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1. Introduction

This paper is devoted to the existence and multiplicity of solutions of non-
linear ordinary differential equations of the form

(1) u”(t) + g(u(t)) = p(t, u(®),¥'(t)),  t€la,b],

satisfying boundary conditions of the Sturm-Liouville type at a and b, when
g : R — R is continuous and superlinear, i.e.

(2) _gfu_u) — 400 as |u| — 400,

and p : [a,b] x R? — R is continuous and satisfies a linear growth condition in
the last two arguments. Problems of this type have been considered since the
late fifties, among others, by Ehrmann (7], Morris [14], Fugik-Lovicar [8], Struwe
[16] using shooting arguments, and by Bahri-Berestycki [1], [2], Rabinowitz [15],
Long [12], using critical point theory. More details and references can be found in
[3], where this type of differential equation, with periodic boundary conditions,
was treated using the celebrated Leray-Schauder continuation method [11]. It
may look surprising that one had to wait for the nineties to see the method of
Leray-Schauder applied to such problems. The reason can be found in the fact
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that the success of the Leray-Schauder method relies mostly upon obtaining a
priori estimates for the possible solutions of a family of equations connecting (1)
to a simpler problem for which the corresponding topological degree is not zero.
But elementary considerations based upon the energy integral reveal that the

equation
3) u"(t) + g(u(t)) =0

admits infinitely many solutions with arbitrary large amplitudes, satisfying clas-
sical boundary conditions like the Dirichlet, Neumann or periodic ones. And this
lack of a priori bound also holds for the corresponding forced equation. Hence,
the set of possible solutions of an associated family of equations like

(4) u’(t) + g(u(®) = Mot u(®), '),  Ae€[0,1],

satisfying the corresponding boundary conditions, is not necessarily a priori
bounded.

A variant of the Leray-Schauder continuation theorem was introduced in [3]
to overcome this difficulty in the case of periodic boundary conditions. Although
this approach covers more general situations, we will just describe, in this intro-
duction, the underlying ideas in the special case of equation (1) and for a bounded
perturbation p. Let us introduce a continuous function g : [a,b] xR? x [0,1] — R
such that

a(t, u,v,1) = p(t, u,v),
and such that the set of possible solutions of the periodic problem
w"(t) + g(u(t)) = q(t, u(t), v/ (t), ),

u(a) — u(b) = v'(a) — w'(b) =0,
with A = 0, is a priori bounded and the corresponding topological degree of the
set of solutions in the space Cnl([a, b)) of C* periodic functions on [a, b] is different

(5)

from zero. This is the case, in particular, if we choose
q(t,u,0,A) = —(1 — '\)%Ivl + Ap(t, 4, ).

The Leray-Schauder theory implies then the existence of a continuum C of solu-
tions (u,A) of (5) which either connects Cf([a,b]) x {0} to Cy([a,b]) x {1} (in
which case we obtain a periodic solution of (1)) or is unbounded in Cnl([a, b)) x
[0,1]. The second possibility is excluded by exhibiting a continuous functional
¢ : C}([a,b]) x [0,1] — Ry which is proper on the set X C Cy([a,]) x [0,1]
of solutions (u,A) of (5) and takes integer values on ¥ when ||uf is sufficiently
large. Namely, ¢ is chosen in such a way that it reduces, for (u,A) € X with
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lu|| sufficiently large, to the winding number around the origin of the curve
{(u(®),%(t)) : t € [a,b]}. The reader can consult [3] for the rather lengthy
technical details justifying the above assertions.

In contrast with the shooting or variational techniques mentioned above,
the methodology of [3] can be and has been extended to the study of periodic
solutions of functional differential equations of the form

u”(t) + g(u(t)) = plt, us, u}),

and in particular to delay-differential equations (see [4]).

In the Hamiltonian case where p depends only upon ¢ and u, Morris, Bahri-
Berestycki, Rabinowitz and Long have succeeded in proving the existence of
infinitely many periodic solutions of (1). One could think of adapting the above
continuation technique to obtain such a result by considering instead of (5) the

homotopy

u(t) + g(u(®)) = Ap(t,u(®)),  Ae[o1],
u(a) — u(b) = v'(a) — /(b)) = 0,

and showing the existence of distinct continua of solutions (u, A) connecting
infinitely many distinct periodic solutions of (3) to G ([a, b]) x{1}. Unfortunately,
the local index in Cy([a,b]) of any nonconstant periodic solution of (3) is equal
to zero (as shown in [5] in greater generality), and hence one is unable to prove
that such continua merely start from Cul([a, b)) x {0} !

The situation is quite different in the case of Sturm-Liouville conditions as
shown in [6] in the case of Dirichlet boundary conditions

u(a) =u(b) =0.

The local index of the solutions of the unperturbed equation (3) satisfying those
boundary conditions can be computed explicitly and an extension of the contin-
uation theorem of [3] has been proposed, which allows one to prove the existence
of infinitely many solutions with arbitrary large norms.

The aim of this paper is to extend this result to general Sturm-Liouville
boundary conditions. The continuation theorem announced in [6] can still be
applied and is developed in Section 2. Then the main task consists in computing
the local index of the solutions of the unperturbed problem. This is done in
Section 3 using some duality theorems of Krasnosel’skii-Zabretko [10], and those
results are of independent interest. In contrast to the shooting and variational
techniques, the present approach can be easily extended to some boundary value
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problems for retarded second order equations in a way similar to that introduced
in [4] for periodic boundary conditions.

We hope that this paper will help in convincing the readers that the Leray-
Schauder continuation method, introduced sixty years ago, remains a powerful,
efficient and versatile tool in proving the existence and multiplicity of solutions

for nonlinear boundary value problems.

2. A continuation theorem

In this section, we shall introduce a generalization of the continuation the-
orem of [3]. Let X and Z be real Banach spaces, L : X D D(L) — Z a linear
Fredholm mapping of index zero, I = [0,1] and N : X x I — Z an L-completely
continuous operator (see [13] for the corresponding definitions). We consider the

equation
(6) Lu = N(u,A), u€ D(L), Ael.

Let
2* = {(u,A) € D(L) x I : Lu= N(u,\)}.

For any set B C X x I and any A € I, we denote by By the section {fueX:
(u,)) € B}. Subsequently, we use the following conventions. For O C X x I, we
denote by @ and 8O its closure and boundary in X x I, respectively. Similar
notation is used for closure and boundary in X. If w is an open subset of X
(possibly not bounded) such that § = X3} N is compact and § C w (i.e. there is
no solution on dw), there exists U open bounded such that S CU C U C w. For
all such U, the coincidence degree Dr,(L — N(-,A),U) (see [13] for its definition
and notation) is the same, by excision property. We will denote it as

Dp(L—N(-,\),w).

Let © C X x I be open in X x I. Let us denote by T the (possibly empty)
set of solutions (u, A) of (6) which belong to O, i.e.

¥ = {(u,A) € ON(D(L) x I) : Lu= N(u,A\)}.

We first suppose that
(i1) o is bounded in X and Lo C Op.
We further assume that

(i2) Dr(L — N(-,0),00) # 0,
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so that ¥ # 0. Finally, we introduce a functional ¢ : X x I — R and suppose
that

(i3) ¢ is continuous on X x I and proper on X.

Consequently, the constants
p_ = min{yp(xy,0) : u € Tp}, ¢+ = max{p(u,0) : u € Ty}
exist.

THEOREM 1. Assume that conditions (i1), (iz) and (iz) hold and that there

exist constants c_, ¢, with
c- <p_ <y <cy,

such that
Qﬂ(u, ’\) ¢ {C_, C+}’
whenever (u, ) € (D(L)x]0,1)NONE, and

p(u,A) & [c—, c4],
whenever (u, A) € (D(L)x]0,1[) N8O NE. Then the equation
(N Lu= N(u,1)
has at least one solution in D(L) N (O);.

PROOF. Assume that equation (7) has no solution. Then

(8) e(ONZ)N{c_,ci} =0,
and
(9) p(PONZE)N[e—,cy] = .

A version of the Leray-Schauder theorem (see e.g. [9]) asserts that there exists
a continuum C C X with C N (Zp x {0}) # 0 such that either C is unbounded or
C intersects 00. By our assumption, ¢(C) is connected and intersects [, 4]
as C N (Zo x {0}) # 0. Suppose that C intersects HO. Then the interval o(C)
intersects at least one of the intervals | — 0o, c_[ or Jey, +oo[. Hence {c_,c;} N
@(C) # 0 and if (@A) € C is such that (@, \) = c € {c_,c4}, then (G, X) € O
but this is excluded by (8) and (9). Suppose now that C is unbounded, so
that ©(C) is unbounded too. Then, at least one of the unbounded intervals
] = 00,_], [¢4,+o0[ is contained in (C) C (), which implies that e(Z) N
{c_,et+} # 0, a contradiction. The proof is complete. O
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REMARK. If Q@ C X is open, bounded and such that
Lz # N(z,A) for all (z, ) € 99 x [0,1],

and if we take O = x [0,1] and
—dist(z,0Q) ifz e,
LP(Z, A) = . .
dist(z, 002) ifx g,
then, by assumption, g C 2 is bounded, —diam 2 < ¢4 < 0, and we can take
cy = 0, c. < —diam® in the above theorem to recover the classical Leray-

Schauder continuation principle [11].

Let us now consider a consequence of Theorem 1 which is useful for the
application we have in mind. Assume that ¢ : X x I — R, is continuous
and (ck)ken is an unbounded increasing sequence that satisfies the following

conditions:
(14) There exists R > 0 such that p(u, A) # cx for allk €N and (u,)) € £*
with ||u|| > R.

(is) ¢~ 1([0,cn[) N Z* is bounded for each n € N.
Let ko be an integer such that

ek > sup{ip(u, A) ¢ (u, ) € 5, [Jul] < R},

Let, for k > ko, O% = ¢~ (]ck, cks1]) and TF = Ok N E*. By (is), (Z*)o is
bounded. But, by (is), ©(z,A) # ck and @(x,\) # ckt1 for all (z, ) € =¥, so
(Z*)g  (OF)p, and we have proved the condition (i;).

We now prove that ¢ is proper on *. Let K be a compact subset of R.
Then ¢~1(K) N ¥ is closed -and included in ©* which is compact, so it is also
compact.

Let us assume that

(is) DL(L— N(-,0),0%) #0.

Thus, all conditions of Theorem 1 with ¥ = Tk O = OF are satisfied and
equation (7) will have at least one solution v € D(L)N (OF),. We have therefore

the following result:

COROLLARY 1. Assume that conditions (is) and (is) hold and that (i) is
satisfied for each integer k > ko. Then, for each of those integers, equation
(7) has at least one solution uy such that p(uk,1) € lck,cpr1[. Moreover,
im0 [|u;| = +o00-

PROOF. Only the last part of the Corollary has still to be proved. If this
conclusion is not true, we can find a bounded subsequence (u;) of solutions
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of (7) with p(uk;) € Jen;,cr;41[. So p(ur,) — 00 as j — oo. Thus we get a
contradiction, as the sequence (uy,) is precompact. O

3. Computation of the degree for Sturm-Liouville problems

To apply this abstract theory, we have to be able to compute the degree for
some “simple” problems.

Let f: R — R be continuous, odd and such that f(z)z > 0 for all z € R :=
10, +00). We consider the Sturm-Liouville boundary value problem for the scalar

autonomous equation

(10) z"(t) + f(z(t)) =0,
(11) az(0) + bz’ (0) = cz(1) + da'(1) = 0,

with a? + % > 0 and ¢ 4 d? > 0.
Writing (10) as an equivalent system in the phaseplane (z, Y) = (z,2'), we
see that all solutions of (10) conserve the energy

Hiz,y) = F(=) + £,

where F(z) = [; f(s)ds. For a > 0 we define F* as the set of points with
energy smaller than a?/2, i.e.

F* = {(z,y) € R? : H(z,y) < a?/2}.

We denote by C(a) the abscissa of the intersection in the right half plane of
the z-axis and the energy level ¢?/2. This means that F(C(a)) = a2/2 and
C(a) > 0. The intersection of the y-axis with this energy level is just the pair
of points (0, a) and (0, —a) (see Figure 1).

Because of the conditions on a, b, c and d, az + by = 0 and cz + dy = 0 are
the equations of straight lines, which we call respectively D and A.

We denote respectively by A(a) and D(«) the abscissas of intersection in the
upper half plane of A and D with the level line T, of energy o? /2. This means
that '

2b°F(D(a)) + a’D(a)? = b*a?
and —(a/b)D(a) 2> 0 (D(a) = 0 if b = 0). In the case where a = 0, there are
two solutions, and we choose arbitrarily D(c) = —~C(c). And similarly,

2d°F(A(a)) + 2 A(0)? = d?a?
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D =az+by=0

n(@)

C(a)

T Ax) D(a)

AEC.’E+dy= 0

FiGURrE 1. Picture of C(a), A(a) and D(a)

and —(c/d)A(a) > 0 (A(a) = 0 if d = 0). In the case where ¢ = 0, we take
A(a) = C(a).

The time needed by one solution of energy a?/2 to rotate from the point of
abscissa z in the upper half plane to the point of abscissa C(a) is denoted by
7(z, ). This time can be explicitly computed by the integral

C(a) 1

T(.'L', a) = : \/ﬁds

We define, for each energy level T',, two times which will be useful in the

computation of the degree.
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The first one, 7(a) = 7(—C(a), @) is the time needed to make one half turn
along the orbit 'y in the phaseplane. Since f is odd, this is the time of a half
turn starting at any point of this energy level, in particular, 7(a) is the time to
move from any of the two points of intersection of I',, with the straight line A
to the other point of intersection.

The second time 71(«) is the one needed to go from the line D to the line
A along I',. Since the lines can take different positions with respect to each
other, we have to consider several cases to define it. If D(@) < A(a), then
n1(a) = 7(D(e),@) — 7(A(a),a), and if D(a) > A(a), then r(a) = T(a) —
T(A(a), @) + 7(D(a), a).

Let u(-;z,y) be the solution of the Cauchy problem

(12) u”(t) + f(u(t)) =0,
(13) u0) =z, 4 (0)=y.
The solution u(-; D(a), —(a/b)D(e)) (or u(-;0,a) if b = 0) will be a solution of
(10)—(11) if and only if
Ti(e) + mr(a) =1
for some in € N. Let

S={(z,y) eR? : z >y >0and y+mz =1 for some m € N}.

So, such a solution satisfies the boundary conditions (11) if and only if (r(e),
1(a)) € 8.

Set C* := C*(I,R). The operator £ : C' D C? — C(I,R) x R?, u
(v”,0,0), is a linear Fredholm operator of index zero. The norm in C! is
lzll = supser [(x(£),2'(t))], where |P| denotes the euclidean norm of a point
P = (z,y) € R%. Set e1(u) = au(0) + bu'(0) and ez(u) = cu(1) + du’(1). The
non-linear operator N : C' — C(I,R) x R?, u — (Nu, e;1(u), ez(u)), where N
is the Nemytskil operator associated with —f, is L-completely continuous, as is
easily checked (see [13]).

The set

Q= {ueC': (Yt €R) (u(t),v'(t)) € F*}
is an open bounded subset of C.

So if o > 0 is such that (7(a),71(a)) ¢ S, then the equation (10)-(11) has

no solution on Q% and the degree (see [13])

De(L—N, Q%)

is well defined. We notice that to obtain this conclusion, we have also used the
fact that f is odd, so that u and —u are both solutions of (10)—(11).
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We now want to compute this last degree. We will use a duality theorem
due to Krasnosel’skii and Zabreiko [10] to prove that this degree is the same as
that of a one-dimensional map. And for such a map, the degree will be easy to

compute.

THEOREM 2. If a > 0 is such that (7(c), 71(c)) € S then
DL([, —N, Qa) = degB(qS,] - l, l[, 0),

where ¢ : R — R is the function

1
¢ eu(ts g (800)) + (4 (26,00

and [ > 0 is such that
bl a’1? 2
+ =
a2+ b (a?+b?)?

2F

PROOF. For the proof we will proceed by steps. We will first, by definition
of the degree of coincidence, write this degree as the Leray-Schauder degree of
some compact perturbation of the identity.

More generally, we can study the problem

u™(8) + ar (™R + -+ am(Bu(t) = —F(Gut), ., ™),
Ii{uw) =0,... ,lnn(u) =0,

where [; : C™1(I,R"*) — R are continuous linear functionals and f : I xR™" —
R" is continuous. We define Lu(t) = ul™ (t) + a1 (t)ul™~1(t) + - - - + am(t)u(t).

Let X = C™Y(I,R"), D(£) = C™(I,R") and Z = C(I,R") x R™". So
L:X > DKL) — Z, u+— (Lu,0), is a linear Fredholm operator of index
zero, and N : X — Z, u — (Nu,Au), where N is the Nemytskii operator
associated with —f and A : C™1(I,R") — R™", u— (l1(u),... ,lmn(u)), is an
L-completely continuous operator.

Then Im £ = C(I,R™*) x {0}. If we denote by V(¢) the fundamental matrix
of Lu = 0, then Ker £ = {u € C™ ! : (3z € R™"), u(t) = V(t)z}. With these
sets, we associate the projection @ : Z — Z, (u,7) = (0,7), J : Ker £ — Im@Q,
u+— (0,u(0)), and P: X — X, u— V(t)u(0).

Thus, for any open set £ on which the degree is defined,

D[,([’ —N, Q) = degLs (I - M,Q),

where M =P + J71QN + KpgN (see [13]).
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But
(14) Mu(t) =(Pu+ J =10, Av) + Kp(Nu,0))(2)
(15) =V(#)u(0) + V() Au

—/0 hi(t,8)f(s,u(s),... ,u[m—ll(s))ds

where hy, is the Cauchy kernel associated with L.

This last operator is defined in [10, p. 170].

Coming back to problem (10)~(11), we now assume that for each initial
condition (u(0),u'(0)) = z, there exists a unique solution u(t, z) of the Cauchy
problem (12)—(13) which is defined on I (this follows from the hypotheses we
have put on f).

We consider the operator &/ : R? — R? defined by

U(z) = (21 + e (u(-, 2)), 22 + e2(u( -, 2))),
whose fixed points coincide with the initial values of the solutions of (10)—(11).

DEFINITION. We say that the bounded open sets 2 C C! and G C R? have
a common core with respect to (10)~(11), if there are no fixed points of M on
09 and no one of U on 8G, and each solution u of (10)~(11) is in © if and only
if (u(0),v/(0)) € G.

Then we have, according to [10, Theorem 29.4):

LEMMA 1. Let Q C C! and G C R? be open bounded sets having a common
core with respect to (10)-(11). Then

degp(I —U,G,0) = degrs (I — M, Q).

We now show that 2% and F** have a common core with respect to (10)—(11)
when (7(a),n1(a)) € S.

Note that v € 60 if and only if (u(t),u'(t)) € F= for all t € I, and
(u(to),uw'(to)) € OF2 for some ty € I. But H (w(t),%(t)) is constant on I,
hence (u(0),4/'(0)) € BF too. But, by the choice of a, there is no solution
with energy level a2/2. So we have no fixed point of M on 80Q%, and no one
of U on OF®. Similarly, u € Q* if and only if (x(0),4'(0)) € F= Therefore,
De(L—N,Q*) = degg(I — U, F*,0).

We now have to compute

degp(l —U, F*,0) = (~1)degp(U — I, F*,0) = degp(U — I, F*,0).
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r=(® b_lz_l_a—b,
-b a a?+b2\b a

B=T"Y(F®) and U = (U — I) o T. By the product formula

Let

degg(U, B,0) = degs(U — I, F*,0),
and by the choice of T,
U(z) = (21, cu(l, Tz) + dv'(1,T2)).

Consider the straight line D : az + by = 0, which can be now written, after the
change of variables, as D = {(0,22) : z2 € R}, and set Bp = {z € R: (0,22) €
B} and R = {(21,22) € R? : |z1| < R and 2, € Bp} for some R > 0. We show
that

degg (T, B,0) = dega(U, R,0).
Indeed, if Uz = 0, then z € D. But, by construction, BN D = RN D; so by
excision, the degree on these two sets must be the same (see Figure 2).

Then we use invariance by homotopy to compute this last degree. Let
h(z,)\) = (z1,U2(Az1,22)), so that h(-,1) = U and h(-,0) = Iz x ¢. More-
over, h(z,A) = 0 if and only if h(z,1) = 0. By the choice of R, h(z,A) # 0 for
all A € I and z € OR. Hence

degs(U,R,0) = degg(lr X ¢,] — R, R[ X Bp,0)
= degp(Ir,] — R, R[,0) dega(¢, Bp,0)
= degB (¢) BD’ 0)

The last thing to prove is that Bp =] —I,I[. Accordingly, observe that
¢ € 8Bp if (0,¢) € 8B. By construction of B, this is equivalent to T(0,¢) € OF<.
It means that (a2 + b2)~1(—b(,al) must satisfy the relation 2F(x) + y? = o’
And this is exactly the definition of I. Therefore, Theorem 2 is proved. O

LEMMA 2. If a > 0 is such that (7(a),11(a)) € S then there exists m € N
such that 11(c) + (m — 1)7(a) < 1 and 71(a) + m7(a) > 1 and

degp(4, ] - 41[,0) = (-1)"0
where o = sgn(cz; + dzg) with z =T(0,1).
PROOF. Since f is odd, ¢ is also odd. So
degg (¢, | —1,1[,0) = sgn(¢(1)-

The conditions on 7(a) and 71(a) imply that the solution makes at least T — 1
half turns after its first contact with A and at most m. If m is even, then
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FIGURE 2. The sets B, Bp and R

(u(1,2),4/(1,2)) will be on the same side of A as 2. So sgng(l) will be o. And
if m is odd, sgn¢g(l) = —o. O

Figure 3 gives a more visual statement of this lemma.

So we have proved
THEOREM 3. Ifa > 0 is such that (7(a), 1)) € S, then there exists m eN
such that 71 (a) + (m — 1)7(a) < 1 and 1i(a) + m7(a) > 1, and
De(L-N, Q%) =a(-1)™,
where o € {—1,1} is defined in Lemma 2.

REMARK. The computation of the degree for the same problem when fis
not odd has also been made. But it is rather long, because instead of involving
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[ tir=1 n+¥r=1 F+r=1 n+r=1

FIGURE 3. Visual statement of Lemma 2

two times (7 and 71), it involves four, two for each side of the line A. So we
prefer to give here this simplest version and make a homotopy to a symmetric
equation (see equation (19)). But in the case where non-symmetric equations are
studied, like in “jumping non-linearities”, the degree for non-symmetric functions

is needed.
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4. Application to superlinear problems

Now, we will use the continuation theorem and the computation of the degree
to prove the existence of solutions for the problem

(16) u”(t) + g(u(t)) = p(t, u(t), w'(2)),
(17) azx(0) + bz'(0) = 0, cx(1) + dz'(1) = 0,

when g is continuous and satisfies (2) and p: [0,1] x R? — R is continuous and
satisfies a linear growth condition in the last two arguments, i.e.

(18) (¢ z,9)| < nlz| + Blyl +v  for all (¢,2,y) € I x R?

and for some constants 7, 3 and 7. To avoid some technical problems, we suppose
that |g(z)| > |z|. Thanks to the superlinearity of g, this condition is satisfied
for || sufficiently large. If this is not the case for all , take E = conv{z € R :
l9(z)| < |z[}. Then the function

i) T ifzeE,

T) =

g g(z) otherwise,
has this property and the growth condition (18) is still valid for the function
p(t,z,y) = p(t,z,y) + §(x) — g(x). Let f(z) = = + 2> This (odd) function
satisfies the conditions imposed in Section 3 for the computation of the degree.

We consider the homotopy
(19) u’(t) + f(u(t)) = Ag(t, u(t), ¥'(2)),

where ¢(t, z,y) = p(t, z,y) — g(z) + f(z). For A = 1, this is the equation (186).
Suppose for the moment that ad — bc # 0; this means that the two lines D
and A are distinct. Let

ri(u) = au + bu’ ra(u) = cu + du’
! lad — be|1/2’ 2T lad — b2

and 6 : R? — R be defined by

. 1
O(z,y) = mln{l, .'1:2—+y2}

We now define the continuous functional ¢ on C1(I,R) x I by

p(u,A) = ’ / [/ (£)? + u(e) (£ (w(®)) — Aq(t, u(e), u'(£)))]6(r1 (u)(£), r2(w) (1)) d¥].
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If (u, \) is a solution of (19) such that r1(u)(t)® + r2(u)(t)®> > 1 for all ¢ € [0,1],
we get

2

p(u, A) = p

L /()2 — u(t)u”(2)
/o (@O T r2(0) (1)? ‘”l

J; on (255)

Thus, for a solution of (19) satisfying the boundary condition (17), it turns out
that ¢(u, ) counts the number of quarters of lap if this is understood as the

= 2
—TI'

passage from one of the lines to the other.
When we are in the “pathological” case where ad — bc = 0, we define ¢ by

1
o) = 2| [0+ O a0 = Dt 0w O, /0 | 1.
And if (u, ) is a solution of (16)—(17) with u(t)? + «/(t)? > 1 for all ¢ € I, then
1 u
o(u,A) = %‘/0 %argtan (u((f))) dt' +1

is just the number of quarters of lap plus one.
Consistently with the notations of Section 2, we set

o = {(u, ) € C*([0,1]) x I : (u,A) is a solution of (16)-(17)}.

We now prove some properties of the solutions and of ¢. Those properties are
similar to the ones of [3].

LEMMA 3. Let V) € C}(R?,R), with (), 2) — Vi(2) continuous, be such that
lim,_.o |[Va(2)| = +00 uniformly in XA € I. If there exist constants K > 0 and
d > 0 such that for allt € I, A € I and (z,y) € R? with |(z,y)| > K,

Vaa (2, )y + Vay (2,9) (= £(2) + Ag(t, z,9))| < d|Va(z, ),
then for all Ry > 0, there exists Ry > Ry such that for all (z,\) € L* with
min|(2(t), /()| < Ry,
one has ||z||; < Ra.
PRrOOF. We show this for B; > K. Put
Wi(z,y) = In|Va(z,y)|-

Let (x,)) € £* be such that minees |(x(2),z'(t))| < Ry. If ||z]|; < Ry, just
take Ry = R;. Otherwise, take t; such that |(z(t1),2’(¢1))| = Ry and ¢ such
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that |(z(to), z'(t0))| = |[z|l1 with [(z(t),z'(£))] > R; between ¢y and ¢;. Let
w(t) = Wx(z(t),2'(t)). Then

'w(to) = w(tl)‘+ lto w’(s) ds

/ * 1w (s)] ds

t1

./ ’
1

< w(ty) + [t — to|d
<ca+d

<w(t) +

< wlty) + (VVa(z(s), 2'(s))(2'(5), 2" (s))) ‘ ds'

Va(z(s), z'(s))

with ca = sup{Wa(2) : |2| = Ry, A € I}. As lim,_,oc Wi(2) = +00, uniformly
in A, there exists K> such that Wi(z) > cp +d for all A € I, if |z| > K,. So,
llzlly < K3. 0

We apply this result to the equation (19).

LEMMA 4. For each Ry > 0 there is Ry > R, such that for any (z,)) € ©*
verifying minge; |(z(t), 2'(t))| < R1 we have ||z|1 < R,.

PROOF. Let G(z) = f; g(s)ds and

2 2
Va(@9) = (1 - VF(2) + X6(z) + % 2 min{F(2), ()} + L.
Then lim,_,o, VA(2) = +00 uniformly in A € I. We show that there exist con-

stants d and K such that for |(z,y)| > K, we have |yp(¢,z,y)| < dVi(z,y).
Indeed, for |(x,y)| large enough,

lyp(t, z,y)| < |yl(nlz] + Blyl +7) < M(2® +y%) < 2MVy(z,y)

because F(z) and G(z) are greater than z2/2. We can then apply the preceding
lemma. O

For ad — bc # 0, the function ((au + bv)? + (cu + dv)?)/|ad - be| is a qua-
dratic form. Let us denote by p_ and u4 the (positive) eigenvalues associated
with this form. So if u? + v? > 1/u_, the quadratic form is greater than 1. We
take R = Ry(1/u_) (for the particular case where ad — bc = 0, R = Ry(1)). So
we have proved the following lemma.

LEMMA 5. There is a R > 0 such that for any (z,A) € I* verifying ||z||, > R
there exist a k € N such that we have p(u, ) = 2k + 1.
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LEMMA 6. For each N > 0 there is R1(N) > 0 such that for all (u, ) € £*
verifying minscg |(u(t), v (t))| = R1(N) we have o(u,A) > N.

ProOF. By superlinearity of f and g and linear growth of p, for all Ky >
1+ 7+ B2/2, there exists cx, > 0 such that

z(f(z) — Aa(t, z,y)) +y* > Koz® — ek, — nz” — Blzlly| — ~lz| +4°

2
> Koz? — cg, — nx? — g(ﬂxz + %) — 7la| + o

B2\ ,
> =+ Ko—ﬂ—? z* —v|(z,9)| — ek,

N oS,

2
> 5‘372 + %— _’Yl(z’y)l — CKy»

where we put K = 2(Ko — n — 52/2).
If (u,)) € £* and minger |(u(t),v/(t))| > max{,/cx, K/, 7K'/}, passing
to the polar coordinates, we have
_ u(®)(f(ut) — Mt ut), w' (1)) + ' (2)?
|(u(?), v (£))|?

K (u(t)2 + u’(t)z/K) _ oK1/,

—6'(2)

=2\ (), v®)?
If we let ) 2K
¢ty
O(z,y) = ———
@9 =" P
and
= in O(z,y) =1/K,
o= min, (z,y) =1/
then
(1) 1 % 1 _ol(t)
_/9(0) O(cosh,sinf) J, ©O(cosf(t),sinb(t))
> & g2l
- 2 o
> 52{— - 2VK.

So if ||u/l; > R with R given by Lemma 5, then we have (8(0) —6(1) +27)vK >
K/2 — 2K, and as (p(u, \) + 1)7/2 > 6(0) — 6(1),

vE 4
w(U,A) > _71'_ - ; —5 =a(K)
Then, for N fixed, we take Kj such that o(K) > N. So if mingey |(u(t), w'(2))]
> max{,/cx, K'/4,vK'/?}, then p(u,A) > N. O

We can now prove the main theorem of this section.
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THEOREM 4. Assume that g : R — R is continuous and superlinear (see (2)),
and thatp : [0,1]xR? — R is continuous and has at most linear growth in the last
two variables (see (18)). Then there exists ko € N such that, for each j > ko, the
problem (16)~(17) has at least one solution u; such that o(u;, 1) €124,2(j + 1)].

Moreover, |lu;|| — oo as § — oo.

PROOF. We apply Corollary 1 with the abstract functional setting needed
to write problem (16)—(17) in the form Lz = N(z,)), according to [13] and
Section 3.

Take c; = 2k. Hence condition (i) is satisfied with R given in Lemma 5.
For condition (is), suppose that (z,A) € £* and ¢(z,)) < ¢,. Then we have
min |(u(t), w'(¢))| < Ri(cn) and thus ||z[; < Re(Ri(cs)) and ||z||; is bounded.

Moreover, Dr,(L — N(-,0),0%) = Dg(L -~ N(-,0),9*\ Q) where a and
o/ are such that (k + 1)7(e) = 1 and kr(@’) = 1 ((k+1/2)7(a) = 1 and
(k—1/2)7(a’) = 1 in the “pathological” case). Then Dr(L — N(-,0),0%) =
—20(—1)k. Therefore, all the conditions of Corollary 1 are satisfied. O
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