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1. Introduction

In this paper we use saddle point techniques to solve resonance problems for
semilinear equations. The resonance is permitted to be strong.

Let £ be a domain in R™ and let A be a selfadjoint operator on L%(Q2) having 0
as an isolated eigenvalue of finite multiplicity. If f(z,t) is a Carathéodory function
on 2 x R, then the equation

(1.1 Au = f(z,u)
is said to have asymptotic resonance at infinity if
(1.2) flz,t)/t—>0  aslt| - oo.

Resonance problems for (1.1) have been studied by many authors; a partial list is
included in the bibliography. Problem (1.1) is at strong resonance if

t
(1.3) f(z,t) > 0 as |t| — oo, / f(z,8)ds is bounded.
0
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Comparatively few authors have studied the strong resonance case. In [23],
Thews assumed that f(z,t) = g(t) is odd. In [3], Bartolo-Benci-Fortunato assumed
that f(z,t) = g(t) satisfies

tg(t) =0 as|if — oo,
f(t) < bOy te Ra
F(t) — bo as |t| — oc.
Ward [24] considered the following situation.

Fo(z) < F(z,t) — tf(x), zef, teR,

(1.4) F(z,t) —tf(z) — Fo(z)  uniformly in z as |t| — 0
and
(1.5) flz,t) — f(z)  as|t| > oo, f(z) € R(A).

In [20] we assumed (1.3),
limsuptf(z,t) < Wy(z) € L'(Q),

[t]—oc0

(1.6) lim inf 2/ F(z,v)dz > by > —o0, v € N(A),
Q

llvll—o0

min(O, B]_) < 2c1+by

where
(L.7) By = / Wi(z) do

and c; is the infimum of the energy functional corresponding to (1.1) on a subspace.
In [21] we allowed
If(z, )| <C(IH"+1), teR,
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for some constant v < 1 and assumed

limsup [2F (z,t) — tf(z,t)] < Wi(z) € L}(Q)

[t|—oo0

and

(1.8) B; < 2‘/QF(1:, v) dz, (Av,v) <0,
where B; is given by (1.7). In [22], Silva assumed (1.3), (1.6) and
(1.9) 2F(z,t) < X2+ Q| b, x€R, teR,

where A is the smallest positive point in the spectrum of A and || is the volume
of Q. In each of the cases mentioned the conditions are sufficient for the existence
of a solution of (1.1).

In the present paper we wish to allow (1.5) but not require the other restrictions
of [24]. In our first result we assume (1.6) and

(1.10) 2F(z,t) < X2 + Wy (z), zeteR.

We show that these two assumptions are sufficient for solutions of (1.1) to exist
provided

(1.11) Bi <bo + (fyw)
where Bj is given by (1.7) and w; is the unique solution of
(1.12) Auy = f, u; € N(A)*.

We then show that everything can be reversed. If we assume

(1.13) 1imsup2/ F(z,v)dz < b < 00, v € N(A),
[ell—o0  JQ

and

(1.14) A2 —Wy(z) <2F(z,t), z€Q, teR,

(where ) is the largest negative point of o(A)), then a solution is assured if

(1.15) Bo =/Qwo(z)dz < —b1 — (f,u1).
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The results of [3], [24], [22] and others are now corollaries. Our method is to apply
a generalization of the saddle point theorem recently proved by the author [17, 18]
(cf. also Silva [22] ).

THEOREM 1.1. Let N be a closed subspace of a Hilbert space H and let M =
N-L. Assume that at least one of the subspaces M, N is finite dimensional. Let G
be a C* functional on H such that

(1.16) mo := sup inf G(v+w) > —o00
vEN weM
and
(1.17) my = inf sup G(v+ w) < oo.
' weM yeN

Then there are a constant c € R and a sequence {ux} C H such that

(1.18) mp < ¢ < my, G(ux) — ¢, G'(ur) — 0.

Our results are stated in Section 2 and proved in Section 3.

2. Semilinear boundary value problems

Let § be a domain in R™ and let A be a selfadjoint operator on L?(f2) such
that:

(A) the essential spectrum o.(A) of A is contained in (0, 00),
(B) there is a function Vp(z) > 0 such that multiplication by V; is a compact
operator from D = D(|A["/?) to L3(),
(C) ifue N(A)\ {0}, then u # 0 a.e. in 2.
Let f(z,t) be a Carathéodory function on Q2 x R such that:
(D) |f(z,t)| < V(z) € L),z € Q, Lt ER,
(E) f(z,t) — f(z) a.e. as |t| — co.

We wish to solve
(2.1) Au = f(z,u), u € D(A).

‘We have
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THEOREM 2.1. In addition to (A)-(E) assume that

(2.2) bo = ﬁirﬁlinf 2/F(:z, v)dz > —o0
vZN(:lO)
where
t
(2.3) Flz,t) = / (z,8) ds.
0
If by < 00, assume further that
(2.4) 2F(z,t) < X2+ Wi(z), z€Q, teR,
and
(2.5) By = / Wi(z) de < bo + (f, u1)
Q

where X is the smallest positive point in the spectrum o(A) of A and u, is the unique
solution in N(A)L of Auy = f. Then (2.1) has a solution.

THEOREM 2.2. In addition to (A)—(E) assume that

(2.6) by := limsup 2/F(m,'u) dx < oo.
Jlvl|—c0
UEI}V(A)

If by > —oo, assume further that

(2.7) A% —Wo(z) < 2F(z,t), z€RQ, teR,
and
(2.8) Bo = LW()(.’Z') dx S —b1 - (f, u1)

where A is the largest negative point in o(A). Then (2.1) has a solution.

REMARK 2.3. The hypotheses of Theorems 2.1 and 2.2 imply that f(z) is
orthogonal to N(A).

COROLLARY 2.4. Assume hypotheses (A)—(E) with f(z) = 0. Assume also

(2.9) —Wo(z) < 2F(z,t) < M*+ Wi(z), =zT€Q, teR,
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(2.10) 2F(z,t) — Fo(z) a.e. as |t| — o0
and
(2.11) LWl(x) dz < /nFo(a:) dz.

Then (2.1) has a solution.

COROLLARY 2.5. Assume hypotheses (A)—(E) with f(z) =0. Assume also

(2.12) A2 — Wy(z) € 2F(z,t) < Wi(z), z€EQ, teR,
(2.13) 2F(z,t) — Fi(x) a.e. as |t| — oo

and

(2.14) AWQ((E) dz S —/f;Fﬂ.’D) dz.

Then (2.1) has a solution.

COROLLARY 2.6. Assume hypotheses (A)—(E) with f(z) = 0. Assume also

(2.15) Fy(z) < F(z,t) < Fi(z), z€Q, teR,
and either

(2.16) F(z,t) — Fy(z) a.e. as|t| — oo
or

(2.17) F(z,t) — Fi(z) a.e. as |t| — oo.

Then (2.1) has a solution.

3. The method

In this section we shall prove the theorems and corollaries of Section 2 using
Theorem 1.1.
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PROOF OF THEOREM 2.1. Let

(31) N'=EDN(A-)), N=NoN(4), M =N‘'ND, M=MaN(4).
A0

By‘hypothesis_ (A), N’, N(A) and N are finite dimensional and

(3.2) D=M'oN=MaN'.

In view of hypothesis (D), it is easily verified that the functional

(3.3) Glu) i= (Au,u) — 2 /Q F(z,u) do

is continuously differentiable on D and that

(3.4) (G'(u),v) = 2(Au,v) — 2(f(z,u),v), u,v € D,

By hypothesis (A) there is a constant K such that A + K > 1. We take
(3.5) Il = (Au, ) + Kflul? > flu]®

as the norm squared in D. By (3.4),

(3.6) G'(u)=0

is equivalent to (2.1). Note that

(3.7) (Av,0) < AJo)?,  wve N,

(3.8) (Aw,w) > X|Jw|)?, weM.

Let

(3.9) a(u,v) := (Au,v), a(u) := a(u,u), u,v € D.

We use the first decomposition in (3.2). For v € N we write v = v/ + vy, where
v’ € N' and vo € N(A). By (D) and (2.3),

/ F(z,v)dz < / F(z,v)dz + ||V| ||~'|].
Q Q

Hence
Gv) < A|P + 2V '] - 2 / F(z,n)ds, weN.
(4]
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Consequently,
(3.10) limsup G(v) < —bp < 0.
IE
On the other hand,
(3.11) G(w) = XNuwl* - 2| V|| |, —weM.
Consequently,
(3.12) mg = inf G > —o0, my :=sup G < oo.
M N

It now follows from Theorem 1.1 that there is a sequence {ux} C D such that
(3.13) G(ug) — c, mo < c < my, G'(ug) — 0.

We write

(3.14) uk = vk +wi + prYk, vk €EN', wp € M, yr € N(A), |lukll =1, px > 0.
By (3.13)

(3.15) a(ug, h) — (f(z,ux), h) = o(||h] p), heD.

In view of (D) this implies

(3.16) a(ve) = O(llvel),  a(we) = O(||lwkll p)-
Thus
(3.17) lvellp €€, llwkllp £C.

Hence there is a renamed subsequence such that
(3.18) v — v in N, wp — w; weakly in M’.

Since ||yx|| = 1, there is a renamed subsequence such that ¢y, — yin N (A) Since
y # 0, we know that y # 0 a.e. by hypothesis (C). Assume that
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Then
lue(z)| = ve(z) + wr(z) + pryr(z)| — 00 a.e.

If we put uj, = vk + W = ug — prYk, we have by (3.15),
a(ug, k) — (f(z,uz),h) — 0, h e D.

Consequently,

(3.20) a(uy, h) — (f(z),h) =0, he D,

where u; = v; + wi. Then u; is the unique solution in N (At of Au; = f- By
(3.15) and (3.20) we have

a(uy, — u1, h) — (f(z, ux) — £(2), h) = o ||| p)-
Taking h = wy — wi, we see that in view of (3.18),
(3.21) Ul — U in D.

Since

1
(3.22) /Q[F(a:,uk) — F(x, pryr)] dz = /Q/o f(z, pry + Oup)uy, d dz — (F, u1)

we have
Gluw) = alue) =2 [ Pz, puan) d = 2(f, 1) + o(0).
Thus
(3.23) limsup G(ug) < —(f,u1) — bo.
k—o0
Consequently, by (3.13),
(3.24) mo < —(f, ’U,1) — bg.

If b = oo, this contradicts (3.12). Hence assumption (3.19) must by false, i.e., for
a renamed subsequence

(3.25) pr < C.

But then we have a renamed subsequence such that uz — u in D. It then follows
from (3.15) that

(3.26) a(u,h) = (f(z,u),h), heD,
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showing that indeed (2.1) has a solution.
Let us now assume that by < oo and that (2.4), (2.5) and (3.19) hold. By the

former we have

(3.27) G(w) > a(w) — Bx, we M.

Thus g > —B;. Assume first that mg > —B;. Then (2.5) and (3.24) imply
—B; <mp £ —(f,u1) —bo £ By,

again providing a contradiction to (3.19). Again (3.25) provides a solution to (2.1)
via (3.26).

Finally, assume that mg = —B;. From the definition of mg, there is a min-
imizing sequence {wy} C M’ such that G(wg) — mo. Thus there is a renamed
subsequence such that wy — wo weakly in M’. By hypothesis (B) there is another
renamed subsequence such that Vowy — Vowp in L?(£2) and a.e. in Q. By (D)

/Q [F (=, wy) — F(=, wo)] do = /Q /0 " (w0 + ©(uwn — o)) 1wk — wo) O dz — 0.
Thus G(w) is weakly lower semi-continuous on M’ and
G(wg) < lim G(wg) = mg = —Bs.
Thus
(3.28) Hllwo|l? < 2 / F(z,wo) — B1 < Xjwol.

Consequently,
a(wo) = Xl[woll®,

showing that

(3.29) Awg = Awg.

Moreover, we also see from (3.28) that

(3.30) /ﬂ [2F (2, wo) — el — Wi (a)] dz = 0.
By (2.4) we see that

(3.31) 2F(z, wp) = Mwi + Wi(z).
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Let
(3.32) B(u) = / 2F (2, u) — W2 dz.
Q

Then (3.30) implies

(3.33) ®(u) < ®(wp), u € D.
Since
(3.34) (®'(u), b) = 2(f(z,u), h) — 2X(u, h)

and (3.33) implies ®'(wp) = 0, we must have
f(z, wo) = Awp.
Thus by (3.29) we must have
Awp = dwg = f(z,wq)

and we see that wo is a solution of (2.1). On the other hand, if (3.25) holds, we
obtain a solution as before.

PROOF OF THEOREM 2.2. In this case we use the second decomposition in
(3.2). In this case we have

(3.35) G(v) < Allol* + 2|Vl o,  ve N,

and
G(w) = Xw'|” - 2/ F(z,wo)dz - 2[|[V{l[lv'l, weM.
o)

where w = w' + wg, w' € M’, wp € N(A). Thus we have

(3.36) myg = inf G > —o0, my = supG < co.
M N/

Again we apply Theorem 1.1 to conclude that there is a sequence in D satisfying
(3.3)~(3.18). Assume that (3.19) holds. Again we find that u; = vy +w; € N(A)*
satisfies (3.20), (3.21) and Au; = f. From (3.22) we see that

(3.37) likm'gng(uk) > —(f,u1) — by.
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and consequently,
(3.38) my > —(f,u1) — b1

If b, = —oo, this contradicts (3.13), showing that (3.19) cannot hold. Once we
have (3.25) we proceed as before to obtain a solution of (2.1). Assume now that
by > —oo and that (3.19), (2.7) and (2.8) hold. By (2.7),

G(v) < a(v) = Av||®+ By, wveEN'.

By (3.7) we see that my < Bp. Assume first that m; < Bp. Then (2.8) and (3.38)
imply
By < —(f,u1) —b1 <m1 < By

again providing a contradiction to (3.19). We can now use (3.5) to proceed as
before. Finally, assume that m; = Bg. Let v be a maximizing sequence in N’ such
that G(vg) — mq. By (3.35), |luk||p < C and there is a renamed subsequence such
that vy — vp in N’. By continuity G(vi) — G(vp). Hence

G(’Uo) =m = Bo.
Thus
MWVS2/F@Mﬂ+%=W@MSMMﬁ

and consequently,
a(vo) = Allvol|”.

Thus
A’UO = A’UO -

We also have
[ 12P(@,00) = 20 + Wo@)] d = 0
Q

showing that
2F(z,v0) = dva — Wo(z).
Let
&(u) = f [2F (z,u) — Mu?] dz.
Q

Then
(®'(u), h) = 2(f(z,u), h) — 2A(u, h)
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and
®(u) > ®(vo), u € D.
Thus
<I>'(v0) = 2f(z,'u0) - 2A‘UO =0.
Consequently,

Avg = vy = f(z,v0)

and g is a solution of (2.1).

ProOF OF COROLLARY 2.4. We apply Theorem 2.1. In this case

bp=-lim 2 | F(z,t)dz = / Fo(z)dz.
Q Q

[t|—o0

PrRoOOF OF COROLLARY 2.5. In this case

b =LF1(m) dx

and we apply Theorem 2.2.
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