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1. Imtroduction

In a recent article [10] we introduced a degree for proper C? Fredholm map-
pings with index O in general Banach spaces. As subsequently shown in [11],
where the case of Banach manifolds is also treated, this degree essentially co-
incides with the degree of Elworthy and Tromba [8] on completely orientable
manifolds. Nevertheless, the conceptually much simpler approach taken in [10]
not only facilitates the use of the degree in concrete applications, but also it
completely clarifies its behavior under homotopy. Indeed, while it was already
known that homotopy need not preserve the sign of the degree, it remained im-
possible to predict whether a sign change should occur until the new concept of
parity was made a crucial part of the definition.

On the other hand, there is a fairly large body of literature devoted to the
calculation of the degrees of Brouwer or of Leray-Schauder in the hypothesis that
the mapping of interest is covariant under the action of a compact Lie group G.
Naturally, the motivation for such studies can be found in Borsuk’s theorem,
dealing with the simplest case when G = Z; acts through {I,—I}. Elegant
theories about covariant properties of fixed point indices in topological spaces or

We thank an anonymous referee for his very careful reading of our manuscript and numer-
ous valuable remarks and suggestions.

©1994 Juliusz Schauder Center for Nonlinear Studies

325



326 h P. M. FITZPATRICK — J. PEJsacHowicz — P. J. RABIER

about nonlinear periodic actions notwithstanding (see e.g. [14], [16]) the most
important applications involve linear actions in Banach spaces. For this case and
Leray—-Schauder’s degree, the following result holds:

THEOREM 1.1. Let X be a Banach space equipped with a continuous action
of a compact Lie group G, and let f : X — X be a G-covariant compact pertur-
bation of the identity. Denote by XC the fived point space of G and by IC the
ideal of Z generated by the integers x(G/G;), x € X\XC, rank G, = rankG,
where G denotes the isotropy subgroup of z and x(G/G;) the Euler-Poincaré
characteristic of G/G,. Finally, let @ C X be a G-invariant bounded open
subset of X such that 0 ¢ f(0N2). Then

(1.1) degy 5. (f,9,0) = degy, 5. (fixe, 2N X%, 0) mod I,

where deg;, g is Leray-Schauder’s degree.

Theorem 1.1 relates the degrees of f and of its restriction to the fixed point
space X€ in which the action of G has no effect, and was first proved by Wang
[24] when X is a Hilbert space and the action of G is smooth. The above
generalization can be found in Rabier [20], where it is also shown that in all the
cases when ZC # Z and hence (1.1) is not trivial, Z¢ depends only upon the
action of the finite group N(T)/T in the fixed point space X7 of a maximal
torus T of G(N(T) = normalizer of T in G). Forerunners of Theorem 1.1
appear in the works of Rubinsztein [22] and Dancer [5], [6], who proves (1.1) for
the index when 0 € f~1(0) is an isolated solution. Theorem 1.1 also covers a
number of particular cases corresponding to specific and often simple choices of
G, e.g. G =Zg, or SO(2), that can be found in the literature (see [24] for a brief
comparison).

It is the aim of this article to extend Theorem 1.1 to covariant C? Fredholm
mappings f: X — X where X is a real Banach space and the degree is that of
[10]. The first difficulty is that Theorem 1.1 does not extend to this more general
setting without further assumptions. Indeed, if f is Fredholm with index 0 and
G-covariant, then fxc is Fredholm, but not necessarily of index 0 (see Example
3.1 in Section 3) and the degree of [10] need not be defined. In fact, even if
fixe is Fredholm with index 0, the degrees of f and fixe may still be unrelated:
when G = Z,, p a prime number, and X = {0}, this is shown in Borisovich et
al. ([2, Theorem 3.4]) for the Elworthy-Tromba degree equivalent to ours. They
prove that (1.1) holds only if the “Z,-index” of f vanishes. We need not recall
the definition of the Z,-index here, but this concept will surface again later in

our exposition, in a different form.
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When G is a compact Lie group, the generalization of the “vanishing of the
Z,-index” condition turns out to be intimately related to the following question:
If X is a Banach space equipped with a continuous action of G and ®yg(X),
GL¢(X) denote the sets of G-covariant (linear) Fredholm operators with index 0
and linear isomorphisms, respectively, what is the closure of GLg(X) in ®pq(X)
for the topology of £(X)? When G = {1}, i.e. no action is involved and hence
®oc(X) = ®o(X),GLg(X) = GL(X), the well-known answer is that GLg(X)
is dense in ¥y (X), but this need not be true in general.

As it is central to our purpose, we present a thorough study of the closure
of GLg(X) in ®9(X), denoted by ®y5(X) and called the set of G-regular co-
variant elements of ®o(X) (a terminology motivated by the Russian literature).
Of necessity, this study includes several equivalent definitions, the proof that
®,£(X) is both open and closed in ®pe(X), and sufficient conditions for mem-
bership in ®5(X) of practical importance. Although the question is strongly
related to the G-index in equivariant K-theory (see Remark 3.1 or [1], [21]) we
were unable to find a formulation of the corresponding results suitable to our
needs.

To define G-regular covariant nonlinear Fredholm mappings f : X — X
with index 0, it suffices to require that f is G-covariant and Df(z) € ®;E(X)
for every z € X€, but we also prove that it suffices that f is G-covariant and
Df(z) € ®5E(X) for only one z € X€. These mappings are those to which we
may expect that Theorem 1.1 can be extended. Openness (and nonemptiness)
of ®EF(X) in ®yc(X) shows that they form a substantial subset of the set of
G-covariant Fredholm mappings with index 0. On the other hand, we shall only
be able to prove that (1.1) holds with (degy, 5 replaced by the degree of [10] and)
the radical VIC replacing Z¢. We do not know whether this weaker conclusion
is due to an artifact of our method of proof or has deeper reasons. Fortunately,
this issue is of secondary importance for most practical purposes since Z¢ and
VIC are distinct from Z simultaneously.

Several factors contribute to the length of this article. The need for a close
investigation of &35 (X) mentioned earlier (and independent of degree considera-
tions) is one of them. A second factor is the partial lack of available results about
representations of compact Lie groups in Banach spaces: while the Hilbert space
case is completely covered, some useful properties in general Banach spaces seem
to have been left out, and must be proved here. A third and last factor is the rel-
ative novelty of several of the concepts involved in this paper, which accordingly
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must be discussed at some length: aside from the degree of [10] whose basic fea-
tures are briefly reviewed, an important role is played by the notion of intrinsic
isotropy subgroup defined in [17], [19], via loose representations (introduced in
[20] for the proof of Theorem 1.1 when dim X < 00).

The properties of group representations in Banach spaces that are needed
in the remainder of this paper are listed in Section 2. Section 3 is devoted to
the definition of G-regularity of linear and nonlinear Fredholm mappings with
index 0. The proofs involving arguments from Lie group representation theory
are given in an Appendix at the end of the article.

Parities and parametrices are the major ingredients in the definition of the
degree of [10]. Section 4 discusses the covariant aspects of these two concepts.
The main result in Section 4 is Theorem 4.2 showing how covariance may rule
out the value —1 for the parity.

Section 5 contains the first results about the degree of covariant mappings.
The goal here is to show that the general problem can be reduced to a somewhat
simpler situation (Proposition 5.1), whose special features are highlighted in
Theorem 5.1. Most of Section 6 is devoted to the proof of the generalization
of Theorem 1.1 when G is finite (Theorem 6.1), starting with the case when
G is a p-group (Lemma 6.4) and using the reduction of Section 5. Passing
from gp-groups to arbitrary finite groups is done via Sylow subgroups. Although
the steps here are similar to those in [20], the gp-group case must be given a
completely different treatment because the degree of [10] is not defined by finite-
dimensional approximation and because we cannot make use of partitions of
unity (since C? ones need not exist). Theorem 6.2 gives three cases when 7G
can be substituted for vZC in Theorem 6.1, and Borsuk’s theorem is spelled
out explicitly as a trivial corollary (Corollary 6.1). In Section 7, Theorem 6.1 is

extended to compact Lie groups.

REMARK 1.1. Throughout this paper it is assumed that the Fredholm map-
ping f of interest is defined in the entire space X. This is not merely intended for
convenience: although the theory goes through if f is defined over a convex or
even more general domain (e.g. star-shaped with respect to a point of X€) it is
not valid for completely arbitrary open domains of definition. This is due to the
fact that the degree of [10] is defined only for mappings which are Fredholm of
index 0 in a simply connected domain O containing the open subset {2 of interest
(no restriction is put on ). Since we have to consider here not only the degree
of f but also that of its restrictions to some fixed point spaces, hypotheses are
needed to ensure that these restrictions are defined in simply connected subsets.
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On the other hand, for some subfamilies of Fredholm mappings with index 0,
limitations on the domain of definition can be dropped (see [11]). O

Some permanent notation and terminology will be used, which are as follows:
G denotes a compact Lie group with unity 1 and X is a real Banach space. We use
the notation £(X) (resp. GL(X), ®,(X), k(X)) for the set of linear continuous
(resp. invertible, Fredholm with index v € Z, compact) operators of X into
itself. The representation of G in GL(X) (see Section 2) is denoted by R and, as
is customary, we set R, = R(g) for g € G. A linear operator A € L(X) is said to
be G-covariant if RgA = AR, for all g € G, and we use Le(X) (resp. GLg(X),
®,6(X), Kc(X)) to designate the subset of £(X) (resp. GL(X), ®,(X), K(X))
of those G-covariant elements. No confusion should arise from the fact that the
representation R is not explicitly mentioned in this notation, Indeed, we shall
rarely use two different representations simultaneously, and when we do so the
above notation is not needed.

If H is a closed subgroup of G we write H < G, and H < G to emphasize
that, necessarily, H is a proper subgroup. We denote by X¥ C X the fixed
point space of H relative to R, i.e. the space {r € X : Ryxz =z, Vg € H}. If
D C X is any subset, we set D¥ = DN XH, and given a G-covariant (hence
H-covariant) mapping f : X — X we let f# : X¥ — X" be the restriction
fix=. That f# maps into X is both trivial and well-known. When H < G,
G/H is the set of left cosets gH, g € G. For z € X, G is the isotropy subgroup
of z relative to R, i.e. G, = {g € G : Ryx = z}, and G/G, is referred to as
the orbit of z (because, as is well-known, G/G, is homeomorphic to the subset
{Ryz : g € G} C X). If G is finite and H < G, |H| is the order of H (number of
elements) and [G : H] the index of H in G, defined by |G : H) =|G|/|H|. Other
notation and terminology will be introduced when needed in the paper.

2. General background material

Let G be a compact Lie group and X,Y real Banach spaces. We refer to
Lang [15] for the definition of the integral of continuous (and other) Banach
space valued functions on G relative to the Haar measure dg of G. Suppose now
that L : G > g —» Ly € £(X,Y) is a mapping such that G > g— Lz ey
is continuous for every x € X. If so, the mapping X 3 z — fG Lyxdg €Y is
well-defined and linear and denoted by fG L, dg. Thus, by definition,

(2.1) (/ L, dg)mE/Lgxdg, Vz € G.
a G
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The following proposition, in which all integrals must be understood as defined
in (2.1), will be useful in several places.

PROPOSITION 2.1. Let G be a compact Lie group, X and Y real Banach
spaces and L : G — L(X,Y) a mapping such that G > g — Lgz € Y is
continuous for every z € X. Then:

(i) There is a constant ¢ > 0 such that [|Lg|| < ¢, for alig € G.
(i) [gL,dg € L(X,Y).
In addition, if Y = X and M : G — L(X) is another mapping such that
G > g Myz € X is continuous for every z € X, then
(iii) The mapping L(X) > A [ LyAM, dg € L(X) is continuous.
(iv) If K € K(X), then [, L,KM,dg € K(X).

PROOF. (i) Since G is compact, the set {Lyz : g € G} is a compact subset
of Y for each z € X and hence there is a constant ¢, > 0 such that ||Lyz| < ¢x
for all g € G. The conclusion follows from the uniform boundedness principle.

(ii) From (2.1) and the properties of the integral we have ||( Jo Lgdg)z| <
Jo IILgz|| dg for all « € X, whereas [, || Lyz[ldg < c||z|| from part (i).

(iif) That f, LyAM,dg € £(X) follows from (ii) with LyAM, replacing L,.
Indeed, using (i) it is easily seen that the mapping G > g — Lo AMgx €
X is continuous for every z € X. Next, by the same arguments as in (ii),
|| fi; LoAM, dg|| < c||A|| where ¢ > 0 is such that ||Lg|| < ¢, | Mgl < c for all
ge@q.

(iv) We must show that the set ([, L,KM,dg)(B) is relatively compact
in X for every bounded subset B C X. To see this, it suffices to prove that
the set C = UgEG L,KMy(B) is relatively compact in X. Indeed, if so, the
closed convex hull C of C is compact. As ([, LgKM,dg)z = [, LyKMyzdg
(see (2.1)) is a limit of convex combinations of points of C for z € B (since
every continuous function f : G — X can be approximated by step functions of
the form Y., f(g:)x=, with E; dg-measurable, U, B; = G, E; N Ej = 0 for
i+# j and g; € E;), it follows that ([, LyKM,dg)z € C for all z € B, whence
(fg LK M, dg)(B) is relatively compact.

Now, set B' = J,cq My(B), B” = K(B') and B" =g Lg(B")

Obviously, C € B'". We claim that B"/, hence C, is relatively compact.
First, part (i) implies that B’ is bounded, so that B” is relatively compact
since K is compact. A sequence z, € B’ has the form z, = Lg,yn with
gn € G and y, € B". As G is compact and B” is relatively compact, we may
assume that limp oo gn = ¢ € G and limp_,eoYn .= ¥ € X with no loss of
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generality. If so, z, — Lgy = Lg, (Yo — y) + (Lg, — Ly)y, and from part (i) we
find ||z — Loyl < cllyn —yl| + || Ly, y — Lyy||. This shows that lim, o0 Zn = Lgy
since G 3 h — Ly is continuous by hypothesis. O

The other results proven in this section may be called standard in Hilbert
space, but they are ai)parently hard to find in the literature in the more general
Banach space setting.

To begin with, recall that a representation of G in GL(X) is a group ho-
momorphism R : G — GL(X) such that the mapping G 5 g — RxeXis
continuous for every € X. When dim X = oo, this requirement is weaker than
continuity of R for the topology of £(X). It can be shown (Dieudonné [7,p. 9],
Warner [25, p. 237]) that the definition given above amounts to assuming that
R is a group homomorphism and that the mapping G x X 3 (9,z) = Rize X
is continuous. We will need the following version of Maschke’s theorem ([23)).

THEOREM 2.1 (Maschke’s theorem for Banach spaces). Let Y ¢ X be a
closed split G-invariant subspace. ThenY possesses a (possibly nonunique) G-
tnvariant closed complement Z. Moreover, the (continuous) projections onto Y
and Z associated with the splitting X =Y ® Z are G-covariant.

The proof of Theorem 2.1 is based upon the observation that any projector
whose image is a closed invariant subspace can be made covariant by integrating
over G.

An important case when the invariant complement Z in Theorem 2.1 is
unique is ¥ = X¢. In addition, existence of Z as well is always true in this
case, as shown in Theorem 2.2 below. The proof uses the concept of “irreducible
G-module”, which is simply a finite-dimensional vector space equipped with an
irreducible representation of G. In this respect, recall that every irreducible rep-
resentation of G in a Banach space is finite-dimensional; see [3] or [4]. Given
two irreducible G-modules U and V, U is said to have type V if there is a G-
covariant linear isomorphism I/ — V. By an irreducible G-module contained in
X we mean a finite-dimensional subspace U of X invariant under the action of
G in X and such that the subrepresentation of G in GL(U) is irreducible. If V
is an arbitrary irreducible G-module, the algebraic sum Xy of all the irreducible
G-modules of type V contained in X is called the isotypical component of X of
type V. In particular, the fixed point space X is the isotypical component of
X of type Vp, where Vj is the one-dimensional irreducible G-module in which
G acts trivially (trivial irreducible G-module). We agree that Xy = {0} if X
contains no irreducible G-module of type V.
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THEOREM 2.2. The fized point space XC of G has a unique G-invariant
closed complement XG. Furthermore, relative to the splitting X = XC @ X G,
every operator A € Lg(X) has the block-diagonal decomposition

AC 0
=5 &)
with AC € L(X€) and AC € L(XC).

PROOF. See the Appendix. a

We complete this section with a result about isotypical components.

THEOREM 2.3. Let V be an .arbitrary irreducible G-module.

(i) If W # {0} is an irreducible G-module and U C Xv is an irreducible
G-module of type W, then V and W are isomorphic (hence Xv = Xw).

(ii) The space Xy is G-invariant, and for every A € Lg(X), we have
A(Xy) € Xv, whence Ax, € Le(Xv). Furthermore, if Xy is split
and Z is a closed G-invariant complement of Xv (see Theorem 2.1),
we have A(Z) C Z, whence Ajz € Lg(Z).

PROOF. See the Appendix. O

REMARK 2.1. Whenever convenient, it is not restrictive to assume that the

norm of X is G-invariant, for the mapping
X33 [ |Ryzldg
G
is a G-invariant norm equivalent to the norm | - || (use Proposition 2.1(i)). O

3. Regular covariant Fredholm mappings with index 0

If A € ®y(X), it is well-known and essentially trivial to prove that there is
n € GL(X) such that nA = I — K with K € K(X). It is equally clear that
this property implies that GL(X) is dense in ®,(X). The concept of regular
covariant Fredholm operator of index 0 arises in a natural way when A above is
in ®oe(X), and the question is asked whether there is n € GLg(X) such that
nA=I-K K € K(X) (hence K € Kg(X)), or whether A can be approximated
by elements of GLg(X). Indeed, the answer to these questions is in general

negative, as shown in



DEGREE OF FREDHOLM MAPPINGS 333

EXAMPLE 3.1. Let X = E x E where E is a separable Hilbert space and let
(én)n=1,00 be an othonormal basis of E. For (u,v) € EXE, u= Y2 unen, v =
Y o Unén, set A(u,v) = (307 | Un€nt1s Iy Unt1€n). Obviously, dimker A =
codimrge A = 1, whence A € & (X). Also, A is G-covariant with G = Z, =

{1, -1} represented by R_; = (; _OI>. Ifso, X6 = Ex{0} and X€ = {0} < E,

and A(u,v) = (ASu, AGv) where AS (resp. AC) is the right (resp. left) shift
operator. Given n € GLg(X), we have (e.g. by Theorem 2.2) 7 = ("OG i, )

7
Thus, if A =1 — K, K € K(X), then n°AC =T — K%, K¢ € K(E), which is
absurd since 7 A has the same index as A€, that is, —1. Similar considerations
show that A cannot be approximated by a sequence from GLg(X).

This example justifies the following definition:

DEFINITION 3.1. Let A € ®oc(X ). We shall say that A is G-regular if there
is 7 € GLg(X) such that nA = I — K, K € K(X) (hence K € Kg(X)). The
subset of all G-regular elements of ®oe(X) will be denoted by $p%(X).

The terminology “G-regular” is motivated by the relevance of this concept
regarding parametrices (see Sections 4 and 5) and the use of “regularizor” for
“parametrix” in the Russian literature. The remainder of this section is devoted
to a detailed study of ®;%(X). The most technical proofs are relegated to the
Appendix. We shall begin with two elementary examples.

ExaMPLE 3.2. If K € Kg(X), then I — K € ®35(X). More generally,
if A e ®;5(X), then A — K € ®,5(X) since, given n € GLg(X) such that
nA=1-1L, L€ K(X), we have n(A - K) =nA—nK = I — (L + 9K), and
L+1K € K(X).

EXAMPLE 3.3. If G = Zy = {1,-1} is represented by R_; = —I, then
PG (X) = B (X) since Boe(X) = Bo(X) and GLa(X) = GL(X).

Our first proposition shows that ®& (X)) is always a sizable subset of ®og(X).

PROPOSITION 3.1. Let A € ®35(X). Then there is an open neighborhood
N of A in ®9g(X) and a continuous mapping n : N — GLg(X) such that
n(B)B = I-K(B), where K(B) € Kg(X). In particular, ®3%(X) is a nonempty
open subset of B (X).

PROOF. Let Xg = ker A, Y, = rge A, and denote by X; and Yj arbitrary
closed complements of X, and Y7, respectively. Also, denote by Qg and Q; the
(continuous) projections associated with X = Yy ® Y;.
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As Aix, € GL(X;,Y1), we have @ B|x, € GL(X,,Y1) for B in some
open neighborhood V of A in £(X). Denoting by T any linear isomorphism
of Yy onto Xy (T exists since dim Xy = dimYp < oo), the mapping u(B) =
(@1Bix,) Q1 + TQo € GL(X) is well-defined and continuous in V. Further-
more, (B)B = (Q1B|x,) '@Q1B+TQoB = I + (Q1B|x,) Q1 B)x, + TQoB is
a compact perturbation I — L(B) of the identity since B)x, and Q¢B have finite
rank.

The relation p(B)B = I — L(B) first yields p(A4)~! = A + u(A)~1L(A) and
next u(A)~'u(B)B = A — u(A)~Y(L(B) — L(A)). By hypothesis, there is 79 €
GL(X) such that ngA = I — Ky, Ky € Kg(X). Multiplying the previous identity
by no, we find nou(A)~1u(B)B = I — Ko —nou(A) " (L(B) — L(A)) = I - K(B),
where K (B) = Ko +nou(A)~1(L(B) — L(4)) € K(X).

For B € N =V N ®yc(X), covariance of B and 7 yields

oR,-1u(A) "\ u(B)RyB =1 — R,-1K(B)R,, Vg€G.

Thus, integrating over G, we arrive at n(B)B = I — K(B), where (the integrals
being understood in the sense of (2.1))

n(B) = o /G Ry-u(A)'u(B)R,dg,  K(B)= /G R, K(B)R, dg.

Since Ry,-1 = R, Proposition 2.1(jii) shows that 7 and K are continuous
functions of B € N with values in £(X) and, in fact, in Lg(X) since G-covariance
is clear. Also, n(A) =1y € GLg(X), whence n(B) € GLg(X) after shrinking N’
if necessary, and K(B) € K(X) (hence Kg(X)) by Proposition 2.1(iv).

That ®35(X) is open in $oe(X) follows at once from the above, and I €
GLg(X) C ®,&(X) ensures nonemptiness of $;5(X). O

In our second proposition, we prove a result implying denseness of GLg(X) in
@5 (X). Later (Theorem 3.1), we shall show that, in fact, ®g5(X) is the closure
of GLg(X) in Poc(X), and that this property can be taken as an equivalent
definition for 55 (X).

PROPOSITION 3.2. For every sequence (A;) from ®y5(X) and for every e >

0, there is K € Kg(X) such that | K| < £ and A; — K € GLg(X), for alli € N.
In particular, GLg(X) is dense in B E(X).

PROOF. Since Kg(X) is a closed subspace of £(X), hence a Baire space, it
suffices to prove that for every A € ®;&(X), the set {K € Kg(X): A+ K €
GLg(X)} is open and dense in K¢ (X). Openness is obvious. To prove denseness,
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fix Ko € Ke(X) so that A+ Ko € ®;%(X) (see Example 3.2). Let 5 € GLg(X)
be such that n(A + Ky) = I — L, L € Kg(X). For 6 > 0 small enough, we have
I-(1-6)L € GLg(X) and hence A+Ko+6n~*L = n~Y(I-(1-6)L) € GLg(X).
Also, K5 = Ko+ 6n7'L € Kg(X) and ||Ks — Kol| = 6]|n1L|| can be made
arbitrarily small by shrinking & if necessary.: ]

THEOREM 3.1. For A € ®og(X), the following statements are equivalent:

(i) GLg(ker A, Z) # @ for every G-invariant closed complement Z of rge A.
(ii) GLg(ker A, Z) # 0 for some G-invariant closed complement Z of rge A.
(iif) A € ®HE(X).

(iv) A € GLg(X) (closure in ®,(X) or, equivalently, Poc(X)).-
(v) For every irreducible G-module V, Az, € ®(Xv) (hence Ax, €
®oc(Xv); that A € Lo(Xv) follows from Theorem 2. 3).

PROOF. See the Appendix. Note that a G-invariant closed complement of
rge A does exist by Theorem 2.1. 0

REMARK 3.1. Conditions (i) and (i) of Theorem 2.3 mean that the subrep-
resentations of G in GL(ker A) and GL(Z) are equivalent. The set of all isomor-
phism classes of finite-dimensional representations of G is a semigroup under the
direct sum operation. Let R(G) be the associated Grothendieck group: by defi-
nition, R(G) is the set of equivalence classes of pairs (M, N) under the relation
(M,N) ~ (M',N') if and only if M@ N” is G-isomorphic to M’® N. Since every
finite-dimensional representation splits into a sum of irreducible representations
it follows that R(G) is a free group generated by the equivalence classes of irre-
ducible representations (see Segal [21]). To each A € ®¢(X), Atiyah and Singer
|1} associate an index indg(A4) = [ker A] — [coker A] € R(G) (where “[ | stands
for “equivalence class”) which depends continuously on A. If the action of G is
trivial, then indg reduces to the usual index, but in general ind¢s induces a non-
trivial invariant indg : 7o(@ec(X)) — R(G). Clearly, (ii) of Theorem 3.1 holds
if and only if indg(A) = 0 (for G = Z,,, this was considered by Borisovich et
al. [2] in their investigation of the covariant properties of the Elworthy-Tromba
degree). O

Theorem 3.1 has several useful corollaries, the simplest one being:

CorOLLARY 3.1. ®;E(X) is open and closed in $og(X). In particular, if
Ao, Ay € Poc(X) are homotopic in Roc(X) and Ay € BFE(X), then A, €
oG (X). Furthermore, 85&(X) is the union of all the connected components of
B (X) intersecting GLg(X).
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PROOF. Openness of @55 (X) C Boe(X) was proved in Proposition 3.1, and
closedness follows from (iv) = (iii) in Theorem 3.1. The second part of the
corollary is obvious from the first part and the third part follows from the first
part and (iii) = (iv) in Theorem 3.1. O

Next, Theorem 3.1 yields a simple criterion to establish membership in
®,&(X) which does not require any knowledge of the way G acts in X. This
criterion generalizes Example 3.2.

COROLLARY 3.2. Let A € Lg(X) and suppose that 0 is an isolated eigen-
value of A with finite algebraic multiplicity. Then A € ®y5(X). More generally,
if there is B € GLg(X) such that 0 is an isolated eigenvalue of BA with finite

algebraic multiplicity, then A € ®F(X).

NoOTE. As usual, “isolated eigenvalue” means “isolated in the spectrum” and
not only in the set of eigenvalues.

PRrROOF. The “more generally” part follows at once from the first part and
the definition of ®;%(X) (Definition 3.1). Now, if 0 is an isolated eigenvalue of
A with finite algebraic multiplicity, and if Y is any closed subspace of X such
that A(Y) C Y, then either Ay is invertible or 0 is an isolated eigenvalue of
Ajy with finite algebraic multiplicity. In particular, this is true for ¥ = Xv
and V any irreducible G-module (see Theorem 2.3(ii)}. But invertible operators
or those having 0 as an isolated eigenvalue with finite multiplicity are Fredholm
with index 0, whence A € ®oc(X) and Az, € ®oc (Xv) for every irreducible
G-module V, and the conclusion follows from (v) = (iii) in Theorem 3.1. O

Also, we obtain a sufficient condition for the relation ®35(X) = ®oe(X) to
hold, generalizing Example 3.3.

COROLLARY 3.3. Suppose that there is an irreducible G-module V' such that
Xy is split, and that dim Xy < oo for every irreducible G-module W = V.
Then ®p5(X) = ®oc(X). (In particular, this holds if dim Xy < oo for every
irreducible G-module W.)

PROOF. See the Appendix. g

REMARK 3.2. (i) Example 3.3 corresponds to the case V =R and G =
Zy = {1,—1} represented by R_; = —I, so that X = Xy where V is the one-
dimensional irreducible G-module in which —1 € G acts by multiplication, and
Xw ={0} for W = V.

(ii) Except for the case just mentioned in (i), Corollary 3.3 seems to be of little
interest when G is finite (and dim X = 0o) because there are only finitely many
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nonisomorphic irreducible G-modules in this case. If dim G > 1, the framework
of Corollary 3.3 is frequently encountered. For instance, if X = Co.(R;R), the
circle group G = SO(2) ~ R/2nZ acts through translation of the independent
variable (i.e. Rof(z) = f(z + ) for all z € R and 6 € R/2rZ). Now, if V is an
irreducible G-module, then either V ~ R and G acts trivially in V, or V ~ R2
and Ry acts through rotation of angle nf, n > 1 an integer, relative to some
basis {f1, f2} of V. In the first case, if f € V we have f(z + ) = f(z), whence
f(68) = £(0), i.e. V is the-space of constant functions, hence unique, and V = X v
is one-dimensional. In the second, writing f(z +6) = cosnff;(z) + sinnéf, (z),
f2(z +8) = —sinnffi(z) + cosnbfz(z), and letting = = 0, we find that f1(6) =
acosnb + bsinnb, fo(0) = —asinnd + beosnd for a,b € R with a2 + 42 > 0.
This shows that V' = span {f1(z), f2(z)} = span {cosnz,sinnz}. Once again, V
is unique and V = Xy is two-dimensional. 0O

Another useful by-product of Theorem 3.1 is the following variant of Theorem
2.2 when A € $55(X).

COROLLARY 3.4. Let H < G be a closed subgroup, and suppose that XH s
G-invariant (e.g. if H is normal in G). Then:

(i) X¥ is G-invariant.
reg

(i) For every A € ®5(X), we have the block-diagonal decomposition

A ¢
A= (% ).

with A¥ € &5E(XH) and AH € O[E(XH).

ProOF. (i) It follows from Theorem 2.2 that X is split, and hence it has a
G-invariant closed complement Z by Theorem 2.1. Clearly Z is also H. -invariant,
whence Z = XH by uniqueness of X¥ (Theorem 2.2), i.e. X¥ is G-invariant.

(ii) From (iii) = (iv) in Theorem 3.1 and from Theorem 2.2, there is a
sequence A, € GLg(X) such that lim,_, |[4, — Al| = 0, and A,,, A have the
block-diagonal form

AR ¢ A 0
w=( &) a-(T &)

relative to X = X# @ XH,

Clearly, A¥ € GLg(XH) and AH ¢ GLg(X¥) from (i), and limy, o || A —
A = limp o0 |AH — A¥|| = 0. As A € ®o(X), we must have A¥ & @, (XH)
and A¥ € &_,(XH) for some integer ». But local constancy of the index
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and lim, o ||[4H — A®|| = 0 imply v = 0 since AX has index 0 for all n,
and, further, that A¥ € ®35(XH) by (iv) = (iii) in Theorem 3.1. Likewise,
A" ¢ ofE(XH). O

The notion of G-regularity can easily be extended to nonlinear covariant
mappings:

DEFINITION 3.2. Let f : X — X be a G-covariant nonlinear Fredholm
mapping with index 0. We shall say that f is G-regular if Df(z) € ®5(X), for
all z € XC.

NOTE. This definition makes sense since Df(z) € ®og(X) for z € X by
G-covariance of f.

When ®35(X) = $og(X) (see Corollary 3.3) G-regularity is not an addi-
tional assumption. Otherwise, the situation may be more complicated, but the
following criterion shows that it is actually much simpler than it may look at
first sight.

THEOREM 3.2. Let f : X — X be a G-covariant Fredholm mapping with
indez 0. Then f is G-regular if and only if there is xo € X G such that D f(zo) €
®E(X). In particular, if f is G-regular, then f is also H -reqular for every
closed subgroup H < G.

PROOF. Since Df(tzo + (1 — t)z), 0 < t < 1, is a homotopy in Poc(X) for
every pair z, g € X, the first part follows from Corollary 3.1. For the second
part, note only that X6 ¢ X and ®F(X) C ¥p55(X) when H < G, and use
the first part. O

Theorem 3.3 below follows at once from previous results, but it will be useful

for future reference.

THEOREM 3.3. Let f : X — X be a G-regular covariant C* (k > 1) Fredholm
mapping with indez 0, and let H < G be such that X H is G-invariant (e.g. if H
is normal in G). Then

(i) 2 = fixs maps XH into itself.
(ii) We have
_(Dff(z) O H
Df(z) = ( 0 B(z) ) vz € X7,
relative to the splitting X = XH @ XH, and Df¥ (z) € ®5&(XH) (recall
that XH is G-invariant; see Corollary 3.4). In particular, fH is a G-
regular covariant C* Fredholm mapping with indez 0.
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PROOF. (i) is trivial and well-known, and (ii) follows from Corollary 3.4. [1

REMARK 3.3. If H is normal in G in Theorem 3.3, then the action of G in
XH factors through an action of G/H and part (ii) of the theorem implies that
f¥ is a G/H-regular covariant C* Fredholm mapping with index 0. O

4. Parametrices and parity: covariant aspects

Given A € C%([a,b]; ®9(X)), a parametriz of A is a mapping n € C([a, b);
GL(X)) such that n(A\)A(A) = I — K(X), where K()) € K(X), VA € [, B].
Parametrices are essential in our approach to the degree, since they permit us
to define parities (a concept reviewed later) which are explicitly involved in the
definition of the degree at regular values. If now A € C%[a, b]; oe(X)), it is
natural to ask whether there is a G-covariant parametrix for A, ie. a mapping
7 € C°([a, b]; GLg(X)) which is a parametrix of A. The answer is given in

THEOREM 4.1. Let A € C%a,b]; Bog(X)). Then there is a G-covariant
parametriz for A if and only if A € C°([a, b]; BE(X)).

PROOF. If a G-covariant parametrix 7 of A exists, then A()\) € ®;5(X) for
all X € [a,b], by definition of &5 (X) (see Section 3). Conversely, suppose A €
C([a, b]; ®55(X)). Locally, existence of 7 is a straightforward consequence of
Proposition 3.1 with B = A()). By compactness of [a, b], this implies that there
is a finite subdivision a =ag < a; <P <@ < b1 <...<ap < bp_1 < b =b
such that a G-covariant parametrix 7; of A exists in [a;,b;], 0 < i < k.

Set Ao = ap = a, Agy1 = by = b and, for 1 < i < k, choose )\; € [ai, bi—1].
For X € [a,b], define n()\) by

_ | m(A), a=2X <AL A,
)= { () (), A <A< Aqg, 1<i<k.
Clearly, n € C°([a,}]; GLg(X)), and it remains to show that n(A)A(A) — I €
K(X) for A € [a,b]. This is clear for @ < A < ;. Suppose then that the result
is true for a < A < A; where 1 < 4 < k. We have n(\)A(\;) = I — K(\),
7i(M)AN) = T — Ki(N), with K(\), Ki(\) € K(X) since both 7 and 1
are parametrices of A in [a;, A;]. Thus, A(X:) = 7:(M)~1(Z — Ki(N)) and
(A (X)) ~H(I — Ki(M)) = I — K(X;). This shows that n(A)n:(A)~! is a com-
pact perturbation of the identity, and hence n(A)A(A) = 1AM (A:) (M) A(N)
is a compact perturbation of 7;(A\)A(A) for A\; < XA < Aiy1. But ni(AN)A(N) =
I—K;(A) with K;()) € K(X) since 7; is a parametrix of A in [A;, Aiy1] C [as, bs).
Thus, we have n(A)A(A)—1T € K(X) for a < A € Ai41, i.e. the conclusion follows
by induction. O
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Given A € C%([a,b]; ®o(X)) satisfying the condition A(a), A(b) € GL(X),
the parity of A on [a,b], denoted by (4, [a, b]), is defined by

(4.1) (A, [a,b]) = degy, 5 n(a)A(a) degy, s 7(b) A(D),

where 7 is any parametrix of A on [a,b] and deg;, 5 refers to the Leray-Schauder
degree! of the invertible linear compact perturbations of the identity 7(a)A(a)
and n(b)A(b). Naturally, this definition is justified by its independence of the
choice of the parametrix n (see [10] and the references therein).

If, above, A()\) € ®pe(X) for A € [a, b], the parity can always be calculated

from a G-covariant parametrix. Indeed:

PRrOPOSITION 4.1. Let A € C%a,b]; Boc(X)) be such that A(a), A(b) €
GL(X) (hence A(a), A(b) € GLg(X)). Then A € C%([a,b]; D;E(X)) and there

is a G-covariant parametriz for A.

ProoF. Use Corollary 3.1 and the embedding GLg(X) C PpF(X) to get
A(X) € BpE(X) for all A € [a,d]. Next, use Theorem 4.1. a

In general, the parity may take either value 1. However, if a group action
is involved and A()\) € ®ye(X) for all A € [a,b], the value —~1 may be ruled
out. A specific framework when it so happens is described in Theorem 4.2 later,
which plays a crucial role in our future results. Before we can state Theorem
4.2 we must recall the concept of intrinsic isotropy subgroup (i.i.s. for short) of
a compact Lie group, introduced in [17] and further investigated in [19] in the
cage of finite groups.

A closed subgroup H < G is said to be an ii.s. of G if, for every integer n > 0,
every representation T of G in GL(R"™) and every T-covariant linear isomorphism
L € GL(R™), we have sgn det LY = sgn det L, where L¥ € GL(X¥) is the
restriction of L to the fixed point space X of Tix-

It is proved in [17] that every compact Lie group different from Z3 x ... x Z;
(k factors, k > 0) possesses a nontrivial (i.e. # {1}) i.i.s. An iis. issaid to be
mazimal (m.i.is. for short) if it is contained in no larger i.i.s. By Zorn’s lemma,
every i.i.s. is contained in a m.i.i.s. ([17]).

Using the concept of m.i.i.s., we may define representations “between” free

and fixed point free ones.

IThat is, (—1)™ where m is the sum of the algebraic multiplicities of the eigenvalues lying
in (1, co).
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DEFINITION 4.1. The representation R of G in GL(X) is said to be loose if
XH = {0} for at least one m.i.i.s. H of G. Equivalently, R is loose if at least
one m.i.i.s. of G does not appear as a subgroup of any isotropy subgroup G for
z € X\{0}. More generally, R is said to be semi-loose if R is loose away from
XC, ie. there is at least one m.i.i.s. of G that does not appear as a subgroup of
any isotropy subgroup G, for z € X\XC.

Loose and semi-loose representations were first introduced in [20] (in the case
X =R") for the proof of Theorem 1.1.

REMARK 4.1. (i) It is easily seen that R is semi-loose if and only if R is
loose in X€.

(ii) Every loose representation is fixed point free (ie. X¢ = {0}), but the
converse need not be true, unless G is its own, unique, m.i.is. This happens
only in special cases, e.g. |G| finite and odd or G = a torus; see [17] and [19].
Note that if G is a m.i.i.s. of itself, then every representation of G is semi-loose.

(iif) If G # {1} and G # Zy, every free representation R of G is loose. Indeed,
if R is free, then G = {1}, for all z € X\{0}, so that X = {0} for every m.i.i.s.
H of G if G # Z%. On the other hand, if G = Z%, then G contains Z; x Z, since
G # {1}, G # Z by hypothesis. But no representation of Zy x Zs can act freely
in any nontrivial Banach space (see e.g. [3]), and hence this case cannot occur.
Thus, Z; is the only nontrivial compact Lie group having a free but not loose
representation (namely {I, —1I}). 0O

THEOREM 4.2. Suppose that the representation R of G in GL(X) is loose.
Let A € C%Ja, b); DG (X)) be such that A(a), A(b) € GL(X) (hence Aa), A(b) €
GLg(X)). Then

(4.2) (4, [a,b]) = 1.

PROOF. It is an easy consequence of the following two lemmas.

LEMMA 4.1. Suppose dim X < oo and the representation R of G in GL(X )
is loose. Let M € GLg(X). Then det M > 0.

PROOF. As R is loose, we have X¥ = {0} for some m.iis. H of G. By
definition of an i.i.s., sgn det M = sgn det M,xu since X ~ R™, and the right-
hand side is 1 since X = {0}. 0

LEMMA 4.2. Suppose that the representation R of G in GL(X) is loose. Let
K € Kg(X) be such that I — K € GL(X) (hence I — K € GLg(X)). Then
degr s (I-K)=1.
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PROOF. By definition, deg;, g (I — K) = (—1)™, where m is the sum of the
algebraic multiplicities of the eigenvalues of K in (1, 00). For each such eigenvalue
A, the generalized null-space ker(\I — K)™*, where m,, is the multiplicity of A, is
G-invariant since (A\I — K)™> is G-covariant. Thus, the finite-dimensional space
N = @)c(1,00) ker(A —K)™ is G-invariant. Of course, the subrepresentation of
Rin GL(N) is loose, and (I — K)|ny € GLg(N). From Lemma 4.1, det(I — K)
> 0. On the other hand, (—1)™ = sgn det(] — K)|x as is well-known. O

From Proposition 4.1, there is a G-covariant parametrix 7 of A4, and hence
7(a)A(a) and n(b)A(b) are G-covariant compact perturbations of the identity.
Thus, deg;, g 7(a)A(a) = deg;, g 7(b)A(b) = 1 by Lemma 4.2, whence o(4, [a, b])
=1 as claimed in Theorem 4.2.

For a fairly large class of finite groups which is also of special importance in
concrete applications, there is a very simple criterion to decide whether a given
representation is semi-loose. Recall that a 2-nilpotent (finite) group is one in
which the elements of odd order form a subgroup (see e.g. [13]). Thus, every
group of odd order is 2-nilpotent, and the same is true of supersolvable (e.g.
nilpotent, abelian or Dedekind) groups of any finite order.

THEOREM 4.3. Suppose that G is finite and 2-nilpotent. Then the represen-
tation R is semi-loose if and only if XH = XC for every subgroup H < G with
[G:H]|=2.

PROOF. If G is 2-nilpotent, the subgroup G? generated by the elements of
the form g2, g € G, is the unique m.i.i.s. of G (see [19]). Hence, R is not semi-
loose if and only if X¢ ¢ X G*, Suppose so and let H < G be maximal with
the property that G2 < H and X€ ¢ X#. As is well-known, G? is a normal
subgroup of G, and G/G? ~ Z&, k > 0. Since Z§ is abelian, H/G? is normal
in G/G? and hence H is normal in G. It follows that X* is invariant under G
and that the action of G in X¥ factors through an action of G/H. Now, this
action is semi-free by maximality of H. As XS N XH is a closed G/H-invariant
complement of X€ in X¥ the action of G/H in X6 N X¥ is free. But since
G/H ~ (G/G?)/(H/G?), we have G/H ~ Z&, £ > 0. Necessarily, £ > 1 since
H < G, and £ < 1 since G/H acts freely in XG N XH # {0} (recall that Z5,
£ > 2, acts freely in no nontrivial Banach space). Thus, £ =1, i.e. |G/H| =2,
and hence [G : H] =2 and X% ¢ X¥.

Conversely, let H < G be such that X¢ ¢ X¥ and [G : H] = 2. Let Goaq be
the (normal) subgroup of .G of elements of odd order, so that Hoaqa = H N Godd
is a (normal) subgroup of H consisting of all the elements of odd order in H. As
|Godd| and |Hoqq| are odd, and Hoqq is a subgroup of Goad, We have |Goad| =
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leoddI with k odd. Since |G| = IG/Godd”Goddl = 2|H| = leodd”H/Hoddl, we
find that & divides 2|H/Hoqq|. This implies k = 1 because H/H,qq is a 2-group.
As a result, Hoaa = Godd, i.6. Goda C H. But then H/Goqq is a subgroup of
G/Goqa of index 2, hence a normal subgroup since G/Goqq is a 2-group. This
implies that H is normal in G and that G/H ~ Z,. Hence, G?> < H and since
X6 ¢ XH it follows that XC ¢ X ie. R is not semi-loose. ]

5. The dggree of covariant mappings: first results

Throughout this section, we shall assume that f : X — X is a G-regular
covariant C? Fredholm mapping with index 0. We shall also consider a G-
invariant open subset {} C X and assume that f5 is proper. If Df(p) € GL(X)
for some point p € X and if y € X\f(0N) is a regular value of fiq, so that
f71(y) = {z1,... , 2k}, k > 0 an integer, the base point degree dp(f,Q,y) intro-
duced in [10] is defined by

k
dp(fs Q) y) = Zai,
=1

where for 1 <i <k, 0; = o(Df o, [a;, b;]) and ¥; € C%([a;, b;); X) is any curve
joining p to z;. Of course, this definition is independent of the choice of +;. If
y € X\f(8Q) is a singular value of fiq, dp(f,Q,y) is defined by regular value
approximation. On the other hand, if ¢ € X is another base point for f (i.e.
Df(q) € GL(X)), we have dy(f,Q,y) = edy(f, 2, y), where € = o(Df 04, [a, b])
and -y € C%([a, b]; X) is any curve joining p to q. Thus, |d|(f,Q,y) = |d(f, 2, y)|
is independent of the base point p, and |d|(f,,y) continues to make sense (and
equals 0) when no base point exists, i.e. when Df(z) ¢ GL(X) for all z € X.

An Q-admissible homotopy is a mapping h € C%([0,1] x X; X) such that
h(t,) is Fredholm with index 0 for ¢ € [0,1] and Ay ;. is proper. In this
case, given y ¢ h([0, 1] xx Q) and base points p, g for A(0,-) and h(1, -), respec-
tively, we bave dp(h(0,-), R,y) = edy(h(1,-),9,y), where € = o(Dzh o T, [a, b))
and T € C°%([a,8];[0,1] x X) is any curve joining (0,p) to (1,¢). In particular,
|d|(h(0,-), 2, y) = |d|(h(1,-),Q,y) and equality continues to hold when no base
point exists for h(0,-) or for h(1,-) (and hence both sides are 0). This property
expresses homotopy invariance of the absolute degree |d|.

REMARK 5.1. If p € X is a base point of h(t,-) for 0 < ¢ < 1, then
dp(h(0,-), 2, y) = dy(h(1,-),Q,y). Indeed, we may choose I'(t) = (¢,p), t € [0, 1],
so that Dyh o' = D, h(-,p) is a curve of isomorphisms and hence has parity 1
(see [10]). O
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The Q-admissible homotopy h will be called G-covariant (resp. G-regular
covariant) if h(t,-) is G-covariant (resp. G-regular covariant) for each t € [0, 1].
From Corollary 3.1, h is G-regular covariant if and only if it is G-covariant and
h(t,-) is G-regular for some t € [0,1]. When h is G-covariant, we denote by h¢
the homotopy A 1jx x5 : [0,1] x X6 - XC.

Since the C? mapping f of interest is G-regular covariant, the mapping
f¢ = fixe : X — XC is C? Fredholm with index 0 by Theorem 3.3(ii).
With Q¢ = QN X€, it is clear that properness of flﬁ implies properness of
f%c. As fG(8QF) = f(89F) C f(85), the base point degrees d,(f,2,0) and
dy(f¢,9C,0) are defined provided that 0 ¢ f(9Q) and p € X€ is a base point
of f, for then p is also a base point of f¢ from the block-diagonal decomposition
of Df(p) in Theorem 3.3(ii).

In the next two sections, we investigate the relationship between dp(f, 2, 0)
and d,(f¢,Q%,0) and, more generally, between |d|(f,2,0) and |d|(f¢,Q%,0)
when Q is a G-invariant open subset of X. First, we consider the case when Q
is a small enough open neighborhood of Q¢ in Theorem 5.1.

REMARK 5.2. To speak of d,(f,,0), we must assume that p € X is a
base point of f, i.e. Df(p) € GL(X). Likewise, dy(f%,Q¢,0) makes sense
only if p € X€ (and Df®(p) € GL(X®)). Thus, to compare dp(f,,y) and
dp(£€,94,0), we must assume that p is a base point of f that lies in X¢. By
Theorem 3.2, this assumption alone implies that f is G-regular. This shows that
the hypothesis of G-regularity certainly cannot be weakened for the comparison
of the two degrees to be possible at all. O

THEOREM 5.1. Let f: X — X be a G-regular covariant C? Fredholm map-
ping with index 0, and suppose that p € XC is a base point of f. Let @ C X be
a G-invariant open subset of X such that fig is proper and 0 ¢ f(09). Suppose
also that O is a regular value of fI%G (€ = QN XC) and that Df(z) € GL(X)
for all z € (f¢)1(0) N QC.

Then there is a G-invariant open neighborhood w of QC in Q such that O ¢
f(8w) and £~1(0) Nw = (f¢)71(0) N QC. Moreover:

(i) If the representation R is semi-loose (see Definition 4.1), we have
(5'1) dp(fawa 0) = dp(fG:QGaO)'
(ii) If the representation R is not semi-loose, then we still have

(5.2) do(f,w,0) = dp(£%, 2°,0) mod 2Z.
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PROOF. The fact that all the degrees involved in (5.1) and (5.2) are defined
without ambiguity follows from general remarks earlier in this section.

As usual, denote by XC the unique G-invariant closed complement of X in
X (Theorem 2.2). Equip X with a G-invariant equivalent norm (Remark 2.1),
and for p > 0, let B(0, p) be the open ball with center 0 and radius pin X6,
The set Q, = (2° @ B(0, p)) NN is a G-invariant open neighborhood of Q1€ in Q.
We claim that for p > 0 small enough, we have f~1(0) N8, = (f9)~1(0) N C.

Otherwise, there is a sequence z, € f~1(0)N&Y, /e T € QF forall L€ N. As
i@ is proper, we may assume that lim,_, o, z¢ = z exists. Obviously, z € FYo)n
0% = (5)71(0) N 01°, and hence = € £~1(0) N 0 since 0 ¢ £(8QF) £(69).
But then the hypothesis Df(z) € GL(X) implies that f(y) # 0 for y in some
neighborhood of z in X, which in turn requires z, = z for ¢ large enough, in
contradiction with the hypothesis z, ¢ Q€.

Let p > 0 be as above and set w = 2, so that

{0 ¢ f(0w),

(53) F710) Nw = (F)1(0) N .

From (5.3), both (5.1) and (5.2) are trivial if (f$)~1(0) N Q€ = @, and we
shall henceforth assume that (f¢)~1(0) N QF = {xz,,... yTm}, where m > 1 is
an integer.

By Theorem 3.3(ii) with H = G, we find

B(y)

relative to the splitting X = X€ @ X€. Since Df (p), D f(z;) € GL(X) by hy-
pothesis, it follows from (5.4) with y = p and next y = z; that Df%(p), D G (z;)
€ GL(X®) and B(z,), B(x;) € GLa(XC%),1<i < m.

Let «; € C%[ai, b;); X€) be a curve joining p to z;, 1 <1< k. By definition
of the degree at regular values,

(5.4 i = (P10 p)  frvexe

(5.5) dy(f¢,0¢,0) = ija?,

where 6% = a(DfS o v;, [ai, b;]). On the other hand, since ; is also a curve
joining p to z; in X, and by (5.3), we have once again by definition of the degree
at regular values

(5.6) dp(f,9,0) = f:ai, where 0; = o(Df o, [a;, bi]).

=1
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As %()\) € X€ for all A € [a;, b;], (5.4) holds with y = ~;(}), and the multi-
plicative property of the parity with respect to block-triangular decompositions
(see [9] or [10]) yields

(5.7) o; = o(DfC oy, [ai,bi])o (B o %, [ai, bi]) = o o(B o %, [as, bil).

Note that B o~;(A) € ®oc(XC) by Theorem 3.3(ii) with H = G.

Suppose now that R is semi-loose. From Remark 4.1(i), the subrepresentation
of R in GL(X®) is loose, and since B oy; € C°([as, bil; Boc (X)), Theorem 4.2
implies that o(B o, [ai,b:]) = 1. Thus, 0F = 0;, 1 < i < m (see (5.7)), and
(5.2) follows from (5.5) and (5.6). In any case, it is clear that both (5.5) and
(5.6) provide a mod 2 count of the points 21,.. . , Tm, and hence (5.2) holds even
when (5.1) does not. O

Part (i) of Theorem 5.1 is new even in the case when dim X < oo (so that the
degree is equivalent to Brouwer’s). Perhaps more surprisingly, it also seems to be
‘new when dim X < oo and G is a finite group of odd order. All the related results
we have found in the literatl'lre give instead of (5.1) a weaker equality modulo
some ideal of Z and under more stringent assumptions about the representation.

In order to make Theorem 5.1 available as a technical tool in further com-
parisons of the degrees, we now show that even if f does not meet all the re-
quirements of Theorem 5.1, at least some homotopic mapping does. This will
enable us (in Sections 6 and 7) to reduce the problem to the case when Theorem

5.1 can be used.

PROPOSITION 5.1. Let f : X — X be a G-regular covariant C? Fredholm
mapping with indez 0, and let @ C X be a bounded G-invariant open subset of
X such that fig is proper and 0 ¢ f(0). Then there is a G-regular covariant
Q-admissible homotopy b : [0,1] x X — X such that h(0,-) = f and

(i) 0 ¢ h([0,1] x 892).
(ii) hC is OC-admissible and 0 ¢ RC([0,1] x 8QC).
(ifi) f1 = Rh(1,0) has a base point p € XC. Furthermore, if p € X€ is a base
point of f in the first place, h may be chosen so that p is a base point
of h(t,:) for all0 <t < 1.

(iv) 0 is a reqular value of fﬁnc, and Dfi(z) € GLg(X) for every z €
(76)71(0) nQC.

PROOF. Let p € X€ be a base point of fC if such a point exists (e.g. a base
point of f, if there is any in X G), an arbitrary point otherwise. If y € X Gisa
regular value of fiGc, we have ( fE)"1(y) N QC = {z1,... ,om} for some integer
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m > 0. Relative to the splitting X = X¢ ® X, Df(p) and Df(z;), 1 <i < m,
have the form

oir= (P70 ). orea=(P 42

with B(p), B(z;) € ®;E(XC), Df%(p) € ®"E(XC) = ®(XC) (see Theorem 3.3
with H = G) and Df%(z;) € GLg(X®) = GL(XS).
Given €7 > 0 and €3 > 0, it follows from Proposition 3.2 that there are
K € Kg(XC®) and L € K(X®) (= Ke(XC)) such that |K|| < ey, ||L|| < e2 and
B(p) + K,B(z:) + K € GLg(XC),1 < i < m, and DfS(p) + L € GL(X)
(= GLg(XG)) Fix £, and K, and for z € X, set g(z) = f(z) + KQzx — y,
where Q denotes the projection onto X¢ relative to X = XC @ XC. Clearly,
= f@ — y, so that 0 is a regular value of gmc. Also, since Q is G-covariant
(Theorem 2.1), we have

DfG T, 0 .
Dg(m,-)=( 0( ) B(z,—)+K)’ 1<i<m,

so that Dg(z) € GLg(X) for all z € (g9)71(0) = {z1,... ,2m}. Note that
G-covariance of @ implies G-covariance of g since y € XS, Now, set f (z) =
flz)+ K Qzr+LQz—y= g(z) + LQz, where Q = I — Q is the projection onto
XC. As Q and g are G-covariant, so is f;. Next, fE€ =g¢%+ L. Thus, by taking
ez (i.e. ||L]]) small enough in the first place, 0 remains a regular value of f€,
and (f7)~(0) NQC consists of exactly m points z1; with ||z; — ;|| arbitrarily
small, hence small enough for continuity of B to imply B(z;)+ K € GLg(X &),
1 £ ¢ £ m. This yields

Dh) = (PHED L8 k) eGte®), 1sizm,
which shows that Df;(z) € GLg(X) for all z € (fF)~1(0) N Q€. In addition,
from the choice of K and L we have

Dfi(p) = (ch%’) L B(p)O+K) € GLg(X),

hence p is a base point of f;.

It remains to show that fi can be obtained as h(1,-) where h is a homotopy
satisfying all the desired properties.

For (t,z) € [0,1] x X, set h(t, z) = f(z)+t(KQz+LQz—y), so that h(0,) =
f, h(1,) = f1, and 0 ¢ A([0,1] x 3R) if €1,€, (i.e. ||K|| and ||L||) have been
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chosen small enough and if ¥ has been taken close enough to 0 (which is possible
due to denseness of regular values). That h is C? is obvious, and G-covariance of
h follows from G-covariance of f, K, L,Q and Q, and from y € X¢. For z € X,
we have D h(t,z) = Df(z) + t{KQ + LQ) € ®(X) since Df(z) € ®o(X) and
t{(KQ + LQ) € Ka(X) C K(X). In addition, if z € X, then Df(z) € ®5E(X)
since f is G-regular by hypothesis, and hence D, h(t,z) € ®;E(X) (see Example
3.2). As a result, A(t,-) is Fredholm with index 0 and G-regular covariant.
Furthermore, if p is a base point of f and hence Df(p) € GL(X), it is clear that
D, h(t,p) € GL(X) for all t € [0,1] if &, and &3 are small enough, ie. pis a
base point of h(t,-) for ¢ € [0,1]. Properness of h ), follows at once from
properness of flﬁ’ compactness of KQ + LQ and boundedness of 2.

Finally, hC(t,-) = f¢ + t(L — y) is C? and an affine compact perturbation
of fC, hence Fredholm with index 0 (f¢ is Fredholm with index 0 since f is G-
regular). That 0 ¢ h%([0,1] x 8QF) and h|([;0,1]xﬁc is proper is a straightforward
consequence of the analogous properties for A and of 9Q¢ C 69. O

6. The case of finite groups

As in the previous section, f : X — X denotes a G-regular covariant C?
Fredholm mapping with index 0, {2 is a G-invariant open subset of X and fi5
is proper. In addition, the group G is supposed to be finite in all subsequent
considerations.

Let ZG denote the ideal of Z generated by the integers [G : G;] where G; is
the isotropy subgroup of z € X\X¢. Equivalently, Z€ is the ideal of Z generated
by the g.c.d. A of the number of points in all nontrivial orbits. As usual, vI%
denotes the radical of Z€: if A > 1 and A = 7" ... pfk is the decomposition
of A as a product of distinct primes g, ..., @k, then VIC is the ideal of Z
generated by the product p1 ... pk.

For the proof of our main result (Theorem 6.1), we need a sequence of pre-

liminary lemmas.

LEMMA 6.1. Suppose that Q is bounded, QN XC =0, 0 ¢ f(0) and 0 is a
regular value of fin. Then

(6.1) |d|(f,$,0) = 0mod Z€.

PROOF. It is not restrictive to assume that f has a base point p € X©.
Indeed, by a simple contradiction argument, it is easily seen that if ¢ > 0 is
small enough and K € K(X) satisfies ||K|| < ¢, then 0 is a regular value of
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(f + K)jq and h(t,z) = f(z) + tKz is an 9-admissible homotopy such that
0 ¢ A([0,1] x 8R) (argue as in the proof of Proposition 5.1). Furthermore, if in
addition K € Kg(X), then h is G-regular covariant. Thus, choosing p € X©
arbitrarily and next K € Kg(X), ||K|| < ¢, such that Df(p) + K € GL(X)
(existence of K follows from Proposition 3.2 with A; = Df(p)), we may replace
by f+ K in the lemma by homotopy invariance of the absolute degree. This
proves the claim.

Let z € f~1(0) N Q. By G-covariance of f and G-invariance of €, the orbit
O, = {Ryz : g € G} lies in f~1(0) N Q. Our hypotheses ensure that f~1(0) N Q
consists of finitely many points and hence dy,(f, €2, 0) is the sum of the contribu-
tions of all the disjoint orbits, the orbit O, contributing the sum Z‘ﬁeG /G, 0F
where o3 is the parity of Df o v and ~5 is any curve in X joining p to Ryz,
g € g (note that R,z is independent of g € g).

If v € C%[a,b]; X) is any curve in X joining p to z and if g € G, then
Ry is a curve in X joining Ryp = p to Ryx. Thus, og is just the parity of
Df o Ryy for g € g. Now, from f(Ryy) = Ryf(y) for all y € X, it follows that
Df(Rgy) = RyDf(y)R;'. In particular, Df o Ryy = Ry(Df o v)R;. This
implies that the parity of Df o Ry equals the parity of Df o, e.g. because
the constant curves of the isomorphisms R, and R;! have parity 1 (see [10] if
details are needed).

The above shows that o5 = o(Df 04, [a,b]) for every § € G/G,, and hence
the contribution of the orbit O, to dy(f,9,0) is [G : Gglo(Df o v,[a,b)), an
integer divisible by the generator A of Z€ since G, # @ due to the hypothesis
QN X% = . This holds for every orbit, hence dy(f,9,0) is divisible by A and
the same thing is true of |d|(f,2,0) = |d,(f,?,0)|. O

We now work towards removing the hypothesis that 0 is a regular value of fia
in Lemma 6.1. Both the G-covariance requirement and the lack of (C?) partitions
of unity in general contribute to making this task rather delicate. Lemma 6.2
next is only a technical step needed in the proof of Lemma. 6.3.

LEMMA 6.2. Let N > 0, M > 0 be integers and let S and T be represen-
tations of G in GL(RN) and GL(RM), respectively. Let z € RN be such that
Sgz# z forallg € G, g # 1, and let y € RM be arbitrary. Then there is an
(8,T)-covariant polynomial mapping £ : RN — RM (i.e. £&(S,w) = T,&(w) for
allw € RN and g € G) with d°¢ < |G| — 1 such that £(z) =

ProoF. To find £, we construct a polynomial mapping 7 : RV — RM with

d’n < |G| — 1 such that n(Syz) = T,y for all g € G. Once 7 is available,
it suffices to take {(w) = 157 X ee Ty '7(Syw) for all w € RY. Indeed, £ is
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obviously an (8, T)-covariant polynomial mapping with d°¢ < d°7r < |G| — 1,
and £(z) = 1%[ YoecTy 1T,y = y. The polynomial mapping 7 can be found as
follows: for every g € G, let m, be a real-valued polynomial with d°r, < |G| —1
such that 7,(Syz) = 1, 14(Syz) =0 for all ¢’ € G, ¢’ # g. Because S;z # Sy 2
for g # ¢, such a polynomial 7, can be obtained via the Hahn-Banach theorem as
the product of affine continuous mappings with value 1 at Sgz and 0 at a different
one of the |G| — 1 points Sz, g’ # g. The mapping 7(w) = 3  mg(w)Tyy for
w € RY possesses the desired properties. O

LEMMA 6.3. Suppose that Q is bounded, that Ryz # z forallz € Q, g€ G,
g # 1, and that 0 ¢ f(80N). Then there is a G-regular covariant (X-admissible
homotopy h : [0,1] x X — X such that 0 ¢ h([0,1] x 0R), h(0,-) = f and 0 is a
regular value of h(1,-).

PRrROOF. We shall not be able to construct s explicitly and will be content
with a proof of its existence, which will follow from Sard’s theorem and some
technicalities described below.

Let C = f~1(0) N Q, a compact subset of Q since fi@ is proper and 0 ¢
f(89Q). As f is Fredholm, it follows from compactness of C' that there is a finite-
dimensional subspace Y C X such that rge Df(z)+Y = X forallz € C. If

(6.2) Y=Y RyY

is a G-invariant finite-dimensional subspace of X containing Y and hence
(6.3) rgeDf(z)+Y =X forzeC.

Fix o € C: As Rgxg # o for all g € G — {1} by hypothesis, the orbit of
xg consists of |G| distinct points. Hence, there is a linear continuous functional
Az, € X* such that (Azy, Rgzo) # (Aso, Ryzo) for all g,¢' € G, g # ¢’ By
continuity of A, there is an open neighborhood Nz, of zp in © such that
{Azo) BgT) # (Mg, Ryx), for all g,¢’ € G, g # ¢', and all z € A,. Covering C
with finitely many open neighborhoods N,, we obtain finitely many continuous
linear functionals A\; € X*, 1 € ¢ € n, such that

(64) VreC,AQ<i<n, (\,Ryz)# (N, Ryx), Vg, €G, g#4.

At this point, it will be convenient to view G as a subgroup of the group
of permutations of {1,...,|G|} (the reader familiar with the concept of regular
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representation will notice that the representation S below is just the tensor
product 7 ® p where 7 is the trivial representation of G in R™ and p the regular
representation of G in RI®!). The usual way to do so is to number the elements
of G, say G = {g9;}1<j<|¢| beginning with g; = 1, and to 1dent1fy g with the
permutation 73 characterized by the condition

(6.5) Ir(G) = 9rgj,  for 1< <|G).

Consistent with the above numbering of the elements of G, we shall set R;=R,,
1<j <|G|. By (6.5), we have R, (jy = RxR; for 1 < j,k < |G|. Observe in

passing that R; = I since g; = 1, and note also that (6.4) reads
(66) VzeC,AL<i<n, (RXa)#(RMiz), VI<ik<|Gl j#k,

where of course R} € GL(X™) is the adjoint of R;.

For each index 1 < £ < |G, let Sy € GL(R™ ® RI®!) be defined by w =
(wij) = Se(w) = (Wir,;)). It is straightforward to check that the S,’s form a
representation of G in GL(R™ ® R!!) and that the mapping ¢ = (piz) : X —
R™ ® RICI defined by

|G|

is (R, S)-covariant. Since S;' represents g; ! and g;! is identified with ;!
(ie. g1 = g;'g; for all 1 < j < |G|), we have S[l(((R;-‘Ai,ng))) =
((R:fl (j)/\,-,Rga:)) = ((RyR; Ry * ), z)). Equivalently,

[e]
1 * * — %
pij(z) = <|_G—|.ZR£R‘7'RZ /\i,27>
=1
for 1<i<n,1<j<|G| z€X,and in particular, pi1(z) = (A, z), 1 <i < n,
z € X. As a result,

(6.8) V€ C, Srp(z)=@(Rrz) # o(z), for2<k <G|

for otherwise @;1(Rxz) = ;1 (x) for some index 2 < k < |G| and every 1 < i < n,
whence (Rp);, z) = (\;,z), for all 1 <4 < n, in contradiction with (6.6).
Denote by P the space of (S, R)-covariant polynomial mapplngs with degree
< |G|-1 from R"®RIG! to ¥. This definition makes sense since ¥ is G-invariant.
Moreover, as dim ¥ < oo, we have dim P < oco. For (z,{) € X x P, set

(6.9) f@.0) = fl@) +{(e(=)) € X,
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where ¢ is defined by (6.7).

For fixed ¢ € P, f(, ¢) is a C*° finite-dimensional perturbation of f and hence
f(-, ¢) € C?(X;X) is Fredholm with index 0. Moreover, F(-,¢) is G-covariant
since ¢ is (R, §)-covariant and ¢ is (S, R)-covariant (and f is G-covariant). Also,
f € C*(X x P;X) and for z € X we have Df(z,0)(v,£) = Df(x)v + &(p(z))
for all v € X and £ € P, where Df denotes the total derivative of f. As Df (z)
has index 0, it follows that Df(m, 0) is Fredholm with index dim P.

For z € C, Df(z,0) is onto X. Indeed, from (6.3), every element of X can
be written in the form Df(z)v + y with v € X and y € 17', and it suffices to
show that there is £ € P such that £(p(z)) = y. But this follows from (6.8) and
Lemma 6.2 with T = R and z = ¢(z) (and after identifying R* ® RI¢l with RV,
N = |G|, and ¥ with RM).

At this stage, the implicit function theorem yields that in the vicinity of
each point (z,0) € C x P, the zero set of f~coincides with a C? manifold with
dimension dim P (= index of Df(z,0)). By compactness of C, there is an open
neighborhood of C x {0} in X x P of the form N¢ x B, with Mg an open
neighborhood of C in X and B, the open ball with center 0 and radius p > 0
in P, such that (z,() € N¢ x B, and F(z,¢) = 0 if and only if (z,¢) lies in
some dim P-dimensional C2-submanifold M of N¢ X B,. Furthermore, after
shrinking p > 0 if necessary, every solution z € Q of f(x, ¢) = 0 lies in Ng if
¢ € B,: otherwise, there are sequences ¢m tending to 0 in P and z,, € ﬁ\NC
such that f(mm, ¢m) = 0. As Q is bounded by hypothesis, the sequence (z.,) is
bounded in X, hence (¢(z,,)) is bounded in R® ® RIC! (see (6.7)). Thus we may
assume that limy, . @(zm) = u € R"® RIC! with no loss of generality. But
then (m(¢(zm)) tends to 0 in Y since ¢ tends to 0 in P. As a result,

(6.10) lim f(zm) =— m]j_lfloo Cm(p(zm)) =0,

m—o0

which, by properness of fi, implies im0 Tm = z* € Q after replacing (z,)
by a subsequence if necessary. From (6.10), f(z*) = 0, ie. z* € C since
0 ¢ f(09). If so, z., € N¢ for m large enough, a contradiction.

From the above and the definition of the submanifold M of N¢ x B,, we
have

(6.11) (,¢) € FHO)N (@ x By) & (z,0) e M?

if p > 0 is small enough. Applying Sard’s theorem to the projection 7 : X X B, D
M — B, C P, we find a regular value {o € B, of 7 (note dim M = dim B, =

2Ip particular, € §2 since M C Ng X By, C Q x B,.
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dim P). This means that either M N7~1(¢o) =0 (i.e. f(z, Co)#Oforallz € Q;
see (6.11)) or ™ € GL(T(5,¢,)M,P) for every point (z,{) € M N7~ 1(¢) (ie.
every point z € Q such that f(m, ¢o) = 0; see again (6.11)). As Tz, )M is
identified with ker Df(z, (o), this amounts to (X x {0}) Nker Df(z, () = {0}
or, equivalently, to ker sz(m,CO) = {0}. Since f(, Co) is Fredholm with index
0, it follows that D, f(z, (o) € GL(X) forall z € f(-,(o)_l(O) NQ, ie 0isa

regular value of f(-,(o))q-
A possible choice for the desired homotopy A is now given by

h(t,.’L‘)=f(iL‘)+tCo((p(£L’)), 0<t<1, zeX.

Obviously, & € C%([0,1] x X;X) and since t{op € B,, 0 < t < 1, we have
0 ¢ R([0,1] x 8Q) by (6.11). Also, h(t,-) is Fredholm with index 0, 0 < ¢ < 1,
and h|[0,1]><ﬁ is proper (for the latter point, use boundedness of  in the same
way as in the proof of (6.11) given above). Next, h(0,-) = f, and h(1,-) = f(-, ¢)
has 0 as a regular value. Finally, h is G-covariant, and even G-regular covariant
since h(0,-) = f is G-regular covariant by hypothesis (see Corollary 3.1 or the
related comments at the beginning of Section 5). This completes the proof. [

In our final lemma, we handle the case when G is a p-group, p > 2 a prime
number, i.e. |G| = p* for some integer o > 1.

LEMMA 6.4. Suppose that G is a p-group, p > 2 a prime number. Suppose
also that ) is bounded, fg is proper and 0 ¢ f(3Q). Then

(6.12) ld](f, 2, 0) = [d|(£°, 2¢,0) mod VZIC.
Moreover, if p € X is a base point for f, we have

(6.13) dy(£,9,0) = dp(f¢,0C,0) mod VIG.

PROOF. If X¢ = X, the result is trivial (and Z¢ = {0}). From now on,
we assume X© # X. Since G is a p-group, every nontrivial orbit contains ©°
points where 8 > 1 is an integer. This implies that Z¢ = p"Z where v > 1 is an
‘integer, whence VZC = pZ.

We prove the desired results first when G = Z,, and next in general.

Step 1: G = Zy. Since f is G-regular by hypothesis, it follows from homotopy
invariance of |d| and Proposition 5.1 that we may assume that f has a base
point p € X without changing |d|(f,2,0) or |d|(f€,QF,0). Furthermore, still
by Proposition 5.1, we may assume that 0 is a regular value of fG and that
Df(z) € GLg(X) for every z € (f¢)~1(0) N QE.
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On the other hand, every representation of Zj, is semi-free, hence semi-loose
if p > 3 (see Remark 4.1(ii)). Thus, Theorem 5.1 yields that, irrespective of the
prime number g > 2, we have

(614) dp(fa w,O) = dp(fG’QG7O) mod pZ,

where w C Q is a G-invariant open neighborhood of Q¢ in .

Because 0 ¢ f(8w) U £(09), we have f~1(0)NQ = (f~1(0) Nw)U (F1(O) N
(Q\@)) and 0 ¢ f(8(N\w)). By additivity of the degree with respect to the
domain, we find

(6'15) dP(f7Qa 0) = dp(f1w70)+dp(fa Q\w,O)

But Q\@ is G-invariant and (2\@) N X¢ = 0 since w is an open neighborhood
of N6 = QN XC. In particular, R,z # z for all g € G = Z,, and = € Q\w (using
once again the fact that every representation of Z,, is semi-free). From Lemma
6.1 and Lemma 6.3 with Q\w replacing €2, and from homotopy invariance of
the absolute degree, we find |d|(f, 2\@, 0) = 0mod pZ, hence d,(f, A\w,0) =
0mod pZ. Combining this result with (6.14) and (6.15), we get

(6.16) dy(f,9,0) = dy(f¢, 0%, 0) mod pZ,

and (6.12) follows by taking absolute values.

Relation (6.16) above was obtained after possibly modifying f through a
homotopy h as indicated in Proposition 5.1. If p € X G is a base point of f,
Proposition 5.1 also ensures that i can be chosen so that p remains a base point
of h(t,-), 0 <t < 1. Thus, by homotopy invariance of the degree (see Remark
5.1), relation (6.16) valid with f replaced by h(1, -) remains valid with f = h(0,).
This proves (6.13).

Step 20 General case. Let |G| = p®. Since the case @ = 1 was solved in
Step 1, suppose a > 2. By induction, we assume that the result is true for all
g-groups with order p?, 1< f<a—1.

Since G is a p-group, the maximal proper subgroups of G have order p*~?
and are normal in G. Both properties are well known results from finite group
theory. Let then H < G be a maximal proper subgroup. From the hypothesis

of induction, we have
(6.17) |dI(£,9,0) = +/d|(f7, 07, 0) mod pZ.

As H is normal in G, the space X is G-invariant and the action of G in
XH factors through an action of G/H. Since |H| = p*~! and |G| = p, we have
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|G/H| = p, ie. G/H ~ Z,. By Theorem 3.3 and Remark 3.3, it follows that
fH is a G/H-regular covariant C2? Fredholm mapping with index 0. Moreover,
flg,, is proper by properness of fig, and 0 ¢ f¥(80Q). Also, (XH)G/H = XG,
whence (¥)S/H = OF and (f¥)C/# = §G. Thus, using Step 1 with G/H ~ Z,
replacing G and fH replacing f, we find

(6.18) lal(F%,92%,0) = £|d|(f¢, 2%, 0) mod pZ,

so that (6.12) follows from (6.17) and (6.18).

If now p € X€ is a base point for f, then p € XH for every subgroup H < G,
and validity of (6.13) can be established from the case G = Z,, in Step 1 by a
similar induction procedure. a

The generalization of Lemma 6.4 to the case when G is an arbitrary finite
group and 2 need not be bounded is given in Theorem 6.1 below.

THEOREM 6.1. Let the group G be finite andlet f : X — X be a G-regular
covariant C? Fredholm mapping with indez 0. Let Q C X be a G-invariant
open subset of X such that fis is proper and 0 ¢ f(89). Finally, let IC denote
the ideal of Z: generated by the integers [G : G;], z € X\XC, where G, is the
isotropy subgroup of x. We have

(6.19) |d|(f,,0) = +|d|(F¢, 0%, 0) mod VIE.

In_addition, if p € X© is a base point of f (and hence f is automatically G-
regular), we have

(6.20) dy(£,9,0) = dp(£€, 0, 0) mod VIC.

PROOF. Once again, the result is trivial if X = X€. So, suppose X # X©
and let A denote the g.c.d. of the integers [G : G;],z € X\XC. If A =1,
then Z¢ = vZCG = Z and (6.19) and (6.20) hold trivially (but are useless). If
A>1, let A= pf ... pf" be the decomposition of A into a product of distinct
primes gy, ..., pr. As p),... ,pf" all divide |G|, the decomposition of |G| into
a product of distinct primes has the form |G| = pf*...pJ* with £ > k and
a; >0, 1<i<k

First, we prove the validity of Theorem 6.1 under the additional assumption
that €2 is bounded. For 1 < i < k, let S; denote a Sylow pi-subgroup of G, i.e.
a subgroup of G of order p* (existence of S; is another standard result from
finite group theory). We claim that X5 = X¢. Indeed, if X¢ C XS, pick
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x € XS\ XC. As z € X5, the isotropy subgroup G contains S;, which implies
that p2* divides |G|. But then, from |G| = |G|[G : G:], we see that p; does
not divide [G : Gz), hence does not divide A since z ¢ X, a contradiction.

By Proposition 5.1 and homotopy invariance of the absolute degree, we
may assume that f has a base point p € X© without affecting |d|(f,2,0) or
|d|(f€,0QC,0). As X5 = XC implies Q5 = QF and f5 = fC, Lemma 6.4 with
S; replacing G yields (note that VZS = p,Z since X% = XC # X)

(6.21) dp(f,Q2,0) = dp(f€,0%,0) mod p;Z,  1<i<Kk,
and hence
(6.22) dy(f,9,0) = dp(£,9C,0) mod g1 . . . P& Z.

Thus, (6.19) follows from g; ...pxZ = VZG. If f has a base point p € X€ in
the first place, then Proposition 5.1 need not be used and (6.21) and (6.22) hold
without modifying f. This proves (6.20).

Finally, suppose that 2 is unbounded. As fg is proper and 0 ¢ f(09), the
set f~1(0) NQ is compact. By Lemma 5.1 with Z = X, there is a G-invariant
open neighborhood N of 0 in X such that N C B(0,1). Changing N into
AN, X > 0 large enough, we may assume f~1(0)NR C NNQ.

Let p € XY (resp. ¢ € X) be a base point of f¢ (resp. f). By additivity
of the degree with respect to the domain, dy(f,Q,0) = dy(f,N N Q,0) and
dy(F€,906,0) = d,(fC, (N N Q)€,0), whence |d|(f,,0) = |d|(f, N NL,0) and
ld|(f€,0NC,0) = |d|(fC, (N NQ)F,0). In fact, these relations remain valid when
either f or € has no base point, for they reduce to the trivial 0 = 0 in this case.
That (6.19) holds thus follows from the first part of the proof with (2 replaced
by the bounded N N Q. Likewise, (6.20) is immediate from the validity of the
same relation with Q2 replaced by N NQ and additivity of d, with respect to the
domain. O

In a number of cases, Z& can be substituted for vZ¢ in Theorem 6.1; a few
of them are given in

THEOREM 6.2. Retain the hypotheses of Theorem 6.1 and assume further
that one of the following conditions holds:
(i) 0 is a regular value of f.
(i) The restriction of the representation R to each Sylow subgroup of G is
semi-free (in particular, trivial).
(iii) The order of G is not divisible by p* for any prime number p > 2.
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Then Theorem 6.1 holds with IC replaced by VIG.

PRrROOF. As in the proof of Theorem 6.1, the problem reduces to the case
when 2 is bounded and G is a g-group, i.e. it suffices to show that Lemma 6.4
holds with Z€ replacing VIG.

In both cases (i) and (ii) of the theorem, the induction procedure of Lemma
6.4 may be bypassed: after possibly modifying f through a homotopy according
to Proposition 5.1, we find dy,(f, Q,0) = d,(f, w, 0)+dp(f, 2\@, 0), where p € XC
is a base point and w is the G-invariant open neighborhood of Q¢ given by
Theorem 5.1. Next, d,(f,2\@,0) = 0modZ® directly from Lemma 6.1 in case
(i), or after using Lemma 6.3 when R is semi-free in case (ii).

Thus, to complete the proof when (i} or (ii) holds, it suffices to show that

dp(f,w,0) = dp(f,Q°,0) mod Z€.

If R is semi-loose, this follows at once from Theorem 5.1(i). Otherwise, Theorem
5.1(ii) just yields dp(f,w,0) = dp(f%,2¢,0) mod 2Z. However, we claim that
IC = 2Z in this case. To see this, note first that every p-group is (obviously)
2-nilpotent. Thus, as R is not semi-loose, it follows from Theorem 4.3 that there
is a subgroup H < G with X¢ ¢ X# and [G : H] = 2. The latter relation
implies at once that ¢ = 2. -On the other hand, H being a maximal proper
subgroup of G, every point € XH\X® # () has isotropy subgroup G, = H.
It follows that [G : H] = 2 € IC, whence 2Z C I C VZG C 2Z (recall that
VIC = pZ or {0} when G is a p-group), so that TG = 2Z, as claimed.

If now assumption (iii) of the theorem holds (and G is a gp-group), then
|G| = p or |G| = p?. If |G| = p, then TG = pZ or {0}, whence IC = +/ZC
and the conclusion follows from Theorem 6.1 itself. Next, if |G| = p? and R
is not semi-free, there is z € X\XG and there is ¢ € G such that R,z = z.
But then the isotropy subgroup G, is a nontrivial proper subgroup of G, so that
|Gz| = p and also [G : G;] = p since |G| = p®. Thus, pZ C I¢ C VIC C pZ,
ie. I6 = pZ = vIC, and Theorem 6.1 yields the desired conclusion. On the
other hand, if R is semi-free, the result follows from part (ii) of the theorem. O

It is easy to exhibit other cases when Theorem 6.1 holds with Z¢ replac-
ing VvIG. For instance, since the degree of this paper is equivalent to Leray-
Schauder’s when f is a compact perturbation of the identity, Theorem 1.1 gives
another example. But we do not know whether this improvement is always true.
Theorems 1.1 and 6.2 show that if counterexamples exist, they must be fairly
complicated. The results of Borisovich et al. [2] for the degree of Elworthy and
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Tromba when G = Z,, are covered by Theorem 6.2(ii) and (iii), and also by
Theorem 6.1 since vVZG = Z% when G = Z,,, and hence do not help clarify this
issue.

For the record, we explicitly mention the simplest particular case of Theorem
6.1 when G = Z; is represented by {I,—I}. If so, Boc(X) = I5E(X) (see Sec-
tion 3).

COROLLARY 6.1 (Borsuk’s theorem). Let f : X — X be an odd C? Fredholm
mapping with index 0 and let & C X be an open subset symmetric with respect
to the origin and such that fg is proper, 0 ¢ f(0). If0 € Q (resp. 0 ¢ Q),
then |d|(f,$,0) is odd (resp. even) and hence dy(f,,0) is odd (resp. even) for
every base point g € X of f.

NotE. If 0 € 2, existence of base points is ensured by oddness of |d|(f, 2, 0)
since |d|(f,$2,0) = 0 if no base point exists (see [10]).

REMARK 6.1. Because the group structure and the action are so simple in
Borsuk’s theorem, its validity does not require any restriction on the domain
of definition of f except simple connectivity already needed in the noncovariant
theory (see [10] and Remark 1.1). This variant must be proved directly by the
method of this paper, but considerable simplifications can be incorporated. O

7. The case of compact Lie groups with arbitrary dimension

In this section, G denotes a compact Lie group with identity component G°.
We prove a generalization of Theorem 6.1 based upon Theorem 6.1 itself and the
following lemma.

LEMMA 7.1. Suppose that G is a torus. Let f : X — X be a G-regular
covariant C? Fredholm mapping with indez 0, and let Q C X be a G-invariant
open subset such that fg is proper and 0 ¢ f(09Q). Then

(7.1) ld|(f,2,0) = |d|(s%,0€,0).
In addition, if p € XC is a base point of f, we have

(72) dp(fa Qy 0) = dP(fG’QG’O)'

PRrROOF. Since a torus is a m.i.i.s. of itself, the representation R of G is
semi-loose (see Remark 4.1(ii)). First, we consider the case when 2 is bounded.
By Proposition 5.1, we may assume that f has a base point p € X€ without
changing |d|(f, ?,0) or |[d|(f¢,2C,0), that 0 is a regular value of fi$c and that
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Df(z) € GLg(X) for all z € (f¢)~1(0) NQCF. If so, Theorem 5.1 ensures that
there is a G-invariant open neighborhood w of Q€ such that 0 ¢ f (6w) and

(7.3) FHO)nw = (£9)71(0)nQC,
(74) dp(faw,o) = dp(fG,QG’O)_

Let g. be a generator of the torus G, and let g, € G be a sequence tending
to g« such that the subgroup H, generated by g, has prime order g, with
limp, .0 pn = c0. Existence of such a sequence gy, is easily shown (see e.g. [18]
where a similar argument is used). For n large enough, we claim that

(7.5) YO Nw = (7)1 0) N Q.

Indeed, “C” is trivial from (7.3) and from X¢ c XH» (whence Q€ C QFn),
Conversely, suppose by contradiction that for a subsequence n; there is z; €
(27 )=1(0) NQE+ such that zx ¢ f~1(0)Nw (i.e. zx ¢ w). Extracting another
subsequence, we may assume limg_,o zx = z € (f¢)71(0) N N (use properness
of fig and 0 ¢ f(892)). Also, z € X©. Indeed, from Ry, zx = z; for all k € N,

we find

1Rg. 2 — 2|l < |Rg.x — Ry, 2l + || Ry, (z — )| + llzx — ]|
< | Bg.z — Ry, zll + (1 + || Rg,,, IDllze — 2]],

and the right-hand side tends to 0 since ||Ry,_ || is bounded (Proposition 2.1(i))
and G > g — Ryx € X is continuous. This implies Ry, = z, whence z € XC
gince g. is a generator of G. From the above, z € (f¢)~1(0) N Q% = f1(0) Nw
(see (7.3)). As w is open and z € w, we must have z) € w for k large enough, a
contradiction.

Thus, as claimed, (7.5) holds for n large enough, and of course it is not
restrictive to assume p, > 3. As H, ~ Z,,, H, acts freely, hence loosely,
in X (Remark 4.1(ii)). In addition, from (7.3) and (7.5) and since Df(x) €
GL¢(X) for every z € (f¢)~1(0) N QF, we have Df(z) € GLy, (X) for every
z € (f#)~1(0) N QH». In particular, 0 is a regular value of flg';,-n. Finally,
p € X6 C XH». It follows from all this that we may apply Theorem 5.1 once
again, but now with H, replacing G. This yields existence of an H,-invariant
open neighborhood wy, of 2~ in € such that 0 ¢ f(Ow,) and

(7.6) F7H0) Nwn = (fi,) 1 (0) NQH=,
(7.7) dp(f,wn,0) = dp(fH=, Q= 0).
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Comparing (7.5) and (7.6), we see that f~1(0) Nw = f~1(0) Nw, = F1(0)N
(wNwy). As 0 ¢ f(O(wNwy)) C f(Bw) U f(Ow,), additivity of the degree with
respect to the domain yields dp(f,w Nwy, 0) = dp(f,w, 0) = dp(f, wn, 0), whence
|d|(f,w,0) = |d|{f,wn,0). Together with (7.4) and (7.7), this implies

(7.8) jdI(f5~, ", 0) = 1d|(£€,0°,0).

Now, Theorem 6.1 with H, ~ Z,,_ replacing G provides |d|(f,(, 0) = £|d|(fH~,
Qf» 0)mod p,Z, that is, with (7.8), |d|(f,€,0) = +|d|(f¢,QC,0) mod p,Z.
Choosing n such that g, > max{|d|(f,,0),|d|(f¢,C,0)} we infer that |d|(f,
Q,0) = +|d|(f¢,QC,0), whence |d|(f,2,0) = |d|(f°,QC,0), since the absolute
degree is nonnegative. This proves (7.1), and (7.2) follows in a similar way, using
the “furthermore...” part of Proposition 5.1(iii) and Remark 5.1.

When € is unbounded, the problem can easily be reduced to the bounded
case via Lemma 5.1 and additivity of the base point degree with respect to the
domain, as in the proof of Theorem 6.1. |

From now on, Z¢ denotes the ideal of Z generated by the integers x(G/G:)
(Euler-Poincaré characteristic) for £ € X\ X¢ and rank G, = rank G (recall that
the rank of a compact Lie group G is the dimension of any maximal torus of the
identity component G°). If T < G° is a maximal torus and N(T) its normalizer
in G, the fixed point space XT is N(T)-invariant and the action of N(T) in XT
factors through an action of the factor group N(T)/T (the Weyl group of G
when G is connected).

LEMMA 7.2.
(i) The group N(T)/T is finite and independent of T (i.e. two different
choices of T yield isomorphic factor groups).
(ii) The condition XN(T) = XC is independent of T.
For x € X7, let T, be the (finite from part (i) above) isotropy subgroup of z
relative to the action of N(T)/T in XT. Denote by IVT/T the ideal generated
by the integers [N(T)/T : ], z € X\XT. Then:
(iii) ZNTVT is independent of T.
(iv) If XN¥(T) = X (a condition independent of T from part (i) above) we
have TNTD/T = TG,
(v) If XN(TD) £ XGC (a condition independent of T from part (ii) above) we
have IC = Z.

PROOF. Part (i) is well-known (see e.g. Bredon [3]). Parts (ii) through (v)
are proved in [20, Theorem 7.1(i), (ii) and Theorem 8.1(ii), (iii)]. In fact, (ii)
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and (iii) follow easily from conjugacy of maximal tori while (iv) and (v) are due
to the (known) formula x(A) = x(AT) for every compact G-manifold A. O

THEOREM 7.1. Let G be a compact Lie group and let f : X — X be q
G-regular covariant C? Fredholm mapping with index 0. Let Q C X be a G-
invariant open subset of X such that fg is proper and 0 ¢ f(8Q). Finally, let
IC denote the ideal of Z generated by the integers x(G/G,), z € X \XC with
rank Gy = rank G. We have

(7.9) |d|(£,9,0) = +|d] (¢, 2, 0) mod VZE.

In addition, if p € X€ is a base point of f (and hence f is automatically G-

regular) we have
(7.10) dp(£,9,0) = d,(f€, 2%, 0) mod VIC.

PROOF. Let T < G° be a maximal torus. From Lemma 7.2(v), IC = Z if
XNT) 3 XC, hence VIC = Z and both (7.9) and (7.10) are trivial (but useless).
Accordingly, we shall henceforth assume that

(7.11) XN = x6,

From Lemma 7.1 with T replacing G (that f is T-regular follows from The-
orem 3.2), we find

(7.12) |dI(£,,0) = |d|(fT, 97, 0).

On the other hand, replacing X by X7 and f by f7, it is trivial to check that
the hypotheses of Theorem 6.1 are satisfied with G replaced by N(T)/T. 1t is
equally trivial that XNT) = (XT)NT)/T QN(T) = (QT)N(T)/T apq FN(T) —
(fT)N(T)/T. Thus,

(7.13) ld|(F7,97,0) = £[d|(s¥ ™, 2¥D), 0) mod VINTI/T,

Now, in view of (7.11), we have Q¥ (™) = QF and fN(T) = G, whereas TN(T)/T
= Z¢ by Lemma 7.2(iv). Thus, (7.13) reads

ldI(f7, 07, 0) = £|d|(f¢,QC,0) mod VIT,

which together with (7.12) yields (7.9). The proof of (7.10) is similar, using
peXCcXxND c X7, O
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REMARK 7.1. From the above proof, Theorem 7.1 is useful only when X ¥(T)
= X6 for some (or equivalently every, by Lemma 7.2(ii)) maximal torus T of G°.
Furthermore, in this case, the ideal ZG = ITN(T)/T can be calculated directly from
the action of the finite group N(T')/T in XT. In other words, precise information
about the geometry of the orbits G/G;, is not required. O

REMARK 7.2. It can be shown that the ideal Z¢ is generated by all the
integers x(G/Gy), x € X\XC (because x(G/G;) = 0 if rank G, < rank G; see
[20, Lemma 8.2(ii)], or [12] for the case when G is connected). O

REMARK 7.3. When G is finite, Theorem 7.1 gives again Theorem 6.1 and
Theorem 7.1 is the same as Lemma 7.1 when G is a torus since ZC = {0} (the
ideal of Z generated by the empty set of generators) in this case. (W]

REMARK 7.4. In all the cases when ZV(T)/T can be substituted for vZN(T)/T
in Theorem 6.1 (with X replaced by X7 and f by f7), e.g. when Theorem 6.2
can be used instead of Theorem 6.1, Theorem 7.1 holds with Z€ replacing vZC.0

COROLLARY 7.1. If X¢ = {0} in Theorem 7.1 and 0 € Q (resp. 0 ¢ Q),
then |d|(f,Q,0) = £1 (resp. 0)mod VIC. In addition, if Df(0) € GL(X), then
0 is a base point of f and do(f,©,0) =1 (resp. 0) mod vIG.

PRroor. Trivial. O

Appendix: Proofs of Theorems 2.2, 2.3, 3.1 and Corollary 3.3

PROOF OF THEOREM 2.2. Let P = [, Rydg (ie. Pz = [, Ryxdg for all
z € X; see (2.1)). By Proposition 2.1(ii) we have P € L(X), and it follows
at once from the properties of invariant integration that P is a G-covariant
projection onto X¢. Hence, Z = ker P is a closed G-invariant subspace, and
X =ker(I - P)okerP=X% o Z.

Next, we show that if Z is any G-invariant closed complement of X G and
A € Lg(X), then A(Z) C Z. Indeed, let U C Z be any irreducible G-module of
type V. Necessarily, V = V; where V; denotes the trivial irreducible G-module,
for otherwise U C X©, a contradiction. Let P : X — X denote the projection
onto XG relative to the splitting X = X¢®Z. As P € L5(X) (Theorem 2.1) we
have PA € L(X). Hence, by irreducibility of U, we have either ker PA|;y = {0}
or ker PAjy = U. But in the first case, PA is a G-covariant isomorphism of U
onto PA(U) (recall dimU < oo0). Hence PA(U) is an irreducible G-module of
type V, and V ~ V} since PA(U) C X©, a contradiction. Thus, ker PAjy = U,
i.e. PA(U) = {0} or, equivalently, A(U) C Z. Now, Z is a Banach space and
hence equals the closure of the algebraic sum S of all the irreducible G-modules
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contained in Z (see [4]). As A(S) C Z from the above, we find A(Z) C Z by
continuity of A, as claimed.

This property implies uniqueness of the G-invariant closed complement Z
of XC, for if Z; and Z, are two possible choices, the projection @, onto Z;
associated with X = X® @ Z; is G-covariant (Theorem 2.1). Choosing A =
@1 and Z = Z; above, we find Q;(Z;) C Z;. But @1(Z2) = Q1(X) since
Q1(XC) = {0}, and obviously Q,(X) = Z,. As a result, Z, C Zy, i.e. Z, = Z,
by exchanging the roles of Z; and Zs.

Finally, if A € Lg(X), and XC denotes the unique G-invariant complement
of X, then A(X®) C X€ is obvious, and A(X®) c X is just the previous
relation A(Z) C Z with Z = XC. This is equivalent to the desired block-diagonal
decomposition of A. O

PROOF OF THEOREM 2.3. (i) Let U C Xy be an irreducible G-module of
type W, and let € U\{0} be chosen once and for all (U # {0} since W 3 {0}).
As z € Xy, there is a sequence T, € Xy tending to z. For each n, let S, C Xy
be a (finite-dimensional) V-isotypical subspace of X containing z,,. Because
dimU < oo and U is G-invariant, there is a G-invariant closed complement Z of
U in X, and the projection P onto U associated with X = U & Z is G-covariant
(Theorem 2.1). From G-invariance of U, it follows that P(S,) is a G-invariant
subspace of U, whence P(S,) = {0} or P(S,) = U since U is irreducible. As
z, tends to z, Pz, tends to Pz = z # 0, which shows that P(S,) # {0} for n
large enough. Thus, P(S,) = U and since S, is V-isotypical, all its G-invariant
subspaces are V-isotypical too. In particular, this is true of any G-invariant
complement Z, of ker Pg, (recall dim$S, < c0). But P, is a G-covariant
linear isomorphism of Z, onto U, so that U is V-isotypical. As U is irreducible
of type W, this implies V ~ W.

(ii) Obviously, Xy is G-invariant and hence Xy is G-invariant too. To
prove A(Xy) C Xy, it suffices to show that A(Xv) C Xy, for then A(Xy) C
A(Xv) c Xy. U C X is an irreducible G-module of type V, then A(U) is
G-invariant and ker Ajy = U or {0} by irreducibility of U. In the first case,
A(U) = {0} C Xv. In the second case, Ay is a G-covariant linear isomorphism
of U onto A(U), whence A(U) has the same type V as U and, once again,
A(U) € Xy. This clearly implies A(Xy) C Xy.

Lastly, if Xy is split and Z is a closed G-invariant complement of Xy, the
relation A(Z) C Z follows from a straightforward modification of the proof given
in Theorem 2.2 for the special case V = V; (the trivial irreducible G-module).0
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PROOF OF THEOREM 3.1. That (i) = (ii) is trivial, and (ii) = (iii) follows
by choosing a G-covariant linear isomorphism T in the first part of the proof of
Proposition 3.1 (as assumption (ii) permits) and letting B = A in that proof.
(iii) = (iv) was shown in Proposition 3.2.

(iv) = (v): Let A, € GLg(X) be a sequence tending to A. From The-
nx, € Le(Xv), and A"lfv tends to Az, in
Lo(Xv). Clearly, A"IYV is one-to-one, and since A;' € GLg(X), Theorem
2.3(ii) implies that for y € Xy we have A;'y € Xv, ie. A"IYV is onto Xy.
Thus, A‘”WV € GLg(Xv) C ®oe(Xv). Local constancy of the index will im-
ply Ak, € ®oi(Xv) (the desired result) provided that we show that A% is
Fredholm of any index.

orem 2.3(ii), we have A% ,A

First, ker AIYv C ker A, and hence dimker AIYV < 00. To show that
codimrge Az, < oo, let us first observe that the method of proof of part
(i) of Theorem 2.3 shows that, more generally, if X and ¥ are Banach spaces
equipped with an action of G, and if A € Lg(X,Y), then A(Xy) C Yy for
every irreducible G-module V. In addition, if A € GLg(X,Y) then A|7V €
GLg(Xv,Yv) by the same arguments as above when X =Y.

Using this remark with X and Y replaced by X; and Y;, respectively,
where ¥; = rge A and X, is any G-invariant closed complement of ker A (re-
call dimker A < oo and use Theorem 2,1), we infer that Alfw = Yy and
hence that for every y € Y1y, there is x € X3y C Xy such that Az = y. In
other words, Y1y C rge A|YV' As a result, to prove that rge Alfv has finite
codimension, it suffices to show that Yy C Xy has finite codimension in Xv.

To do this, we show Xy = Ygy @ Y1y where Y is any (finite-dimensional)
G-invariant complement of Y; = rge A (Theorem 2.1). Let Qo and Q; denote
the projections onto Yy and Y; associated with the splitting X = Y, & Y;. Both
Qo and Q; are G-covariant. Let U C X be an irreducible G-module of type V.
Then Qo(U) is G-invariant, and ker Qo,, = {0} or U. Equivalently, Qo(U) = {0}
or is an irreducible G-module .of type V. In both cases, Qo(U) C Ypv and hence
QoXv C Yov. Likewise, @1(Xv) C Yiv. Let now z € Xy be fixed, and consider
a sequence Tp, € Xy tending to z. From the above, , = QoZn + Q1% with
Qun € Yoy, a =0,1. In the limit as n tends to oo, we find z = yo + y1 where
Yo = limpoo Quin € Yav, @ = 0,1. This shows that Xy = Yov + Y1v =
Yov + Y1y (recall dim Yy < 00), and the sum is direct since Yoy C Yo, YivCY
and Y, NY; = {0}. It follows that codim¥;y = dim Yoy < co.

(v) = (i): Since A € ®9(X) by hypothesis, both ker A and rge A are G-
invariant subspaces of X, and rge A = Y; has a G-invariant complement Yp
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(Theorem 2.1) with dimker A = dimYp < co. With no loss of generality, we
assume ker A # {0} since the problem is trivial otherwise.

Since X = ker A is G-invariant and finite-dimensional, it is the direct sum
Xo = Xo1 @ Xo2 @ ... ® Xoi of finitely many G-invariant nontrivial spaces
Xoi, each of which is V;-isotypical for some family Vi, ..., Vi of nonisomorphic
irreducible G-modules. By definition of Xy;, we have Xo; C Xy,, and Xy C
ker A)x,, C ker Az, . In fact, Xo; = ker Az, : first, Alfv,- is Fredholm with
index 0 by hypothesis, and hence ker Alyvi is also an algebraic sum of isotypical
components. Next, by Theorem 2.3(i), Xy, contains no nonzero irreducible G-
module nonisomorphic to V;, so that ker Alfvi is either {0} or a V;-isotypical
subspace of X contained in ker A = X;. But obviously, Xy; is the largest V;-
isotypical subspace of X contained in ker A = Xj, so that A|Yv‘ C Xos, iee.
ker Alfv,- = Xoi, as claimed.

Observe also that if V' # {0} is any irreducible G-module nonisomorphic to
Vi, 1 <i <k, then ker Az, = {0}, for otherwise ker Az C ker A implies that
ker A = X, contains a V-isotypical component (again by Theorem 2.3(i)), which
is not the case.

In a similar way, we may write Yo = Y51 ® Yoo ® ... & Yy, where Y; is a
nontrivial W;-isotypical subspace of X and Wi,... ,W; is some family of non-
isomorphic irreducible G-modules. Since Y5; C Yy, we have Yg; N rge Alfw.- -
Yy Nrge A = {0}, and AIYW.- being Fredholm with index 0 by hypothesis, we
infer that ker AIYW.- # {0}. As noted above, this is possible only if W; ~ V; for
some index 1 < j < k. Furthermore, as the W;’s are nonisomorphic, different
indices j correspond to different indices i, whence £ < k, and after reordering
Wi,...,W;, we may assume W; ~ V;, 1<i< /¢, ie. fw'. =YVw 1<i<.

The relation Yp; Nrge AITV.- = {0} obtained earlier implies codim Alfv,. >
dimYp;, that is, dimYy; < dimXg;, 1 < 7 < £, since ker AIYV.- = Xo; (as
shown above) and A|7V.- has index 0 by hypothesis. If either £ < k or the
above inequality is strict for at least one index 1 < i < £, then Zf=1 dimYp; <
YF  dimXp;. But this contradicts the relation Yf dimYy = dimYy =
dim Xy = ZLI dim Xy;. Therefore, k = £ and dimYy; = dim Xg;, 1 <3 < k.

In summary, for 1 < i < k, both Xo; and Yy, are V;-isotypical subspaces of
X with equal dimension, and hence they can be written as the direct sum of the
same number of irreducible G-modules of type V;. This makes it clear that X,
and Yj; are isomorphic through a G-covariant isomorphism. The corresponding k
isomorphisms induce a G-covariant isomorphism between ker A = X¢; ®. .. ® Xok
and Yp = Yp1 @ - - - @ Yo, in the obvious way. This completes the proof. O
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Proor oF COROLLARY 3.3. Let A € @og(X). Since dim W < co for every
irreducible G-module W = V, we have A|x,, € ®o(Xw). Thus, by Theorem 3.1
(v) = (iii), it suffices to show that Ax, € ®o(Xv) to prove that 4 € BE(X).

As Xy is split, it has a G-invariant closed complement Z (Theorem 2.2), and
both A%, and Az are Fredholm with

0=ind A= indAlyV +indA|z.

Thus, ind Alfv = 0 if and only if ind A z = 0. To prove the latter relation, note
that if W C Z is an irreducible G-module, then W » V and hence dim W < oc.
On the other hand, dim Zw < dimXw < oo, whence Zw = Zw and Az
is an isomorphism of Zw for every W C Z that does not appear in ker A|z or
coker A)z (for convenience, we denote by coker A, any chosen G-invariant closed
complement of rge Az in Z). Thus, the index of A;z equals the finite sum of
the indices of Az, with W C ker Az or W C coker Az, whence ind 4z = 0
using once again dim Zy < 00. O
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