan measure on the limit set
L, which in this case coincides with the (¢-dimensional) Hausdorff measure on
L c C. (In particular, q is equal to the Hausdorff dimension of L.)

REMARK 5.25. (a) When he had obtained the results in §4.2 above, the
author was not aware of the work in [CoSu]—although he knew, of course, of
the results in [Co3], for example. I am grateful to Professor Jean Bourgain for
pointing out reference [CoSu] after I explained to him the work in §4.2.

(b) Very recently, after having (essentially) completed this paper, the author
has received an interesting preprint by Mauldin and Urbazniski [MU] studying
an analogue of the Patterson-Sullivan measure on “conformal (infinite) iterated
function systems” or in the spirit of our present terminology, on “conformal (infi-
nite) self-similar sets” F' (with possibly an infinite number of conformal mappings
Wi but also with F' embedded in some Euclidean space R"). (See the relevant
references in [MU] for the present case of finitely many W;’s.) A key technical
notion in [MU] is that of “g-semiconformal measure”; i.e., a measure satisfying

properties very analogous to those conjectured about 1 in (5.17) above, except
with the “prime” now representing ordinary differentiation of (smooth) functions
from R™ to itself. The authors show, in particular, that there exists exactly one
“g-semiconformal measure” (with ¢ = dp, the Hausdorff dimension of F C R®
with respect to the Euclidean metric); that is, there exists exactly one probabil-
ity (Borel or Radon) measure « satisfying (5.17), with v, replaced by & (and with
continuous weight functions). Actually,  is an eigenmeasure (with eigenvalue 1)
of the dual of the “Perron-Frobenius-Ruelle operator” [Ru, Bo, ...]. Moreover,
under suitable assumptions, this unique “g-semiconformal measure” & is neces-
sarily “g-conformal”; namely (with our notation and ignoring technicalities), for
every i =1,... ,N,k 0 W, = |W/|% or equivalently,

(5.26) /F(foW.i)dm=/F|Wi'|qfdn,

for all f € C(F). (Compare with (5.24) above.)

One possible strategy to prové Conjecture 5.14 above (as well as Conjectures
5.27 and 5.29 below) would be to extend and adapt the arguments in [MU] (and
the relevant references therein) to the present more abstract (and somewhat
different) situation.

We now continue to explore the possible properties of v; (or v*).
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CONJECTURE 5.27. The “weight functions” ¥; = |W/|%,i = 1,...,N (in
(5.16)) can be chosen to be continuous. Furthermore, vy is the unique probability
(Borel or Radon) measure satisfying (5.17). Actually (up to measure equiva-
lence), 11 1s “uniquely ergodic” with respect to the action of the semigroup T
spanned by {W;}N.,; namely, T := {W,, : w € Ep,, for some m > 1}.

Moreover, v1 is o “Gibbs equilibrium measure” [in a sense adapted from
Ruelle [Ru] or Bowen [Bo], for example, except with “groups” (generated by a
single map) replaced by “semigroups”].

REMARK 5.28. The “unique ergodicity” mentioned above will be viewed
from a somewhat different perspective when we discuss “G-measures” at the end
of this subsection. (See esp. Conjecture 5.35 below.)

The next conjecture, if true, would establish further ties with ([Su3], [CoSu],
[Cob, 8§IV.3]). (See also §5.2 below where, in particular, further discussion of
Connes metrics [Co3; Co4; Co5, Chap. VI] can be found.) We state it here in
sufficient generality so as to allow maximum flexibility for extensions to other
settings, for example. (See, e.g., ([Fc, Chaps. 2 and 3], [Su3]), and the references
therein for the various notions of fractal dimensions and measures used below.)

CONJECTURE 5.29. There exists a “Connes-type metric”, §*, on F' with
respect to which the following properties hold:

(i) The Hausdorff and Minkowski (boz) [and hence also packing] dimensions
coincide with S, the similarity dimension of (F,&); namely, with the obvious
notation, we have

(5.30) dp(8") = du(6%) = dp(6%) = 5,

where S is defined by (3.21).

(ii) The (S-dimensional) Hausdorff (resp., packing) measure of F is positive
and finite.

(iii) The (S-dimensional) normalized Hausdorff and packing measures co-
incide with v1, the normalized “natural volume measure” on (F,E) defined by
(5.9).

(iv) More precisely, let v* = ®(p*) = v*(F)uv1 be the (un-normalized) “nat-
ural volume measure” on (F,£). Then v* is proportional to the (normalized)
Hausdorff [and hence also packing, by (iii)] measure on F, with proportionality
constant depending only on £, and hence in particular independent of the limiting
procedure w used in defining v* (in (4.42) of Theorem 4.41).

Note that in the present setting, (iv) follows automatically from (iii), by
Theorems 4.27 and 4.41.
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REMARK 5.31. (a) Since we always have dg(6*) < dp(6*) < dp(6*), the
equality of dg7(6*) and dps(6*) implies that the packing dimension dp(6*) is equal
to this common value.

(b) A natural candidate—in the present case of p.c.f. self-similar (analytical)
fractals—for the above metric 6* might be the metric § = d¢ (given by (2.22))
or rather'§; = 61¢ (given by (5.12)), so that dy(61) = dp(61) = S by (5.13),
and hence (i) holds by the previous remark. Further, by [Ki4], (ii) holds for the
Hausdorff measure and we conjecture that it also holds for the packing measure.
In fact, we also conjecture that the normalized (S-dimensional) packing and
Hausdorff measures on (F, ;) coincide. The real question is to know whether
they agree with 11 = v*/v*(F); that is, whether (iii) is true for this choice of
metric §* := §;. Indeed, if this is so, then (as was noted above) (iv) follows
from Theorem 4.41 because v*(F) = Try, (R« ), which by Theorem 4.27 depends
only on £ and is in particular independent of the limiting procedure w. One
possible problem, however, is that Hausdorff measure on (F,6;) and p*, the
original measure from which v* = ®(u*) is constructed, are mutually absolutely
continuous, by [Ki4]. This fact—in conjunction with (iii) and (iv)—is somewhat
surprising since the non-normality of the Dixmier trace (typically) allows us
to change the measure class, as was pointed out in ([CoSu], [Co5, §IV.3]). (It
may not be a problem in the present case, however.) This raises the new and
interesting question of possibly finding a Connes-type metric §* on F with respect
to which Hausdorff measure and v* are mutually singular, while retaining all
the other nice properties of 6;. In the special case of the Sierpiniski gasket,
for example, the “Riemannian-type” metric constructed by Kusuoka in [Ku2]
would be a natural substitute for §;. (In particular, the associated measures are
mutually singular.)

(c) Conjecture 5.29, if correct, would also provide an interesting connection
with Berry’s original conjecture [Bel-2] for the spectral distribution of Lapla-
cians on fractals. (Note, however, that even if F' C R™, Hausdorff measure is
defined here with respect to the metric 6* rather than the Euclidean metric.)

We close §5.1 by a discussion of “G-measures” and of their relationship with
the present work. (Our treatment will closely follow [BD2].) One is tempted to
think of |W/| (or more generally, |W_|) in (5.16) (or (5.17)) as a Radon-Nikodym
derivative, say

d(l/l o Wi_

1 -1
) (resp., ___d(u1 oW, )
dV]_

dl/l

).

Instead, we will prefer to develop these possible connections with Radon-Nikodym
derivatives (or cocyles) via the use of “G-measures” on the infinite product space
¥ = AN, where A = {1,...,N}.
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The concept of “G-measure” was introduced by Keane in [Ke] (where it is
called “g-measure”) and extended to a more abstract setting by Brown and Doo-
ley in [BD2]. It is useful, in particular, in order to determine how far a given
(suitable) probability measure is from a true infinite product (i.e., Bernoulli)
measure- (on X, say). Intuitively, in favorable circumstances, “G-measures” can
be viewed as “abstract Riesz products” or more generally, as weak limits of
infinite product measures (on ¥, say). (See [BD1-2] and the relevant refer-
ences therein.) They are also helpful to give a precise meaning to the notion of
“uniquely ergodic measure” not just with respect to a single mapping (as in the
traditional case), but rather with respect to an entire group of transformations.
(Compare with Conjecture 5.27 above.)

We now briefly recall the definition of a “G-measure” on £ = AN. (More
general infinite product groups are allowed in [BD2].) First, we identify A with
the additive group Zy = Z/NZ of relative integers modulo N. (Clearly, the name
of the “letters” in the “alphabet” A is irrelevant for our previous arguments.)
Accordingly, we identify ¥ with the infinite product H;°=1 Zy.

The abelian group ¥ = H;‘;l Zy is acted upon by the group B = @72, Zy
of “finite coordinate changes” as follows. Given 8 = (f1,...,8m,0,0,:..) € B
and w = (w1, .. ,Wm,Wm+1,---) € L, we have

Bw:i=(B1+wi, .., Pm+ Wy Wing1,.-- ).

Next, given a probability measure « on X, and a finite subset A of N, we define
the measure

1
5.32 Kp 1= kofB71,
(532) B 2 "
where By :={8 € B:8; =0, for all j ¢ A}. (Note that the identity belongs to
By and hence k5 > #(Ba) "'k, so that « is always absolutely continuous with
respect to ka.) Let {Gp} (A C N, A finite) be the family of Radon-Nikodym
derivatives of % with respect to xa; namely, G := dx/dxp. Then we assume
that the G’s are normalized (i.e., #(Bp)™? > pen, Ga(Bw) = 1) and, more
importantly, compatible; i.e., for A; C Ay, finite subsets of N, we have

(5.‘33) GA1 ((J:J)GA2 (ﬂw) = GA1 (ﬂ.w)G’A2 (w), for 8 € A;.

Then, by definition, a “G-measure” is a Borel probability measure (on X) asso-
ciated to such a compatible (and normalized) family {Gj}.

REMARK 5.34. (a) We refer to [BD2, p. 280 and §1.2, pp. 282-284] for the
relationships between “G-measures” and “Radon-Nikodym cocycles”.

(b) T am grateful to Professor Anthony Dooley for pointing out the possible
relevance of the notion of “G-measure” after having heard me lecture on this
subject at the University of New South Wales in Sydney in July 1993.
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‘We now return to the setting of the rest of §5.1 above.

CONJECTURE 5.35. Let 71 be the Borel probability measure on & = AN
obtained by pulling-back the rom(normalized) “natural volume measure” 11 (in
(5.9)) by the continuous surjection Il : ¥ — F (given by Definition 2.1). Then 1
is a “G-measure” on ¥.. Furthermore, 71 can be given a continuous version (i.e.,
the associated Radon-Nikodym derivatives G can be chosen to be continuous, in
the sense of [BD2, §1.3]) and more importantly, 11 is “uniquely ergodic” (with
respect to the action of the group of “finite coordinate changes” B), in the sense
of “G-measures”. (See [BD2, Proposition 1.6, p. 287] according to which, in
particular, 11 is then the unique “G-measure” associated with the Gy ’s, and is
therefore ergodic.)

REMARK 5.36. Intuitively, Conjecture 5.35 says that 71 = 41 is an “ap-
prozimate product measure” on ¥ = AN and “hence” that 1; is “approzimately
self-similar”, in agreement with Conjectures 5.10 and 5.14 above. (Compare
with Theorem 2.18 and Remark 2.19(a).) Moreover, the fact that the G4’s can
be chosen to be continuous and that 7, is “uniquely ergodic” is, of course, in
agreement with Conjecture 5.27.

5.2. Towards a noncommutative fractal geometry? We suggest here
further possible connections between the above work on analysis on fractals as
well as spectral and fractal geometry on the one hand, and aspects of noncommu-
tative geometry and “quantized calculus” (esp. [Cob, §IV.3 and §VI.1], [CoSu]).
on the other hand. (See esp. §5.2.1 below.) Eventually, we would expect these
subjects to give rise to a new subdiscipline, coined “noncommutative fractal ge-
ometry”.

A “fractal” will be viewed as a commutative or “classical” space in §5.2.1
and (very briefly) as a noncommutative or “quantum” space in §5.2.2.

5.2.1. Dirac operators, Connes metrics and quantized calculus. We first re-
call some basic definitions and examples. Our treatment will necessarily be fairly
brief. (See, e.g., [Col-5] and the references therein for further information.)

DEFINITION 5.37 (Fredholm modules). An unbounded Fredholm module
(or K-cycle) is a quadruple (A, p,H,D), where A is a (unital) C*-algebra,
p: A— L(H) is a *-representation of A in the (complex) Hilbert space H, and
D is an unbounded self-adjoint operator on H such that

(i) the commutator [D, p(a)] is bounded (i.e., lies in L(H)) for all a € A,
(ii) (1+ D?)7! exists and is compact (i.e., D has compact resolvents).

Moreover, the Fredholm module is said to be pt-summable if |D|~1 € et
(i.e., the compact resolvents of D lie in L',P+), where LP" is the Magaev ideal
defined by (4.3) in §4.1.1 above.



184 M. L. LAPIDUS

REMARK 5.38. (a) The “commutator” [D, p(a)] can also be viewed as an
(a priori) unbounded quadratic form, Q@ = Q,, on H (see, e.g., [Co5, §VI.1]);
namely, Q(u,v) = (p(a)u, Dv) — (Du, p(a*)v), for u,v in the domain of D, and
where (-, -) denotes the inner product in H.

(b) Following common usage, we will simply write [D, a] instead of [D, p(a)].
Furthermore, we will ignore the representation p and write (A4, H, D) or simply
(H, D) if no ambiguity may arise.

(c) We adopt here the definition of “p*-summability” of a K-cycle given in
[Co4, Definition 2, p. 188] rather than in [Co5], for example.

The following important example [Col,3] is prototypical of the situation that
we would like to mimic.

ExXAMPLE 5.39 (Dirac operators on Riemannian manifolds). Let N = N™ be
an n-dimensional smooth compact (spin) Riemannian manifold. Let A = C(N)
be the algebra of (complex) continuous functions on N , acting by multiplication
operatots on H := L%(N;Sp), the fibre bundle of square-integrable spinors on
N. Further, let D denote the classical Dirac operator on IN. (Recall that D
is a self-adjoint operator on H which is neither bounded from below nor from
above.) Then (A, H, D) is a p*-summable Fredholm module (or K-cycle), with
p = n, the dimension of the manifold N.

REMARK 5.40. (a) As is well-known, the Dirac operator can be thought of
as the square-root of the Laplacian, with a sign ambiguity. We will pursue this
analogy below (see esp. Conjecture 5.45). More precisely, the absolute value
|D| of D is equal to the square-root of the Laplacian, while the sign of D,
T =sgn(D) = D|D|™! (also defined through the spectral theorem for unbounded
self-adjoint operators [ReSi, Chap. VII]) is an involution (i.e., Z? = I) which
plays a central role in the corresponding abstract theory [Co4-5].

(b) More generally, let X be a compact Hausdorff space and let (A, H, D)
be a Fredholm module, where A = C(X), the space of continuous functions
on X. Then, heuristically, D (resp., D®> = |D|?) can be thought of as an ab-
stract analogue of the “Dirac operator” (resp., of the “Laplace operator”) on X.
Furthermore, in some sense, the involution Z = sgn(D) may be viewed as an
abstract analogue of the Hilbert transform (compare with [CoSu]).

Rather than introducing “Connes-type metrics” in the general (noncommu-
tative) case, we will limit ourselves to the case of most immediate interest to us
when the algebra A is commutative.

DEeFINITION 5.41. Let X be a compact metrizable space, and let (A, H, D)
be a Fredholm module with .4 := C(X). Then é* defined by

(5.42) 6% (z,y) = sup{la(z) — a(y)| : a € A, ||[D,qa]|| < 1},
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for z,y € X, is called the Connes metric on X associated with (H, D).
Here, || - | denotes the operator norm in £(H). (See also Remark 5.38(a)
above.)

REMARK 5.43. (a) In general, 6* may only be a pseudo-metric (i.e., may
take the value +oco but otherwise satisfies the remaining axioms of a metric).
However, a very simple sufficient condition guarantees that §* is an actual metric
on X; namely, the set {a € A: |[D,a]|| < 1} (modulo the constants) must be
bounded. (See [Co3, Proposition 3, p. 209].)

(b) In the case of a Riemannian manifold X = N studied in Example 5.39
above, §* coincides with the usual Riemannian metric on N. (See [Co3; Co4, p.
187; Cob, §VI.1].) That is, one recovers the Riemannian structure of N from the
purely operator-theoretic data (H, D).

(c) If we identify points in X with states in the algebra A = C(X), then we
may rewrite (5.42) in the following “dual way”:

(5.44) 6.(,) = sup{lp(a) — ¥(a)| : a € A, D, al]| < 1},

for ¢,9 “states” on A. Formula (5.44) is the basis of the noncommutative
generalization of the notion of Connes metric. (See [Co3, Proposition 3, p.
209].) (Note the formal analogy between the definition of the metric & given by
(2.22) (resp., 6. given by (2.21)) and formula (5.42) (resp., (5.44)) defining §*
(resp., 6.).

We now return to the setting of §5.1. In the process, we suggest further
ties between our previous work and aspects of noncommutative geometry (in a
commutative setting). We also specify, in particular, Conjecture 5.29 above.

CONJECTURE 5.45 (Dirac operators and Laplacians on fractals). Let F =
(F,S,p*,E) be a p.cf. (analytical) self-similar fractal, where u* is the “natural
s.5. measure” (relative to S) on (F,E). (See §5.1 above for the precise setting.)
Then there ezists an unbounded Fredholm module (A, H, D), with A := C(F)
and D a suitable analogue of the “Dirac operator” on F, having the Jollowing
properties:

(i) The absolute value, |D|, of D is equal to B := /A, the (positive) square-
root of the Laplacian A = A+ associated with the s.s. measure y*.

(ii) The K-cycle (H, D) is p*-summable, with p := d§ = dg(u*), the “spec-
tral dimension” of (F,&) defined in (3.23) and (3.25). (See Theorem
3.22)

(iii) If 6* denotes the Connes metric associated with (H,D) as in Defini-
tion 5.41, then Conjecture 5.29 from §5.1 holds for this choice of met-
ric. In particular, dg(6*) = S, the similarity dimension of (F,£) (see
(3.21)), and we have p := d§ = 2dy(6*)/(1 + dg(6*)), where dm(6*)
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denotes the Hausdorf dimension of (F,6*). Moreover, the (normalized,
S-dimensional) Hausdorff measure of (F, §*) coincides with the (normal-
ized) “natural volume measure” 11 on (F,£). (See (5.9) and Theorem
441)

(iv) The measure v* = v*(F)vy—constructed in Theorem 4.41 via the Dizmier
trace and by means of the (square-root of the) Laplace operator A =
Ao, —can also be recovered from the following formula (analogous to
that in [Co3]):

(5.46) V*(f) = Tr,(FD™%),  for oll f € C(F),

where we have substituted the “Dirac operator” D for the square-root of
the Laplacian in (4.42).

REMARK 5.47. (a) Actually, (ii) follows from (i) and Proposition 4.22. More
precisely, it follows from Proposition 4.22 (with yu := u*) and Remark 4.25 that
% = dg(p*) is the infimum of those p’s for which (H, D) is p-summable (i.e.,
for which |D|™ € [,1’+). Hence, in some sense, the spectral dimension dg should
also be equal to the “cohomological dimension” ([Co4, Chap. 3], [Co5]) of the
K-cycle (H,D). '

(b) Implicit in the statement of part (iii) of Conjecture 5.45 is the fact that
6* is a true metric on X; i.e., that the condition of [Co3] recalled in Remark
5.43(a) above is satisfied.

(c) When we write that |D| = v/A, we make a common abuse of language
since these operators do not (a priori) act on the same Hilbert space H. (Part
of the problem is to extend A to “differential forms” rather than to just define
it on functions on F.)

(d) Conjecture 5.45, if correct, would provide a framework for addressing
several of the questions raised in [La5, Part II] concerning a suitable analogue of
“Dirac operators” and other “elliptic pseudodifferential operators” on “fractals”.
(See esp. [La5, Question 5.5, p. 179].)

(e) It would be interesting to establish connections between the present work
(or conjectures) and that of Davies [Da] dealing, in particular, with Connes
metrics and discrete Laplacians on graphs. (Recall that Laplacians on p.c.f.
fractals are defined as suitable renormalized limits of discrete Laplacians on
approximating finite graphs.)

We next state in a somewhat imprecise manner a problem in which we estab-
lish further contact with the recent work of Connes and Sullivan on “quantized
calculus” (in one variable) on limit sets of quasi-Fuchsian groups ([CoSu], [Co5,
§IV.3]). (Compare with comment (5.23b) above.)

PROBLEM 5.48. Assume that Conjecture 5.45 is true and that its hypotheses
hold. Let T = sgn(D) = |D|D~! denote the sign of D, defined via the functional
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calculus. Let Z be a “model map” for the “fractal” F. Extend the setting of
Congjecture 5.45 as well as the “quantized calculus” of Connes and Sullivan so as
to make sense, in particular, of the “quantized differential” of Z,

(5.49) dz =1, Z]

(as well as of formula (5.50) below).
Then show that the “natural volume measure” v* = ®(u*) on (F, £) con-
structed in Theorem 4.41 can also be defined by the Jollowing formula:

(5.50) v (f) = /F fdv* = T (£(2)|d2]%),

for all f € C(F), where S denotes the similarity dimension of (F,E) given by
(3.21).

[Here, in (5.50), we assume implicitly that the operator dZ is compact and
that |dZ|% € L£1*. Furthermore, the bounded operators f(Z) and |dZ|® are
defined via the functional calculus. Of course, |dZ| denotes the absolute value
of dZ.]

REMARK 5.51. (a) Recall that v* is conjectured to be a natural counterpart
of the “Patterson-Sullivan measure” in this context. (See Conjectures 5.14 and
5.29.) Hence (5.50) (together with Conjecture 5.45) would provide a more com-
plete analogue of the results of [CoSu] in the present situation. (Compare with
(5.23a) and (5.23b) above.)

(b) A natural candidate for the “model map” Z is the “projection” II ; X —
F,where ¥ = ANand A = {1,... ,N}. (See Definition 2.1 above.) Recall that I
is continuous and surjective. Given the “fractality” of F, however, we would not
expect it to be “smooth” in any reasonable sense of the term (even if F C R™,
for some n).

[The map IT would thus be the analogue in the present context of the bound-
ary value Z : S! — L of a “Riemann map” or conformal equivalence, where (S*
is the unit circle and) L is the limit set studied in ([CoSu], [Co5, §IV.3)).]

(c) We would expect the signum operator Z = sgn(D) to be the (pull-forward
by IT) of a “dyadic martingale” (resp., or its obvious counterpart) on the abelian
Cantor group £ = {1,...,N}" when N =2 (resp., N > 2). (See, e.g., [SWS,
Chap. 3] and the references therein.) Indeed, such “dyadic martingales” are
natural analogues of the Hilbert transform or equivalently, of the “conjugate
operator” in this context.

(d) Perhaps a “noncommutative” interpretation of Conjecture 5.45—in which,
for example, A is a suitable Cuntz-Krieger algebra [CuKr], as in §5.2.2 below—
would be better suited to formulate and address Problem 5.48.
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5.2.2. Classical versus quantum spaces. So far, we have viewed (self-similar)
fractals F' only as “classical spaces” (i.e., commutative spaces) with an associ-
ated abelian algebra A := C(F). We now very briefly discuss the possibility of
treating them (in the terminology of [Co4-5]) as “quantum spaces” (i.e., non-
commutative spaces) for which the associated algebra .A is nonabelian. This
situation is probably very familiar to researchers working at the junction of op-
erator algebras and dynamical systems.

There appears to be (at least) two natural noncommutative algebras that
take into account (in somewhat different ways) not only the topological structure
of (topological, s.s.) fractals F = (F,S), but also their underlying dynamical
structure. (See Definition 2.1 above and Remark 5.54(a) below.)

They are associated with the following two equivalence relations R, and Rq
on F:

(i) R,y if and only if there exist an integer m and finite words w; in Ty,
(¢ = 1,2) such that

(5.52) Wo,z = Wy,

where W, is defined as in (2.4).
(ii) zRoy if and only if there exist an integer m; and a finite word w; in
Ym, (i =1,2) such that
(5.53) Wt = Wo,y.

One typically associates with the equivalence relation Ry an AF (i.e., “ap-
proximately finite”) algebra, defined as an inductive limit of a tower of finite-
dimensional algebras, whereas one associates with Ry a (richer) Cuntz-Krieger
algebra [CuKr]. (See, e:g., [MRS], [Co5] and the relevant references therein for
further information.) Note that these algebras are defined in terms of the action
of semigroups rather than of groups of transformations; see [MRS]. (Compare
with Remark 2.7 and Conjecture 5.27 above.)

REMARK 5.54. (a) The author is grateful to Professor Colin Sutherland for
a helpful conversation about the above subject after he lectured on the results
of this paper at the University of New South Wales in July 1993.

(b) We have become recently aware of the work in [JoPe| in a related—but
somewhat different context (s.s. measures on Euclidean space)—which makes
use of certain types of Cuntz algebras.

5.3. Extensions. We close this paper by a brief discussion of some of the
possible extensions of this work (as well as of the conjectures of §5.1 and §5.2)
to other classes of self-similar fractals.
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In a later work, we hope to deal (from a somewhat different point of view)
with more general spaces of nonintegral “fractal” dimension, no longer assumed
to be self-similar.

(i) (Analytical self-similar fractals). If Conjecture 3.37 of §3.4 is correct (and
if the counterpart of the results recalled in §3.1 also hold in this setting), then the
results of §4.2 can be extended (with essentially the same proof) to the class of
(regular) analytical self-similar fractals. (See Definition 2.24.) Recall from §3.4
that this class includes the “finitely ramified” (i.e., p.c.f.) fractals as well as some
interesting “infinitely ramified fractals”, such as the (universal) two-dimensional
Sierpiniski carpet. The analytical results of [KuZh, Ki5| should be useful to deal
with the latter case. (See also [BB1] for a probabilistic approach.)

Hence, in particular, one could define “volume measures” as well as an ana-
logue of the “Riemannian volume element” in this situation. Furthermore, the
“volume” of F' could be computed (much as in (4.46) or (4.47) in the nonlat-
tice or lattice case, respectively) in terms of spectral data. Moreover, we would
expect many of the conjectures of §5.1 and §5.2.1 to be formulated analogously.
(Note that the regularity assumption implies that dg < 2, as in Corollary 3.31.)

Finally, we discuss one last example, which is prototypical of the analytical
difficulties remaining to be overcome in order to deal satisfactorily with more
general classes of “infinitely ramified” s.s. fractals.

(ii) (The three-dimensional Sierpiriski carpet.) In this case—as was previ-
ously mentioned—F, the domain of the energy functional £, is no longer con-
tained in C(F). (Conjecturally, this is akin to the (higher-dimensional) Sobolev
Embedding Theorem for “fractals”, when dg > 2; compare with Remark 2.15(b)
above and [BB2].) Further, 7 need not be independent of the choice of the s.s.
measure u. (Hence the definition of the associated eigenvalue problem must be
adjusted accordingly by substituting F N L2(u) for F in (3.2).)

Nevertheless, the recent probabilistic results of [BB2] can be used to define—
via the Dixmier trace, much as in §4.2 and in [Co3]—an analogue of the Rie-
mannjan volume measure (but not necessarily to compute its total mass as in
Corollary 4.45). [Of course, we may also consider here the n-dimensional carpet,
with n > 3]

Because of the aforementioned analytical difficulties, we would expect some of
the tools of noncommutative geometry—such as Connes metrics, for example—to
be particularly appropriate to deal with this situation.
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Epilogue. After this work was completed, the author has received from
Professor Alain Connes the final version of his forthcoming book [Co5] on “Non
Commutative Geometry” (Preprint IHES/M/93/54, October 1993). At the end
of the section (§IV.3) describing the work of Connes and Sullivan [CoSu], some
of our earlier joint work with Carl Pomerance [LaPol-2] on the vibrations of
“fractal strings” (i.e., one-dimensional “drums with fractal boundary”) is rein-
terpreted (and extended) in terms of the notion of “quantized calculus” (ibid,
§IV.3 (¢)). In the case of certain Fuchsian groups (of the second kind), this result
is then used to calculate explicitly (in our notation) the total mass, v*(F), of
an analogue of the measure »* above. It would be interesting to obtain similar
(but higher-dimensional) results in the context of the present paper; that is, for
“drums with fractal membrane” rather than for “fractal strings”.
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